
Calc. Var. (2019) 58:203

https://doi.org/10.1007/s00526-019-1624-y Calculus of Variations

Existence, duality, and cyclical monotonicity for weak
transport costs

J. Backhoff-Veraguas1 ·M. Beiglböck1 · G. Pammer1

Received: 2 December 2018 / Accepted: 31 August 2019 / Published online: 2 November 2019
© The Author(s) 2019

Abstract

The optimal weak transport problem has recently been introduced by Gozlan et al. (J Funct

Anal 273(11):3327–3405, 2017). We provide general existence and duality results for these

problems on arbitrary Polish spaces, as well as a necessary and sufficient optimality criterion

in the spirit of cyclical monotonicity. As an application we extend the Brenier–Strassen Theo-

rem of Gozlan and Juillet (On a mixture of brenier and strassen theorems. arXiv:1808.02681,

2018) to general probability measures on R
d under minimal assumptions. A driving idea

behind our proofs is to consider the set of transport plans with a new (‘adapted’) topology

which seems better suited for the weak transport problem and allows to carry out arguments

which are close to the proofs in the classical setup.

Mathematics Subject Classification 60G42 · 90C46 · 58E30

1 Introduction

1.1 Notation

This article is concerned with the optimal transport problem for weak costs, as initiated by

Gozlan et al. [25]. To state it [see (1.1) below] we introduce some basic notation. We write

P(Z) for the set of probability measures on a Polish space Z is and equip P(Z) with the

usual weak topology. Throughout X and Y are Polish spaces, μ ∈ P(X), and ν ∈ P(Y ). We

write �(μ, ν) for the set of all couplings on X×Y with marginals μ and ν. Given a coupling

π on X ×Y we denote a regular disintegration with respect to the first marginal by (πx )x∈X .
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We consider cost functionals of the form

C : X × P(Y )→ R ∪ {+∞};

usually it is assumed that C is lower bounded and lower semicontinuous in an appropriate

sense, and that C(x, ·) is convex. The weak transport problem is then defined as

V (μ, ν) := inf
π∈�(μ,ν)

∫

X

C(x, πx )μ(dx). (1.1)

1.2 Literature

The initial works of Gozlan et al. [24,25] are mainly motivated by applications to geometric

inequalities. Indeed, particular costs of the form (1.1) were already considered by Marton

[29,30] and Talagrand [40,41]. Further papers directly related to [25] include [21,23,36–38].

Notably the weak transport problem (1.1) also yields a natural framework to investigate a

number of related problems: it appears in the recursive formulation of the causal transport

problem [7], in [1,2,6,15] it is used to investigate martingale optimal transport problems, in

[3] it is applied to prove stability of pricing and hedging in mathematical finance, it appears

in the characterization of optimal mechanism for the multiple good monopolist [19] and

motivates the investigation of linear transfers in [17]. A more classical example is given

by entropy-regularized optimal transport (i.e. the Schrödinger problem); see [28] and the

references therein.

1.3 Main results

We will establish analogues of three fundamental facts in optimal transport theory: existence

of optimizers, duality, and characterization of optimizers through c-cyclical monotonicity.

We make the important comment, that these concepts (in particular existence and duality)

have been previously studied for the weak transport problem. However, the results available

so far may be too restrictive for certain applications.

Our goal is to establish these results at a level of generality that mimics the framework

usually considered in the optimal transport literature (i.e. lower bounded, lower semicon-

tinuous cost function). We emphasize that this extension is in fact required to treat specific

examples of interest, cf. Sect. 1.3.4 below.

We briefly hint at the novel viewpoint which makes this extension possible: In a nutshell,

the technicalities of the weak transport problem appear intricate and tedious since kernels

(πx )x are notoriously ill behaved with respect to weak convergence of measures onP(X×Y ).

In the present paper we circumvent this difficulty by embedding P(X × Y ) into the bigger

space P(X × P(Y )). This idea is borrowed from the investigation of process distances (cf.

[4,5,33]) and will allow us to carry out proofs that closely resemble familiar arguments from

classical optimal transport.

1.3.1 Primal existence

As a first contribution we will establish in Sect. 2 the following basic existence results.
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Theorem 1.1 (Existence I) Assume that C : X × P(Y )→ R ∪ {+∞} is jointly lower semi-

continuous, bounded from below, and convex in the second argument. Then, the problem

inf
π∈�(μ,ν)

∫

X

C(x, πx )μ(dx),

admits a minimizer.

Notably, Gozlan et.al. prove existence of minimizers under the assumption that π �→∫
C(x, πx ) dμ(x) is continuous on the set of all transport plans with first marginal μ, whereas

our aim is to establish existence based on properties of the function C . We also note that

Theorem 1.1 was first established by Alibert et al. [2] in the case where X , Y are compact

spaces.

In fact the assumptions of Theorem 1.1 may be more restrictive than they initially appear.

Indeed, as the cost function defined in (1.5) below is not lower semicontinuous with respect

to weak convergence, we will need to employ a refined version of Theorem 1.1 to carry out

our application in Theorem 1.4 below.

Given a compatible metric dY on the Polish space Y and t ∈ [1,∞), we write Pt
dY

(Y )

for the set of probability measures ν ∈ P(Y ) such that
∫

dY (y, y0)
t ν(dy) < ∞ for some

(and then any) y0 ∈ Y and denote the t-Wasserstein metric on Pt
dY

(Y ) byWt (see e.g. [42,

Chapter 7]). In the sequel we make the convention that, whenever we refer to Pt
dY

(Y ), it is

assumed that this set is equipped with the topology generated by Wt . On the other hand,

regarding the Polish space X , we fix from now on a compatible bounded metric dX .

Theorem 1.2 (Existence II) Assume that ν ∈ Pt
dY

(Y ). Let C : X ×Pt
dY

(Y )→ R∪ {+∞} be

jointly lower semicontinuous with respect to the product topology on X ×Pt
dY

(Y ), bounded

from below, and convex in the second argument. Then, the problem

inf
π∈�(μ,ν)

∫

X

C(x, πx )μ(dx),

admits a minimizer.

We emphasize that Theorem 1.1 is a special case of Theorem 1.2. To see this, just take

dY to be a compatible bounded metric. We also note that if C is strictly convex in the second

argument and V (μ, ν) < ∞, then the minimizer π∗ ∈ �(μ, ν) is unique. We report our

proofs in Sect. 2.

1.3.2 Duality

We fix a compatible metric dY on Y and introduce the space

�b,t := {ψ : Y → R continuous s.t. ∃a, b, ℓ ∈ R, y0 ∈ Y , ℓ ≤ ψ(·) ≤ a + bdY (y0, ·)
t }.

(1.2)

To each ψ ∈ �b,t we associate the function

RCψ(x) := inf
p∈Pt

dY
(Y )

p(ψ)+ C(x, p). (1.3)

We remark that RCψ(·) is universally measurable if C is measurable ( [16, Proposition 7.47])

and so the integral μ(RCψ) is well defined for all μ ∈ P(Y ) if C is lower-bounded.
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Theorem 1.3 Let C : X ×Pt
dY

(Y )→ R∪ {∞} be jointly lower semicontinuous with respect

to the product topology on X × Pt
dY

(Y ), bounded from below, and convex in the second

argument. Then we have for all μ ∈ P(X) and ν ∈ Pt
dY

(Y )

V (μ, ν) = sup
ψ∈�b,t

μ(RCψ)− ν(ψ). (1.4)

The proof of Theorem 1.3 is provided in Sect. 3. We also refer to this section for a

comparison of earlier duality results of Gozlan et al. [25, Theorem 9.6] and Alibert et al. [2,

Theorem 4.2].

1.3.3 C-monotonicity

Besides primal existence and duality, another fundamental result in classical optimal transport

is the characterization of optimality through the notion of cyclical monotonicity; see [22,35] as

well as the monographs [34,42,43]. More recently, variants of this ‘monotonicity priniciple’

have been applied in transport problems for finitely or infinitely many marginals [11,18,26,

32,44], the martingale version of the optimal transport problem [12,13,31], the Skorokhod

embedding problem [9] and the distribution constrained optimal stopping problem [14].

We provide in Definition 5.1 below, a concept analogous to cyclical monotonicity (which

we call C-monotonicity) for weak transport costs C . We show that every optimal transport

plan is C-monotone in a very general setup. Conversely, we have that every C-monotone

transport plan is optimal under certain regularity assumptions. See Theorems 5.3 and 5.6

respectively.

We note that related concepts already appeared in [6, Proposition 4.1] (where necessity of

a 2-step optimality condition is established) and in [23] (necessity in the case of compactly

supported measures and a quadratic cost criterion). To the best of our knowledge, our sufficient

criterion is the first of its kind for weak transport costs.

We remark that the 2-step monotonicity principle for weak transport costs has already

proved vital in [6] for the construction of a martingale counterpart to the Brenier theorem

and the Benamou–Brenier formula. On the other hand, we conjecture that this monotonicity

principle could be used in order to generalize [23] to non-quadratic costs.

1.3.4 A general Brenier–Strassen theorem

As an application of our abstract results we extend the Brenier–Strassen theorem [23, Theo-

rem 1.2] of Gozlan and Juillet to the case of general probabilities on X = Y = R
d under the

assumption that μ has finite second moment and ν has finite first moment. We thus drop the

condition in [23] that the marginals have compact support. For this part we set

C(x, ρ) :=

∣∣∣∣x −
∫

yρ(dy)

∣∣∣∣
2

, (1.5)

and write ≤c for the convex order of probability measures.

