Turk J Math
(2014) 38: 706-727
(C) TÜBİTAK
doi:10.3906/mat-1209-59

Existence, global nonexistence, and asymptotic behavior of solutions for the Cauchy problem of a multidimensional generalized damped Boussinesq-type equation

Erhan PİŞKiN, Necat POLAT*
Dicle University, Department of Mathematics, 21280 Diyarbakır, Turkey

Received: 01.10.2012 • Accepted: 04.03.2013 • Published Online: 25.04.2014 • Printed: 23.05 .2014

Abstract

We consider the existence, both locally and globally in time, the global nonexistence, and the asymptotic behavior of solutions for the Cauchy problem of a multidimensional generalized Boussinesq-type equation with a damping term.

Key words: Existence, global nonexistence, asymptotic behavior, Boussinesq equations, damping term

1. Introduction

In this paper, we study the Cauchy problem of the generalized multidimensional Boussinesq-type equation with a damping term

$$
\begin{gather*}
u_{t t}-\triangle u-a \triangle u_{t t}+\triangle^{2} u+\triangle^{2} u_{t t}-k \triangle u_{t}=\triangle f(u), \quad(x, t) \in R^{n} \times(0,+\infty) \tag{1.1}\\
u(x, 0)=u_{0}(x), \quad u_{t}(x, 0)=u_{1}(x), \quad x \in R^{n} \tag{1.2}
\end{gather*}
$$

where $u(x, t)$ denotes the unknown function, $f(s)$ is the given nonlinear function, $u_{0}(x)$ and $u_{1}(x)$ are the given initial value functions, k is a constant, the subscript t indicates the partial derivative with respect to t, n is the dimension of space variable x, and \triangle denotes the Laplace operator in R^{n}.

The effects of small nonlinearity and dispersion are taken into consideration in the derivation of Boussinesq equations, but in many real situations, damping effects are compared in strength to the nonlinear and dispersive ones. Therefore, the damped Boussinesq equation is considered as well:

$$
\begin{equation*}
u_{t t}-2 b u_{t x x}=-\alpha u_{x x x x}+u_{x x}+\beta\left(u^{2}\right)_{x x} \tag{1.3}
\end{equation*}
$$

where $u_{t x x}$ is the damping term, $a, b=$ const >0, and $\beta=$ const $\in R$ (see [6] and references therein).
Varlamov [12] investigated the long-time behavior of solutions to initial value, spatially periodic, and initial-boundary value problems for equation (1.3) in 2 space dimensions. Polat et al. [8] established the blow up of the solution for the initial boundary value problem of the damped Boussinesq equation

$$
u_{t t}-b u_{x x}+\delta u_{x x x x}-r u_{x x t}=f(u)_{x x}
$$

[^0]
PİŞKİN and POLAT/Turk J Math

The asymptotic behavior and the the blow up of the solution for a nonlinear evolution equation of fourth order

$$
u_{t t}-a_{1} u_{x x}-a_{2} u_{x x t}-a_{3} u_{x x t t}=f\left(u_{x}\right)_{x}
$$

were established in [1].
Polat and Kaya [7] studied the existence, both locally and globally in time, the asymptotic behavior, and the blow up of the solution for a class of nonlinear wave equations with dissipative and dispersive terms

$$
u_{t t}-u_{x x}-u_{x x t t}-\lambda u_{x x t}+u=f\left(u_{x}\right)_{x}
$$

Wang and Chen [14] studied the global existence and the blow up of the solution for the Cauchy problem of a generalized double dispersion equation

$$
\begin{equation*}
u_{t t}-u_{x x}-u_{x x t t}+u_{x x x x}-\alpha u_{x x t}=f(u)_{x x} \tag{1.4}
\end{equation*}
$$

