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EXISTENCE FOR THE STATIONARY MHD-EQUATIONS COUPLED

TO HEAT TRANSFER WITH NONLOCAL RADIATION EFFECTS

Pierre-Étienne Druet, Berlin

(Received March 10, 2008)

Abstract. We consider the problem of influencing the motion of an electrically conducting
fluid with an applied steady magnetic field. Since the flow is originating from buoyancy, heat
transfer has to be included in the model. The stationary system of magnetohydrodynamics
is considered, and an approximation of Boussinesq type is used to describe the buoyancy.
The heat sources given by the dissipation of current and the viscous friction are not neglected
in the fluid. The vessel containing the fluid is embedded in a larger domain, relevant for
the global temperature- and magnetic field- distributions. Material inhomogeneities in this
larger region lead to transmission relations for the electromagnetic fields and the heat flux
on inner boundaries. In the presence of transparent materials, the radiative heat transfer
is important and leads to a nonlocal and nonlinear jump relation for the heat flux. We
prove the existence of weak solutions, under the assumption that the imposed velocity at
the boundary of the fluid remains sufficiently small.

Keywords: nonlinear elliptic system, magnetohydrodynamics, natural interface condi-
tions, nonlinear heat equation, nonlocal radiation boundary conditions

MSC 2010 : 35J55, 35Q35, 35Q30, 35Q60

Introduction

The possibility to exert control on the motion of electrically conducting fluids

with the help of magnetic fields is well known. An industrial area in which this

idea is applied nowadays is crystal growth from the melt, where thermally instable

melt flows result in a loss of quality for the production. The use of magnetic fields in

similar contexts leads to complex processes in which hydrodynamic, electromagnetic,

and thermodynamic phenomena closely interact with each other. The attempt to

accurately model such phenomena results in strongly coupled systems of PDE, for

which few mathematical results have been stated.
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In this paper, we prove the existence of weak solutions to the system consisting of

the Navier-Stokes equations for a viscous, electrically conducting, heat conducting

fluid in the Boussinesq approximation, the Maxwell equations for linear media, and

the heat equation with nonlocal radiation effects. The most important feature of the

paper in comparison to available results (cf. [16]) is that the heat radiation and the

complex geometrical settings given in applications are included in the theory, as well

as the dissipative heat sources.

Geometrical setting. We are interested in the temperature distribution in a

high temperatures furnace, in the velocity of the flow of a liquid occupying a vessel

contained in the furnace, and in the influence of applied magnetic fields on both

phenomena. It is seldom realistic to assume that the magnetic field is confined to

the region of interest. Therefore, the electromagnetic fields are searched in a “hold

all” region, which is larger than the furnace.

We consider disjoint bounded domains Ω̃0, . . . , Ω̃m ⊂ R
3 (m > 1), such that

the set defined by Ω̃ :=
m⋃

i=0

Ω̃i is simply connected, and represents the region in

which the electromagnetic fields are acting. The domains Ω̃i represent the different

materials filling the region. We denote by Ω ⊆ Ω̃ the bounded domain of interest

for temperature distribution, typically the furnace. Defining Ωi := Ω̃i ∩ Ω, we have

Ω :=
m⋃

i=0

Ωi. An example for the region Ω is given in Figure 1.

Ωc0

Ω0

Ωc

Figure 1. An example for the region Ω: schematic representation of a growth arrangement of
the Institute of Crystal Growth (IKZ) Berlin. The transparent cavity Ω0, the coils
Ωc0
, and some of the electrically conducting materials are indicated by arrows.
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A subdomain of Ω is occupied by the liquid. We denote this region by Ω1. We

further denote by Ω̃c ⊆ Ω̃ the region occupied by electrically conducting materials,

and by Ω̃c0
⊆ Ω̃c the region where a current source is acting, typically a magnetic

coil. We set Ωc := Ω̃c ∩ Ω, and define Ωc0
analogously. The set Ω̃nc is occupied by

electrically nonconducting materials. We set Γ := ∂Ω.

Due to the importance of the radiative heat transfer, we have to distinguish be-

tween opaque and transparent materials. One of the different subdomains of the

region Ω, say Ω0, represents an enclosed cavity filled with a transparent mate-

rial. The remaining materials Ω1, . . . ,Ωm are assumed to be opaque, and we define

Ωop :=
m⋃

i=1

Ωi. The enclosure property is satisfied, meaning that

(1) R
3 \ Ωop is disconnected.

At the boundary of the transparent cavity, heat radiation is emitted, reflected and

absorbed. We denote by Σ := ∂Ω0 this boundary.

The mathematical model. In the domain Ω̃, we consider the following system

of partial differential equations

̺1(v · ∇)v = −∇p+ div(2η(θ)Dv) + f(θ) + j ×B in Ω1,(2)

div v = 0 in Ω1,(3)

f(θ) = ̺(θ)~g := ̺1(1 − α(θ − θ1)) in Ω1,(4)

̺1cV v · ∇θ = div(κ(θ)∇θ) + 2η(θ)D(v, v) +
|j|2
s(θ)

in Ω,(5)

curlH = j in Ω̃,(6)

curlE = 0 in Ω̃,(7)

divB = 0 in Ω̃,(8)

j =






0 in Ω̃nc,

j0 in Ω̃c0
,

s(θ)(E + v ×B) in Ω̃c \ Ω̃c0
,

(9)

divD = 0 in Ω̃ \ Ω̃c,(10)

B = µH, D = eE in Ω̃,(11)

with

Unknowns Parameters

v fluid velocity ̺1 reference mass density of the fluid

p fluid pressure η dynamic viscosity
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θ absolute temperature α coefficient of thermal expansion

E electric field strength θ1 reference temperature of the fluid

B magnetic induction cV specific heat

H magnetic field strength κ heat conductivity

j electric current density s electrical conductivity

D displacement current µ magnetic permeability

e electrical permittivity.

For the rate of strain, we have used the notation

Dv = Di,j(v) :=
1

2

( ∂vi

∂xj
+
∂vj

∂xi

)
(i, j = 1, . . . , 3),

and have set

D(u, v) := Du : Dv := Di,j(u)Di,j(v),

with the convention that repeated indices imply summation over 1, 2, 3.

The relations (2), (3), (4) are known as Boussinesq’s approximation of compress-

ible fluids (see [7] for a general description). This approximation is in general well

accepted for the study of thermal convection in liquids (cf. [2], II. 1. 8), and for ap-

plications in crystal growth from the melt (see e.g. [20]). According to Boussinesq’s

ideas, the liquid can be regarded as incompressible in the mean (3), and thermal

expansion is significant only at the level of the gravitational force (4).

As to the gravitational force f : R −→ R
3 given by (4), we note that ̺1~g = ∇G

with a scalar potential G. Therefore, we can as well solve the problem with a corrected
pressure p̃ := p+ G, and the force

(12) f(θ) = −̺1~gα(θ − θM ),

where for the reference temperature θ1, we have chosen the mean value θM of the

temperature over the set Ω1. Since the liquid is electrically conducting, the Lorentz

force j ×B has to be taken into account.

The relation (5) accounts for heat conduction and convection in Ω. Observe that

v 6= 0 only in the set Ω1. The heat sources are given by the Joule effect and the

viscous friction localized in the fluid.

The relations (6), (7), (8), and (9) are respectively known as Ampère’s law, Fara-

day’s law, Gauss law, and Ohm’s law. In the conductors Ω̃c0
, the density j0 of an

applied direct current is given. The requirement (10) is a consequence of charge con-

servation in the absence of free charges. Finally, (11) are the constitutive relations

characterizing linear media. The use of this type of model for the electromagnetic

part of the problem is justified in the reference [1].
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The boundary conditions. We consider the following boundary conditions

v = v0 on ∂Ω1,(13) [
−κ(θ) ∂θ

∂~n

]
= R− J on Σ,(14)

R = εσ|θ|3θ + (1 − ε)J, on Σ,(15)

J = K(R) on Σ,(16)

θ = θ0 on Γ,(17)
[
H × ~n

]
i,j

= 0,
[
B · ~n

]
i,j

= 0,
[
E × ~n

]
i,j

= 0 on ∂Ω̃i ∩ ∂Ω̃j ,(18)

B · ~n = 0, E × ~n = 0 on ∂Ω̃.(19)

The velocity is imposed at the boundary of the fluid (13), typically by the rotation

of the axisymmetric vessel, where it is contained.

The jump of a quantity across a surface is denoted with square brackets. At the

boundary of the transparent cavity Σ, the conductive heat flux has a discontinuity

(14) equal to the difference between the heat radiation outgoing from the surface,

denoted by R, and the heat radiation incoming at the surface, denoted by J . We

follow the approach of [11], standard in crystal growth, to model the quantities R and

J . The main assumption is that all the opaque materials involved are diffuse grey,

so that their emission properties do not depend on the wavelength of the radiation.

Semitransparent materials are excluded.

The relation (15) expresses that the outgoing radiation R is the sum of the radi-

ation emitted according to the Stefan-Boltzmann law, and of the reflected part of

the incoming radiation. The function ε is given and called the emissivity (1 − ε is

the reflexivity) of the surface Σ and attains values in [0, 1]. The Stefan-Boltzmann

constant is denoted by σ.

Outgoing radiation and incoming radiation are connected by the nonlocal consti-

tutive relation (16). The linear integral operator K is defined by

(20)
(
K(R)

)
(z) :=

∫

Σ

w(z, y)R(y) dSy for z ∈ Σ,

where w : Σ × Σ → R, called the view factor, is given by

(21) w(z, y) :=






~n(z) · (y − z)~n(y) · (z − y)

π|y − z|4 Θ(z, y) if z 6= y,

0 if z = y,

and where Θ is the visibility function that penalizes the presence of opaque obstacles

in the cavity Ω0

Θ(z, y) =

{
1 if ]z, y[⊂ Ω0,

0 otherwise.
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By the symbol ]z, y[, we denote the set conv{z, y} \ {z, y}, and ~n is a unit normal
to Σ.

