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Abstract: The present paper is devoted to the solvability of various two-point boundary value
problems for the equation y(4) = f (t, y, y′, y′′, y′′′), where the nonlinearity f may be defined on a
bounded set and is needed to be continuous on a suitable subset of its domain. The established
existence results guarantee not just a solution to the considered boundary value problems but also
guarantee the existence of monotone solutions with suitable signs and curvature. The obtained results
rely on a basic existence theorem, which is a variant of a theorem due to A. Granas, R. Guenther and
J. Lee. The a priori bounds necessary for the application of the basic theorem are provided by the
barrier strip technique. The existence results are illustrated with examples.
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1. Introduction

This paper studies the solvability in C4[0, 1] of boundary value problems (BVPs) for
the equation

y(4) = f (t, y, y′, y′′, y′′′), t ∈ (0, 1), (1)

where f (t, y, u, v, w) is a scalar function defined on [0, 1] × Dy × Du × Dv × Dw, and
Dy, Du, Dv, Dw ⊆ R.

We show sufficient conditions for the existence of solutions of (1) satisfying one of the
following boundary conditions (BCs)

y′′′(0) = A, y′′(1) = B, y′(0) = C, y(0) = D, (2)

y′′′(0) = A, y′′(0) = B, y(0) = C, y(1) = D, (3)

y′′′(0) = A, y′(0) = B, y′(1) = C, y(1) = D, (4)

or

y′′′(0) = A, y′(0) = B, y(0) = C, y(1) = D, (5)

where A, B, C, D ∈ R. It is established that the considered problems have positive or
non-negative, monotone, convex or concave solutions.

It is well known that boundary value problems for fourth-order differential equations
arise as models studying the deformations of an elastic beam, which is one of the basic
structures in architecture, used often in the design of bridges and various structures.
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The solvability of fourth-order BVPs with various two-point BCs has been studied by
many authors.

Various BVPs for equations of the type

y(4) = f (t, y), t ∈ (0, 1),

have been studied by A. Cabada et al. [1], J. Caballero et al. [2], J. Cid et al. [3], G. Han and
Z. Xu [4], J. Harjani et al. [5], G. Infante and P. Pietramala [6], J. Li [7] (here, the nonlinearity
f (t, y) may be singular at the ends of the interval and at y = 0), B. Yang [8] and C. Zhai and
C. Jiang [9].

J. Liu and W. Xu [10] and D. O’Regan [11] (in this work, the function f (t, y, u) admit
singularities at the ends t = 0, 1, at y = 0 and/or at u = 0) and Q. Yao [12] has studied
boundary value problems for equations of the form

y(4) = f (t, y, y′).

In [11], the homogeneous conditions (3) are among the considered boundary conditions.
Many authors have considered BVPs for equations of the type

y(4) = f (t, y, y′′), t ∈ (0, 1),

see Z. Bai et al. [13], D. Brumley et al. [14], M. Del Pino and R. Manasevich [15],
A. El-Haffaf [16] (with homogeneous boundary conditions (2)), P. Habets and
M. Ramalho [17], R. Ma [18] and D. O’Regan [19]. In the last work, the function f (t, y, v)
may be singular at the ends of the interval, at y = 0 and/or at v = 0.

The solvability of boundary value problems for the more general equations

y(4) = f (t, y, y′, y′′), t ∈ (0, 1),

has been studied in [16] (with homogeneous boundary conditions (2)), [20–22], where the
main nonlinearity f (t, y, u, v) may be singular at t = 0, 1, y = 0, u = 0 and v = 0.

BVPs for equations of the form (1) with various two-point boundary conditions have
been considered by R. Agarwal [23], Z. Bai [24], C. De Coster et al. [25], J. Ehme et al. [26],
D. Franco et al. [27], A. Granas et al. [28], Y. Li and Q. Liang [29], Y. Liu and W. Ge [30],
R. Ma [31], F. Minhós et al. [32], B. Rynne [33], F. Sadyrbaev [34] and Q. Yao [35]. Moreover,
the BCs in [23,34] are

y(0) = A, y′(0) = B, y(1) = C, y′′(1) = D,

in the work [24], they are of the form

y(0) = y′(1) = y′′(0) = y′′(1) = 0,

the authors of [24,31] consider the conditions

y(0) = y′(1) = y′′(0) = y′′′(1) = 0,

and those of [29,32,33] consider

y(0) = y(1) = y′′(0) = y′′(1) = 0. (6)

The boundary conditions in [25] are periodic, and in [28,33], they are

y(0) = y(1) = y′(0) = y′(1) = 0, (7)

and of the form
y′(0) = y′(1) = y′′′(0) = y′′′(1) = 0
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in [30]. BVPs with boundary conditions either (6), (7),

y(0) = y′(0) = y′′(1) = y′′′(1) = 0

or
y(0) = y′(0) = y′(1) = y′′′(1) = 0

have been studied in [31]. In [34], the boundary conditions are generally nonlinear, and
in [26,27], they are of the type

g1(x̄) = 0, g2(x̄) = 0, h1(x̃) = 0, h2(x̃) = 0,

where the functions gi, hi, i = 1, 2, are continuous, x̄ = (x(0), x(1), x′(0), x′(1), x′′(0), x′′(1))
in both papers, x̃ = x̄ in [26], and x̃ = (x(0), x(1), x′(0), x′(1), x′′(0), x′′(1), x′′′(0), x′′′(1))
in [27].

Results guaranteeing positive solutions can be found in [2,3,5–10,12,14,18,20,21]. In [9],
the most recent of these articles, the following nonlinear fourth-order two-point boundary
value problem

y(4) = f (t, y′), t ∈ (0, 1),

y(0) = y′(0) = y′′(1) = y′′′(1) + g(y(1)) = 0,

is considered under the assumption that there exist two suitable real numbers b > a ≥ 0 and
a non-negative function l ∈ C(0, 1) ∩ L1[0, 1] such that the function f : (0, 1)× [0, b]→ R is
continuous and | f (t, y)| ≤ l(t) for (t, x) ∈ (0, 1)× [0, b], and the function g : [0, b]→ (0, ∞)
is continuous and increasing. The authors establish that this problem has two nontrivial
solutions x∗, y∗ ∈ C[0, 1] with at2 ≤ x∗ ≤ y∗ ≤ bt2, t ∈ [0, 1], which are limits of sequences
with first terms x0(t) = at2 and y0(t) = bt2, respectively.