Polat and Ertas [6] extended the result of [14] to the multidimensional version of equation (1.4).
Recently, higher order Boussinesq equations have been investigated. Schneider and Eugene [9] considered a class of Boussinesq equations that models the water wave problem with surface tension as follows:

$$
u_{t t}-u_{x x}-u_{x x t t}-\mu u_{x x x x}+u_{x x x x t t}=\left(u^{2}\right)_{x x}
$$

where $x, t, \mu \in R$ and $u(x, t) \in R$.
Wang and $\mathrm{Mu}[15]$ obtained the global existence and the blow up of the solution for the Cauchy problem of equation

$$
\begin{equation*}
u_{t t}-u_{x x}-u_{x x t t}+u_{x x x x}+u_{x x x x t t}=f(u)_{x x} \tag{1.5}
\end{equation*}
$$

in multidimensional form. Wang and Guo [16] obtained the local existence and the blow up of the solution for the initial boundary value problem of equation (1.5) in the absence of $u_{x x}$ and $u_{x x t t}$ terms; in order to prove the local existence the Galerkin method was used, and the blow up was obtained by using the concavity method of Glassey. Wang and Xue [17] obtained the global existence and nonexistence of the solution for the Cauchy problem of equation (1.5) when $f(u)=\beta|u|^{p}, \beta \neq 0$, and $p>1$ are constants, by the potential well method. Wang and Xu [18] obtained the global existence and nonexistence of the solution for the Cauchy problem of equation (1.5) in the absence of $u_{x x}$ and $u_{x x t t}$ terms. When $f(u)=-\beta|u|^{p} u, \beta>0$, and $p>1$ are constants, the global existence and nonexistence are proved with the aid of the potential well method. Duruk et al. [2] established the global well-posedness of the Cauchy problem of equation (1.5) in the absence of $u_{x x x x}$ term.

Throughout this paper, we use the following notations and lemmas.
$L^{p} \quad(1 \leq p \leq \infty)$ denotes the usual space of all L^{p} functions on R^{n} with norm $\|f\|_{L^{p}}=\|f\|_{p}$ and the abbreviations $\|f\|_{L^{2}}=\|f\|$ will be used. H^{s} denotes the usual Sobolev space on R^{n} with norm $\|f\|_{H^{s}}=$ $\left\|(I-\triangle)^{\frac{s}{2}} f\right\|_{2}$, where $s \in R . u * v$ is the convolution defined by

$$
u * v(x)=\int_{R} u(y) v(x-y) d y
$$

PİŞKĩ and POLAT/Turk J Math

Lemma 1.1 (see [13]). Assume that $f(u) \in C^{k}(R), f(0)=0, u \in H^{s} \cap L^{\infty}$, and $k=[s]+1$, where $s \geq 0$. Then we have

$$
\|f(u)\|_{s} \leq C_{0}\left(\|u\|_{\infty}\right)\|u\|_{s}
$$

where $C_{0}\left(\|u\|_{\infty}\right)$ is a constant dependent on $\|u\|_{\infty}$.
Lemma 1.2 (see [13]). If $s>0$, then $H^{s} \cap L^{\infty}$ is an algebra. Moreover,

$$
\|u v\|_{s} \leq C\left(\|u\|_{\infty}\|v\|_{s}+\|u\|_{s}\|v\|_{\infty}\right)
$$

for $u, v \in H^{s} \cap L^{\infty}$.
Lemma 1.3 (Sobolev imbedding theorem) (see [11]). (1) If $s>\frac{n}{2}+k$, where k is a nonnegative integer, then

$$
H^{s} \subset C^{k}\left(R^{n}\right) \cap L^{\infty}
$$

(2) If $s=\frac{n}{2}$, then for $p \in[2, \infty)$

$$
H^{s} \subset L^{p}
$$

(3) If $s<\frac{n}{2}$, we have

$$
H^{s} \subset L^{\frac{2 n}{n-2}}
$$

Let $G(x)$ be the fundamental solution of the partial differential equation

$$
u(x)-\triangle u(x)=0
$$

We use the Fourier transform to obtain

$$
G(x)=\frac{1}{(4 \pi)^{\frac{n}{2}}} \int_{0}^{\infty} e^{-|x|^{2} / 4 \delta} e^{-\delta} \delta^{-n / 2} d \delta, \quad x \in R^{n}
$$

