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EXISTENCE FOR AN UNSTEADY FLUID-STRUCTURE
INTERACTION PROBLEM
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Abstract. We study the well-posedness of an unsteady fluid-structure interaction problem. We con-
sider a viscous incompressible flow, which is modelled by the Navier-Stokes equations. The structure
is a collection of rigid moving bodies. The fluid domain depends on time and is defined by the position
of the structure, itself resulting from a stress distribution coming from the fluid. The problem is then
nonlinear and the equations we deal with are coupled. We prove its local solvability in time through
two fixed point procedures.
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1. Introduction

The problem we study deals with fluid-structure interaction in the case where the fluid domain is time
dependent and the structure is a collection of rigid bodies. For related works on this type of problems we refer
to [6–8,15] and to [11] for numerical simulations. We consider a 2D or 3D, viscous, incompressible flow satisfying
the Navier-Stokes equations. We denote by ν the fluid viscosity. We suppose that the fluid fills, at time t = 0, a
smooth domain of Rd, d = 2, 3. In this cavity denoted by Ω, we consider a collection of rigid but moving bodies
Bi, 1 ≤ i ≤ N with density ρi, mass mi and matrix of inertia Ji. We denote by Bi(t), the position of the ith

body at time t. Their motion is thus described by three or six degrees of freedom: translations and rotations. If
we denote by Gi(t) the position of the center of mass at time t of Bi(t), and θi(t) its rotation angle with respect
to the rotation axis represented by the element −→R i(t) on the unit sphere (if d = 2, −→R i(t) is a constant vector
orthogonal to the plane where the motion takes place), so that

x(t) ∈ Bi(t)⇔ −−→Gix(t) = exp(θi(t)[
−→
R i(t)∧])−−→Gix(0), (1)

where [−→R i(t)∧] is the operator “exterior product”. In order to be more explicit, we rewrite (1) as follows: in
2D

x(t) ∈ Bi(t)⇔ −−→Gix(t) =

(
cos(θi(t)) −sin(θi(t))

sin(θi(t)) cos(θi(t))

)
−−→
Gix(0), (2)
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whereas in 3D

x(t) ∈ Bi(t)⇔
−−→
Gix(t) = Mx(t)My(t)Mz(t)

−−→
Gix(0), (3)

where

Mx(t) =

1 0 0

0 cos((Ri)xθi(t)) −sin((Ri)xθi(t))

0 sin((Ri)xθi(t)) cos((Ri)xθi(t))

 ,

My(t) =

cos((Ri)yθi(t)) 0 −sin((Ri)yθi(t))

0 1 0

sin((Ri)yθi(t)) 0 cos((Ri)yθi(t))

 ,

Mz(t) =

cos((Ri)zθi(t)) −sin((Ri)zθi(t)) 0

sin((Ri)zθi(t)) cos((Ri)zθi(t)) 0

0 0 1

 ,

and where Rix, Riy, Riz are the three components of −→R i(t) in a fixed given coordinate system. The Navier-
Stokes equations are then set in Ω(t) = Ω \ ∪Ni=1Bi(t) which is an unknown domain depending on time. The
boundary Γ0 of Ω and the boundaries ∂Bi of the various bodies are assumed to be regular enough in all what
follows.

The equations for the fluid part are

∂tu + (u.∇)u− ν∆u +∇p = f in Ω(t)
div u = 0 in Ω(t)
u(t, .) = 0 on Γ0

u(t, x(t)) = wGi(t) +
d(θi
−→
R i)

dt
(t) ∧ −−→Gix(t) on ∂Bi(t)

u(0, .) = u0 in Ω(0),

(4)

where u denotes the fluid velocity, p its pressure, wGi the velocity of the center of mass; the applied exterior
force f is given together with the initial velocity u0. For the structure part, recalling that for each point of the
ith body we have

ẋ(t) = Ġi(t) +
d
dt

(θ−→R )(t) ∧ −−→Gix(t),

so that

ẍ(t) = G̈i(t) +
d2

dt2
(θ−→R )(t) ∧−−→Gix(t) +

d
dt

(θ−→R )(t) ∧ (
d
dt

(θ−→R )(t) ∧ −−→Gix(t)),

and applying the conservation of linear and angular momentum we obtain

mi
dwGi

dt
=
∫
∂Bi(t)

(p− ν(∇+∇T )u).ni(t)dx,

Ji
d2θi
−→
R i

dt2
+
∫
∂Bi(t)

ρi
d
dt

(θi
−→
R i)(t) ∧ (

d
dt

(θi
−→
R i)(t) ∧ −−→Gix(t)) =∫

∂Bi(t)

−−→
Gix(t) ∧ ((p− ν(∇+∇T )u).ni(t))dx,

(5)
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where ni(t) denotes the exterior unit normal of Bi(t). Note that in the general 2D and in the case of a 3D
sphere the last term on the left hand side cancels. The velocity wGi depends on the resulting stress coming
from the fluid and the rotation velocity is determined by the resulting moment of the fluid forces.

We have to impose also initial conditions for the bodies

θi(0) = 0,
d(θi
−→
R i)

dt
(0) = −→

ψ i0,

Gi(0) = Gi0, wGi(0) = wi0.
(6)

In order to ensure the well-posedness of the coupled problem, we impose, moreover, compatibility conditions
over the initial conditions

div u0 = 0, u0|Γ0 = 0, u0|∂Bi = wi0 +−→ψ i0 ∧
−−→
Gix(0)|∂Bi . (7)

Remark 1. The standard compatibility condition between the fluid incompressibility and the boundary con-
ditions is satisfied here. This condition is derived from the fact that divu = 0 in Ω(t) implies necessarily that∫
∂Ω(t)

u.n = 0, i.e. here

N∑
i=1

∫
∂Bi(t)

u.ni(t) = 0. (8)

But u over ∂Bi(t) is equal to a velocity associated to a rigid body motion which is the sum of a translation
velocity and a rotation velocity. Thus (8) is satisfied.

We have an unsteady coupled problem. Since the fluid domain is an unknown of the problem and depends
on time, we rewrite, in a first step, the Navier-Stokes equations on Ω(0), by using the Lagrangian variables. We
denote by v the Lagrangian velocity of the fluid and set:

χv(t, ξ) = ξ +
∫ t

0

v(s, ξ)ds. (9)

So that,

u(t, χv(t, ξ)) = v(t, ξ).

Making use of this change of variables we obtain — at least formally —

∂tv− ν(∇v)2v +∇vq = f ◦ χv in Ω(0)
∇v.v = 0 in Ω(0)
v = 0 on Γ0

v = wGi +
d( exp (θi[

−→
R i∧]))

dt
−−→
Gix(0) on ∂Bi

v(0) = u0 in Ω(0),

(10)

where we set q(t, ξ) = p(t, χv(t, ξ)). We mean by f ◦ χv the function defined by f(t, χv(t, ξ)). The operator
∇v denotes the operator cof(∇χv).∇. We have used the fact that det∇χv = 1, which comes from the fluid
incompressibility and from the relation

∂

∂t
det∇χv = divu ◦ χvdet∇χv.
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For the proof of the last equality we refer to [9] Chapter 1 pp. 26-27, or [17]. We note that the convection term
(u.∇)u disappears due to

∂tv(t, ξ) = (∂tu + (u.∇)u)(t, χv(t, ξ)).
We can also rewrite the structure equation with the help of the new unknowns, we get

mi
dwGi

dt
=
∫
∂Bi

(q − ν(∇v +∇v
T )v) cof (∇χv).nidx

Ji
d2θi
−→
R i

dt2
+
∫
∂Bi

ρi
d
dt

(θi
−→
R i)(t) ∧ (

d
dt

(θi
−→
R i)(t) ∧ (exp(θi[

−→
R i∧])−−→Gix(0)))dx =∫

∂Bi
(exp(θi[

−→
R i∧])−−→Gix(0)) ∧

[
(q − ν(∇v +∇v

T )v).( cof (∇χv).ni)
]

dx,

(11)

where ni denotes the exterior unit normal to Bi.
We are looking for a solution of (10, 11) and are going to prove an existence result locally in time in some

Sobolev spaces, that have first been used by J. T. Beale in a similar context. We shall often use their interpolation
properties. In what follows, we do not distinguish the space of scalar-valued functions Hs(Ω,R) from the space
of vector-valued functions Hs(Ω,Rd), we will simply write Hs(Ω). If X is an Hilbert space, Hs(0, T ;X) denotes
the space functions Hs with value in X . Because the time interval (0, T ) will be small, we have to be careful
about the dependence of the various estimates on T . Thus, we make an explicit choice of the norm associated
to spaces of type Hs(0, T ;X). For 0 < s < 1, we define Hs(0, T ;X) as the domain of the operator Λs/2 where
Λ = (1− ∂2

t ) and D(Λ) = {v ∈ H2(0, T ;X); ∂tv(0) = ∂tv(T ) = 0}. This choice enables us to have the following
property: let Y and Z be two Hilbert spaces such that Z ⊂ Y and Z is supposed to be dense in Y , assume
that for all T , we have a continuous operator A(T ) from H0(0, T ;X) to Y and from H1(0, T ;X) to Z with
a constant of continuity independent of T . Then A(T ) maps Hs(0, T ;X) to the interpolated space [Z, Y ]1−s,
0 ≤ s ≤ 1 with a continuity constant independent of T (see Th. 1.5.1 [14]). For m < s < m+ 1, where m is an
integer, we define Hs(0, T ;X) as the space of functions such that ∂mt v ∈ Hs−m(0, T ;X). We set for T > 0,

Kr
T (Ω) = L2(0, T ;Hr(Ω)) ∩Hr/2(0, T ;L2(Ω)).

The main result is the following:

Theorem 1. Let r be a real number, 1 < r < 3/2. We assume that u0 ∈ Hr+1(Ω(0)), f is sufficiently smooth
and that the mass and the moment of inertia of the bodies are sufficiently large, then there exists a time T1 > 0
depending on Ω(0), ‖u0‖Hr+1(Ω(0)), wi0, −→ψi0 and f such that the problem (10,11) has a unique solution with
u ∈ Kr+2

T1
(Ω(0)), ∇q ∈ Kr

T1
(Ω(0)), wGi ∈ Hr/2+1(0, T1) and (θi

−→
R i) ∈ Hr/2+2(0, T1).

Remark 2. As noted in [4] the real number r has to be large enough in order to define and estimate the
nonlinear terms which appear in the Lagrangian formulation of the fluid equations and also in order that the
solution in the Lagrangian variables can be transformed into a solution of the original problem, i.e. where the
fluid equations are written in the eulerian variables. Moreover, as the value of r increases, more compatibility
conditions should be imposed on the data of the problem (initial conditions, forces) to obtain a solution in the
spaces we choose. This is the reason why r is less than 3/2. An alternative could then be to use weights in time
as in [13].