Note that the relations (15) and (16) are equivalent to the radiosity equation

(I − (1 − ε)K)(R) = εσ|θ|3θ on Σ,

where I denotes the identity mapping. Under mild assumptions on the geometry

and on the emissivity ε (cf. Lemma C.2, (3)), the solution operator (I − (1− ε)K)−1

is well defined. Introducing then another linear operator

(22) G := (I −K)(I − (1 − ε)K)−1ε,

we can equivalently reformulate (14), (15), (16) in the single relation

(23)
[
− κ(θ)

∂θ

∂~n

]
= G(σ|θ|3θ) on Σ,

where only the unknown θ is involved.

The condition (17) does not need further comment. At interfaces between opaque

materials, we simply assume the continuity of the conductive heat flux.

The boundary conditions (18) are the natural interface conditions for the electro-

magnetic fields. The conditions (19) at the outher boundary model the behavior of

the electromagnetic fields at perfectly conducting boundaries. They may be used ei-

ther to model a magnetic shield, or as an approximation of the condition of vanishing

at infinity.

Definition 0.1. We will address the problem of finding fields v,H,B,E,D, j

and scalars p, θ that satisfy (2), (3), (12), (13), (5), (17), (23), (6), (7), (8), (9), (10),

(11), (18), and (19), as Problem (P ).

State of the research. The paper [15] provides a nice survey about recent devel-

opments in the mathematical theory of MHD. The main difficulty for the function-

alanalytic method is to control the growth of the term j × B. In view of Ampère’s

law (6) and (11), we can write j ×B = curlH × µH , and we see that in the natural

setting of Maxwell equations, the latter term belongs a priori only to L1 (see [4] for

a discussion of this question).

All the results available on the MHD system are based on the fact that the vector

field H that weakly solves Maxwell equations in Ω̃ belongs to the Sobolev space

W 1,2(Ω̃), provided that the magnetic permeability µ is smooth in each subdomain,

and that the interfaces ∂Ω̃i ∩ ∂Ω̃j (i, j = 0, . . . ,m) belong to C2 (see, among others,

[13], [3], or [15] for a proof of this result).
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The coupling of the heat equation to the Navier-Stokes equations (heat conductive

fluids) or to the stationary Maxwell equations (resistive heating) leads in complex

situations to heat-sources in L1, resp. in L1+ε. Stronger integrability of the viscous

dissipationD(v, v) (resp. of |curlH |2) can be obtained in the Navier-Stokes equations
only for smooth boundaries and coefficients, which is very restricting with respect to

the covered class of applications. A summary of recent results concerning the cou-

pling of the stationary, incompressible Navier-Stokes equations to the heat equation

and techniques for handling systems with L1-right-hand sides can be found in [17].

The existence theory that we propose therefore extends existing results in the

following respects

1. We consider the full system consisting of the Navier-Stokes equations for a vis-

cous, electrically conducting, heat conducting fluid in the Boussinesq approx-

imation, Maxwell system for linear media, and the heat equation in complex

geometries.

2. Under suitable assumptions on the magnetic permeability µ, we allow for a

larger class of interfaces between materials with heterogeneous electromagnetic

properties.

3. Nonlocal radiation effects are included.

Our plan is as follows. In the section 1, we introduce the functional setting and we

define what we will call a weak solution. The section 2 is devoted to the main results:

in Theorem 2.1 an existence result for the case that the temperature-dependent force

term in the fluid equation is bounded, and in Theorem 2.7 an existence result for the

genuine Boussinesq model under a smallness assumption on the coefficient of thermal

expansion of the fluid. In the appendix, we have recalled auxiliary results needed

throughout the paper.

1. Definition of a weak solution

In order to define a weak solution, we at first need to make assumptions concerning

the coefficients, the geometry, and the data of Problem (P ).

The coefficients of electrical conductivity, of magnetic permeability, and of heat

conductivity are material-dependent. We introduce the abbreviations

(24) s := si, µ := µi, κ := κi in each Ω̃i for i = 0, . . . ,m.

Throughout the paper, we assume that there exist positive constants sl, su, µl, µu,

κl, κu, ηl, ηu such that

(25) 0 < sl 6 s 6 su < +∞, 0 < µl 6 µ 6 µu < +∞,

0 < κl 6 κ 6 κu < +∞, 0 < ηl 6 η 6 ηu < +∞.
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The emissivity of the surface Σ, denoted by ε, is a function of the position. We

assume that ε : Σ −→ R is measurable and that there exists a positive number εl

such that

(26) 0 < εl 6 εi < 1 on ∂Ωi ∩ Σ for i = 0, . . . ,m.

For the temperature-dependent coefficients, we require that

(27) si, κi, η ∈ C (R) for i = 0, . . . ,m.

For other coefficients, we also require the continuity in each material

(28) µi ∈ C(Ω̃i), εi ∈ C(∂Ωi ∩ Σ).

The parameters α, ̺1, θ1, cV are assumed to be positive constants. For the sake of

notational commodity, we introduce the auxiliary function of electric resistivity, that

we extend by one to the nonconductors

(29) r :=





1

s

on Ω̃c,

1 on Ω̃nc,

rl := s
−1
u , ru := s

−1
l .

We now formulate a few assumptions on the geometry. In order to ensure the

fundamental properties of Lemma C.1, we assume that the surface Σ belongs to C1

piecewise.

In order to ensure the higher integrability of the Lorentz force, we assume either

that

(30) ∂Ω̃i ∈ C1, for i = 0, . . . ,m, ∂Ω̃ ∈ C0,1.

or that

(31) C(1 − µl/µu) < 1,

with the constant C of Lemma A.1, (4), and the constants µl, µu of (25).

Finally, we formulate a few assumptions on the data v0, θ0, j0. We require the

regularity

(32) v0 ∈ [L∞(∂Ω1)]
3, θ0 ∈ L∞(Γ), j0 ∈ [L2(Ω̃c0

)]3.
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The velocity v0 imposed at the boundary of the fluid has to satisfy

(33) v0 · ~n = 0 on ∂Ω1,

since Ω1 is assumed to be bounded by fixed walls.

We assume the conductors of Ω̃c0
, that supply the current, are modeled as closed

current loops. For the density of the applied direct current, we make the consistency

assumptions that

(34) div j0 = 0 in Ω̃c0
, j0 · ~n = 0 on ∂Ω̃c0

.

We also need to introduce some functional spaces. In the context of the generalized

theory of electromagnetics, we need the space

L2
curl(Ω̃) := {H ∈ [L2(Ω̃)]3|curlH ∈ [L2(Ω̃)]3},

where the differential operator curl is meant in its generalized sense. It is well known

that the space L2
curl(Ω̃) is a Hilbert space with respect to the scalar product

(H1, H2)L2

curl
(Ω̃) :=

∫

Ω̃

(curlH1 · curlH2 +H1 ·H2).

Actually, in view of (9), the natural frame in which to search for the field H will be

the space

(35) H(Ω̃) := {H ∈ L2
curl(Ω̃)|curlH = 0 in Ω̃ \ Ω̃c}.

If µ is given by (24) and satisfies (25), it is possible to deal with the divergence

constraint (8) and the boundary conditions (18) by introducing

(36) Hµ(Ω̃) := {H ∈ H(Ω̃) | div(µH) = 0 in Ω̃; µH · ~n = 0 on ∂Ω̃},

where the divergence constraint is meant in the generalized sense of the operator div.

We will also need the spaces

H0(Ω̃) := {H ∈ H(Ω̃)|curlH = 0 in Ω̃c0
},(37)

H0
µ(Ω̃) := {H ∈ Hµ(Ω̃)|curlH = 0 in Ω̃c0

}.(38)

In the context of the Navier-Stokes equations, we need the spaces

D1,2(Ω1) := {u ∈ [W 1,2(Ω1)]
3| div u = 0 almost everywhere in Ω1},(39)

D1,2
0 (Ω1) := {u ∈ [W 1,2

0 (Ω1)]
3| div u = 0 almost everywhere in Ω1}.
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For the mathematical setting of the stationary heat equation with radiation boundary

condition, we need the space

(40) V p,q(Ω) := {θ ∈W 1,p(Ω)|γ(θ) ∈ Lq(Σ)}, 1 6 p 6 ∞, 4 6 q 6 ∞,

which is a Banach space with respect to the norm ‖ · ‖W 1,p(Ω) + ‖γ(·)‖Lq(Σ), where

γ denotes the trace operator. The subscript Γ will indicate the subspace consisting

of all functions whose trace vanishes on the boundary part Γ.

Definition 1.1. Let the assumptions (25), (26), (27), (28) on the coefficients η,

s, µ, κ, ε be satisfied. Let Σ ∈ C1 piecewise, and let the geometry satisfy either (30)

of (31). Assume that v0, θ0, j0 satisfy (32), and that j0 satisfies (34). We call weak

solution to (P ) a triple

{v,H, θ} ∈ D1,2(Ω1) ×Hµ(Ω̃) ×
⋂

16p<3/2

V p,4(Ω),

such that v = v0 on ∂Ω1, θ = θ0 on Γ, θ > 0 in Ω, curlH = j0 in Ω̃c0
and the integral

relations
∫

Ω1

̺1(v · ∇)v · ϕ+

∫

Ω1

η(θ)D(v, ϕ) =

∫

Ω1

(curlH × µH) · ϕ+

∫

Ω1

f(θ) · ϕ,(41)

∫

Ω̃

r(θ) curlH · curlψ =

∫

Ω1

(
v × µH

)
· curlψ,(42)

∫

Ω1

̺1cV v · ∇θξ +

∫

Ω

κ(θ)∇θ · ∇ξ +

∫

Σ

G(σθ4)ξ(43)

=

∫

Ω

r(θ)|curlH |2ξ +

∫

Ω1

η(θ)D(v, v)ξ,

are satisfied for all {ϕ, ψ, ξ} ∈ D1,2
0 (Ω) ×H0

µ(Ω̃) ×W 1,r̄
Γ (Ω) with r̄ > 3.

