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Abstract
We investigate the relation between holomorphic torus actions on complex manifolds of
locally conformally Kähler (LCK) type and the existence of special LCK metrics. We show
that if the group of biholomorphisms of such a manifold (M, J ) contains a compact torus
which is not totally real, then there exists a Vaisman metric on the manifold, generalising
a result of Kamishima–Ornea. Also, we obtain a new obstruction to the existence of LCK
structures on a given complexmanifold in terms of its automorphismgroup.As an application,
we obtain a classification of manifolds of LCK type among all the manifolds having the
structure of a holomorphic principal torus bundle. Moreover, we show that if the group
of biholomorphisms contains a compact torus whose dimension is half the real dimension
of M , then (M, J ) admits an LCK metric with positive potential. Finally, we obtain new
non-existence results for LCK metrics on certain products of complex manifolds.
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1 Introduction

Locally conformally Kähler (LCK) metrics are natural conformal analogues of Kähler met-
rics. Namely, a Hermitian metric on a complex manifold (M, J ) with fundamental form Ω

is LCK if dΩ = θ ∧ Ω for some closed form θ , called the Lee form. On the minimal cover
of M on which the pullback of θ becomes exact, given by p : M̂ → M with p∗θ = dϕ,
ϕ ∈ C∞(M̂,R), there exists a global Kähler metric ΩK = e−ϕ p∗Ω , and (M̂, J ,ΩK ) is
called the minimal Kähler cover of the LCK structure.
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336 N. Istrati

Any LCK metric on a compact manifold of Kähler type is globally conformal to a Kähler
metric ([27]). For this reason, we will always assume tacitly that our manifolds are not of
Kähler type, in order to studyonly strict LCKmetrics. In this setting, a first obstruction appears
for manifolds of LCK type, namely: 0 < b1 < 2h0,1, where h0,1 = dimC H1(M,OM ) and
b1 = dimR H1(M,R) (see Sect. 2.2). As a matter of fact, this is the only cohomological
obstruction known for a general LCKmanifold.Vaisman had conjectured that such amanifold
should always have b2k+1 odd for some k ∈ N; however, thiswas disproved by theOeljeklaus-
Toma manifolds [16].

There are a few special LCK metrics which are better understood. The most important
one is a Vaisman metric, defined by the condition ∇gθ = 0, where ∇g is the Levi–Civita
connection determined by g. It can be seen that a Vaisman metric (Ω, θ) on (M, J ) has the
form

Ω = −ad Jθ + θ ∧ a Jθ, a ∈ R>0, (1)

and the corresponding Kähler metric on M̂ satisfies ΩK = ddc(ae−ϕ). Thus ΩK has a
positive potential. This was first noted by Verbitsky [30], and as a consequence Ornea–
Verbitsky [18] introduced and started the study of the more general notion of a LCK metric
with (positive) potential. These are LCK metrics whose Kähler form on M̂ satisfies

ΩK = ddc(p∗ f e−ϕ), f ∈ C∞(M,R). (2)

This class of metrics has the advantage of being closed under small deformations of the
complex structure ([8,18]), while the Vaismanmanifolds are not (see [1]). Even more general
than this is the notion of an exact LCK metric, which is an LCK metric whose Kähler metric
has the form:

ΩK = d(e−ϕη), η ∈ E1(M,R). (3)

The main objective of the present paper is to study the relation between the existence of
special LCK metrics on a compact complex manifold and the group of biholomorphisms of
the manifold. It turns out that this problem translates into certain properties of a compact
torus acting homolorphically on the manifold. In order to give the precise statements, let us
first specify these properties.

Let M be smooth compact manifold and let T ⊂ Aut(M, J ) be a compact torus with Lie
algebra t ⊂ C∞(T M). Moreover, let [θ ] ∈ H1(M,R) and let M̂[θ ] be the minimal cover of
M on which θ becomes exact.

Definition 1 (a) We say that T is horizontal with respect to [θ ] if the action of T on M lifts
to an action of T on M̂[θ ]. Otherwise, we say that it is vertical with respect to [θ ].

(b) If there exists a complex structure J on M so that T ⊂ Aut(M, J ), we say that T is
totally real if t ∩ J t = 0.

We then have the following results:

Theorem 1 Let (M, J ) be a compact complex manifold of LCK type, and letT ⊂ Aut(M, J )

be a torus which is not totally real. Then (M, J ) admits a Vaisman metric.

This result generalises a criterion of Kamishima and Ornea in [11] for deciding whether a
given LCK conformal class is Vaisman or not, in terms of the presence of a complex Lie group
with certain properties. As a corollary of the proof of our result, we obtain an obstruction to
the existence of a general LCK metric:

Corollary 1 Let (M, J )be a compact complexmanifold. If there exists a torusT ⊂ Aut(M, J )

so that dimR(t ∩ J t) > 2 then (M, J ) admits no LCK metrics.
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Existence criteria for special locally conformally... 337

Moreover,we give an alternative proof (Sect. 4) of the following result ofOrnea–Verbitsky,
in which we construct explicitly a positive potential by means of an ODE:

Theorem 2 ([19] and [20]) Let (M, J ) be a compact complex manifold, and let τ ∈
H1(M,R) be the de Rham class of a Lee form of an LCK structure on (M, J ). If there
exists S1 ⊂ Aut(M, J ) which is vertical with respect to τ , then there exists θ ∈ τ and Ω so
that (Ω, θ) is an LCK structure with positive potential.

As a corollary of these results and a previous one concerning toric LCK manifolds [10]
we also obtain:

Theorem 3 Let (M, J ) be a compact complex manifold of complex dimension n. Suppose
that the group of biholomorphisms of (M, J ) contains an n-dimensional compact torus Tn.
Then, for any τ ∈ H1(M,R) which is the class of a Lee form of an LCK metric, there exists
an LCK metric with positive potential (Ω, θ) so that θ ∈ τ .

We should note here that the dimension hypothesis on the torus is necessary, as the Inoue–
Bombieri surface S+ ([9]) admits an effective holomorphic action of S1, but no exact LCK
metric ([22, Proposition 4.14]).

We also tackle the following problem, related to the above results. Any LCKmetric (Ω, θ)

defines two natural vector fields B and A = J B, the Lee and anti-Lee vector fields, via:

ιAΩ = −θ, ιBΩ = Jθ. (4)

It is well known that, for a Vaisman metric, these vector fields are real holomorphic. It is
natural to ask whether the converse holds, or under which conditions. In the recent paper
[15], Ornea–Moroianu–Moroianu find additional properties ensuring that an LCK metric
with real holomorphic Lee vector field is Vaisman, namely: if the metric has harmonic Lee
form (i.e. is Gauduchon), or if B has constant norm. Moreover, they construct an example of
a non-Vaisman LCK metric with real holomorphic Lee vector field. In the present paper, we
show:

Proposition 1 Let (M, J ) be a compact complex manifold endowed with an LCK structure
(Ω, θ) of the form (1), whose corresponding Lee vector field is real holomorphic. Then Ω is
Vaisman.