A classic tool for studying the solvability of initial and boundary value problems is
the lower and upper solutions technique. It was probably E. Picard [36], in 1893, who
first used an initial version of this technique to study a first-order initial boundary value
problem. This idea was further developed later by G. Scorca Dragoni [37]. The lower and
upper solutions technique is often used together with so-called growth conditions imposed
on the main nonlinearity of the differential equation. S. Bernstein [38], in 1912, first used
such a condition to establish the solvability of a second-order boundary value problem
with Dirichlet boundary conditions. Subsequently, his idea was further developed by a
number of mathematicians, with M. Nagumo [39] being the first to do this in 1937. In a
series of papers of recent decades, R. Agarwal and D. O’Regan, see for example [40], study
the solvability of various nonsingular and singular initial and boundary value problems
under the assumption that the main nonlinearity does not change its sign.

Except for [9], where the function f (t, y) is defined and continuous on a bounded set of the
form (0, 1)× [a, b], in the mentioned works, the main nonlinearity is defined and continuous
with respect to the dependent variables on unbounded sets, [1–5,7,8,10,11,13–30,32–34,41–43],
or is a Carathéodory function on an unbounded set, see [6,31,35]. Various existence and
uniqueness results are obtained under assumptions that the considered boundary value
problem admits lower and upper solutions [1,7,13,16,17,24,26,27,32,34], under assumptions
that the main nonlinearity is positive or non-negative [2,3,5–8,10,14,18–21], and under
Nagumo-type growth conditions [24,26,27,32,34], non-resonance conditions [15,25], and
monotone conditions [7,24]. Maximum principles and various applications of the Green
function are used in [1,17] and [2,3,6,8,10,14,16,29,41,43,44], respectively.

We use other tools. In [45], under a barrier strips condition, we study the solvability
of BVPs for (1) with BCs, including y′′′(1) = C. In the present paper, we extend the list of
BVPs considered in [45], imposing a different barrier strips condition, which is adapted
to the new BC for the third derivative. Barrier strip conditions have also been used by W.
Qin [42] for studying the solvability of a three-point BVP for Equation (1).

Our results rely on the following assumptions:
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Hypothesis 1 (H1). There exist constants Fi, Li, i = 1, 2, with the following properties:

F2 < F1 ≤ A ≤ L1 < L2, [F2, L2] ⊆ Dw,

f (t, y, u, v, w) ≤ 0 for (t, y, u, v, w) ∈ [0, 1]× Dy × Du × Dv × [L1, L2], (8)

f (t, y, u, v, w) ≥ 0 for (t, y, u, v, w) ∈ [0, 1]× Dy × Du × Dv × [F2, F1]. (9)

Hypothesis 2 (H2). There exist constants mk ≤ Mk, k = 0, 3, with the properties: [m0 − ε, M0 +
ε] ⊆ Dy, [m1 − ε, M1 + ε] ⊆ Du, [m2 − ε, M2 + ε] ⊆ Dv, [m3 − ε, M3 + ε] ⊆ Dw, where ε > 0
is a sufficiently small and f (t, y, u, v, w) is continuous on the set [0, 1]× J with

J = [m0 − ε, M0 + ε]× [m1 − ε, M1 + ε]× [m2 − ε, M2 + ε]× [m3 − ε, M3 + ε].

In Lemma 1, we will see that the strips [0, 1]× [L1, L2] and [0, 1]× [F2, F1] from (H1)
control the behavior of y′′′(t) on [0, 1] and, in this way, guarantee a priori bounds for y′′′(t).
These strips are called barrier ones—see P. Kelevedjiev [46]; more details on the nature of
the barrier technique are presented in Section 5. Note also that (H1) and (H2) allow the
sets Dy, Du, Dv and Dw to be bounded and the nonlinearity f to be continuous only on a
bounded subset of its domain.

The barrier idea can be used in various variants. One of the possibilities is to replace
the constants Fi, Li, i = 1, 2, from (H1) by continuous functions having suitable mono-
tonicity. Such curvilinear strips have been used in P. Kelevedjiev [47] for second-order
two-point boundary value problems. Of course, the strips [0, 1]× [L1, L2] and [0, 1]× [F2, F1]
from (H1) can be replaced by the segments [0, 1]× {L1} and [0, 1]× {F1}; see again [47].
A disadvantage of barrier segments is that the right side of the equation must not become
zero on them. Barrier segments have also been used by I. Rachůnková and S. Staněk [48]
and R. Ma [49] for studying the solvability of various BVPs. Discontinuous barrier strips,
curvilinear strips and barrier segments can also be useful; see [47].

Our basic existence result is stated in Section 2. There, we also give auxiliary results,
which guarantee a priori bounds for each eventual solution y(t) ∈ C4[0, 1] to the families
of BVPs for

y(4) = λ f (t, y, y′, y′′, y′′′), λ ∈ [0, 1], t ∈ (0, 1), (1)λ

with BCs either (2)–(4) or (5); these a priori bounds are necessary for the application of
the basic existence theorem. Moreover, the barrier condition (H1) first provides the a priori
bound for y′′′(t), and those for y(t), y′(t) and y′′(t) are a consequence of it. The existence
results are stated in Section 3. They are based on the simultaneous use of (H1) and (H2) and
guarantee not just a solution to the considered boundary value problems but also solutions
with important properties such as an invariant sign, increasing, decreasing, convexity, and
concavity. In Section 4, we illustrate the application of the obtained existence theorems
with examples.

2. Basic Existence Results, Auxiliary Results

Following [45], we first introduce the notation needed to formulate the basic exis-
tence theorem.

Consider the BVP y(4) + s3(t)y′′′ + s2(t)y′′ + s1(t)y′ + s0(t)y = f (t, y, y′, y′′, y′′′), t ∈ (0, 1),

Vi(y) = ri, i = 1, 4,
(10)
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where si ∈ C[0, 1], i = 0, 3, f : [0, 1]× Dy × Du × Dv × Dw → R,

Vi(y) ≡
3

∑
j=0

[aijy(j)(0) + bijy(j)(1)], ri ∈ R, i = 1, 4,

and the constants aij and bij are such that ∑3
j=0(a2

ij + b2
ij) > 0 for i = 1, 4.