Remark 1.2 (Well-posedness of Definition 1.1). The assumption (30) or (31)

ensures, in view of Lemma A.1, (3) or (4), that

(44) curlH × µH ∈ [L6/5(Ω̃)]3.

The assumption (26), together with the regularity Σ ∈ C1 piecewise, ensures that the

definition (22) of the radiation operator G is well posed, and that G is continuous

form L1(Σ) into itself (cp. Lemma C.2, (1) and (3)).

The well-posedness of definition 1.1 is therefore readily checked.
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2. Existence results

We introduce some notations. We denote by cKorn and cH the smallest positive

constants such that for all v ∈ D1,2
0 (Ω1) and all ψ ∈ Hµ(Ω̃),

∫

Ω1

|∇v|2 6 cKorn

∫

Ω1

D(v, v), ‖ψ‖2
[L2(Ω̃)]3

6 cH

∫

Ω̃

|curlψ|2.

The existence of the constant cH is granted in view of Lemma A.1. In our estimates,

we will use the abbreviations v0 := max
∂Ω1

|v0| and L := diam(Ω1).

For a function g : Ω̃ −→ R and δ ∈ R
+, we introduce the cutoff

(45) [g](δ) :=
g

1 + δ|g| .

For the existence theorem, we need additional, reinforced assumptions on the data

of the problem. We assume that the velocity imposed at the boundary of the fluid

v0 has an extension to Ω1. Still denoting by v0 this extension, we assume that

v0 ∈ D1,2(Ω1) satisfies the smallness assumption

(46) v0 < cmin
{ ηl

̺1L
,
rl

2µu

}
,

with c := min{c−1
Korn, c

−1
H }. If (46) is valid, we can define the positive number

(47) γ0 := min{ηl − cKorn̺1v0L, rl − 2cHµuv0}.

We will need the geometrical assumption

(48) Σ ∈ C1,α, for a 0 < α 6 1,

which ensures compactness properties of the nonlocal radiation operators (Lem-

ma C.3 and C.5), and for the homogenization of the condition (17), we need the

assumption

(49) dist (Γ,Σ) > 0.

Note that the Boussinesq relations (3), (4) disturb the global energy balance of

the system, since in general the work

∫

Ω1

̺(θ)~g · v,
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does not vanish for solenoidal vector fields v. We propose two ways to obtain a global

energy estimate. In the section 2.1, we replace the force term f in (12) by

(50) f = −̺1~g sign(θ − θM )min{α|θ − θM |,Mt},

with a positive number Mt. The term α(θ− θM ) represents the density variations in

the liquid. This quantity has to remain small compared to unity for the Boussinesq

model to make sense. Therefore, Mt that can be interpreted as the maximum of

density variation allowed by the model. In the section 2.1, we thus have

(51) max
R

|f | 6 ̺1|~g|Mt <∞.

In the section 2.2, we treat the more complicated case (12) and obtain the global

energy estimate thanks to a smallness assumption on the coefficient α. Note that in

the case of a complete Boussinesq approximation, that is, the case that the dissipative

heating is neglected in the fluid, to control the linear growth of f(θ) means no

particular difficulty (e.g. [16]).

2.1. Truncated buoyancy forces. Our main result in this section is the follow-

ing theorem.

Theorem 2.1. Assume that the conditions of Definition 1.1 are satisfied. Assume

in addition that the surface Σ has the smoothness (48) and the property (49), that

the boundary data v0 ∈ D1,2(Ω1) ∩ L∞(Ω1) satisfies the smallness assumption (46),

and that the force term f has the property (51).

Then, there exists at least one weak solution of (P ) in the sense of Definition 1.1.

The remainder of the section is devoted to the proof of Theorem 2.1. We first

regularize the problem to construct approximate solutions (Proposition 2.2). In

Propostion 2.3, we derive uniform estimates, and in Proposition 2.4 compactness

properties of the approximating sequence. Passage to the limit is carried over at the

end of the section.

Proposition 2.2. Let δ > 0 be an arbitrary positive number. If the assumptions

of Theorem 2.1 are satisfied, there exists a triple

{v,H, θ} ∈ D1,2(Ω1) ×Hµ(Ω̃) × V 2,5(Ω),
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such that v = v0 on ∂Ω1, θ = θ0 on Γ, curlH = j0 in Ω̃c0
and such that the relations

∫

Ω1

̺1(v · ∇)v · ϕ+

∫

Ω1

η(θ)D(v, ϕ) =

∫

Ω1

(
curlH × µH

)
· ϕ+

∫

Ω1

f(θ) · ϕ,(52)

∫

Ω̃

r(θ) curlH · curlψ =

∫

Ω1

(
v × µH

)
· curlψ,(53)

∫

Ω1

̺1cV v · ∇θξ +

∫

Ω

κ(θ)∇θ · ∇ξ +

∫

Σ

G(σθ4)ξ(54)

=

∫

Ω

[r(θ)|curlH |2 + η(θ)D(v, v)χΩ1
](δ)ξ,

are satisfied for all {ϕ, ψ, ξ} ∈ D1,2
0 (Ω1) ×H0

µ(Ω̃) × V 2,5
Γ (Ω). In addition,

(55) θ > ess inf
Γ

θ0 almost everywhere in Ω.

P r o o f. First, we need to introduce some additional notations. For vector fields

v ∈ D1,2
0 (Ω1), we use the notation

(56) v̂ := v + v0.

Thanks to the assumption (49), we can fix some ϕ0 ∈ C∞(Ω) such that ϕ0 = 1 on Γ

and ϕ0 = 0 on Σ. For θ ∈ V 2,5
Γ (Ω), we introduce the notation

(57) θ̂ := θ + θ0ϕ0.

In this way, we homogenize the problem for the temperature without perturbing

the nonlocal terms on Σ. Given a current density j0 with (34), (5), we can find by

Lemma A.1 some H0 ∈ Hµ(Ω̃) such that

(58) curlH0 = j0 in Ω̃.

For vector fields H ∈ H0
µ(Ω̃), we then define a reaction field

(59) Ĥ := H +H0.

Define V := D1,2
0 (Ω1) ×H0

µ(Ω̃) × V 2,5
Γ (Ω). Then, the isomorphism

V ∗ ∼= [D1,2
0 (Ω1)]

∗ × [H0
µ(Ω̃)]∗ × [V 2,5

Γ (Ω)]∗
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is valid. Throughout this proof, we denote by 〈·, ·〉 the duality pairing between V
and V ∗. Recalling the notations (56), (57), (59) and (45), we define an operator

A : V → V ∗ by

〈
A

(
{v,H, θ}

)
, {ϕ, ψ, ξ}

〉
:=

∫

Ω1

̺1(v̂ · ∇)v̂ · ϕ+

∫

Ω1

η(θ̂)D(v̂, ϕ)

−
∫

Ω1

(
curl Ĥ × µĤ

)
· ϕ−

∫

Ω1

f(θ̂) · ϕ+

∫

Ω̃

r(θ̂) curl Ĥ · curlψ

−
∫

Ω1

(
v̂ × µĤ

)
· curlψ +

∫

Ω1

̺1cV v̂ · ∇θ̂ξ +

∫

Ω

κ(θ̂)∇θ̂ · ∇ξ

+

∫

Σ

G(σ|θ̂|3θ̂)ξ −
∫

Ω

[r(θ̂)|curl Ĥ |2 + η(θ̂)D(v̂, v̂)χΩ1
](δ)ξ.

Note that using the results of Lemma A.1, (3) or (4) we have under the assumption

(30) or (31) that the embedding Hµ(Ω̃) →֒ [Lq(Ω̃)]3 is valid for some q > 3. Using

Hölder’s inequality, we can therefore prove under the assumptions of Theorem 2.1

that A is well defined, and maps bounded sets of V into bounded sets of V ∗.

We want to use the well-known fact that the coercivity and the pseudomonotonicity

of the operator A are sufficient for the surjectivity in reflexive, separable Banach

spaces. Since this type of proof has become fairly standard (cp. for instance [17]),

we only give the main ideas.

We at first discuss the coercivity. Observe that

∫

Ω1

̺1(v̂ · ∇)v · v =

∫

Ω1

̺1v̂j
1

2

∂

∂xj
v2

i = 0,

since v ∈ D1,2
0 (Ω1), and since v0 is divergence free in Ω1 and tangential on ∂Ω1. For

the same reasons, the heat convection
∫
Ω1

̺1cV v̂ · ∇θθ vanishes as well. It follows
that

∫

Ω1

̺1(v̂ · ∇)v̂ · v =

∫

Ω1

̺1

((
v · ∇

)
v0 +

(
v0 · ∇

)
v0

)
· v

= −
∫

Ω1

̺1(vjv0,i + v0,iv0,j)
∂vi

∂xj
.(60)

Thus, by Poincaré’s and Young’s inequality, we find the estimate

∣∣∣∣
∫

Ω1

̺1(v̂ · ∇)v̂ · v
∣∣∣∣ 6 ̺1(v0L‖∇v‖[L2(Ω1)]9 + v0

2meas(Ω1)
1/2)‖∇v‖[L2(Ω1)]9

6 (̺1v0L+ γ)‖∇v‖2
[L2(Ω1)]9 +

̺2
1v0

4 meas(Ω1)

4γ
,
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where γ is an arbitrary small, positive number. We also consider the estimate

∣∣∣∣
∫

Ω1

(
v0 × µĤ

)
· curlH

∣∣∣∣ 6 2v0µu‖H +H0‖[L2(Ω1)]3‖ curlH‖[L2(Ω1)]3

6 (2v0µucH + γ)‖ curlH‖2
[L2(Ω1)]3

+
v0

2µ2
u

γ
‖H0‖2

[L2(Ω1)]3 .