This criterion should be particularly useful when constructing examples, as it is easy to
check. Moreover, we note that the metric constructed in [15] can be chosen with positive
potential, so the above result is the sharpest statement one can get. Finally, let us mention that
the example of non-Vaisman metric with holomorphic Lee field is constructed on a manifold
of Vaisman type. Thus the question remains open whether a manifold admitting an LCK
metric with holomorphic Lee field is of Vaisman type.

As a direct application of Theorem 1, we obtain in Sect. 7 a classification of manifolds
of LCK type among all the manifolds having the structure of a holomorphic torus principal
bundle. This is analogous to the result of Blanchard [2] in the Kähler context.

In the last part, we discuss the issue of irreducibility in LCK geometry. From early time
[27], it was known that if one takes two compact Hermitian manifolds (Mi , gi ), i = 1, 2,
the product metric is not LCK on M1 × M2. However, whether there might exist some other
LCKmetric on M1×M2 has remained an open question, and in Sect. 8, we extend the known
cases ([26, Corollary 3.3], [17, Corollary 2]) in which this fails. More precisely, we show
that M1 × M2 admits no LCK structure if M1 is of Vaisman type (Theorem 7) or if M1 is a
Riemann surface and M2 admits no LCK metrics with positive potential (Proposition 7).
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338 N. Istrati

2 LCKmetrics

In this section, we fix a complex manifold (M, J ). A metric g on (M, J ) is Hermitian if
g(J ·, J ·) = g. In this case, g induces a fundamental form Ω = g(J ·, ·) of bidegree (1, 1)
with respect to J . Conversely, a (1, 1)-form Ω ∈ E1,1(M,R) is called positive and we write
Ω > 0 if the symmetric tensor Ω(·, J ·) =: g is positive definite, in which case g is a
Hermitian metric. This one-to-one correspondence will be used implicitly throughout the
present text.

We begin with the equivalent definitions of a locally conformally Kähler (LCK) metric.
Let g be a Hermitian metric with fundamental form Ω on (M, J ).

Definition 2 The metric g is called LCK if one of the following equivalent facts holds:

1. There exists a real closed one-form θ on M , called the Lee form, for which we have:

dΩ = θ ∧ Ω. (5)

2. M is covered by open sets {Uα}α∈I so that for each α ∈ I there exists a Kähler metric
gα on (Uα, J ) and a real function ϕα ∈ C∞(Uα,R) so that:

g|Uα
= eϕα gα. (6)

3. There exists aKählermetricΩK on theuniversal coverwith the induced complex structure
π : (M̃, J ) → (M, J ) onwhichπ1(M), seen as the deck group ofπ , acts by homotheties:

γ ∗ΩK = ρ(γ )−1ΩK , γ ∈ π1(M), ρ(γ ) ∈ R>0. (7)

It is not difficult to see that indeed all the above conditions are equivalent, and for the
details, one can consult the monograph [4]. The Lee form is given on the open sets Uα by
θ |Uα = dϕα . The pullback of the Kähler metrics {gα}α∈I to M̃ glue up to a global Kähler
metric, which corresponds precisely to ΩK . Moreover, it is easy to check that the constants
given in (7) form a group morphism ρ : π1(M) 
→ (R>0, ·), γ 
→ ρ(γ ). The kernel of ρ is a
normal subgroup of π1(M), so one can consider Γ := π1(M)/ ker ρ and the corresponding
Galois cover p : M̂ → M of deck groupΓ . By definition,ΩK is ker ρ-invariant, so descends
to a Kähler metric on M̂ .

In fact, M̂ is the minimal cover ofM onwhich the pullback ofΩ is globally conformal to a
Kählermetric. For this reason, wewill call (M̂,ΩK ) theminimal Kähler cover corresponding
to Ω . Moreover, the pullback of θ becomes exact on M̂ and one has:

p∗Ω = eϕΩK , p∗θ = dϕ, ϕ ∈ C∞(M̂,R).

Note that the notion of an LCKmetric is conformal in nature. Thus, any relevant definition
concerning a general LCK structure should be conformally invariant. We will denote by
[Ω] = {e f Ω| f ∈ C∞(M,R)} the conformal class of an LCK metric. Among the objects
defined above, the de Rham class [θ ], the morphism ρ and the half-line of Kähler metrics
R>0ΩK are indeed univoquely defined by the conformal class [Ω].

For later use, let us introduce the set of de Rham classes of Lee forms of LCK structures:

L(M, J ) := {[θ ] ∈ H1(M,R)|∃Ω ∈ E1,1(M,R), Ω > 0, dΩ = θ ∧ Ω
}
.

We will say that (M, J ) is of LCK type if L(M, J ) is not empty.
In LCK geometry, an important role plays the differential operator:

dθ : Ek(M) → Ek+1(M)

dθη = dη − θ ∧ η.
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Existence criteria for special locally conformally... 339

This operator naturally appears when one is led to consider ρ−1-equivariant forms on M̂ ,
such as the Kähler form. Indeed, equivariant forms are exactly pullbacks of forms from M
multiplied by e−ϕ , and under this operation d on M̂ corresponds to dθ on M , as for any
smooth form α on M , one has the relation:

d(e−ϕ p∗α) = e−ϕ p∗(dθα).

In the same manner appears also the operator dcθ := dc − Jθ ∧·. A simple, but very useful
fact is the following lemma, cf. [29, Proposition 2.1]:

Lemma 1 Let M be a connected differentiable manifold and θ a real-valued closed 1-form
on M. Then dθ : C∞(M) → E1(M) is injective if and only if θ is not exact.

Most of the special LCK metrics defined in the introduction can also be given equivalent
definitions in terms of the operator dθ .

Definition 3 Let (Ω, θ) be an LCK structure on (M, J ).

(a) It is called an exact LCK structure if there exists a one-form η on M so that Ω = dθ η.
This is equivalent to (3).

(b) It is called an LCK structure with potential if there exists f ∈ C∞(M,R) so that Ω =
dθdcθ f . This is equivalent to (2). Moreover, it is called with positive potential if f can be
chosen positive. The function f will be called a θ -potential of Ω .

Remark that these definitions are invariant by conformal transformations, so can also be
used for conformal classes of metrics.

2.1 Vaismanmetrics

On the other hand, Vaisman metrics cannot be defined by the operator dθ alone, but it is true
that they admit constant θ -potential. First of all, the Lee and anti-Lee vector fields A and
B of a Vaisman structure (g,Ω, θ) on (M, J ), defined by (4), have remarkable properties.
The defining condition ∇gθ = 0 is also equivalent to ∇g B = 0, as B is the metric dual of
θ . This immediately implies that B (and so also A) is of constant norm. Moreover, it is not
difficult to see that A and B are real holomorphic and Killing. Finally, this also implies that
B is symplectic, which is equivalent to Ω admitting f = 1

‖B‖2 ∈ R as a θ -potential:

Ω = 1

‖B‖2 (−d Jθ + θ ∧ Jθ) = dθd
c
θ

(
1

‖B‖2
)

.