In order to prove Theorem 1, we are going, in a first step, to study a fluid problem with a given velocity over
∂Bi. For such equations we prove that there exists a smooth solution with the help of a fixed point theorem
(contraction mapping principle). The ideas are the same that one can find in the papers [2–4,16,17] where the
authors have studied the solvability of the Navier-Stokes equations with free boundary in bounded or unbounded
domains. Their approach is the following: the equations are rewritten in Lagrangian coordinates and it is shown
that solutions for the initial value problem exist locally in time, in smooth functions spaces, that is to say the
same kind of spaces we use here [2–4], or spaces of W 1,p-type with p bigger than the spatial dimension [17],
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or in Hölder spaces [16]. Section 2 is devoted to the study of the fluid equations, and contains some standard
lemmas which will be useful (Sect. 2.1) and the study of the linearised equations (the homogeneous case
and inhomogeneous one). We obtain existence and regularity result for the linear problems. The existence of
solutions for the nonlinear problem is proven, for a small enough time (Sect. 2.3). The proof is based on the
estimates of the nonlinear terms and the contraction mapping principle. We have then to recouple the equations
in order to obtain a solution of the original interaction problem (Sect. 3).

2. Study of the fluid problem

We consider the following equations:
∂tv− ν(∇v)2v +∇vq = f ◦ χv in Ω(0)
∇v.v = 0 in Ω(0)
v = 0 on Γ0

v = vbi on ∂Bi
v(0) = u0 in Ω(0),

(12)

where vbi is given in Hr/2+1(0, T0;H l(∂Bi)), l will be chosen latter (T0 is some strictly positive time) and vbi
verifies the following compatibility condition

N∑
i=1

∫
∂Bi

vbi. cof ∇χv.ni = 0, (13)

which comes from
∫

Ω(0)

∇v.v = 0 by integration by parts. Note that the vector cof ∇χv.ni depends only on

the tangential derivatives of v along ∂Bi, thus only involves vbi. Note also that each term in this sum vanishes
automatically for velocities vbi associated with rigid body motions, since rigid body motions are incompressible.

Theorem 2. Let r be a real number, 1 < r < 3/2. We suppose that u0 ∈ Hr+1(Ω(0)), and that its
trace on the boundary ∂Bi is regular enough, say belongs to H l(∂Bi) with l ≥ r + 3/2. We consider vbi ∈
Hr/2+1(0, T0;H l(∂Bi)), such that (13) is satisfied and we suppose that f is smooth enough (for instance C∞).
We suppose, moreover, that

divu0 = 0, u0|Γ0 = 0,
then there exists T1 > 0 depending on Ω(0), ‖u0‖Hr+1(Ω(0)), u0|∂Bi , ‖vbi‖Hr/2+1(0,T0;Hl(∂Bi)) and f such that the
problem (12) has a unique solution with v ∈ Kr+2

T1
(Ω(0)), ∇q ∈ Kr

T1
(Ω(0)).

This theorem will be proven in several steps. First of all we study the linearised system associated with (12)
and in particular we prove the existence of a smooth solution, first for the homogeneous equations and next we
extend the result for the fully inhomogeneous problem. We then estimate the nonlinear terms, which are small
for a small enough time, and we apply the contraction mapping theorem in order to obtain a solution of the
original fluid problem with a given velocity on the boundary. We follow here closely the paper of J.T. Beale [4]
and adapt carefully each step of his proof to our context. The main difference lies in the type of boundary
conditions.

2.1. Preliminary results

In this subsection, we give some classical lemmas and theorems which are useful for our purpose, Ω will
denote here any smooth enough domain regardless of the previous section.

Theorem 3. i) Suppose that 1/2 < r ≤ 5. The mapping v 7→ ∂jnv is a bounded operator from Kr
T (Ω) into the

space Kr−j−1/2
T (∂Ω), where j is an integer with 0 ≤ j < r − 1/2. The mapping v 7→ ∂kt v(., 0) is also a bounded
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operator from Kr
T (Ω) into Hr−2k−1(Ω), if 0 ≤ k < (r − 1)

2
.

ii) Suppose that 1/2 < r < 5, r 6= 1, r 6= 3 and r − 1/2 is not an integer. Let

W r =
∏

0≤j<r−1/2

K
r−j−1/2
T (∂Ω)×

∏
0≤k< (r−1)

2

Hr−2k−1(Ω),

and let W r
0 the subspace of W r consisting of (aj , wk) so that (when r > 3/2)

∂kt aj(x, 0) = ∂jnwk(x), x ∈ ∂Ω for j + 2k < r − 3/2.

Then the traces of i) sum up to a bounded operator from Kr
T (Ω) onto W r

0 ; this operator has a bounded inverse.

For the proof of this theorem we refer to Chapter 4 of [14].

Lemma 1. Let X be a Hilbert space.
i) For s ≥ 0, there exists a bounded extension operator from Hs(0, T ;X) into Hs(0,∞;X).
ii) For 0 ≤ s < 7/2, s−1/2 not an integer, there exists an extension operator from the subspace {v ∈ Hs(0, T ;X)/
∂kt v(0) = 0 pour 0 ≤ k < s− 1/2

}
into Hs(0,∞;X) with a norm bounded independently of T .

Proof. For the first part, we refer to the Theorem 2.2 page 17 of [14]. For ii), if s is an integer and v belongs
to the subspace of Hs(0, T ;X) introduced in the lemma, we extend v by 0 for t < 0 and for t > 0 we set:

v(t+ T ) = 10v(T − 2t)− 15v(T − 3t) + 6v(T − 4t). (14)

The extension operator we built has the desired properties. In the case where s is not an integer the results
follows by interpolation. �

Remark 3. A more general lemma can be stated that deals with the cases s ≥ 7/2. Different linear combi-
naisons than (14) which match more derivatives have then to be considered.

Lemma 2. Let 0 ≤ r ≤ 6.
i) The identity is a bounded operator from Kr

T (Ω) into Hp(0, T ;Hr−2p(Ω)) for p ≤ r/2.

ii) If r is not an odd integer, the restriction of this operator to the subspace with ∂kt v(0) = 0 for 0 ≤ k < r − 1
2

is bounded independently of T .

Proof. The first part i) can be easily derived by extending the functions to R (with a norm maybe depending on
T ) and by using the Fourier transform with respect to time. For ii) we apply the previous lemma with s = r/2.

�

Lemma 3. Let T0 > 0 be arbitrary and choose T such that 0 < T ≤ T0. For any v ∈ L2(0, T ;X) we define
V ∈ H1(0, T ;X) by

V (t) =
∫ t

0

v(τ)dτ.

i) For 0 ≤ s < 1/2, and 0 ≤ ε ≤ 1 the operator v 7→ V is a bounded operator from Hs(0, T ;X) into
Hs+1−ε(0, T ;X) and satisfies

‖V ‖Hs+1−ε(0,T ;X) ≤ C0T
ε ‖v‖Hs(0,T ;X) , (15)

for a constant C0 independent of T ≤ T0.
ii) For 1/2 < s ≤ 1 the estimate (15) is still satisfied, if furthermore v(0) = 0.
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Proof. The Cauchy-Schwartz inequality easily leads to ‖V (t)‖X ≤ t1/2 ‖v‖L2(0,T ;X) then to ‖V ‖L2(0,T ;X) ≤
T ‖v‖L2(0,T ;X) and then ‖V ‖H1(0,T ;X) ≤ (T + 1) ‖v‖L2(0,T ;X) ≤ C ‖v‖L2(0,T ;X). Hence, recalling the convexity
property of Sobolev norms:

‖V ‖H1−ε(0,T ;X) ≤ ‖V ‖
1−ε
H1(0,T ;X) ‖V ‖

ε
L2(0,T ;X) ,

we have

‖V ‖H1−ε(0,T ;X) ≤ CT ε ‖v‖L2(0,T ;X) . (16)

Moreover, if v ∈ H1(0, T ;X) with v(0) = 0 then v(t) =
∫ t

0

∂tv(τ)dτ , and thus we check

‖v‖L2(0,T ;X) ≤ T ‖∂tv‖L2(0,T ;X) ,

‖V ‖H1(0,T ;X) ≤ T ‖v‖H1(0,T ;X) ,

‖V ‖H2(0,T ;X) ≤ C ‖v‖H1(0,T ;X) .

Therefore by convexity

‖V ‖H2−ε(0,T ;X) ≤ CT ε ‖v‖H1(0,T ;X) . (17)

We can now interpolate between the two estimates (16), (17), and we obtain the desired conclusion. �

Lemma 4. i) Let r > d/2 and r ≥ s ≥ 0. If v ∈ Hr(Ω) and w ∈ Hs(Ω) then vw ∈ Hs(Ω) with ‖vw‖Hs(Ω) ≤
C ‖v‖Hr(Ω) ‖w‖Hs(Ω).
ii) If v ∈ Hr(Ω) with r > d/2 and if w belongs to the dual space of H1(Ω) then vw is defined in (H1(Ω))′ and
‖vw‖(H1(Ω))′ ≤ C ‖v‖Hr(Ω) ‖w‖(H1(Ω))′ .
iii) If v, w ∈ H1(Ω) then vw ∈ L2(Ω) and ‖vw‖L2(Ω) ≤ C ‖v‖H1(Ω) ‖w‖H1(Ω).
iv) If v ∈ H1(Ω) and w ∈ L2(Ω) then vw ∈ (H1(Ω))′ with ‖vw‖(H1(Ω))′ ≤ C ‖v‖H1(Ω) ‖w‖L2(Ω).

Proof. For the first part i), the case where s = r is standard and relies on the fact that Hr(Ω) is an algebra for
r > d/2. The case s = 0 comes from the Sobolev continuous embedding of Hr(Ω) into L∞(Ω). The other cases
follow from hilbertian interpolation, by considering the multiplication by w as a continuous linear operator. For
iii), it suffices to use Sobolev inequality (see [1, 5]). For the second point, we consider the multiplication on
(H1(Ω))′ by an element of Hr(Ω) as the adjoint of the multiplication on H1(Ω) and we use the first assertion.
Similarly, iv) follows from iii). �

Lemma 5. Let X,Y, Z be three Hilbert spaces and m : X × Y 7→ Z be a bounded, bilinear application.
i) If v ∈ Hs(0, T ;X) and w ∈ Hs(0, T ;Y ) where s > 1/2 then m(v, w) ∈ Hs(0, T ;Z) and ‖m(v, w)‖Hs(0,T ;Z) ≤
C ‖v‖Hs(0,T ;X) ‖w‖Hs(0,T ;Y ).
ii) If s < 7/2 and v, w satisfy also the additional conditions ∂kt v(0) = ∂kt w(0) = 0, 0 ≤ k < s− 1/2, and s− 1/2
is not an integer, then the constant C is independent of T > 0.

Proof. For i), we use the fact that, in one dimension, Hs with s > 1/2 is an algebra. For ii), we use Lemma 1.
�
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2.2. The linearised problem

For the sake of simplicity, we will consider only one rigid body B, but the analysis is the same with a finite
number of moving rigid bodies. The linearised problem associated to (12) is:

∂tv− ν∆v +∇q = f in Ω(0),
div v = ρ in Ω(0),
v = vb on ∂B,
v = 0 on Γ0,
v(0) = u0 in Ω(0),

(18)

where f , ρ,vb and u0 are data which satisfy the following compatibility conditions:∫
Ω(0)

ρ =
∫
∂B

vb.n, u0 = 0 on Γ0, div u0 = ρ(t = 0) in Ω(0), u0|∂B = vb(t = 0). (19)

2.2.1. The homogeneous linearised problem

In a first step we study the homogeneous linearised problem (existence and regularity of solutions).
∂tv− ν∆v +∇q = f in Ω(0),
div v = 0 in Ω(0),
v = 0 on ∂B ∪ Γ0,
v(0) = 0 in Ω(0).