Further, we observe that

(61)

∫

Ω1

(
v × µĤ

)
· curlH = −

∫

Ω1

(
curlH × µĤ

)
· v = −

∫

Ω1

(
curl Ĥ × µĤ

)
· v,

since curlH0 = j0 = 0 in Ω1.

By the homogenization (57) and the coercivity result of Lemma C.3, (1) we have

on the other hand that
∫

Ω

κ(θ̂)∇θ̂ · ∇θ +

∫

Σ

G(σ|θ̂|3θ̂)θ

=

∫

Ω

κ(θ̂)|∇θ|2 +

∫

Σ

G(σ|θ|3θ)θ −
∫

Ω

κ(θ̂)∇(θ0ϕ0) · ∇θ

> cmin{‖θ‖2
V 2,5
Γ

(Ω)
, ‖θ‖5

V 2,5
Γ

(Ω)
} −

∫

Ω

κ(θ̂)∇(θ0ϕ0) · ∇θ.

By Young’s inequality, this implies that

∫

Ω

κ(θ̂)∇θ̂ · ∇θ +

∫

Σ

G(σ|θ̂|3θ̂)θ > cmin{‖θ‖2
V 2,5
Γ

(Ω)
‖θ‖5

V 2,5
Γ

(Ω)
}

− γ‖∇θ‖2
L2(Ω) − cγ‖∇θ0‖2

L2(Ω) > c̄‖θ‖2
V 2,5
Γ

(Ω)
− C.

If we additionally consider the facts

∣∣∣∣
∫

Ω1

f(θ̂) · v
∣∣∣∣ 6 ̺1|~g|Mt‖v‖[L1(Ω1)]3 ,

∣∣∣∣
∫

Ω

[r(θ̂)|curlĤ |2 + η(θ̂)D(v̂, v̂)](δ)θ

∣∣∣∣ 6
‖θ‖L1(Ω1)

δ
,

we easily verify by Young’s inequality that

〈
A

(
{v,H, θ}

)
, {v,H, θ}

〉
>
γ0

2
‖{v,H, θ}‖2

V − C,

with the number γ0 given by (47). This proves the coercivity.

In order to prove that A is pseudomonotone, we consider an arbitrary sequence

{vk, Hk, θk} ⊂ V such that

(62) vk ⇀ v in D1,2
0 (Ω1), Hk ⇀ H in H0

µ(Ω̃), θk ⇀ θ in V 2,5
Γ (Ω),
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and we assume that

(63) lim sup
k→∞

〈
A

(
{vk, Hk, θk}

)
, {vk, Hk, θk} − {v,H, θ}

〉
6 0.

By well-known compactness properties and Lemma A.1, we find a subsequence, that

we do not relabel, such that

vk −→ v in L4(Ω1), Hk −→ H in L2(Ω̃),(64)

θk −→ θ in L2(Ω), θk −→ θ in L2(Σ).

Observe that
∫

Σ

G(σ|θ̂k|3θ̂k)(θk − θ) =

∫

Σ

G(σ|θk|3θk)(θk − θ) =

∫

Σ

σ|θk|3θkG(θk − θ)

=

∫

Σ

εσ|θk|3θk(θk − θ) −
∫

Σ

εσ|θk|3θkH̃(θk − θ),

where the operator H̃ is compact from L5/4(Σ) into itself, according to Lemma C.5,

(1). Thus, passing to subsequences if necessary, we find that

(65) lim inf
k→∞

∫

Σ

G(σ|θ̂k|3θ̂k)(θk − θ) = lim inf
k→∞

∫

Σ

εσ|θk|3θk(θk − θ) > 0.

By (63) and (64) and (65), and using straightforward rearrangements of terms, we

see immediately that

lim sup
k→∞

( ∫

Ω1

D(vk − v, vk − v) +

∫

Ω̃

|curl(Hk −H)|2 +

∫

Ω

|∇(θk − θ)|2
)

6 0.

We thus find (not relabelled) subsequences with the properties

(66) vk −→ v in D1,2
0 (Ω1), Hk −→ H in H0

µ(Ω̃).

By the Dominated Convergence Theorem, this implies for a subsequence and for all

1 6 q <∞ that

[r(θ̂k)|curl Ĥk|2 + η(θ̂k)D(vk, vk)χΩ1
](δ) → [r(θ̂)|curl Ĥ |2 + η(θ̂)D(v, v)χΩ1

](δ),

in Lq(Ω). We observe that by the compactness of the nonlocal operator H̃ and (62),

we have generally

lim inf
k→∞

∫

Σ

G(σ|θk|3θk)(θk − ξ) >

∫

Σ

G(σ|θ|3θ)(θ − ξ),
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for all ξ ∈ V 2,5
Γ (Ω). By this property and (66), we can easily show that

lim inf
k→∞

〈
A

(
{vk, Hk, θk}

)
, {vk, Hk, θk} − {ϕ, ψ, ξ}

〉

>
〈
A

(
{v,H, θ}

)
, {v,H, θ} − {ϕ, ψ, ξ}

〉
,

for all {ϕ, ψ, ξ} ∈ V , proving the preudomonotonicity of A. By the results of [12],

Ch. 2, Th. 2.7., or of [21] Ch. 27.3, the equation A
(
{v,H, θ}

)
= 0 has at least one

solution in V .

We at last prove that (55) is valid. By the previous considerations, we have

obtained in particular the relation

∫

Ω1

̺1cV v̂ · ∇θ̂ξ +

∫

Ω

κ(θ̂)∇θ̂ · ∇ξ +

∫

Σ

G(σ|θ̂|3θ̂)ξ(67)

=

∫

Ω

[r(θ̂)|curl Ĥ |2 + η(θ̂)D(v̂, v̂)χΩ1
](δ)ξ,

for all ξ ∈ V 2,5
Γ (Ω). We define k0 := ess inf

Γ
θ0, and we test with the function ξ =

(θ̂ − k0)
− in the relation (67). We observe that

∫

Ω1

̺1cV v̂ · ∇θ̂(θ̂ − k0)
− =

∫

Ω1

̺1cV v̂ ·
1

2
∇(θ̂ − k0)

−2

= 0

∫

Σ

G(σ|θ̂|3θ̂)(θ̂ − k0)
− =

∫

Σ

G(σ|θ̂|3θ̂)[(θ̂ − k0)
− + k0] > 0.

Here, we used the fact that G(1) = 0 and the elementary properties of the operator

G in enclosures (see Lemma C.2, (5)). In order to obtain the inequality, we applied

Lemma C.4. We get
∫
Ω
κ(θ̂)

∣∣∇(θ̂ − k0)
−

∣∣2 6 0, and since θ̂ > k0 on Γ, it follows

that θ̂ > k0 almost everywhere in Ω. We can replace the term |θ̂|3θ̂ by θ̂4 in (67).
We obtain (54). Writing from now on {v,H, θ} instead of {v̂, Ĥ, θ̂}, this finishes the
proof of the proposition. �

For sequences of approximate solutions according to Proposition 2.2, we introduce

the notation

(68) Mδ :=
1

meas(Σ)

∫

Σ

θ4δ .
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Proposition 2.3. For any sequence of approximations {vδ, Hδ, θδ} according to
Proposition 2.2, the following uniform estimates are valid:

(1) For the MHD energy, we have the estimate

‖vδ‖D1,2(Ω1) + ‖Hδ‖Hµ(Ω̃)

6 c(‖f(θδ)‖[L2(Ω1)]3 + ‖j0‖[L2(Ω̃c0
)]3 + ‖v0‖D1,2(Ω1)).

(2) For the temperature, we find for all 1 6 p < 3
2 the uniform bounds

‖θδ‖W 1,p
Γ

(Ω) + ‖θ4δ −Mδ‖L1(Σ) 6 Cp(K0, ‖∇θ0‖L2(Ω), ‖θ0‖L∞(Ω)),

where K0 is the right-hand side of (1), and Cp is a continuous function.

P r o o f. For the sake of notational simplicity, we write throughout this proof v

instead of vδ etc.

(1): We test in (52) with the vector field v−v0, and in (53) with H−H0. Recalling

(60) and (61), we obtain, after adding both relations, that

∫

Ω1

η(θ)D(v, v) +

∫

Ω̃

r(θ)|curlH |2 =

∫

Ω1

̺1vjv0,i
∂vi

∂xj
+

∫

Ω1

η(θ)D(v, v0)(69)

+

∫

Ω1

f(θ) · (v − v0) +

∫

Ω1

(
v0 × µH

)
· curlH +

∫

Ω̃

r(θ)j0 · curlH.

We estimate the right-hand side of (69) by standard inequalities, and we obtain that

[(1 − γ)ηlc
−1
Korn − ̺1v0L− γ2]

∫

Ω1

|∇v|2 + [(1 − γ)rl − cHv0µu]

∫

Ω̃

|curlH |2

6
L2

4γ2
‖f(θ)‖2

[L2(Ω1)]3 + ‖f(θ) · v0‖[L1(Ω1)]3 +
1

4γ

∫

Ω̃

r(θ)|j0|2,

where we can choose γ, γ2 arbitrary small. The estimate (1) follows from the as-

sumption (47).