Moreover, aVaismanmetric is aGauduchonmetric, meaning that its Lee form is d∗-closed
(and thus harmonic), where d∗ is the co-differential with respect to g. This is easy to see
whether one writes d∗ = −∑2n

j=1 ιe j ∇e j , with {e1, . . . e2n} a local orthonormal real basis
of T M . In particular, a Vaisman metric inherits the property of Gauduchon metrics of being
unique in their conformal class up to multiplication by a positive constant, cf. [6]. For this
reason, we will usually normalise a Vaisman metric to verify ‖B‖ = 1, which then implies
that Ω = dθdcθ1.

2.2 Cohomological obstructions to the existence of LCKmetrics

Unlike the Kähler case, we lack cohomological or even topological obstructions to the exis-
tence of LCK structures. Note that an obvious one is the fact that b1 = 0 for a strict LCK
manifold.
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340 N. Istrati

The only other cohomological obstruction that we are aware of is a direct consequence
of [5, Proposition 3] and [27, Theorem 2.1]. Indeed, Vaisman’s proof implies that if (Ω, θ)

is some strict LCK structure on a compact complex manifold (M, J ), then the Bott–Chern
class [d Jθ ]BC ∈ H1,1

BC (M,R) cannot vanish. We recall here the definition of the real (1, 1)-
Bott–Chern cohomology group:

H1,1
BC (M,R) :=

{
α ∈ E1,1

M (M,R)|dα = 0
}

i∂∂̄(C∞(M,R))
.

Note on the other hand that there exists a natural map F : H1,1
BC (M,R) → H1,1(M,R) and

[d Jθ ]BC ∈ ker F , where:

H1,1(M,R) :=
{
α ∈ E1,1

M (M,R)|dα = 0
}

d(C∞(M,R))
.

But by [5, Proposition 3], we have:

ker F ∼= H1(M,O)

H1(M,R)
.

Thus, it follows that for a non-Kähler manifold of LCK type, we have the strict inequality:

0 < b1 < 2h0,1

also equivalent to the non-compactness of the Picard variety

Pic0(M) := ker(c1 : H1(M,O∗) → H2(M,Z)) ∼= H1(M,O)

H1(M,Z)
.

3 The Lee vector field

It is easy to see that, if the Lee vector field of an LCK metric is Killing, then the metric
is Vaisman. Moreover, in the compact setting, the same conclusion holds if the Lee vector
field preserves the fundamental form, by a result of [14]. However, it is not true that the
holomorphicity of the Lee vector field implies the Vaisman condition. It was recently shown:

Theorem 4 ([15]) Let (M, J , g,Ω, θ) be a compact LCK manifold with holomorphic Lee
vector field. If B has constant norm, or if g is Gauduchon, then g is a Vaisman metric.

Moreover, we have the following simple result, which holds also in the non-compact
setting:

Proposition 2 Let (M, J ) be a complex manifold endowed with an LCK metric (Ω, θ) with
constant θ -potential Ω = −ad Jθ +aθ ∧ Jθ , a ∈ R

∗. If Ω has real holomorphic Lee vector
field B, then Ω is Vaisman.

Proof Without loss of generality, we can suppose that a = 1. If B is real holomorphic, then
also A = J B is. The Cartan formula and LAθ = 0 imply:

0 = LA Jθ = dιA Jθ + ιAd Jθ

= −d(θ(J A)) + ιA(θ ∧ Jθ − Ω)

= d(‖B‖2) − θ‖B‖2 + θ
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Existence criteria for special locally conformally... 341

= dθ (‖B‖2 − 1).

Thus Lemma 1 implies that ‖B‖2 = 1. Using again Cartan’s formula and the form of Ω , we
obtain:

LBΩ = dιBΩ + ιB(θ ∧ Ω)

= d Jθ + ‖B‖2Ω − θ ∧ Jθ

= −Ω + Ω = 0.

Finally, since B preserves both the complex structure and the symplectic form, it also pre-
serves the metric. This implies that ∇gθ is antisymmetric. We therefore obtain: 0 = dθ =
2∇gθ , i.e. g is Vaisman. ��

In the paper [15], the authors also construct an example of an LCK metric which is not
Vaisman, but which has real holomorphic Lee vector field, thus showing that one needs some
additional hypotheses on Ω to ensure that it is Vaisman. We now present this example, with
the remark that in the original construction, the metric can in fact be chosen with positive
potential. This shows that the hypotheses in Proposition 2 cannot be relaxed.

Example 1 ([15]) Let (M, J ,Ω, θ) be a compact Vaismanmanifold with ‖θ‖2 = 1, and let B
be its Lee vector field. Suppose there exists a non-constant smooth function f ∈ C∞(M,R)

verifying f > −1 everywhere on M and such that d f is colinear with θ . After taking the
interior product with B, this last condition is more precisely d f = B( f )θ . Such functions
exist whenever B generates an S1-action on M , for instance on the standard Hopf manifold.

Consider next the form:

Ω ′ := Ω + f θ ∧ Jθ = d(1+ f )θ (−d Jθ).

As f > −1,Ω ′ is a strictly positive real (1, 1)-form on M and verifies dΩ ′ = (1+ f )θ ∧Ω ′.
Thus (Ω ′, θ ′ = (1 + f )θ) is an LCK structure with real holomorphic Lee field equal to B:

ιBΩ ′ = (1 + f )Jθ = Jθ ′.

As noted in [15], Ω ′ is not Vaisman as the norm of B is non-constant: Ω ′(B, J B) =
θ ′(B) = 1 + f . In fact we have more:

Lemma 2 The metric Ω ′ is not conformal to any Vaisman metric.

Proof Suppose that there exists a Vaisman metric Ω ′′ on M so that Ω ′′ = ehΩ ′. By a result
of K. Tsukada [25, Corollary 2.7], the Lee vector field of a Vaisman metric is unique on
the manifold M up to multiplication by a constant. Thus, we can suppose right from the
beginning that the Lee vector field of Ω ′′ is also B. Now this reads:

eh Jθ ′ = eh ιBΩ ′ = ιBΩ ′′ = Jθ ′ + dch

that is: dh + θ ′(1 − eh) = 0, or also, after multiplying by −e−h : dθ ′(e−h − 1) = 0. As θ ′
has no zero, it is non-exact, so Lemma 1 implies that e−h = 1, i.e. h = 0 and Ω ′ is Vaisman.
But this last fact is impossible as already noted. ��
Lemma 3 Suppose moreover that we have a diffeomorphism M ∼= N × S

1 with N a smooth
manifold, so that B is given by B = d

dt , with t a local coordinate on S
1 = R/2πZ and θ is

the pullback of a one-form from S
1. Then for any function f ∈ C∞(M) with f > −1 and

d f colinear with θ , Ω ′ = d(1+ f )θ (−Jθ) is an LCK form with positive potential on M.
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342 N. Istrati

Proof As d f is colinear with θ , f is induced by a 2π -periodic function onR. We are looking
for a positive function h : R → R, also 2π -periodic, verifying, when seen as a function on
M :

Ω ′ = dθ ′dcθ ′h. (8)

The function h verifies that both dh and dLBh are colinearwith θ , which implies the following
relations:

dh = LBh · θ, dch = LBh · Jθ, ddch = L2
Bh · θ ∧ Jθ + LBh · d Jθ.