From [10], we can prove that the fundamental solution $G(x)$ satisfies the following properties.
Lemma 1.4 (see [10]).
(1) The fundamental solution $G(x)$ is defined and continuous on R^{n}, and $G(x)>0$.
(2) $G(x) \in L^{q}\left(R^{n}\right)$ and $\|G(x)\|_{1}=1$, where $1 \leq q \leq \infty$ if $n=1,1 \leq q<\infty$ if $n=2$, $1 \leq q \leq n /(n-2)$ if $n \geq 3$.
(3) $G(x)$ satisfies the equation

$$
G(x)-\triangle G(x)=\delta(x)
$$

where $\delta(x)$ is the Dirac delta function.
(4)

$$
\|G * u\|_{s}=\|u\|_{s-2}
$$

where $u * v$ denotes the convolution of u and v.
The plan of this paper is as follows. In section 2 , for the special case $a=2$, we prove the existence and the uniqueness of the local solution for problem (1.1), (1.2). The existence and the uniqueness of the global solution of the problem are proved in section 3. The proof of the global nonexistence of the solution of the problem is given in Section 4. In Section 5, the asymptotic behavior of the global solution for the problem is discussed.

PİŞKİN and POLAT/Turk J Math

2. Existence and uniqueness of local solution

In this section, we prove the existence and the uniqueness of the local solution for problem (1.1), (1.2) by contraction mapping principle. For this, we construct the solution of the problem as a fixed point of the solution operator associated with a related family of the Cauchy problem for a linear wave equation.

We can rewrite equation (1.1) as follows:

$$
\begin{equation*}
\left[u_{t t}-\Delta u-\Delta u_{t t}+f(u)\right]-\Delta\left[u_{t t}-\Delta u-\triangle u_{t t}+f(u)\right]=f(u)+k \triangle u_{t} \tag{2.6}
\end{equation*}
$$

Using the fundamental solution $G(x)$, equation (2.1) is equivalent to

$$
\begin{equation*}
u_{t t}-\triangle u-\Delta u_{t t}=-f(u)+G *\left[f(u)+k \triangle u_{t}\right] \tag{2.7}
\end{equation*}
$$

Now, we proceed with the following linear wave equation

$$
\begin{equation*}
u_{t t}-\Delta u-\triangle u_{t t}=h(x, t), \quad x \in R^{n}, \quad t>0 \tag{2.8}
\end{equation*}
$$

with the initial value conditions (1.2). By means of the Galerkin method and integral estimations we can prove the following lemma.

Lemma 2.1 (see[5]). Assume that $u_{0} \in H^{s+1}, u_{1} \in H^{s+1}$, for any $T>0, h \in L^{2}\left([0, T] ; H^{s}\right) \cap C\left([0, T] ; H^{s-1}\right)$, then problem (2.3), (1.2) has a unique solution $u \in C^{1}\left([0, T] ; H^{s+1}\right)$ and there exists the estimation

$$
\begin{gather*}
\|u(., t)\|_{s+1}^{2}+\left\|u_{t}(., t)\right\|_{s+1}^{2}+\left\|u_{t t}(., t)\right\|_{s+1}^{2} \\
\leq \quad 6 e^{3 T}\left(\left\|u_{0}\right\|_{s+1}^{2}+\left\|u_{1}\right\|_{s+1}^{2}+\int_{0}^{t}\|h(., \tau)\|_{s}^{2} d \tau\right) \\
\quad+2 \max _{t \in[0, T]}\|h(., t)\|_{s-1}^{2}, \quad 0 \leq t \leq T \tag{2.9}
\end{gather*}
$$

where $s \geq 1$ is an arbitrary integer.
Let us define the function space

$$
B(T)=C^{2}\left([0, T] ; H^{s+1}\right),
$$

which is endowed with the norm defined by

$$
\|u(t)\|_{B(T)}^{2}=\max _{t \in[0, T]}\left[\|u(., t)\|_{s+1}^{2}+\left\|u_{t}(., t)\right\|_{s+1}^{2}+\left\|u_{t t}(., t)\right\|_{s+1}^{2}\right], \quad \forall u \in B(T)
$$