(20)

We call Π the L2(Ω(0))-projection on H defined by

H
def= {w ∈ L2(Ω(0))/divw = 0 in Ω(0), w.n = 0 on ∂Ω(0)}.

A standard result makes precise the orthogonal H⊥ of H in L2(Ω(0)):

H⊥ = {∇p, p ∈ H1(Ω(0))}.

Moreover, we have

Lemma 6. i) Π is a bounded operator on Hs(Ω(0)).
ii) Π is also bounded on Ks

T (Ω(0)), with a norm bounded independent of T .

Proof. i) Suppose that s ≥ 1. Let v ∈ Hs(Ω(0)). By definition of Π and from the characterisation of H⊥

(I −Π)v = ∇χ, where χ is defined by

(∇χ,∇φ) = (v,∇φ), ∀φ ∈ H1(Ω(0)).

Therefore, χ is a weak solution of
∆χ = ∇.v in Ω(0),
∂χ

∂n
= v.n on ∂Ω(0).

Taking into account the regularity properties of the Laplace equation with Neumann boundary conditions, and
since by assumption ∂Ω(0) is smooth, we derive that χ ∈ Hs+1(Ω(0)) and we have the following estimate

‖χ‖Hs+1(Ω(0)) ≤ C ‖v‖Hs(Ω(0)) .

Thus I −Π, and consequently Π are bounded operators on Hs(Ω(0)) for s ≥ 1. By definition i) is satisfied for
s = 0. The other cases follow by interpolation.
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ii) Let s be an even integer, the properties come from the first assertion because the projection Π commutes
with the time derivative. The other cases follow by interpolation. �
We state now the proposition in the homogeneous case.

Proposition 1. Suppose that f ∈ Kr
T (Ω(0)) with 0 ≤ r ≤ 2, r 6= 1 and suppose that Πf(0) = 0 if r > 1, then

there exits a unique solution (v, p) of the problem (20) with v ∈ Kr+2
T (Ω(0)), ∇p ∈ Kr

T (Ω(0)) and
∫

Ω(0)

p = 0.

Furthermore,
‖v‖Kr+2

T (Ω(0)) + ‖∇p‖Kr
T (Ω(0)) ≤ C ‖f‖Kr

T (Ω(0)) ,

where C denotes a constant independent of T ≤ T0.

Proof. The proof is separated in several steps. We prove the proposition first for r = 0, then for r = 2.
When f ∈ L2(0, T ;L2(Ω(0))) (this corresponds to the case r = 0), it is shown in [10], or [19] Chapter III,
p. 267, that there exists a unique solution (v, p) of (20) with v ∈ L2(0, T ;H2(Ω(0))) ∩ H1(0, T ;L2(Ω(0))),

p ∈ L2(0, T ;H1(Ω(0))) and
∫

Ω(0)

p = 0. Moreover, we have

‖v‖L2(0,T ;H2(Ω(0)))∩H1(0,T ;L2(Ω(0))) + ‖p‖L2(0,T ;H1(Ω(0))) ≤ C ‖f‖L2(0,T ;L2(Ω(0))) ,

where C is a constant independent of the time T ≤ T0.
In the case r = 2, we consider f ∈ L2(0, T ;H2(Ω(0))) ∩H1(0, T ;L2(Ω(0))) = K2

T (Ω(0)) with the additional
assumption Πf(0) = 0.
First we suppose that f(0) = 0.
Let (z, q) be the solution of 

∂tz− ν∆z +∇q = ∂tf in Ω(0),
div z = 0 in Ω(0),
z = 0 on ∂B ∪ Γ0,
z(0) = 0 in Ω(0).

(21)

We remark that ∂tf ∈ L2(0, T ;L2(Ω(0))), and so we obtain a solution (z, q) belonging toK2
T (Ω(0))×L2(0, T ;H1(Ω(0))).

We set

v =
∫ t

0

z, p =
∫ t

0

q.

Then, (v, p) is a solution of 
∂tv− ν∆v +∇p = f in Ω(0),
div v = 0 in Ω(0),
v = 0 on ∂B ∪ Γ0,
v(0) = 0 in Ω(0).

(22)

If we choose the average of q equal to zero then
∫

Ω(0)

p = 0.

This solution verifies
∂tv = z ∈ K2

T (Ω(0)), ∂tp = q ∈ L2(0, T ;H1(Ω(0))),

and, thanks to the previous step

‖∂tv‖K2
T (Ω(0)) + ‖∂tp‖L2(0,T ;H1(Ω(0))) ≤ C ‖∂tf‖L2(0,T ;L2(Ω(0))) .
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Moreover, we get  −ν∆v +∇p = f − ∂tv ∈ L2(0, T ;H2(Ω(0))),
div v = 0 in Ω(0),
v = 0 on ∂Ω(0).

Using the regularities properties of the steady state Stokes equations with Ω(0) smooth (see [10] Th. I. 5.4,
p. 88), we deduce that v ∈ L2(0, T ;H4(Ω(0))), p ∈ L2(0, T ;H3(Ω(0))) and

‖v‖L2(0,T ;H4(Ω(0))) + ‖p‖L2(0,T ;H3(Ω(0))) ≤ C
[
‖∂tv‖L2(0,T ;H2(Ω(0))) + ‖f‖L2(0,T ;H2(Ω(0)))

]
≤ C ‖f‖K2

T (Ω(0)) .

Then we have (v, p) solution of (20) with f(0) = 0, and such that

v ∈ K4
T (Ω(0)), ∇p ∈ K2

T (Ω(0)),

with the estimate
‖v‖K4

T (Ω(0)) + ‖∇p‖K2
T (Ω(0)) ≤ C ‖f‖K2

T (Ω(0)) ,

where C denotes a constant independent of T .
When 0 < r < 2 and r 6= 1, we obtain the desired result by interpolating the spaces L2(0, T ;L2(Ω(0)))

and {f ∈ K2
T (Ω(0))/f(0) = 0}. The interpolation between these two spaces faces no difficulty because we can

extend in time the functions belonging to {f ∈ K2
T (Ω(0))/f(0) = 0} to R so that the norm of the extension is

independent of T .
The next step is to consider a given force that satisfies Πf(0) = 0. We have f = Πf + (I − Π)f . For Πf we

apply the previous result. Then, there exists a couple (ṽ, p̃) which is solution of (20) with Πf as a data, such
that ṽ ∈ Kr+2

T (Ω(0)) and ∇p̃ ∈ Kr
T (Ω(0)) and which satisfies

‖ṽ‖Kr+2
T (Ω(0)) + ‖∇p̃‖Kr

T (Ω(0)) ≤ C ‖Πf‖Kr
T (Ω(0)) .

The second part ii) of the Lemma 6 yields

‖ṽ‖Kr+2
T (Ω(0)) + ‖∇p̃‖Kr

T (Ω(0)) ≤ C ‖f‖Kr
T (Ω(0)) ,

with a constant C independent of the time T . On the other hand, as we already seen, (I − Π)f = ∇χ. But
I −Π is a bounded operator whose norm is independent of T and consequently ‖∇χ‖Kr

T (Ω(0)) ≤ C ‖f‖Kr
T (Ω(0))

(C independent of T ). Setting (v, p) = (ṽ, p̃ + χ), we obtain a solution of (20) associated to f which satisfies
the desired estimates. This ends the proof. �

2.2.2. Inhomogeneous linearised problem

We now extend the results of the last section to a more general problem: the inhomogeneous case. But, first
of all, we start by making a remark, which will enable us to specify the spaces in which we will choose the data
of the problem. If ψ ∈ Kr+2

T (Ω(0)) with ψ|Γ0 = 0 and ψ|∂B = z ∈ Hr/2+1(0, T ;H l(∂B)) with l ≥ r + 3/2, then
div ψ ∈ K̂r

T (Ω(0)), where K̂r
T (Ω(0)) is defined by

K̂r
T (Ω(0)) def= L2(0, T ;Hr+1(Ω(0))) ∩H1+r/2(0, T ; (H1(Ω(0)))′).

Indeed, suppose first that r is an even integer, r ≥ 0, and z = 0. If ψ is a smooth function, let us choose ψ in
Hs(0, T ;Hr+2(Ω(0))), where ψ|Γ0∪∂B = 0. Then,

∀φ ∈ H1(Ω(0)), ∀j ≤ 1 + r/2 (∂jt (divψ), φ) = −(∂jtψ,∇φ),
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where (., .) denotes the L2(Ω(0))-inner product. Thus for each t∥∥∥∂jt divψ(t)
∥∥∥

(H1(Ω(0)))′
≤
∥∥∥∂jtψ(t)

∥∥∥
L2(Ω(0))

.

Integrating in time, we get
‖divψ‖H1+r/2(0,T ;(H1(Ω(0)))′) ≤ ‖ψ‖Kr+2

T (Ω(0)) .

This inequality extends to arbitrary functions in Kr+2
T (Ω(0)) which satisfy ψ|Γ0∪∂B = 0. It is obvious that for

such functions divψ ∈ L2(0, T ;Hr+1(Ω(0))), and, in summary, the operators

div :
{
ψ ∈ Kr+2

T (Ω(0))/ψ|Γ0∪∂B = 0
}
→ L2(0, T ;Hr+1(Ω(0)))

and
div :

{
ψ ∈ Kr+2

T (Ω(0))/ψ|Γ0∪∂B = 0
}
→ H1+r/2(0, T ; (H1(Ω(0)))′)

are linear and continuous. For r not an integer this statement holds by interpolation. Then ψ ∈ Kr+2
T (Ω(0))

with ψ|Γ0∪∂B = 0 implies divψ ∈ K̂r
T (Ω(0)). We have similarly that div ψ ∈ K̂r

T (Ω(0)) if ψ ∈ Kr+2
T (Ω(0)) with

ψ|Γ0 = 0 and ψ|∂B = z ∈ Hr/2+1(0, T ;H l(∂B)). Indeed, we consider a lifting z̃ ∈ Hr/2+1(0, T ;H l+1/2(Ω(0))) of
z. Then div z̃ ∈ Hr/2+1(0, T ;H l−1/2(Ω(0))), since l ≥ r + 3/2, and thanks to the last argument div (ψ − z̃) ∈
K̂r
T (Ω(0)). Therefore, div ψ ∈ K̂r

T (Ω(0)) and we have the following estimate

‖divψ‖H1+r/2(0,T ;(H1(Ω(0)))′) ≤ C(‖ψ‖Kr+2
T (Ω(0)) + ‖z‖Hr/2+1(0,T ;Hl(∂B))).

Proposition 2. Suppose that 1 < r < 3/2. Let f ∈ Kr
T (Ω(0)), u0 ∈ Hr+1(Ω(0)), ρ ∈ K̂r

T (Ω(0)) and vb ∈
Hr/2+1(0, T ;H l(∂B)), with l ≥ r + 3/2. We suppose that the compatibility conditions (19) are satisfied, then

there exists a unique solution of (18) such that v ∈ Kr+2
T (Ω(0)), ∇p ∈ Kr

T (Ω(0)),
∫

Ω(0)

p = 0 and

‖v‖Kr+2
T (Ω(0)) + ‖∇p‖Kr

T (Ω(0)) ≤ C(T )
[
‖f‖Kr

T (Ω(0)) + ‖ρ‖K̂r
T (Ω(0)) + ‖vb‖Hr/2+1(0,T ;Hl(∂B))

]
,

If, moreover, we make the following additional assumption

f(0) = 0, ρ(0) = ∂tρ(0) = 0, vb = 0, u0 = 0, (23)

then the constant C(T ) can be chosen independent of T . Furthermore, (v, p) verifies the following conditions,
at the time t = 0:

v(0) = ∂tv(0) = 0, p(0) = 0.