With this in mind, (8) writes:

−d Jθ + (1 + f ) · θ ∧ Jθ = (LBh − h(1 + f ))d Jθ

+ (L2
Bh − LB f · h − 2(1 + f )LBh + h(1 + f )2

)
θ ∧ Jθ.

Now, the two forms −d Jθ and θ ∧ Jθ are linearly independent, which implies that in the
above equation, the corresponding coefficients preceding them must be equal. Seeing f and
h as functions on R, (8) now becomes equivalent to:

d

dt
h − h(1 + f ) + 1 = 0 (9)

d2

dt2
h − 2(1 + f )

d

dt
h − h

d

dt
f + h(1 + f )2 − (1 + f ) = 0. (10)

By differentiating the first equation, one obtains the second one, while the first ODE has a
solution of the form:

h(t) =
(
c −

∫ t

0
e−F(s)ds

)
eF(t), with F(t) = a +

∫ t

0
( f (s) + 1)ds, a, c ∈ R.

Thus a solution h of the above system exists, and now it is left for us to show that we can
choose the constants a and c such that h is moreover strictly positive and 2π-periodic.

Let us note that, because f is 2π -periodic, we have, for any t ∈ R:

F(t + 2π) = F(t) + b, where b =
∫ 2π

0
( f (s) + 1)ds > 0.

Thus we obtain:

h(t + 2π) =
(
c −

∫ 2π

0
e−F(s)ds −

∫ 2π+t

2π
e−F(s)ds

)
eF(t)eb

=
(
c − K −

∫ t

0
e−F(u)e−bdu

)
eF(t)eb

= h(t) + eF(t)((c − K )eb − c)

where K = ∫ 2π
0 e−F(s) > 0 and, for the second equality, we made the change of variable

s = u+ 2π . Thus, in order for h to be 2π -periodic, we take c := K eb

eb−1
> 0. Finally, we need

to see that h is in fact positive, which is also equivalent to saying that v(t) := c−∫ t
0 e

−F(s)ds
is positive. Note that d

dt v(t) = −e−F(t) < 0, so v can change sign at most once, and the
same is then true for the function h. On the other hand, h is periodic and h(0) = cea > 0,
thus h is indeed everywhere positive. ��
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Existence criteria for special locally conformally... 343

Note that, although the above example shows that there can exist non-Vaisman metrics
with holomorphic Lee vector field, it is however constructed out of a Vaisman metric. So one
can still ask the following question:

Question 1 Let (M, J ,Ω) be a compact LCK manifold with holomorphic Lee vector field.
Does there exist an LCK metric on M , not necessarily conformal to Ω , which is Vaisman?

Also, recall that the Lee vector field of any Vaisman metric on a compact manifold is
uniquely determined up to multiplication by a positive constant, by [25]. A related question
is then:

Question 2 Suppose that the Lee vector field of an LCK metric on a compact manifold of
Vaisman type is holomorphic. Is it then the Lee vector field of a Vaisman metric?

4 Existence of LCKmetrics with positive potential

Let us start by reviewing the notion of a vertical action of a torus. For our discussion, it
is enough to consider S1-actions. In what follows, we fix M a compact smooth manifold
and τ ∈ H1(M,R) a de Rham class. By the universal coefficient theorem, we can also
view τ ∈ Hom(π1(M),R). Then ker τ is a normal subgroup of π1(M), so we can take
M̂τ := M̃/ ker τ , which is a normal cover of M . If θ ∈ C∞(T ∗M) is a smooth representative
of τ , then M̂τ is the minimal cover of M on which θ becomes exact.

SupposeS1 acts onM with fundamental vector fieldC , and letΦt denote the corresponding
1-periodic flow. By averaging θ to an S1-invariant form: θ ′ := ∫ 1

0 Φ∗
t θdt , the de Rham class

does not change, i.e. [θ ′] = [θ ] = τ , so we can just suppose that θ is S1-invariant. Now we
have 0 = LCθ = d(θ(C)), so θ(C) = a ∈ R. Moreover, the value a only depends on the de
Rham class τ : it is in fact τ evaluated on the homotopy class of an orbit of S1.

We have the following simple characterisation of vertical actions:

Lemma 4 The action S1 is vertical for τ ∈ H1(M,R) if and only if θ(C) = 0 for some (and
so any) S1-invariant representative θ ∈ τ .

Proof In any case, C lifts to a vector field, also denoted by C , to M̂τ , generating an R-
action on M̂ . Let us denote by Φ̂t the corresponding flow. We want to show the equivalence:
Φ̂1 = idM̂τ

⇔ ∫
γ

τ = 0, where γ = [S1.x] ∈ π1(M, x) is the homotopy class of an S1-orbit
through an arbitrary point x ∈ M .

Denote by π̂ : M̂τ → M the covering of deck group Γ := π1(M, x)/ ker τ ⊂ Aut(M̂τ ),
and let p : π1(M, x) → Γ be the natural projection. Then

∫
γ

τ = 0 if and only if pγ = idM̂τ
.

But pγ = Φ̂1: indeed, for any x̂ ∈ π̂−1(x), the curve [0, 1] � t 
→ Φ̂t (x̂) is the unique lift
from x̂ of the loop [0, 1] � t 
→ Φt (x) representing γ . Thus the conclusion follows. ��

Hence, given a de Rham class τ ∈ H1(M,R), a torus action T
n on M lifts to an action

of Tn on M̂τ if and only if Lie(Tn) ⊂ ker θ for any smooth T
n-invariant closed one-form

θ ∈ τ .

Proof of Theorem 2 The beginning of the proof is exactly as in [19]; however, we give it here
for the sake of completeness.We recall that, by hypotheses, we have a compact LCKmanifold
(M, J ,Ω, θ) and a vertical S1-action on M with respect to τ = [θ ]. Let (M̂, J , ω) be the
minimal Kähler cover of (M, J , [Ω]). We denote by D the real holomorphic vector field on
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M generating the S1-action, as well as its lift to M̂ . By a standard average argument which
does not change the de Rham class of θ , we can suppose that both Ω and θ are preserved
by D. In particular, LDθ = 0 implies, by Lemma 4, that θ(D) = λ ∈ R

∗, as the action is
vertical. Let C := 1

λ
D, so that θ(C) = 1.

Let θ = dϕ on M̂ , so that the Kähler form writes ω = exp(−ϕ)Ω . Then we have:

LCω = −θ(C)ω = −ω. (11)

Let us denote by η the real one-form on M̂ defined by ιCω = η. Then (11) together with
Cartan’s formula implies:

ω = −(dιC + ιCd)ω = −dη. (12)

At the same time, using the fact that η(JC) = ω(C, JC) = ‖C‖2ω := f , we have:

LJCη = dιJCη + ιJCdη = d f − Jη,

from which it follows:

LJCω = −d(d f − Jη) = d Jη

L2
JCω = d JLJCη = ddc f + dη = ddc f − ω.