Consider also the family of BVPs y(4) + s3(t)y′′′ + s2(t)y′′ + s1(t)y′ + s0(t)y = g(t, y, y′, y′′, y′′′, λ), t ∈ (0, 1),

Vi(y) = ri, i = 1, 4,
(11)

where λ ∈ [0, 1], g : [0, 1] × Dy × Du × Dv × Dw × [0, 1] → R, and si(t), i = 0, 3, Vi, ri,
i = 1, 4, are as above.

Finally, introduce the sets

BC = {y(t), t ∈ [0, 1] : Vi(y) = ri, i = 1, 4}, BC0 = {y(t), t ∈ [0, 1] : Vi(y) = 0, i = 1, 4},

C4
BC[0, 1] = C4[0, 1] ∩ BC, C4

BC0
[0, 1] = C4[0, 1] ∩ BC0.

We are ready to formulate our basic existence result. It is similar to Theorem 5.1
(Chapter I) and Theorem 1.2 (Chapter V) of [28].

Theorem 1. Assume that:
(i) For λ = 0, the problem (10) has a unique solution y0 ∈ C4[0, 1].
(ii) Problems (10) and (11) are equivalent when λ = 1.
(iii) The map Λh : C4

BC0
[0, 1]→ C[0, 1] defined by the left side of (10), i.e.,

Λhy = y(4) + s3(t)y′′′ + s2(t)y′′ + s1(t)y′ + s0(t)y,

is one-to-one.
(iv) Each solution y ∈ C4[0, 1] to family (11) satisfies the bounds

mk ≤ y(k)(t) ≤ Mk, t ∈ [0, 1], k = 0, 4,

where the constants −∞ < mk, Mk < ∞, k = 0, 4, are independent of λ and y.
(v) There is a sufficiently small ε > 0 such that [m0 − ε, M0 + ε] ⊆ Dy, [m1 − ε, M1 + ε] ⊆ Du,
[m2 − ε, M2 + ε] ⊆ Dv, [m3 − ε, M3 + ε] ⊆ Dw, and the function g(t, y, u, v, w, λ) is continuous
for (t, y, u, v, w, λ) ∈ [0, 1]× J × [0, 1], where the set J is as in (H2), and the constants mk, Mk,
k = 0, 3, are as in (iv).

Then BVP (10) has at least one solution in C4[0, 1].

We skip the proof, it can be found in [45].
Our first auxiliary result guarantees a priori bounds for the third derivatives of all

eventual C4[0, 1]-solutions to the families of BVPs (1.1)λ, (2)–(5).

Lemma 1. Let y ∈ C4[0, 1] be a solution to some of the families of BVPs (1)λ, (2)–(5) and (H1)
hold. Then

F1 ≤ y′′′(t) ≤ L1 for t ∈ [0, 1].

Proof. Suppose that
T− = {t ∈ [0, 1] : L1 < y′′′(t) ≤ L2}
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is a non-empty set. Then, bearing in mind that y′′′(0) ≤ L1 and y′′′(t) is continuous on
[0, 1], we conclude that there exists an α ∈ T− such that

y(4)(α) > 0.

For α, we have

y(4)(α) = λ f (α, y(α), y′(α), y′′(α), y′′′(α)),

since y(t) is a solution to (1)λ. In addition,

(α, y(α), y′(α), y′′(α), y′′′(α)) ∈ T− × Dy × Du × Dv × (L1, L2].

In view of (8), this means that

λ f (α, y(α), y′(α), y′′(α), y′′′(α)) ≤ 0 for λ ∈ [0, 1],

i.e.,
y(4)(α) ≤ 0.

The obtained contradiction shows that the set T− is empty and so

y′′′(t) ≤ L1 for t ∈ [0, 1].

Similarly, assuming, on the contrary, that

T+ = {t ∈ [0, 1] : F2 ≤ y′′′(t) < F1}

is a non-empty set and using (9), we arrive at a contradiction, which implies

F1 ≤ y′′′(t), t ∈ [0, 1].

Lemma 2. Assume that (H1) holds. Then the bounds

|y(t)| ≤ |B|+ |C|+ |D|+ max{|F1|, |L1|},

|y′(t)| ≤ |B|+ |C|+ max{|F1|, |L1|}, (12)

|y′′(t)| ≤ |B|+ max{|F1|, |L1|} (13)

are valid in the interval [0, 1] for each solution y ∈ C4[0, 1] to (1)λ, (2).

Proof. By the Lagrange mean value theorem, for each t ∈ [0, 1), there exists a γ ∈ (t, 1)
such that

y′′(1)− y′′(t) = y′′′(γ)(1− t), t ∈ [0, 1),

|y′′(t)| ≤ |y′′′(γ)|(1− t) + |y′′(1)|, t ∈ [0, 1).

However, |y′′′(γ)| ≤ max{|F1|, |L1|}, by Lemma 1, and y′′(1) = B. Therefore, we
obtain (13).

Using the mean value theorem again, we conclude that for each t ∈ (0, 1], there is a
δ ∈ (0, t) such that

y′(t)− y′(0) = y′′(δ)t, t ∈ (0, 1],

|y′(t)| ≤ |y′(0)|+ |y′′(δ)|t, t ∈ (0, 1],

and using (13), we establish (12).
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Finally, applying the mean value theorem on y(t) at intervals (0, t) for each t ∈ (0, 1],
and using (12), we establish the bound for |y(t)|.

Lemma 3. Assume that (H1) holds. Then the bounds

|y(t)| ≤ |B|+ |D− C|+ |C|+ max{|F1|, |L1|},

|y′(t)| ≤ |B|+ |D− C|+ max{|F1|, |L1|}, (14)

|y′′(t)| ≤ |B|+ max{|F1|, |L1|}

are valid in the interval [0, 1] for each solution y ∈ C4[0, 1] to (1)λ, (3).

Proof. Following the proof of Lemma 2, we obtain the bound for |y′′(t)|. Next, consider
that there exists a ν ∈ (0, 1) with the property y′(ν) = D− C. Further, for each t ∈ [0, ν),
there exists a γ ∈ (t, ν) such that

y′(ν)− y′(t) = y′′(γ)(ν− t), t ∈ [0, ν),

|y′(t)| ≤ |y′′(γ)|(ν− t) + |y′(ν)|, t ∈ [0, ν),

from which, using the established estimate for |y′′(γ)|, we obtain

|y′(t)| ≤ |D− C|+ |B|+ max{|F1|, |L1|}, t ∈ [0, ν].