Proof of the Proposition 2. We shall prove this proposition by reducing into two steps the problem to the case
previously treated, that is to say the homogeneous case. We are going to build continuous lifting of vb,u0 and
ρ.
◦ Lifting of vb and u0.
Thanks to the assertion ii) of Theorem 3, since r < 3/2 and taking into account (19), there exists a function
φ0 ∈ Kr+2

T (Ω(0)) such that

φ0|∂B = vb, φ0|Γ0 = 0, φ0(0) = u0, ∂tφ0(0) = ν∆u0 + f(0),

and

‖φ0‖Kr+2
T (Ω(0)) ≤ C

[
‖vb‖Kr+3/2

T (∂B)
+ ‖u0‖Hr+1(Ω(0)) + ‖f‖Kr

T (Ω(0))

]
, (24)
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with a constant C which may depend on T . Then (v1 = v − φ0, p) satisfies
∂tv1 − ν∆v1 +∇p = f − ∂tφ0 + ν∆φ0

def= f0 in Ω(0),
div v1 = ρ− divφ0

def= σ0 in Ω(0),
v1 = 0 on ∂B ∪ Γ0,
v1(0) = 0 in Ω(0),

(25)

with, thanks to the choice of φ0 and (19)

f0(0) = 0, σ0(0) = 0.

Moreover, recalling the remark we made before the proposition 2, div φ0 and then σ0 belong to K̂r
T (Ω(0)).

◦ Lifting of the divergence.
The next step is to adjust the divergence. We want a function φ1 which satisfies:

φ1 ∈ Kr+2
T (Ω(0)), φ1(0) = 0, divφ1 = σ0 and φ1|∂Ω(0) = 0.

Lemma 1 implies that there exists an extension σ̄ of σ0 such that

σ̄ ∈ L2(R;Hr+1(Ω(0))) ∩H1+r/2(R; (H1(Ω(0)))′),

and
‖σ̄‖L2(R;Hr+1(Ω(0)))∩H1+r/2(R;(H1(Ω(0)))′) ≤ C ‖σ0‖L2(0,T ;Hr+1(Ω(0))∩H1+r/2(0,T ;(H1(Ω(0)))′) ,

with a constant C which may depend on T . Since the average of σ0 is equal to zero, we can choose the average
of σ̄ equal zero (extension by reflexion). Denoting by ˆ̄σ the Fourier transform of σ̄, we remark that

ˆ̄σ ∈ L2(R;Hr+1(Ω(0))) and |τ |1+r/2 ˆ̄σ ∈ L2(R; (H1(Ω(0)))′),

and the average of ˆ̄σ is equal to zero. For each τ in R, we define θ by{ −∆θ(τ) = ˆ̄σ(τ) in Ω(0)
∂θ(τ)
∂n

= 0 on Γ0 ∪ ∂B.

We search the function θ so that
∫

Ω(0)

θ = 0. For almost all τ , θ(τ) ∈ Hr+3(Ω(0)) and ‖θ(τ)‖Hr+3(Ω(0)) ≤

C
∥∥ˆ̄σ(τ)

∥∥
Hr+1(Ω(0))

with C independent of τ . Furthermore, from the variational equivalent formulation we
deduce

‖θ(τ)‖H1(Ω(0)) ≤ C
∥∥ˆ̄σ(τ)

∥∥
(H1(Ω(0)))′

.

Hence θ ∈ L2(R;Hr+3(Ω(0))) and |τ |1+r/2∇θ ∈ L2(R;L2(Ω(0))). We set ψ1 = ∇F−1(θ), where F−1 denotes
the inverse Fourier transform. Then, the function ψ1 belongs to Kr+2

T (Ω(0)) and satisfies

ψ1(0) = 0, divψ1 = σ0, ψ1.n|Γ0∪∂B = 0, Πψ1 = 0.

The last equality comes from the fact that ψ1 is a gradient. We have just built a function in Kr+2
T (Ω(0)) whose

divergence is equal to σ0 and so that its normal component on the boundary Γ0∪∂B is zero. We shall add to ψ1
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a function ψ2 that will not modify the divergence but such as ψ1 +ψ2 satisfies the desired boundary conditions.
We choose ψ2 = curlw with w such that: on Γ0 ∪ ∂B : w = 0,

∂w

∂n
= −ψ1 ∧ n

at t = 0 : w(0) = ∂tw(0) = 0.
(26)

The compatibility conditions between the traces to ensure the existence of w in Kr+3
T (Ω(0)) are satisfied, because

r < 3/2 and σ0(0) = 0. We set φ1 = ψ1 + ψ2 = ∇F−1(θ) + curlw. The choice of w implies that the function
φ1 ∈ Kr+2

T (Ω(0)) and
φ1(0) = 0, divφ1 = σ0, φ1 = 0 on ∂Ω(0).

The pair (v2 = v1 − φ1, p) then satisfies:
∂tv2 − ν∆v2 +∇p = f0 − ∂tφ1 + ν∆φ1

def= f1 in Ω(0),
div v2 = 0 in Ω(0),
v2 = 0 on ∂B ∪ Γ0,
v2(0) = 0 in Ω(0).

(27)

Therefore, we are back to the homogeneous case with a right hand side f1 such that Πf1(0) = 0. Indeed,
f0(0) = 0, ψ1(0) = ψ2(0) = ∂tψ2(0) = 0 and Πψ1 = 0. Then there exists a unique solution (v2, p) of (27) such

as v2 ∈ Kr+2
T (Ω(0)), ∇p ∈ Kr

T (Ω(0)),
∫

Ω(0)

p = 0 and

‖v2‖Kr+2
T (Ω(0)) + ‖∇p‖Kr

T (Ω(0)) ≤ C ‖f1‖Kr
T (Ω(0)) .

But
‖φ0‖Kr+2

T (Ω(0)) ≤ C
[
‖vb‖Kr+3/2

T (∂B)
+ ‖u0‖Hr+1(Ω(0)) + ‖f‖Kr

T (Ω(0))

]
,

‖φ1‖Kr+2
T (Ω(0)) ≤ C

[
‖ρ‖K̃r

T (Ω(0)) + ‖φ0‖Kr+2
T (Ω(0)) + ‖vb‖Hr/2+1(0,T ;Hl(∂B))

]
,

with a constant C which may depend on T . Consequently, there exists a unique solution (v, p) of (18) such

that v ∈ Kr+2
T (Ω(0)), ∇p ∈ Kr

T (Ω(0)),
∫

Ω(0)

p = 0 and

‖v‖Kr+2
T (Ω(0)) + ‖∇p‖Kr

T (Ω(0)) ≤ C
[
‖f‖Kr

T (Ω(0)) + ‖ρ‖K̂r
T (Ω(0))

+ ‖vb‖Hr/2+1(0,T ;Hl(∂B)) + ‖u0‖Hr+1(Ω(0))

]
.

If the condition (23) is satisfied then the constant C can be chosen independent of the time T because at the sec-
ond step the extension of divergence can be done with a bound which is independent of T since ρ(0) = ∂tρ(0) = 0.

Proof of the last statement of Proposition 2. We suppose that (23) is satisfied. By definition of v we have
v(0) = 0. Now, we have to prove that ∂tv(0) = 0 and p(0) = 0. We have

div ∂tv(0) = 0, (28)
∂tv(0) +∇p(0) = 0, (29)

v|Γ0∪∂B = 0. (30)

We recall that Π denotes the L2(Ω(0))-projection operator on H. We have (I −Π)v = ∇χ, where χ is defined
by

(∇χ,∇φ) = −(ρ, φ), ∀φ ∈ H1(Ω(0)).
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Indeed,
((I −Π)v),∇φ) = (v,∇φ), ∀φ ∈ H1(Ω(0)).

The relation (28) implies that ∇∂tχ(0) = 0 and then that ∂tv(0) = Π(∂tv(0)). But Π∇p(0) = 0 (∇p(0) ∈
L2(Ω(0))), therefore projecting the equation (29) on divergence free vector, we obtain Π(∂tv(0)) = 0, that

implies that ∂tv(0) = 0. Then the pressure at the time t = 0 is constant but since
∫

Ω(0)

p(0) = 0, this constant

is zero. This ends the proof of the Proposition 2. �
Remark 4. We can rewrite the conclusion of Proposition 2 in terms of operators. If we denote by L the linear
operator

(w, q) ∈ Xr
T 7→ (∂tw − ν∆w +∇q,∇.w,w|∂B ,w(0)) ∈ Y rT ,

with

Xr
T =

{
(w, q),w ∈ Kr+2

T (Ω(0)),∇q ∈ Kr
T (Ω(0)),

∫
Ω(0)

q = 0, w|∂B ∈ Hr/2+1(0, T ;H l(∂B)), w|Γ0 = 0

}
,

and

Y rT =
{

(f , ρ,vb,u0), f ∈ Kr
T (Ω(0)), ρ ∈ K̂r

t (Ω(0)),vb ∈ Hr/2+1(0, T ;H l(∂B)),u0 ∈ Hr+1(Ω(0))
}
,

then L has a bounded inverse for any 1 < r < 3/2. Moreover, if we set

Xr
T,0 = {(w, q) ∈ Xr

T / w(0) = ∂tw(0) = 0, w|∂B = 0, q(0) = 0} ,

and
Y rT,0 = {(f , ρ, 0, 0) ∈ Y rT / f(0) = 0, ρ(0) = ∂tρ(0) = 0} ,

then L : Xr
T,0 −→ Y rT,0 has a bounded inverse with a norm independent of T .

2.3. Estimates of the nonlinear terms. Proof of Theorem 2

In what follows, we choose an arbritary time T0. We suppose that vb ∈ Hr/2+1(0, T0;H l(∂B)) and that the
condition (13) is satisfied. Let (v, p) be a solution of (12) then (v, p) verifies:

∂tv− ν∆v +∇p = f ◦ χv − ν∆v + ν(∇v)2v + (∇−∇v)p in Ω(0)
div v = (∇−∇v).v in Ω(0)
v = 0 on Γ0

v = vb on ∂B
v(0) = u0 in Ω(0).

(31)

In a first step, we shall build (v0, p0) such that, if we set

(ṽ, p̃) = (v− v0, p− p0), (32)

then we have

ṽ(0) = ∂tṽ(0) = 0, p̃(0) = 0. (33)

In order to define (v0, p0) let us analyse some necessary conditions to (33). Assuming a solution (v, p) is
known, we differentiate with respect to time the equation ∇v.v = 0 and set t = 0. We recall that ∇v.v =

(cof (I +
∫ t

0

∇v).∇).v. We have

∇.∂tv(0) = ((∇u0)T .∇)u0
def= σ1,
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because v(0) = u0. Therefore, if (v0, p0) exists it has to satisfy ∇.∂tv0(0) = σ1. Since ∇u0 ∈ Hr(Ω(0)),
with r > 1 we have σ1 ∈ Hr−1(Ω(0)). By Theorem 3, there exists σ0 ∈ Kr+2

T0
(Ω(0)) such that σ0(0) = 0 and

∂tσ0(0) = σ1. We consider now z ∈ Hr/2+1(0, T0;H l(∂B)) such that z(0) = vb(0),∫
∂B

z.n =
∫

Ω(0)
σ0.