Theorem 1.4 Let μ ∈ P2(Rd) and ν ∈ P1(Rd). There exists a unique μ∗ ≤c ν such that

W2(μ
∗, μ)2 = inf

η≤cν
W2(η, μ)2 = V (μ, ν). (1.6)

Moreover, there exists a convex function ϕ : Rd → R of class C1 with ∇ϕ being 1-Lipschitz,

such that ∇ϕ(μ) = μ∗. Finally, an optimal coupling π∗ ∈ �(μ, ν) for V (μ, ν) exists, and

a coupling π ∈ �(μ, ν) is optimal for V (μ, ν) if and only if
∫

yπx (dy) = ∇ϕ(x) μ-a.s.
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Existence of μ∗ and the expression (1.6) were first proved by Gozlan et al. [24] for d = 1

and by Alfonsi et al. [1] for arbitrary d ∈ N. Indeed a general version of (1.6), appealing

to Wp and probabilities μ, ν ∈ Pp(Rd) is provided in [1]. All other statements in the

above theorem were originally established by Gozlan and Juillet [23] under the assumption

of compactly supported measures μ, ν. The proof of Theorem 1.4 is given in Sect. 6.

Note added in revision In an updated version of [23], Gozlan and Juillet have also removed

the compactness assumption in Theorem 1.4. Their proof is based on duality arguments and

in particular differs from the one given here.

2 Existence of minimizers

A principal idea behind the proofs of this paper is to endow the set of transport plansP(X×Y )

with a topology that is finer than the usual weak topology and which appropriately accounts

for the asymmetric role of X and Y in the context of weak transport. This can be formalized

by embeddingP(X×Y ) into the bigger spaceP(X×P(Y )). I.e., given a transport plan π , we

will consider its disintegration (πx )x∈X (w.r.t. its first marginal) and view it as a Monge-type

coupling in the larger space P(X × P(Y )). It turns out that on this ‘extended’ space the

minimization problems Theorems 1.1 and 1.2 can be handled more efficiently.

We need to introduce additional notation: for a probability measure π ∈ P(X × Y ) with

not further specified marginals, we write π(dx × Y ) and π(X × dy) for its X -marginal and

Y -marginal respectively. At several instances we use the projection from a product space onto

one of its components. This map is usually denoted by proj• where the subscript describes

the component, e.g. projX : X × Y → X stands for the projection onto the X -component.

Denoting by (πx )x∈X a regular disintegration of π with respect to π(dx × Y ), we consider

the measurable map

κπ : X → X × P(Y )

x �→ (x, πx ).

We define the embedding J : P(X ×Y )→ P(X ×P(Y )) by setting for π ∈ P(X ×Y ) with

X -marginal μ(dx) = π(dx × Y )

J (π) := (κπ )#(μ). (2.1)

The map J is well-defined since κπ is π(dx × Y )-almost surely unique. Note that elements

inP(X×Y ) precisely correspond to those elements ofP(X×P(Y )) which are concentrated

on a graph of a measurable function from X to P(Y ).

The intensity I (P) ∈ P(Y ) of P ∈ P(P(Y )) is uniquely determined by

I (P)( f ) =

∫

P(Y )

p( f )P(dp) ∀ f ∈ Cb(Y ). (2.2)

The set of all probability measures P ∈ P(X×P(Y )) with X -marginal μ and ‘P(Y )-marginal

intensity’ ν is denoted by

�(μ, ν) :=
{

P ∈ P(X × P(Y )) | projX P = μ, I (projP(Y )(P)) = ν
}
. (2.3)
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Similar to (2.2), we define the intensity of P ∈ P(X ×P(Y )) as the unique measure Î (P) ∈
P(X × Y ) such that
∫

X×Y

f (x, y) Î (P)(dx, dy) =

∫

X×P(Y )

∫

Y

f (x, y)p(dy)P(dx, dp) ∀ f ∈ Cb(X × Y ).

(2.4)

Note that while J is in general not continuous (cf. Example 2.2), the mappings I and Î are

continuous.

Using (2.1) and (2.4) we find that

�(μ, ν) = Î−1(�(μ, ν)) and J (�(μ, ν)) ⊆ �(μ, ν).

Also note that Î is the left-inverse of J , i.e., Î ◦ J (π) = π for π ∈ P(X × Y ). We now

describe the relation between minimization problems on �(μ, ν) and �(μ, ν):

Lemma 2.1 Let C : X × P(Y ) → R ∪ {−∞,+∞} be measurable, lower-bounded, and

convex in the second argument. Then

V (μ, ν) = V̂ (μ, ν), (2.5)

where V was defined in (1.1) and

V̂ (μ, ν) := inf
P∈�(μ,ν)

∫

X×P(Y )

C(x, p)P(dx, dp). (2.6)

Proof For any π ∈ �(μ, ν) we have J (π) ∈ �(μ, ν) and
∫

X

C(x, πx )μ(dx) =

∫

X×P(Y )

C(x, p)J (π)(dx, dp).

Thus,

inf
π∈�(μ,ν)

∫

X

C(x, πx )μ(dx) ≥ inf
P∈�(μ,ν)

∫

X×P(Y )

C(x, p)P(dx, dp).

Now, letting P ∈ �(μ, ν), we easily derive from (2.4) that Î (P) ∈ �(μ, ν) and Î (P)x =∫
P(Y )

p Px (dp) for μ-a.e x . Using convexity we conclude

∫

X×P(Y )

C(x, p)P(dx, dp) =

∫

X

∫

P(Y )

C(x, p)Px (dp)μ(dx)

≥

∫

X

C(x, Î (P)x )μ(dx)

≥ inf
π∈�(μ,ν)

∫

X

C(x, πx )μ(dx).

⊓⊔

2.1 Existence of minimizers

The purpose of this subsection is to establish Theorem 1.2, or more precisely, a strengthened

version of it; see Theorem 2.9 below. To this end we need a number of auxiliary results.

We start by stressing that, in general, the embedding J is not continuous. In fact:
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Example 2.2 The map J is continuous if and only if X is discrete or |Y | = 1. Indeed,

given X discrete and a sequence (πk)k∈N ∈ P(X × Y )N which weakly converges to π , we

have that πk(x × Y ) → π(x × Y ) from which πk
x (dy) = πk (x,dy)

πk (x×Y )
converges weakly to

πx (dy) = π(x,dy)
π(x×Y )

if π(x × Y ) > 0. Consequently if f ∈ Cb(X × P(Y )), then

lim
k
|J (πk)( f )− J (π)( f )|

≤ lim sup
k

∑

x

| f (x, πk
x )(πk(x × Y )− π(x × Y ))| +

∑

x

| f (x, πk
x )− f (x, πx )|π(x × Y )

= 0.

Therefore (J (πk))k∈N converges weakly to J (π). On the other hand, suppose there is a

sequence (xk)k∈N ∈ XN of distinct points converging to some x ∈ X , as well as p, q ∈ P(Y )

with p �= q . For k ∈ N define a probability measure on P(X × Y ) by

πk(dx, dy) :=
1

2
(δxk+1

(dx)p(dy)+ δxk
(dx)q(dy)).

A short computation yields

lim
k

J (πk) = lim
k

1

2

(
δ(xk+1,p) + δ(xk ,q)

)
=

1

2

(
δ(x,p) + δ(x,q)

)
,

J (lim
k

πk) = J
(1

2
δx (p + q)

)
= δ(

x, 1
2 (p+q)

),

which shows that J is discontinuous.

On the bright side, J possesses a crucial feature: it maps relatively compact sets to relatively

compact sets. We prove this in Lemma 2.6 below. But first we need to digress into the

characterization of tightness onP(P(Y )) and subspaces thereof. The following can be found

in [39, p. 178, Ch. II].

Lemma 2.3 A set A ⊆ P(P(Y )) is tight if and only if the set of its intensities I (A) is tight

in P(Y ).

We need to refine Lemma 2.3 for our purposes, since we equip Pt
dY

(Y ) with the Wt -

topology instead of the weak topology.

Lemma 2.4 A set A ⊆ Pt
Wt

(Pt
dY

(Y )) is relatively compact if and only if the set of its

intensities I (A) is relatively compact in Pt
dY

(Y ).

The proof of Lemma 2.4 heavily relies on the following lemma, for which we include a

proof for sake of completeness.