It is easy to see that $B(T)$ is a Banach space.
For $M, T>0, u_{0} \in H^{s+1}, u_{1} \in H^{s+1}$, set

$$
\begin{equation*}
X(M, T)=\left\{u \mid u \in B(T),\|u(t)\|_{B(T)} \leq M\right\} \tag{2.10}
\end{equation*}
$$

Obviously, $X(M, T)$ is a nonempty complete metric space for any $M, T>0$. The Sobolev imbedding theorem and Lemma 1.4 imply that if $u \in X(M, T)$ and $s>\frac{n}{2}+1$ is a positive integer, then $u \in C\left([0, T] \times R^{n}\right)$. Moreover, it follows from (2.5) and Sobolev imbedding theorem that

$$
\begin{equation*}
\max _{(x, t) \in R^{n} \times[0, T]}\|\triangle u\| \leq M, \quad \forall u \in X(M, T) \tag{2.11}
\end{equation*}
$$

For $\forall w \in X(M, T)$, we consider the linear equation

$$
\begin{equation*}
u_{t t}-\Delta u-\triangle u_{t t}=-f(w)+G *\left[f(w)+k \Delta w_{t}\right] \tag{2.12}
\end{equation*}
$$

and let S denote the map that carries w into the unique solution. Our goal is to show that S has a unique fixed point in $X(M, T)$ for appropriately chosen M and T. For this purpose, we shall employ the contraction mapping principle and Lemma 2.1. Firstly, we prove the following lemma.

Lemma 2.2 Assume that $s>\frac{n}{2}+1, u_{0} \in H^{s+1}, u_{1} \in H^{s+1}$, and $f, g \in C^{[s]+1}$; then S maps $X(M, T)$ into $X(M, T)$ for M sufficiently large and T sufficiently small relative to M.
Proof Let $M, T>0$ and $w \in X(M, T)$ is given. Define $h(x, t)$ by

$$
\begin{equation*}
h(x, t)=-f(w(x, t))+G *\left[f(w(x, t))+k \triangle w_{t}(x, t)\right] . \tag{2.13}
\end{equation*}
$$

Using Lemmas 1.1 and 1.4, it easily follows that

$$
\begin{aligned}
\|h(x, t)\|_{s} & \leq\|f(w)\|_{s}+\left\|G *\left[f(w)+k \triangle w_{t}\right]\right\|_{s} \\
& \leq\left(2 C_{0}+k\right) M
\end{aligned}
$$

and

$$
\begin{equation*}
\int_{0}^{t}\|h(., \tau)\|_{s}^{2} d \tau \leq\left(2 C_{0}+k\right)^{2} M^{2} T \tag{2.14}
\end{equation*}
$$

Moreover, from Lemmas 1.1, 1.2, and 1.3, we have

$$
\begin{align*}
h_{t}(x, t)= & -f^{\prime}(w(x, t)) w_{t}(x, t) \\
& +G *\left[f^{\prime}(w(x, t)) w_{t}(x, t)+k \triangle w_{t t}(x, t)\right] \tag{2.15}
\end{align*}
$$

which yields

$$
\begin{align*}
\left\|h_{t}(x, t)\right\|_{s-1} \leq & C\left(\left\|f^{\prime}(w(x, t))\right\|_{\infty}\left\|w_{t}\right\|_{s-1}+\left\|f^{\prime}(w(x, t))\right\|_{s-1}\left\|w_{t}\right\|_{\infty}\right) \\
& +C\left(\left\|f^{\prime}(w(x, t))\right\|_{\infty}\left\|w_{t}\right\|_{s-2}+\left\|f^{\prime}(w(x, t))\right\|_{s-2}\left\|w_{t}\right\|_{\infty}\right) \\
& +k\left\|\Delta w_{t t}\right\|_{s-1} \\
\leq & 4 C C_{0} M^{2}+k M \tag{2.16}
\end{align*}
$$

and

$$
\begin{align*}
\max _{t \in[0, T]}\|h(., t)\|_{s-1}= & \max _{t \in[0, T]}\left\|h(., 0)+\int_{0}^{t} h_{\tau}(., \tau) d \tau\right\|_{s-1} \\
\leq & \left\|-f\left(u_{0}\right)+G *\left[f\left(u_{0}\right)+k \triangle u_{1}\right]\right\|_{s-1} \\
& +\left(4 C C_{0} M+k\right) M T . \tag{2.17}
\end{align*}
$$