(34)

For instance, we can choose z = u0|∂B + α(t)w where w denotes a smooth function which does not depend on

the time variable t and so that
∫
∂B

w.n = 1 and α(t) =
∫

Ω(0)

σ0. Taking into account the regularities of σ0,

α belongs to Hr/2+1(0, T0). Then z satisfies (34) and belongs to Hr/2+1(0, T0;H l(∂B)), because we made the
assumption that u0|∂B is in H l. We are now in a position of defining (v0, p0) ∈ Xr

T0
solution of (Prop. 2 gives

the existence of such a solution):
∂tv0 − ν∆v0 +∇p0 = f(0) in Ω(0)
div v0 = σ0 in Ω(0)
v0 = 0 on Γ0

v0 = z on ∂B
v0(0) = u0 in Ω(0).

(35)

We associate a new velocity v0 in Kr+2
T0

(Ω(0)) such that

v0(0) = ∂tv0(0) = 0, v0|∂B = vb − z, u0|Γ0 = 0.

We finally set (v0, p0) = (v0 + v0, p0). Then (ṽ, p̃) define in (32) is solution of
∂tṽ− ν∆ṽ +∇p̃ = f ◦ χṽ+v0 − f(0) + α1(v0 + ṽ, p0 + p̃)− ∂tv0 + ν∆v0 in Ω(0),
divṽ = α2(v0 + ṽ)− div v0 in Ω(0),
ṽ = 0 on Γ0 ∪ ∂B,
ṽ(0) = 0 in Ω(0),

(36)

with
α1(w, q) = −ν∆w + ν(∇w)2w + (∇−∇w)q,

and
α2(w) = (∇−∇w).w.

We can also write that (ṽ, p̃) is solution of

L(ṽ, p̃) = (f ◦ χṽ+v0 − f(0) + α1(ṽ + v0, p̃+ p0), α3(v0 + ṽ), 0, 0) + (−∂tv0 + ν∆v0, ρ0, 0, 0),

where α3(w) = α2(w) − (∇ −∇v0).v0. We set ρ0 = −∇v0 .v0. We want to use the results we obtain for the
linear problem in order to obtain the solvability of the modified nonlinear fluid problem (36) for a given velocity
on the disc. To do so we will use a fixed point theorem. We introduce the mapping

(v1, p1) ∈ Xr
T,0 7→ (v2, p2) ∈ Xr

T,0,

where (v2, p2) is defined by

(v2, p2) = L−1(f ◦ χv1+v0 − f(0) + α1(v1 + v0, p1 + p0), α3(v1 + v0), 0, 0)
+L−1(−∂tv0 + ν∆v0, ρ0, 0, 0).
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We check that this mapping satisfies the contraction mapping principle, for a small enough time. We shall
show that the terms on the right hand side (that is to say the nonlinear terms) are defined, that we can control
their norms with respect to the time, and that each is lipschitz with a small lipschitz constant. We state now
properties on the functions α1, α2... We take two couples (vi0, p0) in Xr

T0
with the velocities defined as above:

vi0 = v0 + vi0 on the time interval (0, T0). These two velocities are associated with two different velocities on
the boundary : v1

b ,v
2
b . The functions vi0 satisfy the following assumptions

(H)

vi0(0) = u0,

vi0|∂B = vib,

vi0 ∈ Kr+2
T0

(Ω(0)).

Lemma 7. For all (w, q) ∈ Xr
T , 1 < r < 3/2, we have α1(w, q) ∈ Kr

T (Ω(0)). Moreover, for a given real number
R > 0 there exists constants C1, C2 and η depending only on R, r and

∥∥(vi0, p0)
∥∥
XrT0

such that

∀T ≤ T0,∀(vi, pi) ∈ Xr
T,0, i = 1, 2 with ‖(vi, pi)‖XrT ≤ R,

we have ∥∥α1(vi + vi0, pi + p0)
∥∥
Kr
T (Ω(0))

≤ C1T
η, (37)

∥∥α1(v1 + v1
0, p1 + p0)− α1(v2 + v2

0, p2 + p0)
∥∥
Kr
T (Ω(0))

≤ C2T
η
∥∥(v1 + v1

0, p1)− (v2 + v2
0, p2)

∥∥
XrT

. (38)

Proof. Using the Einstein convention for summation, we can make explicit α1 in 2D as follows

α1(w, q) = ν∂j

(
(cof(∇

∫ t

0

w))kj [δki + (cof(∇
∫ t

0

w)ki]∂iw
)

+ν∂k

(
cof(∇

∫ t

0

w)ki∂iw
)
− cof(∇

∫ t

0

w)∇q,

where δkj denotes the Kronecker symbol. In 3D the complete explicit form is more tedious to write down but
we can notice that (as in 2D) it takes the form

α1(w, q) =
∑
j

∂j [(P (∇
∫ t

0

w).∇)w] +Q(∇
∫ t

0

w).∇q

where P (∇
∫ t

0
w) and Q(∇

∫ t
0

w) are two matrices and each of their component is a polynomial function with

respect to the components of ∇
∫ t

0

w of degree less than 3 and of variance 1. The Kr
T norm is composed

of two parts the L2(0, T ;Hr(Ω)) and the Hr/2(0, T ;L2(Ω)). Let us first study the L2(0, T ;Hr(Ω)) part. If

(w, q) ∈ Xr
T , then ∇w ∈ Kr+1

T (Ω(0)) and then
∫ t

0

∇w ∈ H1(0, T ;Hr+1(Ω(0))) ∩ Hr/2+3/2(0, T ;L2(Ω(0))).

In particular,
∫ t

0

∇w ∈ L∞(0, T ;Hr+1(Ω(0))). Since ∇w ∈ L2(0, T ;Hr+1(Ω(0))), ∇q ∈ L2(0, T ;Hr(Ω(0)))

and r > 1, Lemma 4 leads to α1(w, q) ∈ L2(0, T ;Hr(Ω(0))). In another hand, we have by interpolation∫ t

0

∇w ∈ Hp+1(0, T ;Hr+1−2p(Ω(0))) for 0 ≤ p ≤ (r + 1)/2 (see Lem. 2). Therefore, for p = r/4 we have
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0

∇w ∈ Hr/4+1(0, T ;Hr/2+1(Ω(0))). But ∇w ∈ Hr/2(0, T ;H1(Ω(0))) and ∇q ∈ Hr/2(0, T ;L2(Ω(0))), then,

since r > 1 and 1 + r/4 > r/2 we have α1(w, q) ∈ Hr/2(0, T ;L2(Ω(0))).
Now we shall estimate α1(v + v0, p+ p0) for (v, p) ∈ Xr

T,0, 1 < r < 3/2. We do not precise here the exponent i.
Thanks to the Cauchy Schwartz inequality, we get∥∥∥∥∫ t

0

∇v0

∥∥∥∥
L∞(0,T ;Hr+1(Ω(0)))

≤ T 1/2 ‖v0‖Kr+2
T0

(Ω(0)) ,

and ∥∥∥∥∫ t

0

∇v
∥∥∥∥
L∞(0,T ;Hr+1(Ω(0)))

≤ T 1/2 ‖v‖Kr+2
T (Ω(0)) .

Then, recalling the expression of α1, there exists some constants η > 0 and C1 which depends on R, r and
‖(v0, p0)‖XrT such that

∀(v, p) ∈ Xr
T,0, ‖(v, p)‖XrT ≤ R, ‖α1(v + v0, p+ p0)‖L2(0,T ;Hr(Ω(0))) ≤ C1T

η. (39)

We study now the second contribution Hr/2(0, T ;L2(Ω(0))) of the Kr
T norm.

‖∇v0‖Hr/2(0,T ;H1(Ω(0))) ≤ C(T0) ‖v0‖Kr+2
T0

(Ω(0)) ,

and applying Lemma 2 ii),
‖∇v‖Hr/2(0,T ;H1(Ω(0))) ≤ C ‖v‖Kr+2

T (Ω(0)) ,

where C denotes a constant independent of T because the velocity v satisfies v(0) = 0. Furthermore, for T ≤ T0,
using Lemma 2 and Lemma 3 with s = p, we obtain for ε < p < 1/2 and p ≤ (r + 1)/2,∥∥∥∥∫ t

0

∇v0

∥∥∥∥
Hp+1−ε(0,T ;Hr+1−2p(Ω(0)))

≤ CT ε ‖v0‖Kr+2
T0

(Ω(0)) .

We have the same estimate for v with a norm ‖v‖Kr+2
T (Ω(0)) in the right hand side of the inequality and with a

constant C that does not depend on T because v verifies v(0) = ∂tv(0) = 0. We choose p = r/4 and ε = r/8.
Then ∥∥∥∥∫ t

0

∇v0

∥∥∥∥
H1+r/8(0,T ;H1+r/2(Ω(0)))

≤ CT r/8 ‖v0‖Kr+2
T0

(Ω(0)) , (40)

and ∥∥∥∥∫ t

0

∇v
∥∥∥∥
H1+r/8(0,T ;H1+r/2(Ω(0)))

≤ CT r/8 ‖v‖Kr+2
T (Ω(0)) . (41)

Using Lemma 5 ii) we obtain estimates of the terms where ∇v0 does not appear. For instance, the terms(∫ t

0

∇v0

)
ki

∂jv or
(∫ t

0

∇v
)
ki

∂jv are bounded in Hr/2(0, T ;H1(Ω(0))) by CT r/8. For the products in

which ∇v0 appears, we cannot apply directly Lemma 5 ii) since v0(0) = u0 6= 0. Nevertheless, we can write

v0 = (v0 −u0) + u0. Then we use Lemma 5 ii) for the terms
(∫ t

0

∇v
)
ki

∂j(v0 − u0) and remark that, for the



626 C. GRANDMONT AND Y. MADAY

remaining terms, u0 is a data and does not depend on time. Then there exists a strictly positive constant, we
will denote by η and strictly positive constant C2 which can be chosen independent of T such that

‖α1(v + v0, p+ p0)‖Hr/2(0,T ;L2(Ω(0))) ≤ C2T
η. (42)

The estimates (39) and (42) lead to the estimate (37). We also check, using the same type of arguments that
α1 is lipschitz (estimate (38)) . �
We now state the same type of lemma for α3.

Lemma 8. For all w ∈ Kr+2
T (Ω(0)), with w|Γ0 = 0, w|∂B ∈ Hr/2+1(0, T ;H l(∂B)), 1 < r < 3/2, we have

α2(w)(resp.α3) ∈ K̂r
T (Ω(0)). Moreover, for a given R > 0, for vi0 satisfying the hypothesis (H) there exists

C1, C2 and η depending only on R, r,
∥∥vi0∥∥Kr+2

T0
(Ω(0))

and
∥∥vi0∥∥Hr/2+1(0,T0;Hl(∂B))

such that ∀T ≤ T0, ∀(vi, pi) ∈
Xr
T,0, i = 1, 2 with ‖(vi, pi)‖XrT ≤ R, we have

∥∥α3(vi + vi0)
∥∥
K̂r
T (Ω(0))

≤ C1T
η, (43)

∥∥α2(v1 + v1
0)− α2(v2 + v2

0)
∥∥
K̂r
T (Ω(0))

≤ C2T
η
[∥∥(v1 + v1

0)− (v2 + v2
0)
∥∥
Kr+2
T (Ω(0))

+
∥∥v1

b − v2
b

∥∥
Hr/2+1(0,T ;Hl(∂B))

]
.