Lemma 2.5 A setA ⊆ Pt
dY

(Y ) is relatively compact if and only if it is tight and

∃y′ ∈ Y ∀ε > 0 ∃R > 0 : sup
μ∈A

∫

BR(y′)c

dY (y, y′)tμ(dy) < ε. (2.7)

Note that if (2.7) holds for some y′ ∈ Y it automatically holds for any y′ ∈ Y .
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Proof of Lemma 2.4 Since continuous maps preserve relative compactness in Hausdorff

spaces, the first implication follows by continuity of I . To show the reverse implication,

let I (A) be relatively compact in Pt
dY

(Y ). First we show for fixed y′ ∈ Y that

∀ε > 0 ∃Rε > 0 : sup
P∈A

∫

{p :Wt (p,δy′ )
t≥Rε}

Wt (p, δy′)
t P(dp) < ε. (2.8)

Fix ε > 0. There exist K > 0 and r > 0 such that for all P ∈ A
∫

Pt
dY

(Y )

Wt (p, δy′)
t P(dp) =

∫

Y

dY (y, y′)t I (P)(dy) ≤ K

∫

Pt
dY

(Y )

∫

Br (y′)c

dY (y, y′)t p(dy)P(dp) =

∫

Br (y′)c

dY (y, y′)t I (P)(dy) <
ε

2
, (2.9)

where Br (y′) = {y ∈ Y : dY (y, y′) < r}. Set Rε =
2r t K

ε
and ARε =

{
p ∈ Pt

dY
(Y ) :Wt

(p, δy′)
t ≥ Rε

}
, then

sup
P∈A

P(ARε ) ≤ sup
P∈A

1

Rε

∫

ARε

Wt (p, δy′)
t P(dp) ≤

K

Rε

and

sup
P∈A

∫

ARε

∫

Br (y′)

dY (y, y′)t p(dy)P(dp) ≤ sup
P∈A

P(ARε )r
t ≤

ε

2
. (2.10)

Putting (2.9) and (2.10) together shows (2.8).

It remains to show that A is tight in P(Pt
dY

(Y )). By Lemma 2.3 we have that A is tight

in P(P(Y )), i.e., given ε > 0 there is a compact set Kε ⊆ P(Y ) such that for all P ∈ A
we have P(Kε) ≥ 1− ε. We will construct a set K̃ε ⊆ Kε which is compact in Pt

dY
(Y ) and

satisfies P(K̃ε) ≥ 1− 2ε in P ∈ A. To this end, take a sequence of radii (Rn)n∈N such that

sup
P∈A

P

({
p :

∫

{y : dY (y,y′)t >Rn}
dY (y, y′)t p(dy) ≥

1

n

})
<

ε

2n
,

which is possible since

P

({
p :

∫

{y : dY (y,y′)t >Rn}
dY (y, y′)t p(dy) ≥

1

n

})
≤ n

∫

{y : dY (y,y′)t >Rn}
dY (y, y′)t I (P)(dy),

can be chosen sufficiently small, uniformly for P ∈ A. The set

K̃ε :=

{
p ∈ Kε :

∫

{y : dY (y,y′)t >Rn}
dY (y, y′)t p(dy) ≤

1

n
, n ∈ N

}

is compact in Pt
dY

(Y ) (cf. Lemma 2.5). Finally, given P ∈ A we obtain

P(K̃ε) ≥ P(Kε)−
∑

n

P

({
p :

∫

{y : dY (y,y′)t >Rn}
dY (y, y′)p(dy) ≥

1

n

})
≥ 1− 2ε

as desired ⊓⊔

Proof of Lemma 2.5 ‘⇒’: Since the topology induced by Wt on Pt
dY

(Y ) is finer than the

weak topology on Pt
dY

(Y ), relative compactness inWt implies relative compactness with
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respect to the weak topology. Therefore, Prokhorov’s theorem yields tightness. Suppose for

contradiction that (2.7) fails, i.e. there exist y′ ∈ Y and ε > 0 such that for all N ∈ N there

is μN ∈ A s.t.
∫

BN (y′)c

dY (y, y′)tμN (dy) ≥ ε.

In particular,

lim
R→∞

lim inf
N

∫

BR(y′)c

dY (y′, y)tμN (dy) ≥ ε. (2.11)

Due to relative compactness we find for any sequence in A an accumulation point. Then,

from the definition ofWt -convergence, see [43, Definition 6.8 (i i i)], we deduce

lim
R→∞

lim inf
N

∫

BR(y′)c

dY (y′, y)tμN (dy) = 0,

which contradicts (2.11). Hence, (2.7) is satisfied.

‘⇐’: Let A be tight such that (2.7) holds. Then, any sequence (μk)k∈N ∈ A
N has an

accumulation point μ ∈ P(Y ) with respect to the weak topology. Without loss of generality

assume that μk → μ for k →∞. By monotone convergence
∫

dY (y, y′)tμ(dy) = lim
R→∞

∫
R ∧ dY (y, y′)tμ(dy)

≤ lim
R→∞

lim inf
n→∞

∫
R ∧ dY (y, y′)tμn(dy) ≤ sup

n

∫
dY (y, y′)tμn(dy).

Hence, by (2.7) we can choose (for ε = 1, say) R > 0 such that
∫

Y

dY (y, y′)tμ(dy) ≤ sup
n

∫

BR(y′)

dY (y, y′)tμn(dy)+ 1 <∞,

which shows that μ ∈ Pt
dY

(Y ).

Next, fix ε > 0. Pick R > 0 such that
∫

Y

dY (y, y′)t − Rt ∧ dY (y, y′)tμ(dy) < ε,

sup
n

∫

BR(y′)c

dY (y, y′)tμn(dy) < ε.

By weak convergence we know that

lim
k

∫

Y

Rt ∧ dY (y, y′)tμk(dy)→

∫

Y

Rt ∧ dY (y, y′)tμ(dy).

Hence we may pick k0 such that for all k ≥ k0

∣∣∣
∫

Y

Rt ∧ dY (y, y′)t (μk − μ)(dy)

∣∣∣ < ε.

Thus we have for k ≥ k0

∣∣∣
∫

Y

dY (y, y′)t (μk − μ)(dy)

∣∣∣ < 3ε.

Since ε was arbitrary, we obtain that the t-moments are converging, which implies conver-

gence inWt . ⊓⊔
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We recall that on Y we are usually given a compatible complete metric dY , whereas on

X we fix a compatible bounded metric dX . We thus endow the product spaces X × Y and

X × Pt
dY

(Y ) with natural (product) metrices d and d̂ defined respectively by

d((x, y), (x0, y0)) = dX (x, x0)+ dY (y, y0), (2.12)

d̂((x, p), (x0, p0)) = dX (x, x0)+Wt (p, p0). (2.13)

We can now state and prove the crucial property of J :

Lemma 2.6 If � ⊆ Pt
d(X × Y ) is relatively compact then J (�) ⊆ Pt

d̂
(X × Pt

dY
(Y )) is

relatively compact. Conversely, if � ∈ Pt

d̂
(X × Pt

dY
(Y )) is relatively compact then Î (�) ⊆

Pt
d(X × Y ) is relatively compact.

Proof Since continuous maps preserve relative compactness in Hausdorff spaces, we imme-

diately deduce relative compactness of Î (�), and the sets �X ⊆ P(X) and �Y ⊆ Pt
dY

(Y )

consisting respectively of the X - and Y -marginals of the elements in �.

Denote now respectively by �X
J ⊆ P(X) and �Y

J ⊆ P
t
Wt

(Pt
dY

(Y )) the set of X - and

P(Y )-marginals of the elements in J (�). Clearly �X
J = �X . By Lemma 2.4, the set �Y

J

is relatively compact in Pt
Wt

(Pt
dY

(Y )) if and only if the set I (�Y
J ) is relatively compact in

Pt
dY

(Y ). However, if m is equal to the P(Y )-marginal of J (π), then I (m) is equal to the

Y -marginal of π . It follows that I (�Y
J ) ⊆ �Y is relatively compact and so is �Y

J . Since the

marginals of J (�) are relatively compact, we conclude that J (�) itself is relatively compact.

⊓⊔

It is convenient to introduce the following assumptions, which we will often require:

Definition 2.7 (A) Given Polish spaces X , Y , we say that a function

C : X × Pt
dY

(Y )→ R ∪ {+∞}

satisfies Condition (A) if the following hold:

• C is lower semicontinuous with respect to the product topology of

(X , dX )× (Pt
dY

(Y ),Wt ),

• C is bounded from below.

If in addition for all x ∈ X the map p �→ C(x, p) is convex, i.e.

p, q ∈ Pt
dY

(Y ), α ∈ [0, 1] ⇒ C(x, α p + (1− α)q) ≤ αC(x, p)+ (1− α)C(x, q),

(2.14)

then we say that C satisfies Condition (A+).

We now show that under Condition (A+) the cost functional defining the weak transport

problem is lower semicontinuous:

Proposition 2.8 Let C : X × Pt
dY

(Y )→ R ∪ {+∞} satisfy condition (A). Then the map

P
t

d̂
(X × Pt

dY
(Y )) ∋ P �→

∫

X×Pt
dY

(Y )

C(x, p)P(dx, dp) (2.15)
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is lower semicontinuous. If C satisfies condition (A+) then the map

P
t
d(X × Y ) ∋ π �→

∫

X

C(x, πx )π(dx × Y ) (2.16)

is lower semicontinuous.

Proof Let Pk → P inPt

d̂
(X×Pt

dY
(Y )). Similar to [20, Theorem A.3.12], we can approximate

C from below by d-Lipschitz functions and obtain lower semicontinuity of (2.15), i.e.,

lim inf
k

∫

X×P(Y )

C(x, p) Pk(dx, dp) ≥

∫

X×P(Y )

C(x, p) P(dx, dp).

To show lower semicontinuity of (2.16), let πk → π in Pt
d(X × Y ) and denote Pk =

J (πk). We may assume that lim infk

∫
X

C(x, πk
x )πk(dx×Y ) = limk

∫
X

C(x, πk
x )πk(dx×Y )

by selecting a subsequence. By Lemma 2.6 we know that {Pk}k is relatively compact in

Pt

d̂
(X × Pt

dY
(Y )). Denote by P an accumulation point of {Pk}k . From now on we work

along a subsequence converging to P . Observe that
∫

X

C(x, πk
x )πk(dx × Y ) =

∫

X×P(Y )

C(x, p) Pk(dx, dp).