(2): For a parameter γ > 0 to be fixed later, we introduce the continuous function

gγ(t) := sign(t)
(
1 − 1

(1 + |t|)γ

)
for t ∈ R.

In (54) we use the test function

ξ = ξγ := gγ(θ − θ̃0) = sign(θ − θ̃0)
(
1 − 1

(1 + |θ − θ̃0|)γ

)
.
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Here, we have set θ̃0 := θ0ϕ0, with a smooth function ϕ0 such that ϕ0 = 0 on Σ and

ϕ0 = 1 on Γ. Note that ξ vanishes on the boundary Γ, that 0 6 ξ 6 1 in Ω, and that

∇ξ = γ
∇(θ − θ̃0)

(1 + |θ − θ̃0|)1+γ
,

so that we are allowed to test the relation (54) with this function.

Denoting by Ψ the primitive function of gγ that vanishes at zero, we observe that

∫

Ω1

̺1cV v · ∇(θ − θ̃0)ξ =

∫

Ω1

̺1cV v · ∇Ψ(θ − θ̃0) = 0.

By Lemma C.4 and the fact that θ̃0 vanishes on Σ, we obtain on the other hand that

∫

Σ

G(σθ4)ξ =

∫

Σ

G(σθ4)
(
1 − 1

(1 + θ)γ

)
> 0.

Thus, the inequality

γ

∫

Ω

κ(θ)|∇(θ − θ̃0)|2

(1 + |θ − θ̃0|)1+γ
6 γ

∫

Ω

κ(θ)
|∇θ0||∇(θ − θ̃0)|
(1 + |θ − θ̃0|)1+γ

+

∫

Ω1

̺1cV |v · ∇θ̃0|

+

∫

Ω

[r(θ)|curlH |2 + η(θ)D(v, v)χΩ1
](δ),

is readily verified. By Young’s inequality, it follows that

κlγ

2

∫

Ω

|∇(θ − θ̃0)|2

(1 + |θ − θ̃0|)1+γ
6
γκu

2
‖∇θ̃0‖2

L2(Ω) + ̺1cV L‖∇θ̃0‖L2(Ω1)‖∇v‖[L2(Ω1)]9

+

∫

Ω

r(θ)|curlH |2 +

∫

Ω1

η(θ)D(v, v).

Making use of (1), we obtain for arbitrary γ ∈]0, 1[ that

γ

∫

Ω

|∇(θ − θ̃0)|2

(1 + |θ − θ̃0|)1+γ
6 C1,

where the constant C1 depends on the data through the previous estimate (1). By

the arguments of Lemma C.7, we obtain that

‖θ − θ̃0‖W 1,p
Γ

(Ω) 6 Cp(‖f(θ)‖[L2(Ω1)]3 , ‖j0‖[L2(Ω̃c)]3
, ‖v0‖D1,2(Ω1), ‖∇θ̃0‖L2(Ω)).

for all 1 6 p < 3
2 .
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In order to derive the complete estimate (2), we now want to estimate θ on the

boundary Σ. We define k0 := ess sup
Γ

θ0, and we recall the definition (68) of the

numbers Mδ.

Observe that in the case of Mδ 6 k4
0, the estimate

(70) ‖θ4 −Mδ‖L1(Σ) 6 (meas(Σ) + 1)Mδ 6 2k4
0meas(Σ),

is valid. Suppose now that Mδ > k4
0. For γ > 0, we introduce the function

gγ(t) :=
1

γ
sign

(
t
)
min{|t|, γ} + 1, for t ∈ R.

In (54) we choose the test function

ξ = ξδ,γ := gγ(θ −Mδ) =
1

γ
sign

(
θ4 −Mδ

)
min{|θ4 −Mδ|, γ} + 1.

Note that for all 0 < γ < Mδ − k4
0, the function ξ vanishes on Γ, and observe that

0 6 ξ 6 2 in Ω. On the other hand, since

∇ξ =
4

γ
|θ|3χ{x∈Ω: |θ(x)4−Mδ|<γ}∇θ,

we can verify that

|∇ξ|2 6

( 4

γ

)2

(Mδ + γ)
3

2 |∇θ|2 ∈ L1(Ω),

so that we can test with this function in (54). Since gγ is nondecreasing, we have

∇θ · ∇gγ(θ) = g′γ(θ)|∇θ|2 > 0, and we obtain that

∫

Σ

G(σ|θ|4)gγ(θ) 6 −
∫

Ω1

̺1cV |v · ∇θ̃0|gγ(θ)(71)

+

∫

Ω

[r(θ)|curlH |2 + η(θ)D(v, v)χΩ1
](δ)gγ(θ).

Now, since Ω is an enclosure and G(1) ≡ 0 (see Lemma C.2), we can write

∫

Σ

G(σ|θ|4)
[ 1

γ
sign(θ4 −Mδ)min{|θ4 −Mδ|, γ} + 1

]

=

∫

Σ

G(σ[|θ|4 −Mδ])
1

γ
sign(θ4 −Mδ)min{|θ4 −Mδ|, γ}.
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Letting γ → 0 in (71), it follows that

∫

Σ

G(σ
[
|θ|4 −Mδ

]
) sign(θ4 −Mδ)

6 2

(∫

Ω1

̺1cV |v · ∇θ̃0| +
∫

Ω

[r(θ)|curlH |2 + η(θ)D(v, v)χΩ1
]

)
.

By the previous estimates and Lemma C.3, we get

(72) ‖θ4−Mδ‖L1(Σ) 6 c(‖f(θ)‖2
[L2(Ω1)]3 +‖j0‖2

[L2(Ω̃c)]3
+‖v0‖2

D1,2(Ω1)
+‖∇θ̃0‖2

L2(Ω)).

Putting together (70) and (72), we obtain for all δ > 0 that

‖θ4 −Mδ‖L1(Σ) 6 c(‖f(θ)‖2
[L2(Ω1)]3 + ‖j0‖2

[L2(Ω̃c)]3

+ ‖v0‖2
D1,2(Ω1) + ‖∇θ̃0‖2

L2(Ω)) + 2k4
0meas(Σ),

which finally proves (2). �

Proposition 2.4. Let
{
vδ, Hδ, θδ

}
be any sequence of approximate solutions

according to Proposition 2.2. Then there exists some {v,H, θ} ∈ D1,2(Ω)×Hµ(Ω̃)×
V p,4(Ω) (1 6 p < 3/2) and some subsequence δ → 0 such that

vδ −→ v in D1,2(Ω1), Hδ −→ H in Hµ(Ω̃),

θδ ⇀ θ in W 1,p(Ω), θ4δ −→ θ4 in L1(Σ).

P r o o f. By the estimates of Proposition 2.3, we first find a sequence

(73) vδ ⇀ v in D1,2(Ω1), Hδ ⇀ H in Hµ(Ω̃), θδ ⇀ θ in W 1,p(Ω).

By well-known compactness properties, we now find a (not relabelled) subsequence

such that

vδ −→ v in L4(Ω1), Hδ −→ H in L2(Ω̃), θδ −→ θ in Lp(Ω),(74)

θδ −→ θ in Lp(Σ), θδ −→ θ almost everywhere in Ω.

Passing to the limit δ → 0 in (52), (53), by the same arguments as in the proof of

Proposition 2.2, we see that the pair {v,H} satisfies the relations
∫

Ω1

̺1(v · ∇)v · ϕ+

∫

Ω1

η(θ)D(v, ϕ) =

∫

Ω1

(
curlH × µH

)
· ϕ+

∫

Ω1

f(θ) · ϕ,
∫

Ω̃

r(θ) curlH · curlψ =

∫

Ω̃

(
v × µH

)
· curlψ.
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In these relations, we now use the test functions ϕ = vδ − v, ψ = Hδ −H . We do the

same in the identities (52) and (53). Subtracting the two arising integral relations,

we verify easily, by (73) and (74), that the right-hand sides of both relations converge

to zero for δ → 0, proving that

vδ −→ v in D1,2(Ω1), Hδ −→ H in Hµ(Ω̃).

Thus, we have also

D(vδ, vδ) −→ D(v, v) in L1(Ω1), |curlHδ|2 −→ |curlH |2 in L1(Ω̃),

which, in view of Lemma C.8, yields the strong convergence

(75) [r(θδ)|curlHδ|2 + η(θδ)D(vδ, vδ)χΩ1
](δ) −→ r(θ)|curlH |2 + η(θ)D(v, v)χΩ1

,

in L1(Ω). Now we prove the convergence property for the boundary integral. Since

the employed techniques are similar to the ones used in [5], we will only give the

main ideas.

First, we prove that the sequence of numbersMδ given by (68) is bounded. Using

the estimate (2) and Fatou’s lemma, we can write that

(76)

∫

Σ

lim inf
δ→0

|θ4δ −Mδ| 6 lim inf
δ→0

∫

Σ

|θ4δ −Mδ| 6 C.

Seeking a contradiction, we suppose that there exists a subsequence such thatMδ →
∞. For this subsequence, we obtain almost everywhere on Σ that

lim inf
δ→0

|θ4δ −Mδ| = lim
δ→0

|θ4δ −Mδ| = lim
δ→0

|θ4 −Mδ| = +∞,

since the pointwise limit θ4 is almost everywhere finite. This contradicts (76).

Thus, the sequence {Mδ} is bounded, which by definition also implies a uniform
bound ‖θ4δ‖L1(Σ) 6 C. By Lemma C.5, (3), it follows that

H̃(θ4δ) ⇀ u in L1(Σ),

for some u ∈ L1(Σ).