We can proceed analogously to see that this bound is also valid in the interval [ν, 1].
For each t ∈ (0, 1], again by the mean value theorem, there exists a δ ∈ (0, t) such that

y(t)− y(0) = y′(δ)t, t ∈ (0, 1],

|y(t)| ≤ |y(0)|+ |y′(δ)|t, t ∈ (0, 1],

and using (14), we establish the a priori bound for |y(t)|.

Lemma 4. Assume that (H1) holds. Then the bounds

|y(t)| ≤ |B|+ |C− B|+ |D|+ max{|F1|, |L1|},

|y′(t)| ≤ |B|+ |C− B|+ max{|F1|, |L1|},

|y′′(t)| ≤ |C− B|+ max{|F1|, |L1|}

are valid in the interval [0, 1] for each solution y ∈ C4[0, 1] to (1)λ, (4).

Proof. Clearly, there exists a ν ∈ (0, 1) for which y′′(ν) = C− B. Further, for each t ∈ [0, ν)
there exists a γ ∈ (t, ν) for which

y′′(ν)− y′′(t) = y′′′(γ)(ν− t), t ∈ [0, ν),

|y′′(t)| ≤ |y′′′(γ)|(ν− t) + |y′′(ν)|, t ∈ [0, ν),

from where, using |y′′′(γ)| ≤ max{|F1|, |L1|}, which Lemma 1 gives, we obtain

|y′′(t)| ≤ |C− B|+ max{|F1|, |L1|} for t ∈ [0, ν].

This estimate is also valid in the interval [ν, 1], and it is established with similar reasoning.
Following the proof of Lemma 2, establish the assertion for |y′(t)|.
Finally, for each t ∈ [0, 1), there exists a δ ∈ (t, 1) for which

y(1)− y(t) = y′(δ)(1− t), t ∈ [0, 1),
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which gives the assertion for |y(t)|.

Lemma 5. Assume that (H1) holds. Then the bounds

|y(t)| ≤ |B|+ |C|+ |D− C− B|+ max{|F1|, |L1|},

|y′(t)| ≤ |B|+ |D− C− B|+ max{|F1|, |L1|},

|y′′(t)| ≤ |D− C− B|+ max{|F1|, |L1|}

are valid in the interval [0, 1] for each solution y ∈ C4[0, 1] to (1)λ, (5).

Proof. By the Lagrange mean value theorem, there is a µ ∈ (0, 1) for which y′(µ) = D− C,
and there is a ν ∈ (0, µ) such that y′′(ν) = D− C− B. Further, again by the mean value
theorem, for each t ∈ [0, ν), there is a γ ∈ (t, ν) such that

y′′(ν)− y′′(t) = y′′′(γ)(ν− t), t ∈ [0, ν),

|y′′(t)| ≤ |y′′′(γ)|(ν− t) + |y′′(ν)|, t ∈ [0, ν).

However, from Lemma 1, we know that |y′′′(γ)| ≤ max{|F1|, |L1|}. Consequently

|y′′(t)| ≤ |D− C− B|+ max{|F1|, |L1|}, t ∈ [0, ν].

By similar reasoning, one finds that this estimate also holds in the interval t ∈ [ν, 1].
As in the proofs of Lemmas 2 and 3, respectively, establish the bounds for |y′(t)| and

|y(t)|.

Lemma 6. Assume that A ≤ 0, B, C, D ≥ 0 and (H1) holds for L1 ≤ 0. Then the bounds

D ≤ y(t) ≤ B + C + D− F1,

C ≤ y′(t) ≤ B + C− F1, (15)

B ≤ y′′(t) ≤ B− F1 (16)

are valid in the interval [0, 1] for each solution y ∈ C4[0, 1] to (1)λ, (2).

Proof. We have
F1 ≤ y′′′(t) ≤ L1 ≤ 0 for t ∈ [0, 1],

by Lemma 1. Then, ∫ 1

t
F1ds ≤

∫ 1

t
y′′′(s)ds ≤

∫ 1

t
L1ds, t ∈ [0, 1),

from where we obtain consecutively

F1(1− t) ≤ y′′(1)− y′′(t) ≤ L1(1− t) for t ∈ [0, 1],

F1 ≤ B− y′′(t) ≤ 0, t ∈ [0, 1],

which yields (16). Next, we integrate (16) from 0 to t ∈ (0, 1] and obtain (15). Finally, by an
integration of (15) from 0 to t ∈ (0, 1], we obtain the assertion for y(t).

Lemma 7. Assume that A, B ≤ 0, C, D ≥ 0 and (H1) holds for L1 ≤ 0. Then the bounds

min{C, D} ≤ y(t) ≤ C + |D− C| − B− F1,
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D + B− C + F1 ≤ y′(t) ≤ D− B− C− F1,

B + F1 ≤ y′′(t) ≤ B (17)

are valid in the interval [0, 1] for each solution y ∈ C4[0, 1] to (1)λ, (3).

Proof. In view of Lemma 1, we have

F1 ≤ y′′′(t) ≤ L1 ≤ 0 for t ∈ [0, 1].

Then ∫ t

0
F1ds ≤

∫ t

0
y′′′(s)ds ≤

∫ t

0
L1ds, t ∈ (0, 1],

F1 ≤ F1t ≤ y′′(t)− B ≤ L1t ≤ 0, t ∈ (0, 1],

which yields (17). Further, use the fact that there exists a ν ∈ (0, 1) such that y′(ν) = D− C
to establish consecutively∫ ν

t
(B + F1)ds ≤

∫ ν

t
y′′(s)ds ≤

∫ ν

t
Bds, t ∈ [0, ν),

(B + F1)(ν− t) ≤ y′(ν)− y′(t) ≤ B(ν− t), t ∈ [0, ν],

B + F1 ≤ y′(ν)− y′(t) ≤ 0, t ∈ [0, ν],

since 0 ≤ ν− t ≤ 1,

D− C ≤ y′(t) ≤ D− B− C− F1, t ∈ [0, ν].

Similarly from ∫ t

ν
(B + F1)ds ≤

∫ t

ν
y′′(s)ds ≤

∫ t

ν
Bds, t ∈ (ν, 1],

establish
B + D− C + F1 ≤ y′(t) ≤ D− C, t ∈ [ν, 1].