Hence, we find by the first part that

lim inf
k

∫

X×P(Y )

C(x, p) Pk(dx, dp) ≥

∫

X×P(Y )

C(x, p) P(dx, dp).

Observe that the X -marginal of P equals the X -marginal of π , so by convexity of C(x, ·)
we then have

lim inf
k

∫

X

C(x, πk
x )πk(dx × Y ) ≥

∫

X×P(Y )

C(x, p) Px (dp)π(dx × Y )

≥

∫

X

C
(

x,

∫

P(Y )

p(dy)Px (dp)

)
π(dx × Y ).

Now, if f is continuous bounded on X × Y , we have
∫

X×Y

f (x, y)πk(dx, dy)→

∫

X×Y

f (x, y)π(dx, dy).

But the function F(x, p) :=
∫

Y
f (x, y)p(dy) is easily seen to be continuous and bounded

in X × P(Y ). Hence
∫

Fd Pk →
∫

Fd P and by the structure of F we deduce

∫

X×Y

f (x, y)π(dx, dy) =

∫
Fd P =

∫

X×P(Y )

∫

Y

f (x, y)p(dy)P(dx, dp).

This shows for the disintegration (πx )x∈X of π that πx (dy) =
∫
P(Y )

p(dy) Px (dp) for

π(dx × Y )-almost every x . So we conclude

lim inf
k

∫

X

C(x, πk
x )πk(dx × Y ) ≥

∫

X

C(x, πx )π(dx × Y ).

⊓⊔

We are finally ready to provide our main existence result:
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Theorem 2.9 Let C : X × Pt
dY

(Y ) → R ∪ {+∞} satisfy Condition (A). If � ⊆ Pt

d̂
(X ×

Pt
dY

(Y )) is compact, then there exists a minimizer P∗ ∈ � of

inf
P∈�

∫

X×P(Y )

C(x, p)P(dx, dp).

In particular P(X)×Pt
dY

(Y ) ∋ (μ, ν) �→ V̂ (μ, ν) is lower semicontinuous and V̂ (μ, ν) is

attained [(recall (2.6)]. Assume now that C fulfils Condition (A+) and � ⊆ Pt
d(X × Y ) is

compact. Then there exists a minimizer π∗ ∈ � of

inf
π∈�

∫

X

C(x, πx )π(dx × Y ).

In particular P(X)×Pt
dY

(Y ) ∋ (μ, ν) �→ V (μ, ν) is lower semicontinuous and V (μ, ν) is

attained [recall (1.1)].

Proof The existence of minimizers in � and � are direct consequences of their compactness

and the lower semicontinuity of the objective functionals (Proposition 2.8).

We move to the study of V̂ . Let (μk, νk)→ (μ, ν) in P(X)× (Pt
dY

,Wt ). For any k ∈ N

we find an optimizer P∗k of V̂ (μk, νk). Note that the set {P∗k : k ∈ N} is relatively compact in

Pt

d̂
(X × Pt

dY
(Y )). Therefore, we can find again a converging subsequence with limit point

in �(μ, ν). Without loss of generality we assume

lim inf
k

V̂ (μk, νk) = lim
k

V̂ (μk, νk).

Using lower semicontinuity of the objective functional shows the assertion for V̂ . By

Lemma 2.1 the lower semicontinuity of V is immediate. ⊓⊔

Of course Theorems 1.1 and 1.2 are particular cases of the second half of Theorem 2.9.

More generally: if A is compact in P(X) and B is compact in (Pt
dY

(Y ),Wt ), then � :=⋃
μ∈A,ν∈B �(μ, ν) is compact in Pt

d(X × Y ) and Theorem 2.9 applies.

3 Duality

We denote by �t the set of continuous functions on Y which satisfy the growth constraint

∃y0 ∈ Y , ∃a, b ∈ R+, ∀y ∈ Y : |ψ(y)| ≤ a + bdY (y, y0)
t ,

and by �b,t the subset of functions in �t which are bounded from below. Further, we recall

the notion of C-conjugate : The C-conjugate of a measurable function ψ : Y → R, denoted

RCψ , is given by

RCψ(x) := inf
p∈Pt

dY
(Y )

p(ψ)+ C(x, p). (3.1)

We obtain Theorem 1.3 as a particular case of the following:

Theorem 3.1 Let C : X × Pt
dY

(Y )→ R ∪ {+∞} satisfy Condition (A). Then

inf
P∈�(μ,ν)

∫

X×P(Y )

C(x, p)P(dx, dp) = sup
ψ∈�b,t

−ν(ψ)+

∫

X

RCψ(x)μ(dx). (3.2)
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If moreover C satisfies Condition (A+), then

V (μ, ν) := inf
π∈�(μ,ν)

∫

X

C(x, πx )μ(dx) = sup
ψ∈�b,t

−ν(ψ)+

∫

X

RCψ(x)μ(dx). (3.3)

Remark 3.2 A proof of Theorem 1.3 can be obtained by means of [25, Theorem 9.6], since

we may verify the hypotheses therein thanks to our Proposition 2.8. We prefer to obtain the

slightly stronger Theorem 3.1 via self-contained arguments. The primal–dual equality (3.3)

was obtained in [2, Theorem 4.2] in the case when X , Y are compact spaces.

Proof of Theorem 3.1 Fix y0 ∈ Y . Define the auxiliary cost function C̃ : X × Pt
dY

(Y ) by

C̃(x, p) := C(x, p)+Wt (p, δy0)
t

and F : Pt
dY

(Y )→ R ∪ {+∞} by

F(m) := inf
P∈�(μ,m)

∫

X×P(Y )

C̃(x, p)P(dx, dp)

= inf
P∈�(μ,m)

∫

X×P(Y )

C(x, p)P(dx, dp)+

∫

Y

dY (y, y0)
t m(dy). (3.4)

Since the integrand C̃ is bounded from below and lower semicontinuous we can apply Propo-

sition 2.8 and find that F is lower semicontinuous on Pt
dY

(Y ). Note that for any α ∈ [0, 1]

and m1, m2 ∈ P
t
dY

(Y ) we have

Pi ∈ �(μ, mi ), i = 1, 2 �⇒ αP1 + (1− α)P2 ∈ �(μ, αm1 + (1− α)m2),

and, particularly, it follows that F is convex. We can extend F to the setMt
dY

(Y ) of bounded

signed measures with finited t-moment (i.e. m ∈ Mt
dY

(Y ) implies
∫

Y
dY (y, y0)

t |m|(dy) <

∞ for some y0) by setting F(m) = +∞ if m /∈ Pt
dY

(Y ). We equip the space Mt
dY

(Y )

with the topology induced by �t . It follows that the extension of F is still convex and lower

semicontinuous. Now, the spaces �t andMt
dY

(Y ) are in separating duality. Define the convex

conjugate F∗ : �t → R ∪ {+∞} of F by

F∗(ψ) = sup
m∈Pt

dY
(Y )

m(ψ)− F(m). (3.5)

Observe that F∗(ψ) = limk→+∞ F∗(ψ ∧ k), by monotone convergence. We may apply the

Fenchel duality theorem [45, Theorem 2.3.3], and then replace �t by �b,t , obtaining:

F(m) = sup
ψ∈�t

m(ψ)− F∗(ψ)

= sup
−ψ∈�b,t

m(ψ)− F∗(ψ)

= sup
ψ∈�b,t

m(−ψ)− F∗(−ψ).

Now we show that

F∗(−ψ) = −

∫

X

RC̃ψ(x)μ(dx). (3.6)
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Rewriting (3.5) yields

F∗(−ψ) = sup
m∈Pt

dY
(Y )

m(−ψ)− inf
P∈�(μ,m)

∫

X×P(Y )

C̃(x, p)P(dx, dp)

= sup
m∈Pt

dY
(Y )

P∈�(μ,m)

−

∫

X

(∫

P(Y )

p(ψ)+ C̃(x, p)Px (dp)

)
μ(dx)

= − inf
m∈Pt

dY
(Y )

P∈�(μ,m)

∫

X

(∫

P(Y )

p(ψ)+ C̃(x, p)Px (dp)

)
μ(dx)

≤ −

∫

X

RC̃ψ(x)μ(dx).

To show the converse inequality, we assume without loss of generality that

∫

X

R̃Cψ(x)μ(dx) < +∞.

For all x ∈ X the value of RC̃ψ(x) is finite, because ψ is bounded from below. Fix ε > 0. The

map RC̃ψ(·) is lower semianalytic by [16, Proposition 7.47] and by [16, Proposition 7.50]

there exists

an analytically measurable probability kernel ( p̃x )x∈X ∈ (Pt
dY

(Y ))X such that for all

x ∈ X

px (ψ)+ C̃(x, px ) ≤ RC̃ψ(x)+ ε.

Then, we immediately obtain

∫

X

px (ψ)+ C̃(x, px )μ(dx) ≤

∫

X

RC̃ψ(x)μ(dx)+ ε.

The term δpx (dp)μ(dx) uniquely defines a probability measure P̃ on X × P(Y ).