If we let Φt denote the one-parameter group generated by JC and denote by ωt := Φ∗
t ω and

by ft = Φ∗
t f , the last equation reads:

d2

dt2
ωt = −ωt + ddc ft . (13)

Let nowht be the real-valued functions on M̂ definedby the second-order linear differential
equation:

d2

dt2
ht + ht = ft , h0 = 0,

d

dt
|t=0ht = 0. (14)

We want to show that ωt = cos tω + sin td Jη + ddcht . For this, consider the forms
βt := ωt − (cos tω + sin td Jη + ddcht ), t ∈ R. Using (13) and the definition (14) of the
functions ht , we have:

d2

dt2
βt = d2

dt2
ωt + cos tω + sin td Jη − ddc

(
d2

dt2
ht

)

= −ωt + ddc ft + cos tω + sin td Jη − ddc ft + ddcht

= −βt .

Thus, the forms βt verify the following homogeneous second-order linear differential equa-
tion with the initial conditions:

d2

dt2
βt + βt = 0, β0 = 0,

d

dt
|t=0βt = 0.

By the uniqueness of the solution, we have then that for all t ∈ R, βt vanishes identically,
and so:

ωt = cos tω + sin td Jη + ddcht , t ∈ R. (15)

Define now, using (15), a new form ω̂ by:

ω̂ := 1

2π

∫ 2π

0
Φ∗

t ωdt = ddc
1

2π

∫ 2π

0
htdt
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and let us denote by h the function 1/2π
∫ 2π
0 htdt . As {Φt }t∈R is a subgroup of biholomor-

phism of M̂ , ω̂ is a Kähler form on M̂ . We wish to show that h is a strictly positive function
on M̂ .

Note first that, as θ(C) = 1, C has no zeroes so the function f is everywhere positive.
Moreover, as JC is real holomorphic, we have [C, JC] = 0, so Φt preserves both C and
JC . This gives, for any x ∈ M̂ :

ft (x) = ωΦt (x)(C, JC) = ωΦt (x)((dxΦt )C, (dxΦt )JC) = (Φ∗
t ω)x (C, JC)

thus also the function ft is strictly positive for any t ∈ R.
Fix x ∈ M̂ and define the functions fx , hx : R → R by fx (t) = ft (x) and hx (t) = ht (x).

By (14), they satisfy:
h′′
x + hx = fx , hx (0) = 0, h′

x (0) = 0. (16)

Then we have:
∫ 2π

0
hx (t)dt =

∫ 2π

0
fx (t)dt −

∫ 2π

0
h′′
x (t)dt =

∫ 2π

0
fx (t)dt − h′

x (2π). (17)

On the other hand, integrating by parts and using (16) we compute:

h′
x (2π) = h′

x (t) cos t
∣∣∣
2π

0

=
∫ 2π

0
h′′
x (t) cos tdt +

∫ 2π

0
h′
x (t)(− sin t)dt

=
∫ 2π

0
h′′
x (t) cos tdt −

(
hx (t) sin t

∣∣∣
2π

0
−

∫ 2π

0
hx (t) cos tdt

)

=
∫ 2π

0
fx (t) cos tdt .

Thus, it follows from (17):
∫ 2π

0
hx (t)dt =

∫ 2π

0
fx (t)(1 − cos t)dt > 0

implying that the function h is indeed everywhere positive.
Hence we can define θ̂ := d ln h. Note that by the uniqueness of the solution of (14), the

functions ht have the sameΓ -equivariance as the functions ft , or also as the function f . Here,
Γ denotes the deck group of the cover M̂ → M . Also we should note that, as C and JC are
Γ -invariant, being lifts of vector fields from M , then the Γ -equivariance of f = ω(C, JC)

is exactly the equivariance of ω. Thus it follows that θ̂ has the same Γ -equivariance as θ ,
and so the two one-forms are cohomologous. Hence the form

Ω̂ := h−1ddch (18)

descends to M to an LCK metric with positive potential with Lee form θ̂ , and the proof is
finished. ��
Remark 1 Let us note that the above construction of an LCK metric with potential is natural
and only depends on Ω and on C . In particular, if Ω is already JC-invariant, which will
imply that the metric is Vaisman, then we have ft = f and the solution of (14) is then
ht = (1 − cos t) f , so in particular the potential h = f remains unchanged.
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Remark 2 On the other hand, for ametricΩ which is not JC-invariant, the above construction
gives us a countable set of metrics with potential associated to the de Rham class of θ .
Indeed, we considered the potential h[1] := h, but for any n ∈ N

∗, the potential h[n] :=
1/2nπ

∫ 2nπ

0 htdt works as well.

5 Existence of Vaismanmetrics

In this section, we are interested in giving a proof of Theorem 1 and of Corollary 1. We start
by giving the main proposition, which will directly imply the general criterion.

Let (M, J ,Ω, θ) be a compact Vaismanmanifold with corresponding fundamental vector
fields B and A = J B. Then A, B ∈ aut(M, J ,Ω) generate a holomorphic R

2 action
on M , and we will denote by G the image of R2 in Aut(M, J ,Ω). Since the Lie group
Aut(M, J ,Ω) is compact, we can take the closure of G in it, obtaining thus a compact torus
T ⊂ Aut(M, J ,Ω). The torus T is not totally real, since both A and B are in t∩ J t. In fact,
we have:

Proposition 3 Let (M, J , [Ω], [θ ]dR) be a compact complex manifold endowed with a strict
LCK structure and let T ⊂ Aut(M, J , [Ω]) be a compact torus. If T is not totally real, then
[Ω] is Vaisman and t ∩ J t = R{A, B}, where B = −J A is the Lee vector field of some
Vaisman metric in [Ω].
Proof Choose a T-invariant LCK structure (Ω, θ) in the conformal class [Ω], so that for any
X ∈ t, d(θ(X)) = LXθ = 0. Let 0 = C ∈ t with D := JC ∈ t. Then both θ(C) and θ(D)

are constant. However, we cannot have θ(C) = θ(D) = 0. Indeed, if it was the case, then:

0 = ι[C,D]Ω = LC ιDΩ − ιDLCΩ

= dιC ιDΩ + ιCdιDΩ =
= d(−‖C‖2) + θιC ιDΩ = dθ (−‖C‖2)

implying, by Lemma 1, that ‖C‖2 = 0, contradiction. Hence, if θ(C) = a and θ(D) = b,
then X := aD − bC = 0 still verifies X ∈ t and J X ∈ t and, moreover, θ(X) = 0, so
θ(J X) = 0. Therefore, we can suppose from the beginning that θ(C) = 1 and θ(D) = 0.

Let f := ‖C‖2Ω , which is an everywhere positive function since C cannot have any zeros.
Take Ω ′ := 1

f Ω , with corresponding Lee form θ ′ = θ − d ln f . Then, since f is preserved
by both C and D, we still have θ ′(C) = 1 and θ ′(D) = 0, and C, D ∈ aut(M, J ,Ω ′).

Let η := ιCΩ ′. Then we have:

dη = LCΩ ′ − ιCdΩ ′ = −θ ′(C)Ω ′ + θ ′ ∧ η

or also Ω ′ = dθ ′(−η). Since D preserves both C and Ω ′, it also preserves η. Moreover, we
have 1 = ‖C‖2

Ω ′ = η(D). Hence we get:

0 = LDη = dιDη + ιDdη = ιD(−Ω ′ + θ ′ ∧ η)

= −Jη + θ ′(D)η − θ ′η(D) = −Jη − θ ′.