(44)

Proof. We first note that α2(w) is a sum of terms that can be written (Pd−1

(∫ t

0

∇w
)
.∇).w, where Pd−1

(∫ t
0 ∇w

)
is a matrix whose component are polynomial functions with respect to the components of

∫ t

0

∇w of degree

d− 1 and variance 1. We recall the definition of K̂r
T (Ω(0)):

K̂r
T (Ω(0)) = L2(0, T ;Hr+1(Ω(0))) ∩Hr/2+1(0, T ; (H1(Ω(0)))′).

As in Lemma 7 we have α2(w) ∈ L2(0, T ;Hr+1(Ω(0))). The earlier estimates for α1 in L2(0, T ;Hr+1(Ω(0)))
apply here for α2 (resp. α3). We only need to be concern with the estimates in Hr/2+1(0, T ; (H1(Ω(0)))′).

First if w ∈ Kr+2
T (Ω(0)) then (

∫ t

0

∇w)ij∂kw ∈ Hr/2+1(0, T ; (H1(Ω(0)))′).

Indeed we have ∇w ∈ H1(0, T ;L2(Ω(0))) and
∫ t

0

∇w ∈ H1(0, T ;Hr+1(Ω(0))).

Then,

α2(w) ∈ H1(0, T ;L2(Ω(0))) ⊂ H1(0, T ; (H1(Ω(0)))′).

It remains to prove that ∂tα2(w) ∈ Hr/2(0, T ; (H1(Ω(0)))′). It is straightforward to note that it can be written
as the sum of terms of the following four types

• (
∫ t

0

∇w)ij(∂t∇w)kl,

• (∇w)ij(∇w)kl,

• (
∫ t

0

∇w)ij(
∫ t

0

∇w)mn(∂t∇w)kl,

• (
∫ t

0

∇w)ij(∇w)kl(∇w)mn.
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Let us start with the two first one. By the discussion preceding Proposition 2, we have ∂t∇w ∈ Hr/2(0, T ; (H1(Ω(0)))′).

We know that
∫ t

0

∇w ∈ H1+r/4(0, T ;H1+r/2(Ω(0))) and recall that H1+r/2(Ω(0)) is a multiplier of H1(Ω(0))

and H1+r/4(0, T ) is a multiplier of Hr/2(0, T ). Then Lemma 5 implies that

(
∫ t

0

∇w)ij(∂t∇w)kl ∈ Hr/2(0, T ; (H1(Ω(0)))′).

We study now the second term (∇w)ij(∇w)kl. We have ∇w ∈ Hr/2(0, T ;H1(Ω(0))). The multiplication of a
function in H1(Ω(0)) by a function in H1(Ω(0)) belongs to (H1(Ω(0)))′. Together with the fact that Hr/2(0, T )
is an algebra we obtain from Lemma 5

(∇w)ij(∇w)kl ∈ Hr/2(0, T ; (H1(Ω(0)))′).

And then we get ∂t(α2(w)) ∈ Hr/2(0, T ; (H1(Ω(0)))′) (resp. for α3).

Next we estimate α3 in H1+r/2(0, T ; (H1(Ω(0)))′).
As previously α3(v + v0, p+ p0) can be written as a sum of six generic terms and the basic ones are

(
∫ t

0

∇v)ij(∇v)kl , (
∫ t

0

∇v)ij(∇v0)kl, (
∫ t

0

∇v0)ij(∇v)kl.

We consider the term (
∫ t

0

∇v)ij(∇v0)kl.

We have
‖∇v0‖H1(0,T ;L2(Ω(0))) ≤ C ‖∇v0‖Kr+2

T0
(Ω(0)) ,

recalling (41) we derive ∥∥∥∥(
∫ t

0

∇v)ij(∇v0)kl

∥∥∥∥
H1(0,T ;L2(Ω(0)))

≤ CT r/8, (45)

and then

‖α3(v + v0)‖H1(0,T ;L2(Ω(0))) ≤ CT r/8, (46)

since the other terms can be handled in the same way (each constant can be chosen independent of T since v(0) =

∂tv(0) = 0). We estimate now ∂tα3 in the Hr/2(0, T ; (H1(Ω(0)))′) norm and consider ∂t((
∫ t

0

∇v)ij(∇v0)kl) as

a generic example. We have again two types of term to study: (
∫ t

0

∇v)ij(∇∂tv0)kl and (∇v)ij(∇v0)kl.

First we consider (
∫ t

0

∇v)ij(∇∂tv0)kl.

We have that ∇∂tv0 is bounded in Hr/2(0, T ; (H1(Ω(0)))′) independently of T . The estimate (41), Lemma 4
ii), Lemma 5 ii) (we write ∂tv0 = (∂tv0 − ∂tv0(0)) + ∂tv0(0) ) lead to:∥∥∥∥(

∫ t

0

∇v)ij(∇∂tv0)kl

∥∥∥∥
Hr/2(0,T ;(H1(Ω(0)))′)

≤ CT r/8, (47)
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where C is independent of T . We deduce from Lemma 1 that the condition ∂tv(0) = 0 provides a bound

of ∇v in Hr/2+1(0, T ; (H1(Ω(0)))′) independent of T , so the same estimates hold for (
∫ t

0

∇v)ij(∇∂tv)kl and

(
∫ t

0

∇v0)ij(∇∂tv)kl.

Finally we study (∇v)ij(∇v0)kl.
We know on one hand that ∇v0 is bounded in Hr/2(0, T0;H1(Ω(0))). On the other hand since v(0) = 0, we

obtain ∇v =
∫ t

0

∇∂tv and estimate (15) with X = L2(Ω(0)), s = 0, ε = 1− r/2 implies:

‖∇v‖Hr/2(0,T ;L2(Ω(0))) ≤ CT 1−r/2 ‖∇v‖H1(0,T ;L2(Ω(0))) ≤ CT 1−r/2 ‖v‖Kr+2
T (Ω(0)) .

Then we get

‖(∇v)ij(∇v0)kl‖Hr/2(0,T ;(H1(Ω(0)))′) ≤ CT
1−r/2. (48)

We have the same type of estimates for (∇v)ij(∇v)kl and (∇v0)ij(∇v)kl.
Then the estimate (43) is satisfied. The same kind of argument enable us to obtain (44) on α2. Indeed, for
instance in 2D we can write:

α2(v1
0 + v1)− α2(v2

0 + v2) = cof
∫ t

0

∇(v1
0 + v1) : ∇(v1

0 + v1)− cof
∫ t

0

∇(v2
0 + v2) : ∇(v2

0 + v2)

= cof
∫ t

0

(
∇(v1

0 + v1)−∇(v2
0 + v2)

)
: ∇(v1

0 + v1)

+cof
∫ t

0 ∇(v2
0 + v2) : ∇

(
(v2

0 + v2)− v1
0 + v1

)
.

We remark that we have two type of terms: cof
∫ t

0

∇Φ1 : ∇Φ2 with for i = 1 or for i = 2: ∂t Φi(0) = Φi(0) = 0.

We follow the same ideas as for estimate (43), noticing moreover that∥∥∇ ((v2
0 + v2)− v1

0 + v1

)∥∥
Hr/2+1(0,T ;(H1(Ω(0)))′)

≤
∥∥(v1 + v1

0)− (v2 + v2
0)
∥∥
Kr+2
T (Ω(0))

+
∥∥v1

b − v2
b

∥∥
Hr/2+1(0,T ;Hl(∂B))

.

This ends the proof of Lemma 8. �
It remains to study f ◦ χw − f(0). We suppose that f ∈ C∞([0, T ]× Rd).

Remark 5. Our interest is not to have the minimal regularity on the force f .

Lemma 9. For all v ∈ Kr+2
T (Ω(0)), we have f ◦ χv ∈ Kr

T (Ω(0)). Moreover, for R > 0 there exists C and η
strictly positive constants which only depend on R, r and

∥∥vi0∥∥Kr+2
T0

(Ω(0))
such that ∀T ≤ T0, ∀(vi, pi) ∈ Xr

T,0, i =

1, 2 such that ‖(vi, pi)‖XrT ≤ R, we have∥∥∥f ◦ χvi+vi0
− f(0)

∥∥∥
Kr
T (Ω(0))

≤ CT η, (49)

and ∥∥∥f ◦ χv1+v1
0
− f ◦ χv2+v2

0

∥∥∥
Kr
T (Ω(0))

≤ CT η
∥∥v1 + v1

0 − (v2 + v2
0)
∥∥
Kr+2
T (Ω(0))

. (50)
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Proof. First we prove that f ◦ χv ∈ Kr
T (Ω(0)) for all v ∈ Kr+2

T (Ω(0)).

Recalling that the regularity of χv is the regularity of
∫ t

0

v, we know that χv ∈ Hp+1(0, T ;Hr+2−2p(Ω(0)))

with 0 ≤ p ≤ r + 2
2

.

First, we choose p =
r − 1

4
, then χv ∈ H3/4+r/4(0, T ;Hr/2+5/2(Ω(0))). And thus using the Sobolev injections

χv ∈ C0([0, T ];C2(Ω(0))). Consequently,

f ◦ χv ∈ C0([0, T ];C2(Ω(0))) ⊂ L2(0, T ;Hr(Ω(0))),

because r < 3/2.

Then taking p =
r + 3

4
, we obtain χv ∈ H7/4+r/4(0, T ;Hr/2+1/2(Ω(0))). But r > 1, then χv ∈ C1([0, T ];C0(Ω(0))).

Therefore,
f ◦ χv ∈ C1([0, T ];C0(Ω(0))) ⊂ Hr/2(0, T ;L2(Ω(0))).

Finally f ◦ χv ∈ Kr
T (Ω(0)).

Next we estimate ‖f ◦ χv0+v − f(0)‖Kr
T (Ω(0)) for all v ∈ Kr+2

T (Ω(0)) which satisfies v(0) = ∂tv(0) = 0 and
v|∂Ω(0) = 0.
We set

g = f ◦ χv0+v − f(0).

We check that g(0) = 0 and deduce that g =
∫ t

0

∂tg. This yields

‖g‖L2(0,T ;L2(Ω(0))) ≤ T ‖∂tg‖L2(0,T ;L2(Ω(0))) ,

and then
‖g‖H1−ε(0,T ;L2(Ω(0))) ≤ T ε ‖g‖H1(0,T ;L2(Ω(0))) .

We choose 1− ε = r/2, it gives

‖g‖Hr/2(0,T ;L2(Ω(0))) ≤ T 1−r/2 ‖g‖H1(0,T ;L2(Ω(0))) .

But
‖g‖2H1(0,T ;L2(Ω(0))) = ‖g‖2L2(0,T ;L2(Ω(0))) + ‖∂tg‖2L2(0,T ;L2(Ω(0))) .

Under the assumption that f is C∞, we obtain that for any T , T ≤ T0,

‖g‖L2(0,T ;L2(Ω(0))) ≤ C ‖f‖L∞ .