Since C̃ and ψ are bounded from below, we infer that

Wt (projY Î (P̃), δy0)
t =

∫

X×P(Y )

Wt (p, δy0)
t P̃(dx, dp) < +∞,

and in particular projY Î (P̃) ∈ Pt
dY

(Y ). Clearly P̃ ∈ �(μ, projY Î (P̃)), so

−

∫

X

R̃Cψ(x)μ(dx) ≤ projY ( Î (P̃))(−ψ)−

∫

X×P(Y )

C(x, p)+Wt (p, δy0)
t P̃(dx, dp)+ ε

≤ projY ( Î (P̃))(−ψ)− F
(

projY Î (P̃)

)
+ ε

≤ F∗(−ψ)+ ε,

and since ε was arbitrary, we have shown (3.6).

So far, we know that

F(m) = sup
ψ∈�b,t

−m(ψ)+

∫

X

RC̃ψ(x)μ(dx).
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Define f (y) := dY (y, y0)
t and note that RC (ψ + f )(x) = RC̃ψ(x) for all x ∈ X , as well

as ψ + f ∈ �b,t for ψ ∈ �b,t . From (3.4) we get

inf
P∈�(μ,m)

P(C) = F(m)−Wt (m, δy0)
t

= sup
ψ∈�b,t

−m(ψ + f )+

∫

X

RC̃ψ(x)μ(dx)

= sup
ψ∈�b,t

−m(ψ)+

∫

X

RCψ(x)μ(dx),

which shows (3.2).

If for all x ∈ X the map C(x, ·) is convex,

then (3.3) follows by Lemma 2.1 and (3.2). ⊓⊔

4 On the restriction property

The restriction property of optimal transport roughly states that if a coupling is optimal, then

the conditioning of the coupling to a subset is also optimal given its marginals. This property

fails for weak optimal transport, as we illustrate with a simple example:

Example 4.1 Let X = Y = R, μ = 1
2
δ−1 +

1
2
δ1, ν = 1

4
δ−2 +

1
2
δ0 +

1
4
δ2 and

C(x, ρ) =
(
x −

∫
yρ(dy)

)2
. We consider the weak transport problem with these ingre-

dients, and observe that an optimal coupling is given by

π =
1

4
[δ(1,2) + δ(1,0) + δ(−1,0) + δ(−1,−2)],

since it produces a cost equal to zero. Consider the set K = {(x, y) : y �= 0} and π̃(dx, dy) =
π(dx, dy|K ) the conditioning of π to the set K , i.e. π̃(S) := π(S∩K )

π(K )
. It follows that

π̃ =
1

2
[δ(1,2) + δ(1,−2)],

and denoting by μ̃ and ν̃ the first and second marginals of π̃ , we have μ̃ = μ and ν̃ =
1
2
δ2 +

1
2
δ−2. With μ̃ and ν̃ and again the cost C as ingredients, an optimizer for the weak

transport problem is given by

π̂ =
3

8
δ(1,2) +

1

8
δ(1,−2) +

1

8
δ(−1,2) +

3

8
δ(−1,−2),

since this time this coupling produces a cost equal to zero. On the other hand the cost of π̃

is equal to 1, and so π̃ is not optimal between is marginals.

However, we can state the following positive result.1

Proposition 4.2 Suppose that π is optimal between the marginals μ and ν, V (μ, ν) < ∞,

and that C(x, ·) is convex. Let 0 ≤ μ̃ ≤ μ be a non-negative measure such that 0 �≡ μ̃ and

define μ̂ = μ̃/μ̃(X). Then π̂(dx, dy) := μ̂(dx)πx (dy) is optimal between its marginals.

1 In a preliminary version of this article the restriction property Proposition 4.2 was used to derive Theorem

1.4 from the compact version given by Gozlan and Juillet [23]. Following the insightful suggestion of the

anonymous referee, we now give a more self contained argument that does not require Proposition 4.2 / [23].

We have decided to keep Proposition 4.2 since it might be of some independent interest.
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Proof By contradiction, suppose there exists a coupling χ with the same marginals as π̂ such

that
∫

C(x, χx )μ̂(dx) <

∫
C(x, π̂x )μ̂(dx).

Now define π∗ := π + μ̃(X)[χ − π̂ ] = π − μ̃.πx + μ̃(X)χ . Observe that π∗ has marginals

μ, ν, and π∗(X×Y ) = 1. We also have π∗ ≥ 0 since μ̃ ≤ μ, so π∗ is a probability measure.

Of course 0 ≤ dμ̃
dμ
≤ 1 and clearly π∗x =

(
1− dμ̃

dμ
(x)

)
πx +

dμ̃
dμ

(x)χx . Therefore

∫
C(x, π∗x )μ(dx) =

∫
C

(
x,

(
1−

dμ̃

dμ
(x)

)
πx +

dμ̃

dμ
(x)χx

)
μ(dx)

≤

∫
C(x, πx )μ(dx)+

∫
[C(x, χx )− C(x, πx )]μ̃(dx)

<

∫
C(x, πx )μ(dx),

where we used convexity in the first inequality and that V (μ, ν) <∞ in the second one. ⊓⊔

5 C-Monotonicity for weak transport costs

Cyclical monotonicity plays a crucial role in classical optimal transport [22,35]. This has

inspired similar development for weak transport costs in [6,23]:

Definition 5.1 (C-monotonicity) We say that a coupling π ∈ �(μ, ν) is C-monotone if

there exists a measurable set Ŵ ⊆ X with μ(Ŵ) = 1, such that for any finite number of

points x1, . . . , xN in Ŵ and measures m1, . . . , m N in P(Y ) with
∑N

i=1 mi =
∑N

i=1 πxi
, the

following inequality holds:

N∑

i=1

C(xi , πxi
) ≤

N∑

i=1

C(xi , mi ).

We first show that C-monotonicity is necessary for optimality under minimal assumptions.

We then provide strengthened assumptions under which C-monotonicity is sufficient.

5.1 C-monotonicity: necessity

We denote by SN the set of permutations of the set {1, . . . , N }. If �z := (z1 . . . , zn) is any

N -vector, and σ ∈ SN , we naturally overload the notation by defining

σ(�z) := (zσ(1), . . . , zσ(N )).

Recall the notation (1.1) for the weak transport problem, and the following lemma, which

is employed prominently in the proof of Theorem 5.3.

Lemma 5.2 ([10, Proposition 2.1]) Let X1, . . . , Xn , n ≥ 2, be Polish spaces equipped with

probability measures μi ∈ P(X i ), i = 1, . . . , n. Then for any analytic set B ⊆ X1×· · ·×Xn

one of the following holds:
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(a) For every i = 1, . . . , n there is a μi -null set Ai ⊆ X i s.t.

B ⊆

n⋃

i=1

proj−1
X i

(Ai ).

(b) There exists a coupling π ∈ �(μ1, . . . , μn) with π(B) > 0.

The previous lemma is originally stated only for Borel sets, but the same proof technique

also works for analytic sets.

Our main result, concerning the necessity of C-monotonicity is the following:

Theorem 5.3 Let C be jointly measurable and C(x, ·) be convex and lower semicontinuous

for all x. Assume that π∗ is optimal for V (μ, ν) and |V (μ, ν)| <∞. Then π∗ is C-monotone.

Proof Let N ∈ N. Then

DN :=

{
((x1, . . . , xN ), (m1, . . . , m N )) ∈ X N × P(Y )N :

N∑

i=1

π∗xi
=

N∑

i=1

mi and

N∑

i=1

C(xi , π
∗
xi

) >

N∑

i=1

C(xi , mi )

}
,

is an analytic set. Write

DN := projX N (DN ).

By Jankov-von Neumann uniformization [27, Theorem 18.1] there is an analytically mea-

surable function fN : DN → P(Y )N such that graph( fN ) ⊆ DN . We can extend fN to X N

by defining it on X N \ DN as the Borel-measurable map �x �→ (π∗x1
, . . . , π∗xN

). Observe that

for all σ ∈ SN , we have (σ, σ )(DN ) = DN . Thanks to this, and Lemma 5.4 below, we can

assume without loss of generality that fN satisfies

fN ◦ σ = σ ◦ fN ∀σ ∈ SN .

We write f i
N (�x) for the i th element of the vector fN (�x) ∈ P(Y )N .

Assume that there exists a coupling Q ∈ �(μN ) = �(μ, . . . , μ) such that Q(DN ) > 0.

We now show that this is in conflict with optimality of π∗. We clearly may assume that Q is

symmetric, i.e. such that for all σ ∈ SN we have Q(B) = Q(σ (B)) for all B ∈ B(X N ) (in

other words σ(Q) = Q). We define the possible contender π̃ of π∗ by

π̃(dx1, dy) := μ(dx1)

∫

X N−1

Qx1(dx2, . . . , dxn) f 1
N (x1, . . . , xN )(dy), (5.1)

which is legitimate owing to all measurability precautions we have taken. We will prove

(1) π̃ ∈ �(μ, ν),

(2)
∫

μ(dx)C(x, π∗x ) >
∫

μ(dx)C(x, π̃x ).

Ad (1): Evidently the first marginal of π̃ is μ. Write σi ∈ SN for the permutation that

merely interchanges the first and i-th component of a vector. By the symmetric properties of
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Q and fN we find
∫

X

μ(dx1)π̃x1(dy) =

∫

X N

Q(dx1, . . . , dxN ) f 1
N (�x)(dy)

=
1

N

N∑

i=1

∫

X N

σi (Q)(dx1, . . . , dxN ) f i
N (�x)(dy)

=
1

N

N∑

i=1

∫

X N

Q(dx1, . . . , dxN )π∗xi
(dy)

= ν(dy).