Now, for an arbitrary ξ ∈ C∞
c (Ω), we pass to the limit δ → 0 in the relation (54).

Considering (75), we obtain that

∫

Ω1

̺1cV v · ∇θξ +

∫

Ω

κ(θ)∇θ · ∇ξ + lim
δ→0

∫

Σ

εσ|θδ|4ξ −
∫

Σ

εσuξ(77)

=

∫

Ω

r(θ)|curlH |2ξ +

∫

Ω1

η(θ)D(v, v)ξ.
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In order to compute lim
δ→0

∫
Σ
G(σ|θδ |4)ξ, we now test in (54) with the function gγ(θδ)ξ,

where ξ is an arbitrary C∞
c (Ω)-function which is nonnegative in Ω, and gγ is for γ > 0

the nonincreasing function defined by gγ(t) := 1/(1 + γt4).

Using the techniques of the proof of [5], we can prove the inequality

∫

Ω1

̺1cV vδ · ∇θδgγ(θδ)ξ +

∫

Ω

κ(θδ)∇θδ · ∇ξgγ(θδ) +

∫

Σ

G(σ|θδ|4)ξgγ(θδ)(78)

>

∫

Ω

[
r(θδ)|curlHδ|2 + η(θδ)D(vδ, vδ)χΩ1

]

(δ)
ξgγ(θδ),

in which it is, by the same arguments, possible to take the limit δ → 0 to obtain the

relation

∫

Ω1

̺1cV v · ∇θgγ(θ)ξ +

∫

Ω

κ(θ)∇θ · ∇ξgγ(θ) +

∫

Σ

εσ
θ4

1 + γθ4
ξ −

∫

Σ

εσuξgγ(θ)

>

∫

Ω

r(θ)|curlH |2ξgγ(θ) +

∫

Ω1

η(θ)D(v, v)ξgγ(θ).

At this point, recalling that g = gγ , we observe that for all t ∈ R
+, the monotone

convergence gγ(t) ր 1 as γ → 0 takes place. Therefore, passing to the limit in the

last inequality yields

∫

Ω1

̺1cV v · ∇θξ +

∫

Ω

κ(θ)∇θ · ∇ξ +

∫

Σ

εσ|θ|4ξ −
∫

Σ

εσuξ(79)

>

∫

Ω

r(θ)|curlH |2ξ +

∫

Ω1

η(θ)D(v, v)ξ.

Comparing the relations (77) and (79), we find that

∫

Σ

εσ|θ|4ξ > lim
δ→0

∫

Σ

εσ|θδ|4ξ,

for all ξ ∈ C∞
c (Ω) such that ξ > 0 in Ω. With the help of Fatou’s lemma, we even

have

(89) lim
δ→0

∫

Σ

εσ|θδ|4ξ =

∫

Σ

εσ|θ|4ξ.

But in view of (49), it is possible to choose ξ ∈ C∞
c (Ω) such that ξ > 0 in Ω and

ξ = 1 on Σ. It then follows from (80) and Lemma C.9 that θ4δ −→ θ4 in L1(Σ),

proving the last assertion and the proposition. �
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We are now able to prove the main result of this section.

P r o o f of Theorem 2.1. Thanks to the convergence properties stated by Propo-

sition 2.4, we find a triple {v,H, θ} ∈ D1,2(Ω1) ×Hµ(Ω̃) × V p,4(Ω), with 1 6 p < 3
2

arbitrary, such that v = v0 on ∂Ω1, θ = θ0 on Γ, curlH = j0 in Ω̃c0
, and the relations

∫

Ω1

̺1(v · ∇)v · ϕ+

∫

Ω1

η(θ)D(v, ϕ) =

∫

Ω1

(
curlH × µH

)
· ϕ+

∫

Ω1

f(θ) · ϕ,(81)

∫

Ω̃

r(θ) curlH · curlψ =

∫

Ω1

(
v × µH

)
· curlψ,

∫

Ω̃

r(θ)j0 · curlψ,

∫

Ω1

̺1cV v · ∇θξ +

∫

Ω

κ(θ)∇θ · ∇ξ +

∫

Σ

G(σθ4)ξ

=

∫

Ω

r(θ)|curlH |2ξ +

∫

Ω1

η(θ)D(v, v)ξ,

are satisfied for all {ϕ, ψ, ξ} ∈ D1,2
0 (Ω1) ×H0

µ(Ω̃) × V p′,∞
Γ (Ω). �

2.2. Small coefficient of thermal expansion. In the first section, we replaced

the Boussinesq approximation of the gravitational force (4) by the bounded term (50).

We can argue in favor of this choice by observing that the Boussinesq approximation

is valid only in the range of small density variations, that is,

(82) 0 6 α(θ − θM ) ≪ 1.

This approach would be fully justified if we could prove a posteriori that the weak

solutions obtained in the first section actually satisfy (82). We cannot give a proof

of this full justification. Instead, we have a weaker result.

Lemma 2.5. Assume that the hypotheses of Theorem 2.1 are satisfied, and as-

sume in addition that θ0 is a constant. Let the numbers α,Mt in (50) be such

that

1 − c̄
meas(Ω1)̺

2
1|~g|2

κl
Mtα > 0,

where c̄ =
√

2cc20, with the constant c that appears in Proposition 2.3, (1) and the

constant c0 of the embedding W
1,2(Ω) →֒ L6(Ω).

Then, for any weak solution of (P ) constructed as in Theorem 2.1, the estimate

(
1

meas(Ω1)

∫

Ω1

α2|θ − θM |2
)1/2

6

c̄α
(
‖j0‖2

[L2(Ω̃c0
)]3

+ ‖v0‖2
D1,2(Ω1)

)

κl − c̄meas(Ω1)̺2
1|~g|2αMt

,

is valid.
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P r o o f. We consider some sequence of approximate solutions {vδ, Hδ, θδ} ac-
cording to Proposition 2.2 and derive an additional uniform estimate. We start from

(54), and we for a while write v, H , θ instead of vδ, Hδ, θδ.

For a parameter λ > 0, we are allowed to use the test function

ξ = (θ − θ0)
(λ) = sign(θ − θ0)min{|θ − θ0|, λ}.

Denoting by Ψ a primitive of the function s 7→ (s− θ0)
(λ) (s ∈ R), we can write

∫

Ω1

̺1cV v · ∇θξ =

∫

Ω1

̺1cV v · ∇Ψ(θ) = 0,

since v is divergence free in Ω1 and tangential on ∂Ω1. It follows that

∫

Ω

κ(θ)|∇(θ − θ0)
(λ)|2 +

∫

Σ

G(σθ4)(θ − θ0)
(λ)(83)

=

∫

Ω

[η(θ)D(v, v)χΩ1
+ r(θ)|curlH |2](δ)(θ − θ0)

(λ).

Using the selfadjointness of the operator G and the fact that G(1) ≡ 0 on Σ, we can

write ∫

Σ

G(σθ4)(θ − θ0)
(λ) =

∫

Σ

G(σθ4)[(θ − θ0)
(λ) + min{θ0, λ}].

We see that the function

F (s) := [(s− θ0)
(λ) + min{θ0, λ}] for s ∈ R,

satisfies the assumptions of Lemma C.4 below. Therefore, (83) leads to the inequality

∫

Ω

κ(θ)|∇(θ − θ0)
(λ)|2 6

∫

Ω

[
η(θ)D(v, v)χΩ1

+ r(θ)|curlH |2
]

(δ)
(θ − θ0)

(λ).

Using (1), we find that

∫

Ω

κ(θ)|∇(θ − θ0)
(λ)|2 6 λ

(∫

Ω1

η(θ)D(v, v) +

∫

Ω

r(θ)|curlH |2
)

(84)

6 c(‖f(θ)‖2
[L2(Ω1)]3 + ‖j0‖2

[L2(Ω̃c0
)]3

+ ‖v0‖2
D1,2(Ω1))λ.

On the other hand, using the continuity of the embedding W 1,2(Ω) →֒ L6(Ω), we

find that ∫

Ω

κ(θ)|∇(θ − θ0)
(λ)|2 > c−2

0 κl‖(θ − θ0)
(λ)‖2

L6(Ω).
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This together with (84) obviously gives that

c−2
0 κlλ

2 meas({x ∈ Ω: |θ − θ0| > λ})1/3

6 c(‖f(θ)‖2
[L2(Ω1)]3

+ ‖j0‖2
[L2(Ω̃c0

)]3
+ ‖v0‖2

D1,2(Ω1))λ.

Therefore,

sup
λ>0

{λmeas({x ∈ Ω1 : |θ − θ0| > λ})1/3}

6
cc20
κl

(‖f(θδ)‖2
[L2(Ω1)]3 + ‖j0‖2

[L2(Ω̃c0
)]3

+ ‖v0‖2
D1,2(Ω1)).

Now, we apply the embedding properties of the weak Lp-spaces (see Lemma C.6) in

order to obtain that

‖θ − θ0‖L2(Ω1) 6
√

2meas(Ω1)
1/2 sup

λ>0
{λmeas({x ∈ Ω1 : |θ − θ0| > λ})1/3}(85)

6
c̄meas(Ω1)

1/2

κl
(‖f(θ)‖2

[L2(Ω1)]3 + ‖j0‖2
[L2(Ω̃c0

)]3
+ ‖v0‖2

D1,2(Ω1)).

On the other hand, we use the estimate (51), and can write

‖f(θ)‖2
[L2(Ω1)]3 6 ̺2

1|~g|2Mt

∫

Ω1

α|θ − θM |(86)

6 ̺2
1|~g|2Mtαmeas(Ω1)

1/2‖θ − θM‖L2(Ω1).