As a result, keeping in mind that B, F1 ≤ 0, we obtain

B + D− C + F1 ≤ y′(t) ≤ D− B− C− F1 for t ∈ [0, 1],

from where it follows

|y′(t)| ≤ max{|B + D− C + F1|, |D− B− C− F1|} ≤ |B|+ |D− C|+ |F1| = |D− C| − B− F1

for t ∈ [0, 1].
Now, by the mean value theorem, for any t ∈ (0, 1] there exists a γ ∈ (0, t) such that

y(t)− y(0) = y′(γ)t,

from where it follows

|y(t)| ≤ C + |D− C| − B− F1, t ∈ [0, 1].

Since B ≤ 0, y(t) is concave on [0, 1] in view of (17). In addition, y(0) = C ≥ 0 and
y(1) = D ≥ 0, which means

y(t) ≥ min{C, D} ≥ 0 on [0, 1],

from where the assertion for y(t) follows.
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Lemma 8. Assume that A, D ≥ 0, B, C ≤ 0 and (H1) holds for F1 ≥ 0. Then the bounds

D ≤ y(t) ≤ D + |B|+ |C− B|+ L1,

−(|B|+ |C− B|+ L1) ≤ y′(t) ≤ max{B, C},

C− B− L1 ≤ y′′(t) ≤ C− B + L1

are valid in the interval [0, 1] for each solution y ∈ C4[0, 1] to (1)λ, (4).

Proof. For some ν ∈ (0, 1), we have y′′(ν) = y′(1)− y′(0), i.e., y′′(ν) = C− B. Now using
the bounds for y′′′(t) from Lemma 1, we obtain consecutively∫ ν

t
F1ds ≤

∫ ν

t
y′′′(s)ds ≤

∫ ν

t
L1ds, t ∈ [0, ν), (18)

F1(ν− t) ≤ y′′(ν)− y′′(t) ≤ L1(ν− t), t ∈ [0, ν],

0 ≤ y′′(ν)− y′′(t) ≤ L1, t ∈ [0, ν],

C− B− L1 ≤ y′′(t) ≤ C− B, t ∈ [0, ν].

Similarly, from ∫ t

ν
F1ds ≤

∫ t

ν
y′′′(s)ds ≤

∫ t

ν
L1ds, t ∈ (ν, 1], (19)

establish
C− B ≤ y′′(t) ≤ C− B + L1, t ∈ [ν, 1].

Thus,
C− B− L1 ≤ y′′(t) ≤ C− B + L1 for t ∈ [0, 1],

since L1 ≥ 0.
Now, for each t ∈ (0, 1], by the mean value theorem, there is a γ ∈ (0, t) such that

y′(t)− y′(0) = y′′(γ)t, t ∈ (0, 1],

which means
|y′(t)| ≤ |B|+ |C− B|+ L1 for t ∈ [0, 1].

However, from y′′′(t) ≥ F1 ≥ 0 on [0, 1] it follows that y′(t) is convex on [0, 1], which
means that y′(t) ≤ max{B, C} on [0, 1] and so

−(|B|+ |C− B|+ L1) ≤ y′(t) ≤ max{B, C} ≤ 0 for t ∈ [0, 1].

To establish the bound for y(t), we integrate from t ∈ [0, 1) to 1 the inequality

−(|B|+ |C− B|+ L1) ≤ y′(t) ≤ 0.

Lemma 9. Assume that A ≤ 0, B, C ≥ 0, D > C and (H1) holds for L1 ≤ 0 and D−C ≥ B− F1.
Then the bounds

C ≤ y(t) ≤ D− F1,

B ≤ y′(t) ≤ D− C− F1,

D− C− B + F1 ≤ y′′(t) ≤ D− C− B− F1

are valid in the interval [0, 1] for each solution y ∈ C4[0, 1] to (1)λ, (5).
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Proof. From the proof of Lemma 5, we know that there exists a ν ∈ (0, 1) such that
y′′(ν) = D − C − B. Now the integration (18) of the estimates for y′′′(t) that Lemma 1
guarantees gives us

F1 ≤ y′′(ν)− y′′(t) ≤ 0, t ∈ [0, ν],

F1 ≤ D− C− B− y′′(t) ≤ 0, t ∈ [0, ν],

and
D− C− B ≤ y′′(t) ≤ D− C− B− F1, t ∈ [0, ν].

On the other hand, the integration (19) gives

D− C− B + F1 ≤ y′′(t) ≤ D− C− B, t ∈ [ν, 1].

Bearing in mind that F1 ≤ 0, on the whole interval [0, 1], we obtain

D− C− B + F1 ≤ y′′(t) ≤ D− C− B− F1,

which means y′′(t) ≥ 0 for t ∈ [0, 1] because of the assumption D−C ≥ B− F1 and so y′(t)
is non-decreasing on the interval [0, 1]. Then, in view of the boundary condition y′(0) = B,
we have

y′(t) ≥ B for t ∈ [0, 1].

Thus, the bound for y′(t) from Lemma 5 takes the form

B ≤ y′(t) ≤ B + |D− C− B|+ max{|F1|, |L1|}, t ∈ [0, 1],

and
B ≤ y′(t) ≤ D− C− F1, t ∈ [0, 1],

because due to F1 ≤ L1 ≤ 0 the condition D− C ≥ B− F1 also implies D− C− B ≥ 0.
Further, from y′(t) ≥ B ≥ 0, it follows that y(t) is non-decreasing. This fact, together

with the bound for |y(t)| from Lemma 5, gives

C ≤ y(t) ≤ |B|+ |C|+ |D− C− B|+ max{|F1|, |L1|}, t ∈ [0, 1],

from where the assertion for y(t) follows.

3. Existence Results

Theorem 2. Assume that (H1) holds, and (H2) holds for

M0 = |B|+ |C|+ |D|+ max{|F1|, |L1|}, m0 = −M0,

M1 = |B|+ |C|+ max{|F1|, |L1|}, m1 = −M1,

M2 = |B|+ max{|F1|, |L1|}, m2 = −M2, m3 = F1, M3 = L1.

Then problem (1), (2) has a solution in C4[0, 1].