Ad (2): On DN holds by construction the strict inequality

N∑

i=1

C(xi , f i
N (�x)) <

N∑

i=1

C(xi , πxi
).

Using convexity of C(x, ·) and the symmetry properties of Q and fN , we find
∫

X

C(x, π̃x )μ(dx) =

∫

X

μ(dx1)C

(
x1,

∫

X N−1

Qx1(dx2, . . . , dxN ) f 1
N (�x)

)

≤

∫

X N

Q(d �x)C
(
x1, f 1

N (�x)
)

=
1

N

N∑

i=1

∫

X N

Q(d �x)C
(
xi , f i

N (�x)
)

<
1

N

N∑

i=1

∫

X N

Q(d �x)C
(
xi , πxi

)
=

∫

X

C(x, πx )μ(dx),

yielding a contradiction to the optimality of π∗.

We conclude that no measure Q with the stated properties exists. By Lemma 5.2, we

obtain that DN is contained in a set of the form
⋃N

k=1 proj−1
k (MN ) where μ(MN ) = 0 and

projk denotes the projection from X N to its kth component. Since N ∈ N was arbitrary, we

can define the set Ŵ := (
⋃

N∈N
MN )C with μ(Ŵ) = 1, which has the desired property. ⊓⊔

The missing bit in the above proof is Lemma 5.4. By [27, Theorem 7.9] there exists for

every Polish space X a closed subset F of the Baire space N := N
N and a continuous

bijection h X : F → X . On the Baire space the lexicographic order naturally provides a total

order. Hence, X inherits the total order of F ⊆ N by virtue of h X and its Borel-measurable

inverse h−1
X := gX , namely:

x, y ∈ X : x ≤ y ⇔ h−1
X (x) = gX (x) ≤ h−1

X (y) = gX (y).

Lemma 5.4 The set

A =
{
�x ∈ X N : x1 ≤ x2 ≤ · · · ≤ xN

}
,

is Borel-measurable. Given f : A ⊆ X N → Y N an analytically measurable function, there

exists an analytically measurable extension f̂ : X N → Y N such that for any σ ∈ SN

f̂ ◦ σ = σ ◦ f̂ .
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Proof of Lemma 5.4 Let Â =
{
�a ∈ NN : a1 ≤ a2 ≤ · · · ≤ aN

}
, and define g : NN → SN by

g(�a) = σ where σ ∈ SN satisfies

• σ(�a) ∈ Â

• for each i, j such that 0 ≤ i < j ≤ N it holds

ai = a j �⇒ σ(i) < σ( j).

With these precautions g(�a) = σ is indeed well defined. For each σ ∈ SN we define also

Bσ ⊆ N
N by

Bσ :=
{
�a ∈ NN : g(�a) = σ

}
=

{
�a ∈ NN : aσ(1) ≤

1
σ aσ(2) ≤

2
σ · · · ≤

N−1
σ aσ(N )

}
,

where the order ≤i
σ is defined depending on σ by

≤i
σ :=

{
≤ σ(i) ≤ σ(i + 1),

< else.

It follows from this representation that Bσ is Borel-measurable. We introduce

X N ∋ �x �→ gN
X (�x) := (gX (x1), gX (x2), . . . , gX (xN )) ∈ F N ⊆ NN .

Then the set

Aσ := {�x ∈ X N : g ◦ gN
X (�x) = σ } = (gN

X )−1(Bσ ),

is Borel-measurable. In particular, Aid = A is Borel-measurable. Note that ∪σ Aσ = X N

and Aσ1 ∩ Aσ2 = ∅ if σ1 �≡ σ2. We can apply Lemma 5.5, proving the continuity2 of

N
N ∋ �a �→ G(a) := g(�a)(�a) ∈ NN .

We define the candidate for the desired extension of f by

f̂ : X N → Y N ,

�x �→ (g ◦ gN
X (�x))−1

(
f ◦ (gN

X )−1 ◦ G ◦ gN
X (�x)

)
,

which is well defined since G◦gN
X (�x) ∈ Â, so that (gN

X )−1◦G◦gN
X (�x) ∈ A. As a composition

of analytically measurable function, f̂ inherits this property. It is also clear that f̂ (�x) = f (�x)

if �x ∈ A. Finally, for any σ ∈ SN and �x ∈ X N , we easily find

σ−1( f̂ ◦ σ(�x)) = f̂ (�x).

⊓⊔

Lemma 5.5 Let each of a, b ∈ NN be increasing vectors.3 Then for any permutation σ ∈ SN

we have

max
i∈{1,...,N }

dN (ai , bi ) ≤ max
i∈{1,...,N }

dN (ai , bσ(i)), (5.2)

2 In fact one obtains maxi∈{1,...,N } dN (g(�a)(�a)i , g(�b)(�b)i ) ≤ maxi∈{1,...,N } dN (ai , bi ), for dN the metric

on N that we recall in Lemma 5.5.

3 A vector v = (vi )
N
i=1
∈ NN is increasing if for any 1 ≤ i < j ≤ N we have vi ≤ v j , where inequality

here is meant in the lexicographic order on N .
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where the metric dN on N is given by

dN (a, b) =

{
0 a = b

1
min{n∈N : a(n)�=b(n)} else.

Proof We show the assertion by induction. For N = 1 (5.2) holds trivially. Now assume

that (5.2) holds for N = k. Given σ ∈ Sk+1 and a, b ∈ Nk+1 increasing, we know that any

σ̃ ∈ Sk yields

max
i∈{1,...,k}

dN (ai , bi ) ≤ max
i∈{1,...,k}

dN (ai , bσ̃ (i)).

If σ(k+1) = k+1 the assertion follows by the inductive hypothesis. So let σ(k+1) �= k+1

and write k1 = σ(k + 1) and k2 = σ−1(k + 1). Define a permutation σ̂ ∈ Sk by

σ̂ (i) =

{
σ(i) i �= k1

k2 i = k1

Since that ak2 ≤ ak+1 and bk1 ≤ bk+1, then

ak2 ≤ bk1 �⇒ ak2 ≤ bk1 ≤ bk+1 �⇒ dN (ak2 , bk1) ≤ dN (ak2 , bk+1),

ak2 ≥ bk1 �⇒ ak+1 ≥ ak2 ≥ bk1 �⇒ dN (ak2 , bk1) ≤ dN (ak+1, bk1),

and particularly

max
i∈{1,...,k}

dN (ai , bσ̂ (i)) ≤ max
i∈{1,...,k+1}

dN (ai , bσ(i)). (5.3)

On the other hand, clearly

ak+1 ≥ bk+1 �⇒ dN (ak+1, bk+1) ≤ dN (ak+1, bk1),

ak+1 ≤ bk+1 �⇒ dN (ak+1, bk+1) ≤ dN (ak2 , bk+1).

This and (5.3) yield maxi∈{1,...,k+1} dN (ai , bi ) ≤ maxi∈{1,...,k+1} dN (ai , bσ(i)), so conclud-

ing the inductive step. ⊓⊔

5.2 C-monotonicity: sufficiency

The conditions under which Theorem 5.3 holds are rather mild. If we assume further conti-

nuity properties of C , the next theorem establishes that C-monotonicity is also a sufficient

criterion for optimality, resembling the classical case. For weak transport costs, we don’t

know of any comparable result in the literature.

We recall that, for the given compatible complete metric dY on Y , we denote byW1 the

1-Wasserstein distance [42, Chapter 7].

Theorem 5.6 Let ν ∈ P1
dY

(Y ). Assume that C : X × P1
dY

(Y )→ R satisfies Condition (A+)

and isW1-Lipschitz in the second argument is the sense that for some L ≥ 0:

|C(x, p)− C(x, q)| ≤ LW1(p, q), ∀x ∈ X ,∀p, q ∈ P1
dY

(Y ). (5.4)

If π is C-monotone then π is an optimizer of V (μ, ν).

In the proof we will use the following auxiliary result, which we will establish subse-

quently:
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Lemma 5.7 Let ν ∈ P1
dY

(Y ). Assume that C : X × P1
dY

(Y ) → R satisfies Condition (A+)

and isW1-Lipschitz in the sense of (5.4). Then

inf
π∈�(μ,ν)

∫
C(x, πx ) μ(dx) = sup

ϕ∈�b,1

‖ϕ‖Lip≤L

μ(RCϕ)− ν(ϕ), (5.5)

where RCϕ is defined as in (3.1).

Proof of Theorem 5.6 Let π be C-monotone. There is an increasing sequence (Kn)n∈N of

compact sets on Y such that ν(Kn) ր 1. From this we can refine the μ-full measurable set

Ŵ in the definition of C-monotonicity, see Definition 5.1, so that for each x ∈ Ŵ we have

limn πx (Kn) = 1 and πx ∈ P
1
dY

(Y ). Our goal is to construct a dual optimizer ϕ ∈ �1 to π

such that

πx (ϕ)+ C(x, πx )− RCϕ(x) = 0 ∀x ∈ Ŵ.