In view of (85), we then have

(
1 − c̄meas(Ω1)̺

2
1|~g|2

κl
Mtα

)
‖θ − θM‖L2(Ω1)

6

c̄meas(Ω1)
1/2

(
‖j0‖2

[L2(Ω̃c0
)]3

+ ‖v0‖2
D1,2(Ω1)

)

κl
.

We recall that θ = θδ. The claim follows, since the last estimate is preserved in the

limit δ → 0. �

Remark 2.6. Note that at the expense of technical complications, a slightly

modified result holds if θ0 is not a constant. Lemma 2.5 shows that the density

variations in the fluid are controlled by the data in a weaker norm than the L∞-

Norm. That is the reason why replacing (4) by (50) as in the first section is only

partially justified. However, the proof of Lemma 2.5 shows a very simple way to

deal with the linear growth condition (12) by means of a smallness assumption and

a fixed-point procedure, as we will show in the remainder of this section.

Assuming that the hypotheses of Theorem 2.1 are satisfied, we prove the following

result.
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Theorem 2.7. Let the assumptions of Theorem 2.1 be satisfied, but let f be

given by (12). If the coefficient α is sufficiently small with respect to the other data,

the existence result of Theorem 2.1 holds true.

The remainder of the section is devoted to the proof of this theorem. In the next

statements 2.8 and 2.9, we construct approximate solutions with a fixed-point prin-

ciple. We use again the notation of the proof of Propostion 2.2, and we additionally

introduce

Jn(Ω1) := {u ∈ [L2(Ω1)]
3| div u = 0 in Ω1, u · ~n = 0 on ∂Ω1},

where the constraints are meant in the sense of the generalized div operator.

Proposition 2.8. Let δ > 0 be an arbitrary number. Suppose that the as-

sumptions of Theorem 2.7 are satisfied. If {ṽ, H̃, θ̃} is an arbitrary element of
Jn(Ω1) × [L2(Ω̃)]3 × L2(Ω), then there exists a unique triple

{v,H, θ} ∈ D1,2(Ω1) ×Hµ(Ω̃) × V 2,5(Ω),

such that v = v0 on ∂Ω1, θ = θ0 on Γ, curlH = j0 in Ω̃c0
, and

∫

Ω1

̺1(ṽ · ∇)v · ϕ+

∫

Ω1

η(θ̃)D(v, ϕ) =

∫

Ω1

(
curlH × [µH̃ ](δ)

)
· ϕ+

∫

Ω1

f(θ̃) · ϕ,(87)

∫

Ω̃

r(θ̃) curlH · curlψ =

∫

Ω1

(
v × [µH̃ ](δ)

)
· curlψ,(88)

∫

Ω1

̺1cV ṽ · ∇θξ +

∫

Ω

κ(θ̃)∇θ · ∇ξ +

∫

Σ

G(σθ4)ξ(89)

=

∫

Ω

[r(θ̃)|curlH |2 + η(θ̃)D(v, v)χΩ1
](δ)ξ,

are satisfied for all {ϕ, ψ, ξ} ∈ D1,2
0 (Ω1)×H0

µ(Ω̃)×V 2,5
Γ (Ω). In addition, θ > ess inf

Γ
θ0

almost everywhere in Ω.

P r o o f. Existence is a routine matter and is proved, for example, by the method

of Proposition 2.2.

We prove the uniqueness. Suppose that both {v1, H1, θ1} and {v2, H2, θ2} satisfy
the integral relations (87), (88) and (89). Then, in (87) written alternatively for v1

and v2, we test with v1 − v2 and subtract both results. We do the same in (88). We

observe that ∫

Ω1

̺1(ṽ · ∇(v1 − v2)) · (v1 − v2) = 0.
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We obtain the two relations
∫

Ω1

η(θ̃)D(v1 − v2, v1 − v2) =

∫

Ω1

(
curl(H1 −H2) × [µH̃ ](δ)

)
· (v1 − v2),

∫

Ω̃

r(θ̃)|curl(H1 −H2)|2 =

∫

Ω1

(
(v1 − v2) × [µH̃ ](δ)

)
· curl(H1 −H2),

which clearly imply, after addition, that v1 = v2 and H1 = H2. Now, for γ >

0, we use in (89) the test function gγ := min{(θ1 − θ2)
+, γ}, and observing that∫

Ω1

̺1cV ṽ · ∇(θ1 − θ2)gγ = 0, we obtain the relation

∫

Ω

κ(θ̃)∇(θ1 − θ2) · ∇gγ +

∫

Σ

G
(
σ
[
θ41 − θ42

])
gγ = 0.

By the arguments of [14], this leads to the uniqueness. �

Proposition 2.8 provides us with a well-defined, obviously compact mapping

Tδ : Jn(Ω1) × [L2(Ω̃)]3 × L2(Ω) −→ Jn(Ω1) × [L2(Ω̃)]3 × L2(Ω)(90)

{ṽ, H̃, θ̃} 7−→ {v,H, θ}.

Lemma 2.9. If the coefficient α is sufficiently small with respect to the other

data, the mapping Tδ given by (90) satisfies the assumptions of the Schauder fixed

point principle. (In the simplified case of constant coefficients and boundary data,

the smallness assumption on α is formulated more precisely in the equation (94)

below.)

P r o o f. To prove the continuity of Tδ is, again, a routine matter. We have to

consider an arbitrary sequence {ṽk, H̃k, θ̃k} in Jn(Ω1) × [L2(Ω̃)]3 × L2(Ω) such that

{ṽk, H̃k, θ̃k} −→ {ṽ, H̃, θ̃} in Jn(Ω1) × [L2(Ω̃)]3 × L2(Ω).

Choosing an arbitrary subsequence, that we not relabel, we will find by the com-

pactness properties of Tδ a sub-subsequence such that Tδ({ṽk, H̃k, θ̃k}) −→ w in

Jn(Ω1) × [L2(Ω̃)]3 × L2(Ω). By arguments similar to the proof of Proposition 2.2,

that we do not want to repeat in detail, and the uniqueness obtained in Proposi-

tion 2.8, we show that w = Tδ({ṽ, H̃, θ̃}). Then, strong convergence follows for the
entire sequence.

We finally prove that Tδ maps some closed, bounded convex set into itself. In

order to more easily arrive at an estimate, we prove the claim in the simplified case

that v0 = 0, that θ0 is constant and, all coefficients are piecewise constants. At

the expense of technical complications, one verifies that the result is qualitatively
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preserved in the general case. Inserting v in (87) and H in (88), we obtain the

estimate (cp. (1))

(91)

∫

Ω1

ηD(v, v) +

∫

Ω̃

r|curlH |2 6
L2

η
‖f(θ̃)‖2

[L2(Ω1)]3
+

∫

Ω̃

r|j0|2.

Arguing now as in the proof of Lemma 2.5, we verify that the solution Tδ{ṽ, H̃, θ̃}
satisfies

(92) ‖θ−θ0‖L2(Ω1) 6
c̄meas(Ω1)

1/2

κl
(‖f(θ̃)‖2

[L2(Ω1)]3 +‖j0‖2
[L2(Ω̃c0

)]3
+‖v0‖2

D1,2(Ω1)).

To estimate ‖f(θ̃)‖[L2(Ω1)]3 as in (86) is not possible anymore. Instead, we simply

assume that θ̃ − θ̃M ∈ BX(0)(⊂ L2(Ω1)) for some X > 0, and we obtain that

(93) ‖θ − θM‖L2(Ω1) 6
c̄meas(Ω1)

1/2

κl
(̺2

1|~g|2α2X2 + ‖j0‖2
[L2(Ω̃c0

)]3
+ ‖v0‖2

D1,2(Ω1)).

We introduce

a1 :=
c̄meas(Ω1)

1/2

κl
̺2
1|~g|2α2,

a0 :=
c̄meas(Ω1)

1/2

κl
(‖j0‖2

[L2(Ω̃c0
)]3

+ ‖v0‖2
D1,2(Ω1)

).

Under the condition

(94) 1 − 4
c̄2 meas(Ω1)

κ2
l

̺2
1|~g|2α2(‖j0‖2

[L2(Ω̃c0
)]3

+ ‖v0‖2
D1,2(Ω1)) > 0,

we see that the equation X = a1X
2 + a0 has the positive solution

(95) X =
2a0

1 +
√

1 − 4a0a1
6 2

c̄meas(Ω1)
1/2

κl
(‖j0‖2

[L2(Ω̃c0
)]3

+ ‖v0‖2
D1,2(Ω1)

).

We then define a closed convex set M = M(X) ⊂ L2(Ω) by

M := {θ̃ ∈ L2(Ω)|θ̃ − θ̃M ∈ BX(0)(⊂ L2(Ω1))}.

Note in view of (93) that θ̃ ∈ M implies θ ∈ M . In view of (91) and of the uniform

estimates available for θ, we then easily find numbers Y1, Y2, Y3 depending on X and

on the data such that Tδ maps the closed, convex and bounded set

BY1
(0) ×BY2

(0) ×M ∩BY3
(θ0) ⊂ Jn(Ω1) × [L2(Ω̃)]3 × L2(Ω),

into itself. �
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Now, we prove the main result of this section.