Proof. We easily check that (i) of Theorem 1 holds for (1)0, (2). Obviously, BVPs (1), (2)
and (1)1, (2) are the same. Thus, (ii) is also satisfied. To verify (iii) for the map Λh = y′′′,
we establish that for each z ∈ C[0, 1], the problem

y(4) = z(t), t ∈ (0, 1),

y′′′(0) = 0, y′′(1) = 0, y′(0) = 0, y(0) = 0,
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has a unique solution y(t) in C4[0, 1]. Next, according to Lemma 2 and Lemma 1, each
solution y ∈ C4[0, 1] to family (1)λ, (2) is such that

mk ≤ y(i)(t) ≤ Mk, t ∈ [0, 1], k = 0, 1, 2, 3. (20)

Now, from the continuity of f (t, y, u, v, w) on [0, 1] × J, it follows that there exist
constants m4 and M4 for which

m4 ≤ λ f (t, y, u, v, w) ≤ M4 when (t, y, u, v, w) ∈ [0, 1]× J and λ ∈ [0, 1].

In view of (20), for each solution y ∈ C4[0, 1] to (1)λ, (2) we have (y(t), y′(t), y′′(t),
y′′′(t)) ∈ J for t ∈ [0, 1]. Thus,

m4 ≤ λ f (y(t), y′(t), y′′(t), y′′′(t)) ≤ M4 when t ∈ [0, 1] and λ ∈ [0, 1]

and Equation (1)λ gives
m4 ≤ y(4)(t) ≤ M4, t ∈ [0, 1].

This and (20) imply that (iv) holds for (1)λ, (2). Finally, (v) follows from the conti-
nuity of f on the set J. Therefore, we can apply Theorem 1 to conclude that the assertion
is true.

Theorem 3. Assume that A ≤ 0, B, C, D ≥ 0 (C, D > 0). Assume also that (H1) holds for
L1 ≤ 0 and (H2) holds for

m0 = D, M0 = B + C + D− F1,

m1 = C, M1 = B + C− F1,

m2 = B, M2 = B− F1, m3 = F1, M3 = L1.

Then problem (1), (2) has a non-negative (positive), non-decreasing (increasing), convex
solution in C4[0, 1].

Proof. Lemma 6 implies

mk ≤ y(k)(t) ≤ Mk, t ∈ [0, 1], k = 0, 1, 2,

and Lemma 1 yields
m3 ≤ y′′′(t) ≤ M3, t ∈ [0, 1].

Further, as in the proof of Theorem 2, we establish that problem (1), (2) has a solution
y(t) ∈ C4[0, 1]. Since y(t) ≥ D ≥ 0 (y(t) ≥ D > 0), y′(t) ≥ C ≥ 0 (y′(t) ≥ C > 0) and
y′′(t) ≥ B ≥ 0 for t ∈ [0, 1], this solution has the specified properties.

Theorem 4. Assume that (H1) holds, and (H2) holds for

M0 = |B|+ |D− C|+ |C|+ max{|F1|, |L1|}, m0 = −M0,

M1 = |B|+ |D− C|+ max{|F1|, |L1|}, m1 = −M1,

M2 = |B|+ max{|F1|, |L1|}, m2 = −M2, m3 = F1, M3 = L1.

Then problem (1), (3) has a solution in C4[0, 1].

Proof. It differs from that of Theorem 2 only in that now Lemma 3 guarantees

mk ≤ y(k)(t) ≤ Mk, t ∈ [0, 1], k = 0, 1, 2.
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Theorem 5. Assume that A ≤ 0, B ≤ 0, D ≥ C ≥ 0 (D ≥ C > 0). Assume also that (H1) holds
for L1 ≤ 0 and D− C ≥ −(B + F1), and (H2) holds for

m0 = C, M0 = D− B− F1,

m1 = B + D− C + F1, M1 = D− B− C− F1,

m2 = B + F1, M2 = B, m3 = F1, M3 = L1.

Then problem (1), (3) has a non-negative (positive), non-decreasing, concave solution in
C4[0, 1].

Proof. From Lemma 7 for every solution y ∈ C4[0, 1] to family (1)λ, (3), we have

min{C, D} ≤ y(t) ≤ C + |D− C| − B− F1 for t ∈ [0, 1],

i.e.,
C ≤ y(t) ≤ D− B− F1 for t ∈ [0, 1],

since D ≥ C. Therefore,

mk ≤ y(i)(t) ≤ Mk, t ∈ [0, 1], k = 0, 1, 2, 3,

by Lemma 7 and Lemma 1. Further, essentially the same reasoning as in Theorem 2
establishes that problem (1), (3) is solvable in C4[0, 1]. Since m0 = C ≥ 0(m0 > 0),
m1 = B + D− C + F1 ≥ 0 and M2 = B ≤ 0, the solution has the desired properties.

Theorem 6. Assume that (H1) holds, and (H2) holds for

M0 = |B|+ |C− B|+ |D|+ max{|F1|, |L1|}, m0 = −M0,

M1 = |B|+ |C− B|+ max{|F1|, |L1|}, m1 = −M1,

M2 = |C− B|+ max{|F1|, |L1|}, m2 = −M2, m3 = F1, M3 = L1.

Then problem (1), (4) has a solution in C4[0, 1].

Proof. It follows the proof of Theorem 2. Now Lemma 4 guarantees the estimates

mk ≤ y(k)(t) ≤ Mk, t ∈ [0, 1], k = 0, 1, 2,

for every solution y ∈ C4[0, 1] to (1)λ, (4).

Theorem 7. Assume that A, D ≥ 0(D > 0), C ≤ B ≤ 0(C ≤ B < 0). Assume also that (H1)
holds for F1 ≥ 0 and C− B + L1 ≤ 0, and (H2) holds for

m0 = D, M0 = D− C + L1,

m1 = C− L1, M1 = B,

m2 = C− B− L1, M2 = C− B + L1, m3 = F1, M3 = L1.

Then problem (1), (4) has a non-negative (positive), non-increasing (decreasing), convex
solution in C4[0, 1].

Proof. From Lemma 8 for every solution y ∈ C4[0, 1] to family (1)λ, (4), we know

D ≤ y(t) ≤ D + |B|+ |C− B|+ L1, t ∈ [0, 1],

−(|B|+ |C− B|+ L1) ≤ y′(t) ≤ max{B, C}, t ∈ [0, 1],
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i.e.,
D ≤ y(t) ≤ D− C + L1, t ∈ [0, 1],

C− L1 ≤ y′(t) ≤ B, t ∈ [0, 1],

because C ≤ B ≤ 0. Therefore,

mk ≤ y(k)(t) ≤ Mk, t ∈ [0, 1], k = 0, 1, 2, 3,

by Lemma 8 and Lemma 1. Further, as in the proof of Theorem 2, we establish that
(1), (4) is solvable in C4[0, 1]. Since m0 = D ≥ 0(m0 > 0), M1 = B ≤ 0(M1 < 0) and
M2 = C− B + L1 ≤ 0, the solution has the desired properties.