When this is achieved, Theorem 1.3 and the following arguments show that π is optimal as

desired:
∫

X

C(x, πx )μ(dx) =

∫

Ŵ

C(x, πx )μ(dx) =

∫

Ŵ

[RC (ϕ)(x)− πx (ϕ)]μ(dx)

≤ lim inf
k→−∞

∫

X

[RC (ϕ ∨ k)(x)− πx (ϕ ∨ k)]μ(dx)

≤ sup
ϕ∈�b,1

μ(RCϕ)− ν(ϕ)

≤ inf
π̃∈�(μ,ν)

∫

X

C(x, π̃x )μ(dx),

where we used that

lim inf
k→−∞

RC (ϕ ∨ k)(x) = inf
k≤0

RC (ϕ ∨ k)(x) = RCϕ(x) ∀x ∈ X .

Let us prove the existence of a dual optimizer in �1. Let G ⊆ Ŵ be a finite subset. By

definition of C-monotonicity, we conclude that the coupling 1
|G|

∑
xi∈G δxi

(dx)πxi
(dy) is

optimal for the weak transport problem determined by the cost C and its first and second

marginals. We can apply Lemma 5.7 in this context and obtain

inf
‖ϕ‖Lip≤L

∑

x∈G

πx (ϕ)+ C(x, πx )− RCϕ(x) = 0. (5.6)

We fix y0 ∈ K1 and, without loss of generality, find a maximizing sequence (ϕk)k∈N of (5.6)

such that for all k ∈ N the function ϕk is L-Lipschitz and ϕk(y0) = 0. Note that for all x ∈ G

πx (ϕk)+ C(x, πx )− RCϕk(x)→ 0,

since by definition πx (ϕk) + C(x, πx ) − RCϕk(x) ≥ 0. By the Arzelà-Ascoli theorem we

find for any n ∈ N a subsequence of (ϕk)k∈N and a L-Lipschitz continuous function ψn on

Kn such that

lim
j

ϕk j
(y) = ψn(y) ∀y ∈ Kn .

Thus by a diagonalization argument we can assume without loss of generality that the maxi-

mizing sequence converges uniformly for every Kn to a given L-Lipschitz function ψ̃ defined
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on

A :=
⋃

n

Kn .

We can extend ψ̃ from A to all of Y , obtaining an everywhere L-Lipschitz function, via

ψ(y) = inf
z∈A

ψ̃(z)+ LdY (z, y). (5.7)

From (5.7) we find RCψ(x) = inf p∈P1
dY

(A) p(ψ)+C(x, p). Indeed, by [16, Proposition 7.50]

there is for any ε > 0 an analytically measurable function Tε : Y → A with

ψ̃(Tε(y))+ LdY (Tε(y), y) ≤ ψ(y)+ ε,

from which after integrating with respect to p and using the definition of the Wasserstein

distance we deduce

p(ψ)− Tε(p)(ψ)+ C(x, p)− C(x, Tε(p))

≥ −ε + LW1(p, Tε(p))+ C(x, p)− C(x, Tε(p)) ≥ −ε,

where we used (5.4) in the last inequality. Therefore, it is actually possible to restrict infimum

in RCψ(x) to P1
dY

(A), and we conclude

lim sup
k

RCϕk(x) ≤ inf
p∈P1

dY
(A)

p(ψ)+ C(x, p) = RCψ(x). (5.8)

By dominated convergence, and the fact that πx (A) = 1, we have

lim
k

πx (ϕk) = πx (ψ), (5.9)

which yields

0 = lim inf
k

πx (ϕk)+ C(x, πx )− RCϕk(x) ≥ πx (ψ)+ C(x, πx )− RCψ(x) ≥ 0, (5.10)

by definition of RCψ(x).

For G ⊆ Y define �G as the set of all L-Lipschitz continuous functions on A, vanishing

at the point y0, and satisfying

πx (ψ)+ C(x, πx )− RCψ(x) = 0 ∀x ∈ G.

The previous arguments show that, for each finite G ⊆ Ŵ, the set �G is nonempty. We now

check that �G is closed in the topology of pointwise convergence: Let (ψα)α∈I be a net

in �G which converges pointwise to a function ϕ on A. Since A is the countable union of

compact sets, it is possible to extract a sequence (ψαk
)k∈N of the net such that

ψαk
→ ϕ pointwise on A and uniformly on each Kn,

from which ϕ is L-Lipschitz on A and can be extended to an L-Lipschitz continuous function

ψ on Y , see (5.7). By repeating previous arguments [(see (5.8)–(5.10)] we obtain that ϕ ∈ �G .

Note that �G is a closed subset of
∏

y∈A [−Ld(y, y0), Ld(y, y0)] which is compact

in the topology of pointwise convergence by Tychonoff’s theorem. Further, the collection

{�G : G ⊆ Ŵ, |G| < ∞} satisfies the finite intersection property, since if G1, . . . , Gn are

finite then
⋂

i≤n

�Gi
⊇ �∪i≤n Gi

�= ∅.
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Therefore it is possible to find ϕ ∈
⋂

G⊆Ŵ, |G|<∞�G . Again extend ϕ, from A to Y , by a

L-Lipschitz function as usual. Thus, we have found the desired dual optimizer. ⊓⊔

Proof of Lemma 5.7 By Theorem 1.3 we have

inf
π∈�(μ,ν)

∫

X

C(x, πx )μ(dx) = sup
ϕ∈�b,1

μ(RCϕ)− ν(ϕ). (5.11)

By Theorem 1.2 we find a minimizer π∗ ∈ �(μ, ν) of V (μ, ν). Now we proceed by taking

a maximizing sequence (ϕk)k∈N for the right-hand side of (5.11). Note that we can choose

each ϕk , in addition to being below-bounded and continuous, in a way such that it attains its

infimum, i.e., there exists yk ∈ Y such that

−∞ < bk := inf
y∈Y

ϕk(y) = ϕk(yk). (5.12)

Indeed, this can be done by using e.g.ϕk ∨
(
bk +

1
k

)
instead. Then

lim
k

ν

(
ϕk − ϕk ∨

(
bk +

1

k

))
= 0, RCϕk ≤ RC

(
ϕk ∨

(
bk +

1

k

))
,

and the following computation shows that (ϕk∨(bk+
1
k
))k∈N is another maximizing sequence:

0 = lim
k

∫

X

[π∗x (ϕk)+ C(x, π∗x )− RCϕk(x)]μ(dx)

≥ lim
k

∫

X

[
π∗x

(
ϕk ∨

(
bk +

1

k

))
+ C(x, π∗x )− RC

(
ϕk ∨

(
bk +

1

k

))
(x)

]
μ(dx) ≥ 0.

So let ϕk attain its infimum as in (5.12). We want to show that we can choose the sequence

to be Lipschitz with constant L . For this purpose we infer additional properties of potential

minimizers of RCϕk . Define for each function ϕk the Borel-measurable sets

Ak :=

{
y ∈ Y : sup

y �=z∈Y

ϕk(y)− ϕk(z)

dY (y, z)
≤ L

}
�= ∅,

Yk := {(y, z) ∈ Y × Ak : ϕk(y)− ϕk(z) > LdY (y, z)} .

That Ak �= ∅ follows since the minimizers of ϕk form a subset. We also stress that

proj1(Yk) = Ac
k .

Indeed, it is apparent that proj1(Yk) ⊆ Ac
k . To see the converse, assume y ∈ Ac

k∩proj1(Yk)
c.

Define Z(z′) := {z ∈ Y : ϕk(z
′) − ϕk(z) > LdY (z, z′)}. If there exists z̃ ∈ Z(y) ∩ Ak , we

obtain a contradiction to y ∈ proj1(Yk)
c. Let z0 := y and inductively set zl ∈ Z(zl−1) such

that

inf
z∈Z(zl−1)

ϕk(z)+
1

2l
≥ ϕk(zl). (5.13)

We have for any natural numbers 0 ≤ i < n

ϕk(zi )− ϕk(zn) =

n∑

l=i

ϕk(zl−1)− ϕk(zl) > L

n∑

l=i

dY (zl−1, zl). (5.14)

The r.h.s. is bounded from below by LdY (zi , zn) and so as before we see that zn ∈ Ak

provides a contradiction. We therefore assume for all l that zl /∈ Ak . The above inequality
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yields by lower-boundedness of ϕk that (zl)l∈N is a Cauchy sequence in Y . Writing z̄ for its

limit point, we conclude from (5.14) that ϕk(zi ) − ϕk(z̄) > LdY (zi , z̄) and consequentely

Z(z̄) ⊆ Z(zi ). Since then inf{ϕk(z) : z ∈ Z(zi )} ≤ inf{ϕk(z) : z ∈ Z(z̄)} and from (5.13),

we deduce inf{ϕk(z) : z ∈ Z(z̄)} ≥ ϕk(z̄). Thus Z(z̄) = ∅, implying z̄ ∈ Ak and yielding a

contradiction to y ∈ proj1(Yk)
c. All in all, we have proven that Ac

k = proj1(Yk).

By Jankov-von Neumann uniformization [27, Theorem 18.1] there is an analytically mea-

surable selection Tk : proj1(Yk)→ Ak . We set Tk on Ak = proj1(Yk)
c as the identity. Then

Tk maps from Y to Ak and for any p ∈ Pt
dY

(Y ) we have

C(x, Tk(p)) ≤ C(x, p)+ LW1(p, Tk(p))

≤ C(x, p)+ L

∫

Y

dY (y, Tk(y))p(dy)

≤ C(x, p)+

∫

Y

[ϕk(y)− ϕk(Tk(y))]p(dy)

= C(x, p)+ p(ϕk)− Tk(p)(ϕk).