From (2.9) and (2.12) we conclude that $h(x, t) \in L^{2}\left([0, T] ; H^{s}\right) \cap C\left([0, T] ; H^{s-1}\right)$.

From Lemma 2.1 we have

$$
\begin{align*}
& \|u(., t)\|_{s+1}^{2}+\left\|u_{t}(., t)\right\|_{s+1}^{2}+\left\|u_{t t}(., t)\right\|_{s+1}^{2} \\
\leq & 6 e^{3 T}\left(\left\|u_{0}\right\|_{s+1}^{2}+\left\|u_{1}\right\|_{s+1}^{2}\right)+6 e^{3 T}\left(2 C_{0}+k\right)^{2} M^{2} T \\
& +4\left\|-f\left(u_{0}\right)+G *\left[f\left(u_{0}\right)+k \triangle u_{1}\right]\right\|_{s-1}^{2} \\
& +4\left(4 C C_{0} M+k\right)^{2} M^{2} T^{2} . \tag{2.18}
\end{align*}
$$

If M and T satisfy

$$
\begin{align*}
& M^{2} \geq 12 e^{3}\left(\left\|u_{0}\right\|_{s+1}^{2}+\left\|u_{1}\right\|_{s+1}^{2}\right) \\
&+8\left\|-f\left(u_{0}\right)+G *\left[f\left(u_{0}\right)+k \Delta u_{1}\right]\right\|_{s-1}^{2} \tag{2.19}\\
& T \leq \min \left\{1,\left[12 e^{3}\left(2 C_{0}+k\right)^{2}+8\left(4 C C_{0} M+k\right)^{2}\right]^{-1}\right\}, \tag{2.20}
\end{align*}
$$

then the right-hand side of (2.13) is dominated by M^{2} and consequently

$$
\|(S w)(., t)\|_{s+1}^{2}+\left\|(S w)_{t}(., t)\right\|_{s+1}^{2}+\left\|(S w)_{t t}(., t)\right\|_{s+1}^{2} \leq M^{2}, \quad \forall w \in X(M, T)
$$

This completes the proof of Lemma 2.2.

Lemma 2.3 $S: X(M, T) \longrightarrow X(M, T)$ is strictly contractive if M is sufficiently large and T is sufficiently small relative to M.
Proof Let $M, T>0$ and $w, \bar{w} \in X(M, T)$ be given. For w and \bar{w} there are the corresponding solutions $u=S w, \bar{u}=S \bar{w}$, for problem (2.3), (1.2). Set $U=u-\bar{u}, W=w-\bar{w}$, and note that

$$
\begin{gather*}
U_{t t}-\Delta U-\Delta U_{t t}=H(x, t), \quad(x, t) \in R^{n} \times[0, T] \tag{2.21}\\
U(x, 0)=0, U_{t}(x, 0)=0, \quad x \in R^{n} \tag{2.22}
\end{gather*}
$$

where $H(x, t)$ is defined by

$$
\begin{equation*}
H(x, t)=-f(w)+f(\bar{w})+G *\left[f(w)-f(\bar{w})+k \Delta W_{t}\right] \tag{2.23}
\end{equation*}
$$

It is observed that H has the smoothness required to apply Lemma 1.1 to (2.16), (2.17). By aid of Lemma 2.1 we estimate U in terms of W.