Finally, this implies that η = Jθ ′, so that C is actually the Lee vector field B of Ω ′. Since
C is real holomorphic and preserves Ω ′, it is also Killing, so 2∇θ ′ = dθ ′ = 0, that is, Ω ′ is
Vaisman.

Finally, since a Vaisman metric is unique in its conformal class up to multiplication by
constants, it follows that t ∩ J t = R{C, D} = R{A, B}. ��
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Note that this immediately implies Corollary 1.

Proof of Theorem 1 Aswealreadynoted at the beginningof the section, ifM admits aVaisman
metric then the corresponding real holomorphic vector fields B and A = J B sit in the Lie
algebra of a torus in Aut(M, J ).

Conversely, suppose T ⊂ Aut(M, J ) is not totally real. Take any LCK metric (Ω, θ)

and average it over T, in order to get a T-invariant LCK metric. Hence we have T ⊂
Aut(M, J ,Ω), and we can apply Proposition 3 in order to get the conclusion. ��

6 Maximal torus actions

Themain goal of this section is to give a proof of Theorem 3, as a consequence of the previous
results, together with our result concerning toric LCK manifolds of [10].

Let (M, J , [Ω], [θ ]) be a compact LCK manifold. There are two natural Lie algebras of
vector fields one can consider in this context, which we present next.

Definition 4 Avector field X ∈ Γ (T M) is called horizontal for ([Ω], [θ ]) ifLXΩ = θ(X)Ω

for some (and hence any) form Ω ∈ [Ω]. We denote by aut′(M, [Ω]) the set of horizontal
vector fields, and note that:

aut′(M, [Ω]) ⊂ aut(M, [Ω]) := {
X ∈ Γ (T M)|LXΩ = fXΩ, fX ∈ C∞(M)

}
.

Moreover, aut′(M, [Ω]) inherits the structure of a Lie subalgebra of Γ (T M).

Remark 3 If a vector field generates anS1-action and is a horizontal vector field for ([Ω], [θ ]),
then the S1-action is horizontal with respect to [θ ] in the sense of Definition 1.

Inside aut′(M, [Ω]) there is another natural Lie algebra, namely the one given by twisted
Hamiltonian vector fields.

Definition 5 A vector field X ∈ Γ (T M) is called twisted Hamiltonian for ([Ω], [θ ]) if for
some (and hence any) representative Ω ∈ [Ω], there exists fX ∈ C∞(M) so that ιXΩ =
dθ fX . Twisted Hamiltonian vector fields form a Lie subalgebra of horizontal vector fields,
denoted by ham(M, [Ω]).

Note that these definitions are conformally invariant. The claims that are made above are
easy to check, but for the complete proofs and for a motivation of these definitions, one can
consult the paper of Vaisman [29], where they were first considered.

In particular, we call an action of a connected Lie group G on (M, J , [Ω]) twisted Hamil-
tonian if Lie(G) ⊂ ham(M, [Ω]). Moreover, if n is the complex dimension of M , the
manifold (M, J , [Ω]) together with a torus T

n that acts on the manifold effectively by
biholomorphisms and in a twisted Hamiltonian way is called a toric LCK manifold. These
kind of manifolds were studied recently in [13,23] and [10].

Remark 4 It was shown in [13, Proposition 3.9], although not explicitly stated, that the orbits
of a horizontal torus action of Tn on (M, [Ω]) are isotropic for Ω . The main point is that, if
(Ω, θ) is Tn-invariant, then for any X , Y ∈ Lie(Tn) ⊂ aut(M), as X , Y ⊂ ker θ , we have:

0 =ι[X ,Y ]Ω = LX ιYΩ − ιYLXΩ = dιX ιYΩ + ιXdιYΩ = dθ (Ω(Y , X)).

This implies, by Lemma 1, that Ω(Y , X) = 0.
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It is not difficult to see that if [Ω] is exact in the sense of Definition 3, then horizontal
actions of compact tori coincide with twisted Hamiltonian ones, see the above references for
details. Also, as shown in [13, Lemma 3.7], this is also the case if M̂ is simply connected.
In fact, when the dimension of the torus is maximal, we do not need any hypothesis for this
equivalence to hold. The proof of this follows the lines of the one from [10], for this matter
we will skip some of the details:

Theorem 5 Let (M, J , [Ω]) be a compact LCK manifold of complex dimension n and let
T
n be a torus that acts effectively by biholomorphisms on the manifold. Then the action is

twisted Hamiltonian if and only if it is horizontal.

Proof Clearly, we only need to show the if direction, so let us suppose that the action is
horizontal. Let us fixΩ ∈ [Ω]which isTn invariant, with Lee form θ , so that t := Lie(Tn) ⊂
ker θ . Here and in all that follows, we identify t with a Lie subalgebra of aut(M, J ). Also
let (M̂, J ,ΩK ) be the corresponding minimal Kähler cover. Then, by Lemma 4, we have a
lifted action by biholomorphisms of Tn on (M̂, J ), and as it is not difficult to see, this action
is also symplectic with respect to ΩK .

By the principal orbit theorem, see for instance [3], there exists a dense connected open
subsetM0 ⊂ M onwhichTn acts locally freely.Moreover, asTn is abelian and acts effectively
onM , it acts in fact freely onM0. The preimage M̂0 ofM0 in M̂ is exactly the dense connected
open subset of M̂ on which T

n acts freely.
Now the proof of Proposition 3 shows that any horizontal torus is totally real, i.e. t ⊂ ker θ

implies that t ∩ J t = {0}. Thus we have a complex linear injection t ⊕ J t → aut(M, J )

generating a holomorphic action of Tc := (C∗)n on M and on M̂ . As for any ξ ∈ t, ξ has
no zeroes on M0, and as at any point of M0, t is orthogonal to J t with respect to the metric
g := Ω(·, J ·) by Remark 4, it follows that the action of Tc is locally free on M0, and so also
on M̂0.

Let us fix x ∈ M̂0 and let H = {a ∈ T
c|a.x = x}, which by the above discussion is a closed

discrete subgroup of Tc. We have a holomorphic embedding F : Tc/H → M̂0, a 
→ a.x .
As dimC T

c/H = dimC M̂0, F must be an open embedding, and as M̂0 is connected, F is
thus a biholomorphism. In particular, as M̂0 is dense in M̂ , H acts trivially on the whole of
M̂ , so we have a well-defined effective action of Tc/H on M̂ .

Now, as Γ commutes with Tc and preserves M̂0, it follows easily that Γ ⊂ T
c/H . Thus,

given idM̂ = γ ∈ Γ , there exists a subgroup R ∼= G ⊂ T
c/H containing < γ > as a

subgroup. G acts by biholomorphisms on M̂ and this action clearly commutes with Γ , so
descends to an effective S1 action on M . By definition, this action is vertical with respect to
[θ ]. One can average (Ω, θ) over this S1-action to obtain an exact Tn-invariant LCK metric,
which is in particular toric for the given action of Tn . This is exactly the construction of [10,
Lemma 5.1], where the details can be found.