Theorem 8. Assume that (H1) holds, and (H2) holds for

M0 = |B|+ |C|+ |D− C− B|+ max{|F1|, |L1|}, m0 = −M0,

M1 = |B|+ |D− C− B|+ max{|F1|, |L1|}, m1 = −M1,

M2 = |D− C− B|+ max{|F1|, |L1|}, m2 = −M2, m3 = F1, M3 = L1.

Then problem (1), (5) has a solution in C4[0, 1].

Proof. It does not differ substantially from the proof of Theorem 2. Now Lemma 5 guaran-
tees the bounds

mk ≤ y(k)(t) ≤ Mk, t ∈ [0, 1], k = 0, 1, 2.

Theorem 9. Assume that A ≤ 0, B, C ≥ 0(B, C > 0), D > C. Assume also that (H1) holds for
L1 ≤ 0 and D− C ≥ B− F1, and (H2) holds for

m0 = C, M0 = D− F1,

m1 = B, M1 = D− C− F1,

m2 = D− C− B + F1, M2 = D− C− B− F1, m3 = F1, M3 = L1.

Then problem (1), (5) has a non-negative (positive), non-decreasing (increasing), concave
solution in C4[0, 1].

Proof. According to Lemma 9, for every eventual solution y ∈ C4[0, 1] to family (1)λ, (5),
we have

C ≤ y(t) ≤ D− F1,

B ≤ y′(t) ≤ D− C− F1,

D− C− B + F1 ≤ y′′(t) ≤ D− C− B− F1

for t ∈ [0, 1], i.e.,
mk ≤ y(k)(t) ≤ Mk, t ∈ [0, 1], k = 0, 1, 2.

In addition, by Lemma 1,

m3 ≤ y′′′(t) ≤ M3, t ∈ [0, 1].

Further, as in the proof of Theorem 2, we verify that the conditions of Theorem 1 are
fulfilled and so (1), (5) is solvable in C4[0, 1]. Since m0 = C ≥ 0(m0 > 0), m1 = B ≥ 0(m1 > 0)
and m2 ≥ 0, the solution has the properties from the conclusion of the theorem.



Dynamics 2023, 3 166

4. Examples

Example 1. Consider the boundary value problems for

y(4) = F(t, y, y′, y′′)Qn(y′′′), t ∈ (0, 1),

with BCs either (2)–(4) or (5). Here F : [0, 1]×R3 → R is continuous and does not change its
sign, and Qn(w), n ≥ 2, is a polynomial with simple zeros w1 and w2 such that w1 < A < w2.

Clearly, there is a τ > 0 such that w1 + τ ≤ A ≤ w2 − τ,

Qn(w) 6= 0 for w ∈ ∪2
k=1

(
(wk − τ, wk + τ) \ {wk}

)
.

Let, for concreteness,

Qn(w) > 0 on (w1 − τ, w1) and Qn(w) < 0 on (w2, w2 + τ);

the other cases can be considered in a similar way. It is clear that for the considered case,
we have

Qn(w) < 0 on (w1, w1 + τ) and Qn(w) > 0 on (w2 − τ, w2).

Now, if F(t, y, u, v) ≥ 0 on [0, 1]×R3, then

F(t, y, u, v)Qn(w) ≥ 0 for (t, y, u, v, w) ∈ [0, 1]×R3 × [w1 − τ, w1]

and
F(t, y, u, v)Qn(w) ≤ 0 for (t, y, u, v, w) ∈ [0, 1]×R3 × [w2, w2 + τ],

that is, (H1) holds for F2 = w1 − τ, F1 = w1, L1 = w2, L2 = w2 + τ, for example.
On the other hand, if F(t, y, u, v) ≤ 0 on [0, 1]×R3, then

F(t, y, u, v)Qn(w) ≥ 0 for (t, y, u, v, w) ∈ [0, 1]×R3 × [w1, w1 + τ]

and
F(t, y, u, v)Qn(w) ≤ 0 for (t, y, u, v, w) ∈ [0, 1]×R3 × [w2 − τ, w2]

and so (H1) holds for F2 = w1, F1 = w1 + τ, L1 = w2 − τ, L2 = w2, for example.
Since the right-hand side F(t, y, u, v)Qn(w) of the equation is a defined and continuous

function on [0, 1]×R4, i.e., Dy = Du = Dv = Dw = R, (H2) holds for each of the considered
BVPs.

Therefore, we can apply Theorems 2, 4, 6 and 8 to BVPs (1),(2), (1),(3), (1),(4) and
(1),(5), respectively, to conclude that each of them has at least one solution in C4[0, 1].

Example 2. Consider the boundary value problem

y(4) = − t(y′′′ + 1)
√

100− y2
√

400− y′2√
400− y′′2

√
625− y′′′2

, t ∈ (0, 1),

y′′′(0) = −3, y′′(1) = 1, y′(0) = 1, y(0) = 2.

This problem is of the type (1), (2) with A = −3, B = 1, C = 1 and D = 2. These values
satisfy the condition of Theorem 3, so we will check its applicability.

The nonlinearity

f (t, y, u, v, w) = − t(w + 1)
√

100− y2
√

400− u2
√

400− v2
√

625− w2



Dynamics 2023, 3 167

is defined and continuous for

(t, y, u, v, w) ∈ [0, 1]× [−10, 10]× [−20, 20]× (−20, 20)× (−25, 25),

that is, Dy = [−10, 10], Du = [−20, 20], Dv = (−20, 20) and Dw = (−25, 25).
It is easily verified that

f (t, y, u, v, w) ≥ 0 for (t, y, u, v, w) ∈ [0, 1]× [−10, 10]× [−20, 20]× (−20, 20)× [−5,−4]

and

f (t, y, u, v, w) ≤ 0 for (t, y, u, v, w) ∈ [0, 1]× [−10, 10]× [−20, 20]× (−20, 20)× [−1, 0],

i.e., (H1) is satisfied for F2 = −5, F1 = −4, L1 = −1 and L2 = 0.
Next, determine the constants mk, Mk, k = 0, 1, 2, 3, from Theorem 3:

m0 = D = 2, M0 = B + C + D− F1 = 8,

m1 = C = 1, M1 = B + C− F1 = 6,

m2 = B = 1, M2 = B− F1 = 5,

m3 = F1 = −4, M3 = L1 = −1.