Therefore, we can assume that potential minimizers of RCϕk are concentrated on Ak :

RCϕk(x) = inf
p∈P1

dY
(Y )

p(ϕk)+ C(x, p) = inf
p∈P1

dY
(Ak )

p(ϕk)+ C(x, p). (5.15)

We introduce a family of L-Lipschitz continuous functions by

ψk(y) := inf
z∈Ak

ϕk(z)+ LdY (y, z) = inf
z∈Y

ϕk(z)+ LdY (y, z) ∀y ∈ Y ,

where equality holds thanks to proj1(Yk) = Ac
k , since for z ∈ Ac

k we find (z, ẑ) ∈ Yk , and

so

ϕk(z)+ LdY (y, z) > ϕk(ẑ)+ L(dY (y, z)+ dY (z, ẑ)) ≥ ϕk(ẑ)+ LdY (y, ẑ).

Thenϕk ≥ ψk where equality holds precisely on Ak . Similarly to before, we find a measurable

selection T̂k : Y → Ak such that ψk(T̂k(y)) + LdY (y, T̂k(y)) ≤ ψk(y) + ε. For any p ∈
Pt

dY
(Y ) we have

C(x, T̂k(p)) ≤ C(x, p)+ L

∫

Y

dY (y, T̂k(y))p(dy) ≤ C(x, p)+ p(ψk)− T̂k(p)(ψk)+ ε.

Since ε is arbitrary, by the same argument as in (5.15), we can restrict P1
dY

(Y ) to P1
dY

(Ak)

in the definition of RCψk . Hence, RCϕk(x) = RCψk(x) and

∫

X

C(x, π∗x )μ(dx) = lim
k

∫

X

[
−π∗x (ϕk)+ RCϕk(x)

]
μ(dx)

≤ lim
k

∫

X

[
−π∗x (ψk)+ RCψk(x)

]
μ(dx)

≤ lim
k

∫

X

[
−π∗x (ψk)+ π∗x (ψk)+ C(x, π∗x )

]
μ(dx)

=

∫

X

C(x, π∗x )μ(dx).

⊓⊔
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6 On the Brenier–Strassen theorem of Gozlan and Juillet

In this part we take X = Y = R
d , equipped with the Euclidean metric, and

Cθ (x, ρ) := θ

(
x −

∫
yρ(dy)

)
,

where θ : Rd → R+ is convex. As usual we denote by V (·, ·) the value of the weak transport

problem with this cost functional [see (1.1)]. We have

Lemma 6.1 Let μ ∈ P(Rd) and ν ∈ P1(Rd). Then

inf
η≤cν

inf
π∈�(μ,η)

∫
θ(x − z)π(dx, dz) = V (μ, ν). (6.1)

Proof Givenπ feasible for V (μ, ν), we define T (x) :=
∫

yπ x (dy) and notice that T (μ) ≤c ν

by Jensen’s inequality. From this we deduce that the l.h.s. of (6.1) is smaller than the r.h.s.

For the reverse inequality, let ε > 0 and say η̄ ≤c ν is such that

inf
η≤cν

inf
π∈�(μ,η)

∫
θ(x − z)π(dx, dz)+ ε ≥ inf

π∈�(μ,η̄)

∫
θ(x − z)π(dx, dz)

≥

∫
θ(x − z)π̄(dx, dz)− ε,

for some π̄ ∈ �(μ, η̄). By Strassen theorem there is a martingale measure m(dz, dy) with

first marginal η̄ and second marginal ν. Define π(dx, dy) :=
∫

z
π̄ z(dx)mz(dy)η̄(dz), so then

π has x-marginal μ and y-marginal ν, and furthermore
∫

yπ x (dx) =
∫

zπ̄ x (dx) (μ-a.s.),

by the martingale property of m. Thus, by Jensen’s inequality:

∫
θ(x − z)π̄x (dz)μ(dx) ≥

∫
θ

(
x −

∫
zπ̄x (dz)

)
μ(dx)

=

∫
θ

(
x −

∫
yπx (dy)

)
μ(dx) ≥ V (μ, ν).

Taking ε→ 0 we conclude. ⊓⊔

We now provide the proof of Theorem 1.4, in which case θ(·) = | · |2:

Proof of Theorem 1.4 We have V (μ, ν) <∞, since the product coupling yields a finite cost.

Lemma 6.1 established the rightmost equality in (1.6). The existence of an optimizer π to

V (μ, ν) follows from Theorem 1.2. By the necessary monotonicity principle (Theorem 5.3)

there exists a measurable set Ŵ ⊆ X with μ(Ŵ) = 1 such that for any finite number of

points x1, . . . , xN in Ŵ and measures m1, . . . , m N in P(Rd) with
∑N

i=1 mi =
∑N

i=1 π xi the

following inequality holds:

N∑

i=1

∣∣∣∣x
i −

∫
yπ x i

(dy)

∣∣∣∣
2

≤

N∑

i=1

∣∣∣∣x
i −

∫
ymi (dy)

∣∣∣∣
2

. (6.2)

In particular, if we let

T (x) :=

∫
yπx (dy),
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and σ is any permutation, then

∑

i

∣∣∣x i − T (x i )

∣∣∣
2
≤

N∑

i=1

∣∣∣x i − T (xσ(i))

∣∣∣
2
. (6.3)

Let us introduce p(dx, dz) := μ(dx)δT (x)(dz) and observe that its z-marginal is T (μ).

By Rockafellar’s theorem ([42, Theorem 2.27]) the support of p is contained in the graph

of the subdifferential of a closed convex function. Then by the Knott–Smith optimality

criterion ([42, Theorem 2.12]) the coupling p attainsW2(μ, T (μ)). Since by Jensen clearly

T (μ) ≤c ν, this establishes the remaining equality in (1.6) and shows further that V (μ, ν) =
W2(μ, T (μ))2 and μ∗ := T (μ). The uniqueness of μ∗ follows the same argument as in the

proof of [23, Proposition 1.1].

We can use (6.2) and argue verbatim as in [23, Remark 3.1] showing that T is actually

1-Lipschitz on Ŵ. We will now prove that T is (μ-a.s. equal to) the gradient of a continuously

differentiable convex function. The key remark is that the coupling p is also optimal for

V (μ, T (μ)). Indeed, we have

V (μ, ν) ≤ inf
η≤cT (μ)

W2(μ, ν)2 = V (μ, T (μ)) ≤

∫
|x − T (x)|2μ(dx) = V (μ, ν).

Take anyW2-approximative sequence (μk)k∈N of μ such that for all k ∈ N

μk ≪ λ≪ μk,

where λ denotes the d-dimensional Lebesgue measure. This can be easily achieved by scaled

convolution with a non-degenerate Gaussian kernel. By stability of the considered weak

transport problem [8, Theorem 1.5], and using the previously shown, we obtain for each μk

a 1-Lipschitz map T k defined this time everywhere in R
d with

W2(μ
k, T k(μk))2 = V (μk, ν),

and T k(μk)→ T (μ) inW1. By Brenier’s theorem [42, Theorem 2.12 (i i)] we find for each

k ∈ N some convex function ϕk : R
d → R, ϕ(0) = 0, and ∇ϕk(x) = T k(x) λ-a.e. x . By

continuity of T k we have ∇ϕk(x) = T k(x) for all x ∈ R
d .

We want to show that (ϕk)k∈N is suitably relatively compact. By tightness of μk and

T k(μk) we find compact sets K1, K2 ⊆ R
d with

inf
k

μk(K1) >
1

2
, inf

k
T k(μk)(K2) >

1

2
.

In particular, the sets (T k(K1) ∩ K2)k∈N are all non-empty. The compactness of K1 and

K2, and the 1-Lipschitz property of each T k , imply then the existence of x ∈ K1 such

that supk |T
k(x)| < ∞. Hence, (T k)k∈N is pointwise bounded and uniformly 1-Lipschitz.

Thanks to Arzelà-Ascoli’s theorem and a diagonalization argument, we can select a subse-

quence (T k j ) j∈N of (T k)k∈N which converges locally uniformly to some 1-Lipschitz function

T̃ : Rd → R
d . Since being a gradient field is preserved under locally uniform limits, we have

that T̃ is a gradient field, and ϕk j converges pointwise to some ϕ with ϕ(0) = 0 and∇ϕ = T̃ .

In particular ϕ is convex and of class C1(Rd).

Finally, for any f ∈ Cb(R
d) and ε > 0, we find an index j0 ∈ N such that for all j ≥ j0:

|T k j (μk j )( f )− T̃ (μ)( f )| ≤ |T k j (μk j )( f )− T̃ (μk j )( f )| + |T̃ (μk j )( f )− T̃ (μ)( f )| < ε,

where the first summand can be chosen sufficiently small for large j by locally uniform

convergence of T kk to T̃ and the second one by weak convergence of μk j to μ. All in all,
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we deduce that T k j (μk j ) converges weakly to T̃ (μ), which must therefore match T (μ).

Furthermore, μ(dx)δ
T̃ (x)

(dy) defines an optimizer for the weak transport problem (1.1)

between μ and ν with cost (1.5). By uniqueness of the optimizers we conclude T = T̃

μ-almost surely. In particular, T is μ-almost everywhere the gradient of the convex function

ϕ ∈ C1(Rd). ⊓⊔
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