Finally, by applying the result of [10], it follows that there exists a Vaisman structure on
(M, J ) with Lee class [θ ]. But by [12, Theorem 4.5] any dθ -closed form on M is dθ -exact.
Therefore, any LCK form on (M, J ) is exact, and so the torus action for the initial LCK form
[Ω] was twisted Hamiltonian. ��

Now, summing up, we get:

Proof of Theorem 3 Let Tn ⊂ Aut(M, J ), let τ ∈ L(M, J ) and let (Ω, θ) be a Tn-invariant
LCK structure with θ ∈ τ . If t ⊂ ker θ , then the above result implies that (M, J ) admits a
Vaisman structure (Ω ′, θ ′) with θ ′ ∈ τ .

If not, then identify T
n with (S1)n and let ξ1, . . . , ξn be the fundamental vector fields

generating each of the S1-actions on M . As θ does not vanish on the whole of t, there exists
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at least one ξ = ξk , k ∈ {1, . . . , n} generating a vertical S1-action with respect to [θ ]. Thus,
by applying Theorem 2, it follows that θ is the Lee form of an LCK metric with positive
potential. ��
Remark 5 All hypotheses in Theorem 5 are necessary. Indeed, on the one hand, the
non-diagonal Hopf surfaces provide examples of LCK manifolds admitting an effective
holomorphic action of a torus of dimension 2, but which are not toric, by [13, Theorem 7.2].
This shows that we need to impose the action of the torus to be horizontal in our result.

On the other hand, consider the Inoue surfaces of type S+
t ([9]) with t ∈ R. These admit

an LCK structure (Ω, θ), by [24]. As noted in [21, Example 5.7], these surfaces have a [θ ]-
horizontal holomorphic action of S1 which is not twisted Hamiltonian. This example then
shows that we need also to impose the dimension hypothesis on the torus in Theorem 5.

7 Holomorphic torus principal bundles

Let T = t/Λ be a compact complex torus of dimension n, let N be a compact complex
manifold and let π : M → N be a holomorphic T-principal bundle over N . Its Chern class
is an element:

cZ(π) ∈ H2(N ,Λ) ∼= H2(N ,Z) ⊗ Λ.

The inclusion Λ ⊂ t induces a natural map H2(N ,Λ) → H2(N , t) ∼= H2(N ,C) ⊗ t, and
we will denote by c(π) the image of cZ(π) under this map. The class c(π) has a well-defined
rank. If we choose C-basis for both t and H2(N ,C), then c(π) can be represented by a
2n × b2(N ) matrix over C, and then the rank of c(π) is the rank of this matrix.

Note that if the rank of c(π) is 1, then there exists a minimal element a ∈ Λ, unique
modulo sign, such that the non-torsion part of cZ(π) writes cZ(π)0 = cZ1 (π) ⊗ a with
cZ1 (π) ∈ H2(N ,Z). If c1(π) is the image of cZ1 (π) under H2(N ,Z) → H2(N ,C), then we
will have c(π) = c1(π) ⊗ a, and again c1(π) is uniquely defined modulo sign. So it makes
sense to ask weather c1(π) is a positive or negative class, i.e. weather c1(π) or −c1(π) can
be represented by a Kähler form on N . In the affirmative case, we will call the class c(π)

definite.
By a theorem of Blanchard [2], when N is of Kähler type, M carries a Kähler metric if

and only if the rank of c(π) is 0. On the other hand, a theorem of Vuletescu [31] states that
if n = 1 and the rank of c(π) is 2, then M cannot admit LCK metrics.

As a direct application of our existence criterion for Vaisman metrics and of Corollary 1,
we obtain a characterisation of manifolds of LCK type among all the compact torus principal
bundles over compact complex manifolds.

Proposition 4 Let T be a complex compact n-dimensional torus and π : M → N be a
T-principal bundle over a compact complex manifold N. Then M admits a strict LCK metric
if and only if n = 1 and the Chern class of π is of rank 1 and definite. In this case, M is of
Vaisman type.

Proof Suppose thatM admits a strict LCKmetric. The complex torusT acts holomorphically
and effectively on M , so, by Theorem 1, M admits a Vaisman metric (Ω, θ). Let B be the
Lee vector field with θ(B) = 1 and A := J B. By Proposition 3, n = 1 and t = Lie(T)

is spanned by A and B. Here, we identify t with its isomorphic image as a subalgebra of
Γ (T M).

Since the T-invariant 1-forms θ1 = Jθ and θ2 = θ verify θi (X j ) = δi j , for i, j = 1, 2,
where X1 = A and X2 = B, there will exist some linear combination of them giving
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a connection form α ∈ C∞(T ∗M ⊗ t) in π . More precisely, if we denote by ξ1, ξ2 the
fundamental vector fields of the action, and let G = (gi j ) be the matrix of {X1, X2} in the
basis {ξ1, ξ2} of t, then the connection form will be given by:

α := (g11θ1 + g21θ2) ⊗ ξ1 + (g12θ1 + g22θ2) ⊗ ξ2.

Indeed, it is T-invariant and we have α(ξi ) = ξi for i = 1, 2. Moreover, since dθ = 0, its
curvature is:

Θ := dα = dθ1 ⊗ g11ξ1 + dθ1 ⊗ g12ξ2 = d Jθ ⊗ A.

It is a basic form, so given by Θ = π∗η ⊗ A, with η ∈ Ω2(N ), and η ⊗ A represents the
Chern class c(π) ∈ H2(N , t). Then clearly c(π) is of rank 1, and moreover, it is definite
since the form −η is a Kähler form on N . The last assertion comes from the fact that, as
Ω is Vaisman, we have −d Jθ = Ω − θ ∧ Jθ , so the (1, 1)-form −d Jθ is strictly positive
on Q := ker θ ∩ ker Jθ ⊂ T M . But Q is exactly the horizontal distribution given by the
connection α, and so identifies with T N via π∗.

The converse statement is given in [28, Theorem 3.5], see also [26]. ��

8 Analytic irreducibility of complexmanifolds of LCK type

It is not very difficult to see that a product metric cannot be LCK ([27]), but whether an
LCK manifold must be analytically irreducible is still an open question. Under additional
hypotheses, the answer is known to be positive ([26, Corollary 3.3], [17, Corollary 2]). In
this section, we wish to enlarge the list of hypotheses implying the analytic irreducibility of
the manifold.

One of the results in this direction is due to Tsukada, which we can also obtain as a direct
consequence of Theorem 1:

Proposition 5 ([26, Corollary 3.3]) Let M1 and M2 be two compact complex manifolds of
Vaisman type. Then M := M1 × M2 admits no LCK metric.

Proof By Theorem 1, the groups of biholomorphisms Aut(Mi ) contain tori Ti which are not
totally real, for i = 1, 2. Then the Lie algebra t of the torus T := T1 ×T2 ⊂ Aut(M) verifies
dimC t ∩ J t = 2. Hence, by Corollary 1, M cannot admit an LCK metric. ��

Tsukada obtained Proposition 5 as a corollary to the following result:

Theorem 6 ([26, Theorem 3.2]) Let (M,Ω) be a compact Vaisman manifold and let F be
the canonical foliation on M generated by the Lee and the anti-Lee vector fields. ThenF has
a compact leaf.