Since [1.9, 8.1] ⊆ Dy, [0.9, 6.1] ⊆ Du, [0.9, 5.1] ⊆ Dv, [−4.1,−0.9] ⊆ Dw, (H2) holds
for the above constants mk, Mk, k = 0, 1, 2, 3, and ε = 0.1, for example. Therefore, we can
apply Theorem 3 to conclude that this problem has a positive, increasing, convex solution
in C4[0, 1].

Example 3. Consider the boundary value problem

y(4) =
√

y′′ + 20 sin(y′′′ − 1), t ∈ (0, 1),

y′′′(0) = −2, y′′(0) = −1, y(0) = 1, y(1) = 10.

Now, the boundary values satisfy the requirement of Theorem 5 for them. In addition,
it is not difficult to verify that

f (t, y, u, v, w) =
√

v + 20 sin(w− 1) ≥ 0 for (t, y, u, v, w) ∈ [0, 1]×R2 × [−20, ∞)× [−5,−4]

and

f (t, y, u, v, w) =
√

v + 20 sin(w− 1) ≤ 0 for (t, y, u, v, w) ∈ [0, 1]×R2× [−20, ∞)× [−1, 0],

which means that (H1) is satisfied for F2 = −5, F1 = −4, L1 = −1 and L2 = 0. Moreover,
the condition D− C ≥ −(B + F1) also holds.

We will check that (H2) holds for the constants mk, Mk, k = 0, 1, 2, 3, from Theorem 5.
Actually specifying the constants mk, Mk, k = 0, 1, and m3 and M3 is not necessary because
here Dy = Du = Dw = R and so the inclusions

[m0 − ε, M0 + ε] ⊆ Dy, [m1 − ε, M1 + ε] ⊆ Du and [m3 − ε, M3 + ε] ⊆ Dw

are always fulfilled for an arbitrarily fixed ε > 0. Of interest to us are only the constants m2
and M2. Since B = −1 and F1 = −4, then m2 = B + F1 = −5, M2 = B = −1 and obviously

[−5− ε,−1 + ε] ⊂ Dv, Dv = [−20, ∞),

for sufficiently small ε > 0. Thus, (H2) is satisfied because f (t, y, u, v, w) is continuous on
[0, 1]×R2 × [−20, ∞)×R and in particular on the set J.
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According to Theorem 5, the considered problem has a positive, non-decreasing,
concave solution in C4[0, 1].

Example 4. Consider the problem

y(4) = (5− y′′′)3 − ln(y′′′ − 1), t ∈ (0, 1),

y′′′(0) = 3, y′(0) = −1, y′(1) = −7, y(1) = 1.

Here, we will check the applicability of Theorem 7. From

f (t, y, u, v, w) = (5− w)3 − ln(w− 1) ≥ 0 for (t, y, u, v, w) ∈ [0, 1]×R3 × [1.5, 2]

and

f (t, y, u, v, w) = (5− w)3 − ln(w− 1) ≤ 0 for (t, y, u, v, w) ∈ [0, 1]×R3 × [5, 6]

it follows that (H1) holds for F2 = 1.5, F1 = 2, L1 = 5 and L2 = 6, for example. Since
B = −1 and C = −7, the condition C− B + L1 ≤ 0 is also satisfied.

We have Dy = Du = Dv = R, and Dw = (1, ∞). Therefore, only the constants m3 = 2
and M3 = 5 are interesting to us to see that

[1.9, 5.1] ⊂ Dw

and to conclude that (H2) holds for ε = 0.1, for example, because f (t, y, u, v, w) is continuous
on the set [0, 1]×R3 × (1, ∞).

Consequently, this problem has a positive, decreasing, convex solution in C4[0, 1] by
Theorem 7.

Example 5. Consider the boundary value problem

y(4) =
√

y′′ + 20 sin(y′′′ − 1), t ∈ (0, 1),

y′′′(0) = −2, y′(0) = 1, y(0) = 1, y(1) = 10.

This problem is of the type (1), (5) with boundary values A = −2, B = 1, C = 1 and
D = 10, which satisfy the condition of Theorem 9.

As in Example 3, we establish that (H1) and the requirement D − C ≤ B − F1 of
Theorem 9 are satisfied for F2 = −5, F1 = −4, L1 = −1 and L2 = 0. Again, we are only
interested in the constants m2 = D− C− B + F1 = 4 and M2 = D− C− B− F1 = 12 to
see that [4− ε, 12 + ε] ⊂ Dv, Dv = [−20, ∞), for a sufficiently small ε > 0. Because of the
continuity of f (t, y, u, v, w) on the set [0, 1]×R2× [−20, ∞)×R, (H2) also is satisfied. Thus,
we can apply Theorem 9 to conclude that the considered problem has a positive, increasing,
concave solution in C4[0, 1].

5. Discussion

The barrier strips technique used in this paper was introduced in 1994 in [46]. This
technique does not use the classical tools mentioned in the introduction. It is based on
the assumption that the right-hand side of the equation has suitable different signs on
suitable subsets of its domain. Subsequently, barrier strips are used by a number of authors
investigating the solvability of various boundary value problems for differential, difference
and fractional differential equations, as well as of functional boundary value problems for
differential equations.

This paper shows how the barrier strips technique (based here on assumption (H1))
can be used not only to establish the solvability of the boundary value problems under
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consideration but also to establish the existence of solutions that have important properties,
namely, solutions that are monotonous, convex or concave and do not change their sign.

In principle, the barrier strips technique provides an a priori estimate for the (n− 1)th
derivative of initial and boundary value problems for nth-order equations. As a conse-
quence, it provides a priori estimates for both the unknown function and its remaining
derivatives if at least one value for all of them is known. Moreover, the type of barrier
condition depends on what value of the variable is the known value of the (n − 1)th
derivative—at the end of the set interval or at its interior point. All this makes the barrier
strips technique applicable to a wide class of initial and boundary value problems.
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