Furthermore,
∂tg(t, ξ) = (∂tf)(t, χv+v0(t, ξ)) + ∂tχv+v0(t, ξ)(∇f)(t, χv+v0(t, ξ)),

= (∂tf)(t, χv+v0(t, ξ)) + (v + v0)(t, ξ)(∇f)(t, χv+v0(t, ξ)).
We conclude that for all T ≤ T0

‖∂tg‖L2(0,T ;L2(Ω(0))) ≤ C,
with a constant C depending on f , R and v0. In summary, we have

‖f ◦ χv+v0 − f(0)‖H1(0,T ;L2(Ω(0))) ≤ CT 1−r/2. (51)
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Next we study ‖g‖L2(0,T ;Hr(Ω(0))). We have already estimated g in L2(0, T ;L2(Ω(0))). In order to simplify the
presentation we denote by ∂x all the first order derivatives with respect the spatial variables.

∂x(f ◦ χv+v0)− ∂xf(0) = (∂xf) ◦ χv+v0∂xχv+v0 − ∂xf(0),

= (∂xf) ◦ χv+v0 − ∂xf(0) +
(∫ t

0

∂x(v + v0)
)

(∂xf) ◦ χv+v0 .

We notice that (∂xf) ◦ χv+v0(0) = ∂xf(0), we have

‖(∂xf) ◦ χv+v0 − ∂xf(0)‖L2(0,T ;L2(Ω(0))) ≤ T ‖(∂xf) ◦ χv+v0 − ∂xf(0)‖H1(0,T ;L2(Ω(0))) .

And thus the same study we did previously but with ∂xf instead of f leads to

‖(∂xf) ◦ χv+v0 − ∂xf(0)‖L2(0,T ;L2(Ω(0))) ≤ CT,

where C denotes a constant depending only on f , R and v0. We have in a same way,∥∥∥∥(∫ t

0

∂x(v + v0)
)

(∂xf) ◦ χv+v0

∥∥∥∥
L2(0,T ;L2(Ω(0)))

≤ C

∥∥∥∥∫ t

0

∂x(v + v0)
∥∥∥∥
L2(0,T ;L2(Ω(0)))

,

≤ CT ‖∂x(v + v0)‖L2(0,T ;L2(Ω(0))) .

Using Lemma 2, we get ∥∥∥∥(∫ t

0

∂x(v + v0)
)

(∂xf) ◦ χv+v0

∥∥∥∥
L2(0,T ;L2(Ω(0)))

≤ CT,

with C independent of T . In summary

‖∂x(f ◦ χv+v0)− ∂xf(0)‖L2(0,T ;L2(Ω(0))) ≤ CT.

We can obtain the same kind of estimates for the second order derivatives. The inequality (49) is satisfied since
r < 3/2. The estimate (50) can be obtain using a Taylor formula applied to f which is by assumption C∞, and
using also Lemma 2 and 3 as we did previously. �

We now consider the mapping S1 as follows

(w1, q1) ∈ Xr
T,0 7→ (w2, q2) ∈ Xr

T,0,

where (w2, q2) is defined by

(w2, q2) = L−1(f ◦ χw1+v0 − f(0) + α1(w1 + v0, q1 + p0), α3(v0 + w1), 0, 0)
+L−1(−∂tv0 + ν∆v0, ρ0, 0, 0).

Proposition 3. Let R1 be a real number, R1 > 0. There exists a time T1, 0 < T1 ≤ T0, such that for all
T ≤ T1 S1 has a unique fixed point (ṽ, p̃) in

B1 = {(w, q) ∈ Xr
T,0 |

∥∥(w, q)− L−1(−∂tv0 + ν∆v0, ρ0, 0, 0)
∥∥
XrT
≤ R1}.

Indeed, the study of the linear problem (proposition 2) and the estimates of the nonlinear terms give us the
estimate

∥∥(w2, q2)− L−1(−∂tv0 + ν∆v0, ρ0, 0, 0)
∥∥ ≤ CT η. We deduce that for a given constant R1, there exists

a time T1 (depending on ‖u0‖Hr+1(Ω(0)), ‖vb‖Hr/2+1(0,T0;Hl(∂B)), f and R1) such that, for all T ≤ T1 ≤ T0, S1

maps B1 into itself and is a contraction. This ends the proof of Proposition 3 and the proof of Theorem 2. �



EXISTENCE FOR AN UNSTEADY FLUID-STRUCTURE INTERACTION PROBLEM 631

Remark 6. The time T1 depends continuously on ‖vb‖Hr/2+1(0,T0;Hl(∂B)) and for all K > 0, for all vb such
that ‖vb‖Hr/2+1(0,T0;Hl(∂B)) ≤ K, there exists TK > 0 such that T1 > TK .

To summarize, for a strictly positive given constant R1, an arbitrary time T0, and a velocity vb given on the
rigid body boundary then the problem (12) has a unique smooth solution (v, p) for small enough time T ≤ T1.
Indeed, let (v′, p′) be another solution, then (v′ −v0, p

′− p0) is a fixed point of S1; from proposition3 we know
that for T ≤ T1, the fixed point is unique. Now we study the coupled problem.

3. Coupled problem. Proof of Theorem 1

Let (wG, θ
−→
R ) ∈ Hr/2+1(0, T )×Hr/2+2(0, T ), be respectively the center of gravity velocity and the rotation

angle of the rigid body. To them we associate the velocity vb defined by

vb(x) = wG +
d(exp(θ[−→R∧])

dt
−−→
G0x, ∀x ∈ B. (52)

To the function vb we associated (v, p) = (ṽ + v0, p̃+ p0) where (ṽ, p̃) is the unique fixed point of the mapping
S1 with v|∂B = vb (proposition 3). For the sake of simplicity we denote by −→θ the vector θ−→R . Associated to
the previous (v, p), we define now (wG,

−→
θ ) solutions of the Newton equations:

m
dwG

dt
=

∫
∂B

(p− ν(∇v + (∇v)T )v) cof (∇χv).n

J
d2
−→
θ

dt2
= −

∫
∂B
ρi

d−→θ
dt

(t) ∧ (
d−→θ
dt

(t) ∧ (exp([−→θ ∧])−−→G0x))dx

+
∫
∂B

(exp([−→θ ∧])−−→G0x) ∧
[
(p− ν(∇v +∇v

T )v).( cof (∇χv).n)
]

dx,

(53)

with the following initial conditions

wG(0) = w0; θ(0) = 0;
d
−→
θ

dt
(0) = −→ψ 0.

In order to prove the principal result of this paper, we verify that the mapping S2

(wG,
−→
θ ) 7→ (wG,

−→
θ ),

has itself also a fixed point. To do so, we first check that the mapping S2 is correctly defined, then that, under
some assumptions, it maps B2 into itself, and is a contraction, with B2 defined by:

B2 =
{

(wG,
−→
θ ) ∈ Hr/2+1(0, T )×Hr/2+2(0, T ) /

‖wG −wG0‖Hr/2+1(0,T ) ≤ R2,
∥∥∥−→θ −−→θ 0

∥∥∥
Hr/2+2(0,T )

≤ R2

}
.

In the latter definition R2 is a given strictly positive constant and (wG0,
−→
θ 0) are solutions of

m
dwG0

dt
=

∫
∂B

(p0(0)− ν(∇+∇T )u0).n

J
d2−→θ 0

dt2
=

∫
∂B
ρ

d
dt
−→
θ 0 ∧ (

d
dt
−→
θ 0 ∧ −−→G0x) +

∫
∂B

−−→
G0x ∧ (p0(0)− ν(∇+∇T )u0.n),

(54)
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with the following initial conditions

wG0(0) = w0; −→θ 0(0) = 0;
d−→θ 0

dt
(0) = −→ψ 0.

Let (wG,
−→
θ ) ∈ B2. First, we extend (wG,

−→
θ ) on the time interval (0, T0), where T0 denotes an arbitrary chosen

time. To do so, we consider wG − wG0. Then, by Lemma 1, there exists an extension φ of wG − wG0 in
Hr/2+1(0, T0) such that

‖φ‖Hr/2+1(0,T0) ≤ C ‖wG −wG0‖Hr/2+1(0,T ) ,

where C is a constant independent of T . Then φ−wG0 is an extension of wG. We denote by wG this extension.
We have

‖wG‖Hr/2+1(0,T0) ≤ ‖wG0‖Hr/2+1(0,T0) + C ‖wG −wG0‖Hr/2+1(0,T ) ,

≤ ‖wG0‖Hr/2+1(0,T0) + CR2.

Therefore, if ‖wG −wG0‖Hr/2+1(0,T ) ≤ R2, then there exists an extension of wG to the time interval (0, T0)
such that,

‖wG‖Hr/2+1(0,T0) ≤ R0,

with the constant R0 which depends on T0, R2, u0 and on f , but not on T . We use the same argument to
extend −→θ in Hr/2+2(0, T0). So, if

∥∥∥−→θ −−→θ 0

∥∥∥
Hr/2+2(0,T )

≤ R2 we obtain an extension of −→θ to (0, T0), also

denoted by −→θ , such that ∥∥∥−→θ ∥∥∥
Hr/2+2(0,T0)

≤ R0.

To these quantities, we associate vb defined by (52). Since −→θ ∈ Hr/2+2(0, T0), the operator exp([−→θ ∧]) belongs
to Hr/2+2(0, T0). In order to get this result, we write the exponential function with the help of its serie expansion
and we note that Hr/2+2(0, T0) is an algebra. Consequently, vb ∈ Hr/2+1(0, T0;H l(∂B)) for any positive real
number l. Furthermore, we have a bound for vb :

‖vb‖Hr/2+1(0,T0;Hl(∂B)) ≤ ‖wG‖Hr/2+1(0,T0) +

∥∥∥∥∥d(exp([−→θ ∧])
dt

∥∥∥∥∥
Hr/2+1(0,T0)

,

≤ C(R0).

To the boundary velocity vb we associate thanks to the above sections a velocity and a pressure (v, p) =
(ṽ + vb0, p̃+ p0). The velocity and the pressure (ṽ, p̃) is the fixed point of the mapping1 Sb1. The couple (ṽ, p̃) is
defined over the interval (0, T b1 ) with T b1 ≤ T0 and T b1 depends on R1, T0, ‖vb‖Hr/2+1(0,T0;Hl(∂B)) ‖u0‖Hr+1(Ω(0))

and f . Nevertheless, the time T b1 can be the same for all the mappings Sb1. This results from remark 6, and
from the fact that for (wG,

−→
θ ) ∈ B2, the associated velocity vb is bounded in Hr/2+1(0, T0;H l(∂B)) with a

bound depending only on R0. We denote by T1 this time. Taking into account the regularities of v and p, there
exists a unique solution (wG,

−→
θ ) ∈ Hr/2+1(0, T1) × Hr/2+2(0, T1) of (53). Thus the mapping S2 is defined.