We can further exploit this and obtain the following, more general, result:

Theorem 7 Let M1, M2 be two compact complexmanifolds and suppose that M1 is of Vaisman
type. Then M := M1 × M2 admits no LCK metric.

Proof Suppose M admits some LCK metric. Then, for any x ∈ M1, this metric restricted to
{x} × M2 ∼= M2 gives an LCK metric on M2.

Since M1 is of Vaisman type, there exists T1 ⊂ Aut(M1) whose Lie algebra t1 verifies
dimC t1 ∩ J t1 = 1. The induced torus T = T1 ×{idM2} ⊂ Aut(M) is still not totally real, so
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by Theorem 1, M is of Vaisman type and t := Lie(T) contains the corresponding Lee vector
field B.

Let Ω be a Vaisman metric on M which, possibly after averaging, is T-invariant. Then
for any y ∈ M2, Ω restricted to M1 × {y} ∼= M1 must be Vaisman. Indeed, by construction,
the Lee vector field B is tangent to M1, and [28, Theorem 5.1] states that any complex
submanifold of a Vaisman manifold that is tangent to the Lee vector field is again Vaisman
with the induced metric. Let now E ⊂ M1 be a closed leaf of the canonical foliation on
the Vaisman manifold M1, as in the above theorem. Clearly, after choosing O ∈ E , E has
the structure of an elliptic curve whose tangent bundle is generated by B and J B restricted
to E . Hence, the submanifold i : Y = E × M2 → M together with i∗Ω is Vaisman. At
the same time, Y → M2 is a trivial E-principal bundle, so we arrive at a contradiction via
Proposition 4. ��

Also, using the result which states that a compact complex submanifold of a Vaisman
manifold must contain the leaves of the canonical foliation, one has:

Proposition 6 A compact complex manifold of Vaisman type is holomorphically irreducible.

Proof Let M = M1 × M2 be the compact complex manifold with the product complex
structure, and suppose it admits a Vaisman metric Ω with corresponding canonical foliation
F generated by B, J B. Then, by [25, Thm 3.2], for any (x1, x2) ∈ M , both the submanifolds
M1 × {x2} and {x1} × M2 of M contain the leaves of F , which is impossible. ��

On the other extreme, we have the following result of Ornea, Parton and Vuletescu:

Theorem 8 ([17, Corollary 2]) Let M1, M2 be two compact connected complex manifolds,
and suppose that M1 verifies the ∂∂̄-lemma. Moreover, if M1 is a Riemann surface, then
suppose that its genus is 0 or 1. Then M := M1 × M2 admits no (strict) LCK metric.

Remark 6 In [17], the authors claim a proof of Theorem 8 also for the case when M1 is a
Riemann surface of genus ≥ 2, but we believe that their argument does not hold. However,
we are only able to find restrictions on the manifold M2 under the hypothesis that M1 × M2

admits an LCK metric:

Proposition 7 Let M1 be a compact complex curve, let M2 be a compact complex manifold
and suppose that M := M1 × M2 admits an LCK metric. Then M2 admits an LCK metric
with positive potential.

Proof Let (Ω, θ) be an LCK structure onM . Denote by pi : M → Mi , i = 1, 2 the canonical
projections. We have, by the Künneth formula, an isomorphism p∗

1 ⊕ p∗
2 : H1(M1,R) ⊕

H1(M2,R) → H1(M,R), meaning that there exist two closed forms θi ∈ C∞(T ∗Mi ),
i = 1, 2, such that θ is cohomologuous to p∗

1θ1 + p∗
2θ2. After a conformal change of Ω , we

can suppose that θ = p∗
1θ1 + p∗

2θ2. Moreover, as M1 is Kählerian, up to a conformal change
of Ω we can choose θ1 to be the real part of a holomorphic one-form, so that d Jθ1 = 0,
where J is the product complex structure on M .

The algebra of differential forms on M , C∞(
∧

T ∗M), has two compatible gradings: one
given by the degree of the forms, and the second one induced by the splitting T ∗M =
p∗
1T

∗M1⊕ p∗
2T

∗M2. With respect to this second splitting, write the differential d = d1+d2,
and write Ω = Ω1 + Ω12 + Ω2 ∈ C∞(

∧2 T ∗M), where:
∧2 T ∗M = ∧2 p∗

1T
∗M1 ⊕ p∗

1T
∗M1 ⊗ p∗

2T
∗M2 ⊕ ∧2 p∗

2T
∗M2.
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Then the equation dΩ = θ ∧Ω gives, in the homogeneous part
∧2 p∗

1T
∗M1⊗∧1 p∗

2T
∗M2:

d1Ω12 + d2Ω1 = θ2 ∧ Ω1 + θ1 ∧ Ω12. (19)

Extend J as a derivation acting on forms, and let dc = i(∂̄ − ∂). Then, on M we have the
commutation relation:

[J , d] = dc. (20)

The formula JdΩ = J (θ ∧Ω), together with JΩ = 0 and (20) gives, on the
∧1 T ∗M1⊗∧2 T ∗M2-part:

dc2Ω12 + dc1Ω2 = Jθ1 ∧ Ω2 + Jθ2 ∧ Ω12. (21)

On the other hand, the compactness of M1 implies that p2 is a proper submersion, so it
induces a push forward map on forms given by fiberwise integration:

(p2)∗ : C∞ (∧2n p∗
1T

∗M1 ⊗ ∧k p∗
2T

∗M2

)
→ C∞(

∧k T ∗M2)

((p2)∗α)y :=
∫

M1×{y}
α, y ∈ M2.

We apply the map (p2)∗ to Eq. (19) and Stoke’s theorem in order to obtain:

(p2)∗d2Ω1 = (p2)∗(θ2 ∧ Ω1 + θ1 ∧ Ω12).

If we denote by h the strictly positive function on M2 given by (p2)∗Ω1, this also reads:

dθ2h = (p2)∗(θ1 ∧ Ω12). (22)

We apply dc to this identity and use Eq. (21) together with (22) to get:

dcdθ2h = −(p2)∗(θ1 ∧ dc2Ω12)

= −(p2)∗(θ1 ∧ Jθ1 ∧ Ω2) + Jθ2 ∧ dθ2h + (p2)∗(θ1 ∧ dc1Ω2).

Since we chose θ1 so that d Jθ1 = 0, equation (20) implies that dc1θ1 = 0, hence the above
simply gives:

dcdθ2h − Jθ2 ∧ dθ2h = −(p2)∗(Ω2 ∧ θ1 ∧ Jθ1).

Note that α := Ω2 ∧θ1 ∧ Jθ1 is a semipositive (2, 2)-form on M which is strictly positive
on a non-empty open subset of M of the formU × M2, whereU ⊂ M1 is the open set where
θ1 does not vanish. Then η := (p2)∗α is a strictly positive (1, 1)-form on M2 verifying:

η = dθ2d
c
θ2
h. (23)

Thus (η, θ2) is an LCK metric with positive potential on M2. ��
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