P r o o f of Theorem 2.7. By Proposition 2.8 and Lemma 2.9, the Schauder fixed

point theorem gives the existence of a triple {vδ, Hδ, θδ} ∈ D1,2(Ω1) × Hµ(Ω̃) ×
V 2,5(Ω) such that v = v0 on ∂Ω1, θ = θ0 on Γ, curlH = j0 in Ω̃c0

, and

∫

Ω1

̺1(vδ · ∇)vδ · ϕ+

∫

Ω1

η(θδ)D(vδ , ϕ) =

∫

Ω1

{(curlHδ × [µHδ](δ)) + f(θδ)} · ϕ,
∫

Ω̃

r(θδ) curlHδ · curlψ =

∫

Ω1

(vδ × [µHδ](δ)) · curlψ,

∫

Ω1

̺1cV vδ · ∇θδξ +

∫

Ω

κ(θδ)∇θδ · ∇ξ +

∫

Σ

G(σ|θδ |4)ξ

=

∫

Ω

[r(θδ)|curlHδ|2 + η(θδ)D(vδ, vδ)χΩ1
](δ)ξ.

We pass to the limit with the same strategy as in the first section. In order to obtain

the strong convergence

vδ −→ v in D1,2(Ω1), Hδ −→ H in Hµ(Ω̃),

the form f(θδ) = −̺1~gα(θδ − θM,δ) means no particular difficulty. In the limit, we

prove the existence of a weak solution. In addition, we can control the L2-norm of

the density fluctuations by a continuous function of the data. In the simplified case

that v0 = 0 and that θ0 is constant, we obtain in view of (95) that

(96)
( 1

meas(Ω1)

∫

Ω1

α2|θ − θM |2
)1/2

6
2c̄α

κl
(‖j0‖2

[L2(Ω̃c0
)]3

+ ‖v0‖2
D1,2(Ω1)).

�

A. Tools for the Maxwell equations

Lemma A.1. Let the assumption (25) be satisfied for the function µ and let

Ω̃ ⊂ R
3 be a simply connected Lipschitz domain. Then, the following results hold

true:

(1) The embedding Hµ(Ω̃) →֒ [L2(Ω̃)]3 is compact.

(2) There exists a constant C > 0 such that, for all ψ ∈ Hµ(Ω̃),
∫
Ω̃
|curlψ|2 >

C‖ψ‖2
[L2(Ω̃)]3

.

(3) If the domain Ω̃ is the domain described in the first paragraph, and satisfies (30),

then there exist a number ξ̃ > 3 such that Hµ(Ω̃) →֒ [Lξ̃(Ω̃)]3 with continuous

embedding.
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(4) There exist ξ̃ > 3 and a constant C = C(Ω̃, ξ̃) such that if C(1 − µl/µu) < 1

is satisfied, then Hµ(Ω̃) →֒ [Lξ̃(Ω̃)]3 continuously, without further assumptions

on the pair (µ, Ω̃).

(5) Every vector field j0 ∈ [L2(Ω̃)]3 such that

div j0 = 0 in the generalized sense in Ω̃, j0 = 0 a.e. in Ω̃nc,

is uniquely representable as curlψ with some ψ ∈ Hµ(Ω̃).

P r o o f. See [4] Lemma 2.4, Lemma 2.7 and Lemma 4.2, and the references

therein. �

B. Tools for the Navier-Stokes equations

Lemma B.1. Let Ω ⊂ R
3 be a bounded domain with ∂Ω ∈ C0,1. Let 1 < q <∞

be arbitrary. Then it holds that:

1. Let F ∈ [W 1,q
0 (Ω)]∗ satisfy F (v) = 0 for all v ∈ D1,q

0 (Ω). Then there exists a

unique p ∈ Lq′

M (Ω) such that F has the representation F (v) =
∫
Ω
p div v for all

v ∈ [W 1,q
0 (Ω)]3. Here, the subscriptM denotes the subspace of functions having

vanishing mean-value over Ω.

2. For all f ∈ Lq
M (Ω), the problem div v = f in Ω has at least one solution in the

space [W 1,q
0 (Ω)]3, and there exists a constant c > 0, that depends only on q,Ω,

such that ‖v‖[W 1,q
0

(Ω)]3 6 c‖f‖Lq(Ω).

P r o o f. See [6], III. 3. �

C. Tools for the energy equation

We recall some basics about the nonlocal radiation operators K, G. For Banach

spaces X , Y , we denote by L(X,Y ) the set of all linear bounded operators from X

into Y . We write K(X,Y ) for the subspace of the compact operators of L(X,Y ). In

the following, Σ = ∂Ω0 with a connected open set Ω0, enclosed in the sense of the

assumption (1). The following Lemma has been proved in [9] for polyhedral surfaces,

in [19] for piecewise C1-boundaries.
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Lemma C.1. Let Σ ∈ C1 piecewise. Let w : Σ × Σ → R denote the view-factor

(21). Then, for almost all z ∈ Σ,

∫

Σ

w(z, y) dSy 6 1.

In addition, the equality is valid if and only if the enclosure condition (1) is satisfied.

The following lemma states easily derived, but essential consequences of Lem-

ma C.1.

Lemma C.2. Let the hypotheses of Lemma C.1 be valid.

(1) For each 1 6 p 6 ∞ the operator K extends to a bounded linear operator from
Lp(Σ) into itself, and the norm estimate ‖K‖L(Lp(Σ),Lp(Σ)) 6 1 is valid.

(2) The operator K is positive, in the sense that K(f) > 0 almost everywhere on Σ,

whenever f > 0 almost everywhere on Σ. Moreover, K is positive semi-definite

and selfadjoint in L2(Σ).

(3) If ε : Σ → R is such that

0 < εl 6 ε(z) 6 1 on Σ,

then the operator [I − (1 − ε)K]−1 has an inverse in L(Lp(Σ), Lp(Σ)).

(4) The operator G is positive semi-definite and selfadjoint in L2(Σ). The operator

H := I −G is positive, selfadjoint in L2(Σ), and satisfies for all 1 6 p 6 ∞ the
norm estimate ‖H‖L(Lp(Σ),Lp(Σ)) 6 1.

(5) Then, the kernel of the operator G consists of the functions constant almost

everywhere on Σ.

Lemma C.3. Let Σ ∈ C1,δ for some δ > 0.

(1) There exists a positive constant c̃ such that for all ψ ∈ V 2,5
Γ (Ω),

∫

Ω

|∇ψ|2 +

∫

Σ

G(|ψ|3ψ)ψ > c̃min{‖ψ‖2
V 2,5
Γ

(Ω)
, ‖ψ‖5

V 2,5
Γ

(Ω)
}.

(2) If ε < 1 on Σ, there exists a positive constant c such that for all ψ ∈ L1(Σ) with

the property
∫
Σ ψdS = 0,

∫
ΣG(ψ)sign(ψ) > c‖ψ‖L1(Σ).

P r o o f. For the proof of the point (1), see [14]. The proof of point (2) in [5] is

correct if ε does not take the value one. �

We also have the following result.
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Lemma C.4. Let F : R → R be a nondecreasing, continuous function with

F (0) = 0 and |F (t)| 6 C0(1 + |t|s) as |t| → ∞(0 6 s < ∞). Let 0 6 r < ∞ be an
arbitrary number. Then for all ψ ∈ Lr+s(Σ),

∫
Σ
G(|ψ|r−1ψ)F (ψ) > 0.

P r o o f. See [5]. �

Lemma C.5. Let Σ ∈ C1,δ for some δ > 0. Then the operator G has the

representation G = ε(I − H̃).

(1) For 1 < p <∞, the operator H̃ belongs to K(Lp(Σ), Lp(Σ)).

(2) If p > 1/δ, then H̃ belongs to K(Lp(Σ), C(Σ)).

(3) The operator H̃ has the following weak compactness property. If the sequence

{ψk} is bounded in the space L1(Σ), then we can find a subsequence {kj} and
some u ∈ L1(Σ) such that H̃(ψkj) ⇀ u in L1(Σ).

P r o o f. See [5]. �

Lemma C.6. Let (X,A, µ) be a measurable space such that µ(X) < ∞. For a
measurable function u : X → R and 1 < p <∞, define

[u]Lp
w(Ω) := sup

t>0
{tµ({x ∈ X : |u(x)| > t})1/p}.

Then for all 1 < p <∞ and all 0 < ε < p− 1, one has the inequality

‖u‖Lp−ε(X,A,µ) 6

(p
ε

)1/(p−ε)

(µ(X))ε/p(p−ε)[u]Lp
w
.

P r o o f. See [10], Paragraph 2.18. �

The following Lemma is useful for obtaining estimates in the L1-norm.

Lemma C.7. For a p < 2, let θ ∈ W 1,p
Γ (Ω). Assume that there exists a constant

C1 > 0 such that for all δ ∈ ]0, 1[ one has
∫
Ω
|∇θ|2/(1 + θ)1+δ 6 C1/δ. Then the

estimate

(97)

∫

Ω

|∇θ|p 6 2meas (Ω)(2−p)/2cpC
p/2
1 + c̃pc

6−3p
0 C3−p

1 ,

is valid, where the constants cp, c̃p depend only on p and c0 is the embedding constant

of W 1,p
Γ (Ω) →֒ Lp∗

(Ω) (p∗ = Sobolev embedding exponent).

P r o o f. We can follow the lines of [18], [17]. �

The next two Lemmas help us to shorten our proofs. We recall the notation (45).
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Lemma C.8. If gδ −→ g in L1(Ω̃), then also [gδ](δ) −→ g in L1(Ω̃) as δ → 0.

P r o o f. We have |[gδ](δ) − g| 6 |(gδ − g)/(1 + δgδ)| + δ|gδ||g|/(1 + δgδ) so that

the assertion directly follows by dominated convergence. �

Lemma C.9. Let uk, u ∈ L1(Ω) be such that uk → u almost everywhere and

such that ‖uk‖L1(Ω) → ‖u‖L1(Ω). Then uk → u strongly in L1(Ω).

P r o o f. See [8], I.2.3 Proposition 4. �
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