We shall prove that S2 maps B2 into itself, for a mass and a moment of inertia sufficiently large. We study
‖wG −wG0‖Hr/2+1(0,T ) and

∥∥∥−→θ −−→θ 0

∥∥∥
Hr/2+2(0,T )

. We first restrict the analysis to the 2D case or the case of

1We add here the exponent b to underline the dependency of Sb1 and vb0 with respect to vb.
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the sphere since then the following equations are satisfied

m
d(wG −wG0)

dt
=

∫
∂B

(p− ν(∇v +∇v
T )v) cof (∇χv).n−

∫
∂B

(p0(0)− ν(∇+∇T )u0).n

J
d2(
−→
θ −−→θ 0)
dt2

=
∫
∂B

(exp([−→θ ∧])−−→G0x) ∧
[
(p− ν(∇v +∇v

T )v) cof (∇χv).n
]

−
∫
∂B

−−→
G0x ∧

[
p0(0)− ν(∇ +∇T )u0.n

]
.

(55)

We write (v, p) = (ṽ + vb0, p̃+ p0) = (ṽ + v0 + vb0, p̃+ p0). We first have:

∀T ≤ T1, ‖ṽ‖Kr+2
T (Ω(0)) + ‖∇p̃‖Kr

T (Ω(0)) ≤ R1 + C(R2,u0, f),

since (ṽ, p̃) ∈ B1, and since the center of B1 is bounded by C(R2,u0, f). Secondly, from (35) and Proposition 2,

‖∇p0‖Kr
T0

(Ω(0)) + ‖v0‖Kr+2
T0

(Ω(0)) ≤ C
[
‖u0‖Hr+1(Ω(0)) + ‖f‖Kr

T0
(Ω(0)) + ‖z‖Hr/2+1(0,T0;Hl(∂B)) + ‖σ0‖K̂r

T0
(Ω(0))

]
,

We recall that σ0 belongs to Kr+2
T0

(Ω(0)) and satisfies the initial conditions: σ0(0) = 0 and ∂tσ0(0) =

((∇u0)T .∇)u0. On an other hand, z = u0|∂B + α(t)w = u0|∂B + w
∫

Ω(0)

σ0, thus

‖∇p0‖Kr
T0

(Ω(0)) + ‖v0‖Kr+2
T0

(Ω(0)) ≤ C(u0, f ,w0, ψ0).

Finally, vb0 is an extension of vb − z which satisfies vb0(0) = ∂tvb0(0) = 0. Then∥∥vb0∥∥Kr+2
T0

(Ω(0))
≤ C(R2,w0,

−→
ψ 0,u0).

This allows to conclude that

m ‖wG −wG0‖Hr/2+1(0,T ) ≤ Cm

∥∥∥∥ d
dt

(wG −wG0)
∥∥∥∥
Hr/2(0,T )

,

≤ C(R1, R2,u0, f ,w0,
−→
ψ 0),

and

J
∥∥∥−→θ −−→θ 0

∥∥∥
Hr/2+2(0,T )

≤ CJ

∥∥∥∥ d2

dt2
(
−→
θ −−→θ 0)

∥∥∥∥
Hr/2(0,T )

,

≤ C(R1, R2,u0, f ,w0,
−→
ψ 0),

(56)

where the two constants are indeed independant of m and J since they depend only on the right hand sides of
(55) that depend only on v, p, u0, p0, θ, and not on m and J . Consequently, if the body has a mass and a moment
of inertia large enough, S2 maps B2 into itself. In the general 3D case more nonlinearity rises in the equation of−→
θ , noticing they appear with a lower order of derivation in time, they can be controlled in small time. We thus

have to add in the right hand side of (56) a contribution C(R1, R2,u0, f ,w0,
−→
ψ 0)ρ

∥∥∥−→θ −−→θ 0

∥∥∥
Hr/2+1(0,T )

that

can be bounded by C(R1, R2,u0, f ,w0,
−→
ψ 0)ρT so that the same consequence holds at least for a small enough

time.

Remark 7. This condition over the characteristics of the rigid body is a sufficient condition to have the stability
of B2. Nevertheless it does not seem to be very natural. We should have the existence for small time enough of
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a solution for all kind of disc without restrictions. But for the time being we do not have estimates that enable
us to eliminate this condition.

We shall show that under similar assumption the mapping S2 is a contraction. We consider (wGi,
−→
θ i) with

i = 1, 2 in B2 and we associate (vi, pi) = (ṽi + vi0, pi + p0) and (wGi,
−→
θ i). We recall that vi0 is a lifting if the

initial and boundary values v0 and vbi and that this velocity is the sum of : vi0 (depending on vib) and v0, which
is independent of vib. Therefore again in the case of 2D or of a 3D sphere, if we subtract the equation satisfied
by (wGi,

−→
θ i), for i = 1, 2, and we rearrange the terms so that the differences v1 − v2 and p1 − p2 appear, we

obtain

m ‖wG1 −wG2‖Hr/2+1(0,T ) + J
∥∥∥−→θ 1 −

−→
θ 2

∥∥∥
Hr/2+2(0,T )

≤ C(‖(v1, p1)− (v2, p2)‖XrT +
∥∥∥exp([−→θ 1∧])− exp([−→θ 2∧])

∥∥∥
Hr/2+2(0,T )

),

≤ C
[
‖(ṽ1, p̃1)− (ṽ2, p̃2)‖XrT +

∥∥v1
0 − v2

0

∥∥
Kr+2
T0

(Ω(0))
+
∥∥∥exp([−→θ 1∧])− exp([−→θ 2∧])

∥∥∥
Hr/2+2(0,T )

]
,

where C is a constant depending on the data and on R1 et R2 but which is independent of T . Then

m ‖wG1 −wG2‖Hr/2+1(0,T ) + J
∥∥∥−→θ 1 −

−→
θ 2

∥∥∥
Hr/2+2(0,T )

≤ C
[
‖(ṽ1, p̃1)− (ṽ2, p̃2)‖XrT + ‖vb1 − vb2‖Kr+3/2

T (∂B))
+
∥∥∥exp([−→θ 1∧]) − exp([−→θ 2∧])

∥∥∥
Hr/2+2(0,T )

]
.

(57)

Now we estimate ‖(ṽ1, p̃1)− (ṽ2, p̃2)‖XrT with respect to vb1 − vb2, with

vbi = wGi +
d(exp([−→θ i∧]))

dt
−−→
G0x, i = 1, 2.

We recall that
∂tṽi − ν∆ṽi +∇p̃i = f ◦ χṽi+vi0

− f(0) + α1(vi0 + ṽi, p0 + p̃i)
−∂tvi0 + ν∆vi0 in Ω(0)

divṽi = α2(vi0 + ṽi)− div vi0 in Ω(0)
ṽi = 0 on Γ0 ∪ ∂B
ṽi(0) = 0 in Ω(0),

(58)

We subtract the equations satisfied by (ṽ1, p̃1) and (ṽ2, p̃2). The approach we use at the previous section and
lemma 7, 8 and 9 leads to the following estimate:

‖(ṽ1, p̃1)− (ṽ2, p̃2)‖XrT ≤ C T η ‖(ṽ1, p̃1)− (ṽ2, p̃2)‖XrT + C
∥∥v1

0 − v2
0

∥∥
Kr+2
T (Ω(0))

+C
∥∥div (v1

0 − v2
0)
∥∥
K̂r
T (Ω(0))

.

Using the definition of vi0 for i = 1, 2, we get

‖(ṽ1, p̃1)− (ṽ2, p̃2)‖XrT ≤ C T
η ‖(ṽ1, p̃1)− (ṽ2, p̃2)‖XrT + C ‖vb1 − vb2‖Hr/2+1(0,T ;Hl(∂B)) .

For all T ≤ T1, we have C T η < 1 thanks to the way we choose T1. Then there exists a constant we denote by
C such that:

‖(ṽ1, p̃1)− (ṽ2, p̃2)‖XrT ≤ C ‖vb1 − vb2‖Hr/2+1(0,T ;Hl(∂B)) . (59)
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The estimates (57) and (59) yield

m ‖wG1 −wG2‖Hr/2+1(0,T ) + J
∥∥∥−→θ 1 −

−→
θ 2

∥∥∥
Hr/2+2(0,T )

≤

C ‖vb1 − vb2‖Hr/2+1(0,T ;Hl(∂B)) +
∥∥∥exp([−→θ 1∧])− exp([−→θ 2∧])

∥∥∥
Hr/2+2(0,T )

.
(60)

Furthermore,

‖vb1 − vb2‖Hr/2+1(0,T ;Hl(∂B)) ≤ ‖wG1 −wG2‖Hr/2+1(0,T ) +
∥∥∥exp([−→θ 1∧])− exp([−→θ 2∧])

∥∥∥
Hr/2+2(0,T )

.

We shall estimate
∥∥∥exp([−→θ 1∧])− exp([−→θ 2∧])

∥∥∥
Hr/2+2(0,T )

with respect to
∥∥∥−→θ 1 −

−→
θ 2

∥∥∥
Hr/2+2(0,T )

. We want to

apply Lemma 5 ii). We have∥∥∥exp([−→θ 1∧])− exp([−→θ 2∧])
∥∥∥
Hr/2+2(0,T )

≤ C(T0)
∥∥∥∥ d2

dt2
(exp([−→θ 1∧]) − exp([−→θ 2∧])

∥∥∥∥
Hr/2(0,T )

.

We recall that exp([−→θ i∧]) are matrices depending on the cosines and the sinus of the various components of
the vector θi

−→
R i. So using the series expansion of cosines and sinus, combining the terms in order to make

appearing the difference −→θ 1 −
−→
θ 2 and then applying lemma 5 ii), it comes∥∥∥∥ d2

dt2
(exp([−→θ 1∧])− exp([−→θ 2∧]))

∥∥∥∥
Hr/2(0,T )

≤ C(R2)
∥∥∥−→θ 1 −

−→
θ 2

∥∥∥
Hr/2+2(0,T )

.

Thus

‖vb1 − vb2‖Hr/2+1(0,T ;Hl(∂B)) ≤ ‖wG1 −wG2‖Hr/2+1(0,T ) + C(R2)
∥∥∥−→θ 1 −

−→
θ 2

∥∥∥
Hr/2+2(0,T )

. (61)

The estimates (60) and (61) lead to

m ‖wG1 −wG2‖Hr/2+1(0,T ) + J ‖θ1 − θ2‖Hr/2+2(0,T ) ≤
C(‖wG1 −wG2‖Hr/2+1(0,T ) + C(R2) ‖θ1 − θ2‖Hr/2+2(0,T )).

(62)

Then the mapping S2 is a strict contraction for a mass and a moment of inertia of the disc large enough. The
general 3D is treated as before. This conclude the proof of Theorem 1. �
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[9] G. Duvaut, Mécanique des milieux continus. Masson, Paris, Milan, Barcelone, Mexico (1990).
[10] V. Girault and P.A. Raviart, Finite Element Methods for Navier-Stokes Equations. Springer-Verlag, Berlin Heidelberg (1986).
[11] R. Glowinski and B. Maury, Fluid-particule flow: a symmetric formulation. C. R. Acad. Sci. Paris Sér. I Math. t. 324, (1997)

1079–1084.
[12] C. Grandmont and Y. Maday, Existence de solutions d’un problème de couplage fluide-structure bidimensionnel instationnaire.

C. R. Acad. Sci. Paris Sér. I Math. t. 326, (1998) 525–530.
[13] J. Heywood and R. Rannacher, Finite-element approximation of the nonstationnary Navier-Stokes problem. Part III. Smoothing

property and higher order error estimates for spatial discretisation. SIAM J. Numer. Anal. 25 (1988) 489–512.
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