A simple computation shows that

$$
\begin{align*}
H(x, t)= & -\int_{0}^{1} f^{\prime}(\theta \bar{w}+(1-\theta) w) d \theta W \\
& +G *\left[\int_{0}^{1} f^{\prime}(\theta \bar{w}+(1-\theta) w) d \theta W+k \Delta W_{t}\right] \tag{2.24}
\end{align*}
$$

$$
\begin{align*}
H_{t}(x, t)= & f^{\prime}(\bar{w}) W_{t}-\int_{0}^{1} f^{\prime \prime}(\theta \bar{w}+(1-\theta) w) d \theta W w_{t} \\
& +G *\left[\int_{0}^{1} f^{\prime \prime}(\theta \bar{w}+(1-\theta) w) d \theta W w_{t}-f^{\prime}(\bar{w}) W_{t}+k \triangle W_{t t}\right] \tag{2.25}
\end{align*}
$$

where $0<\theta<1$ is a constant. Making use of Lemmas 1.1-1.4, we deduce from (2.19) that

$$
\begin{align*}
\|H(., t)\|_{s} \leq & C\left(\int_{0}^{1}\left\|f^{\prime}(\theta \bar{w}+(1-\theta) w)\right\|_{\infty} d \theta\|W\|_{s}+\int_{0}^{1}\left\|f^{\prime}(\theta \bar{w}+(1-\theta) w)\right\|_{s} d \theta\|W\|_{\infty}\right) \\
& +C\left(\int_{0}^{1}\left\|f^{\prime}(\theta \bar{w}+(1-\theta) w)\right\|_{\infty} d \theta\|W\|_{s-2}+\int_{0}^{1}\left\|f^{\prime}(\theta \bar{w}+(1-\theta) w)\right\|_{s-2} d \theta\|W\|_{\infty}\right) \\
& +k\left\|\triangle W_{t}\right\|_{s} \\
\leq & 4 C C_{0} M\|W\|_{s+1}+k\left\|W_{t}\right\|_{s+1} . \tag{2.26}
\end{align*}
$$

Similarly, from (2.20) we have

$$
\begin{equation*}
\left\|H_{t}(., t)\right\|_{s-1} \leq 4 C C_{0} M\|W\|_{s+1}+4 C C_{0} M\left\|W_{t}\right\|_{s+1}+k\left\|W_{t t}\right\|_{s+1} \tag{2.27}
\end{equation*}
$$

Using the fact that $H(x, 0)=0$, we have

$$
\begin{gather*}
\int_{0}^{t}\|H(., \tau)\|_{s}^{2} d \tau \leq 2\left[\left(4 C C_{0} M\right)^{2} \max _{t \in[0, T]}\|W\|_{s+1}^{2}+k^{2}\left\|W_{t}\right\|_{s+1}^{2}\right] T \tag{2.28}\\
\max _{t \in[0, T]}\left\|H_{t}(., t)\right\|_{s-1}^{2} \leq 3\left[\left(4 C C_{0} M\right)^{2} \max _{t \in[0, T]}\|W\|_{s+1}^{2}+\left(4 C C_{0} M^{2}\right)^{2} \max _{t \in[0, T]}\left\|W_{t}\right\|_{s+1}^{2}\right. \\
\left.+k^{2} \max _{t \in[0, T]}\left\|W_{t t}\right\|_{s+1}^{2}\right] T^{2} \tag{2.29}
\end{gather*}
$$

Therefore, by Lemma 2.1 we have

$$
\begin{aligned}
& \max _{t \in[0, T]}\left[\|U(., t)\|_{s+1}^{2}+\left\|U_{t}(., t)\right\|_{s+1}^{2}+\left\|U_{t t}(., t)\right\|_{s+1}^{2}\right] \\
\leq & 12 e^{3 T}\left[\left(4 C C_{0} M\right)^{2} \max _{t \in[0, T]}\|W\|_{s+1}^{2}+k^{2}\left\|W_{t}\right\|_{s+1}^{2}\right] T \\
& +6\left[\left(4 C C_{0} M\right)^{2} \max _{t \in[0, T]}\|W\|_{s+1}^{2}+\left(4 C C_{0} M^{2}\right)^{2} \max _{t \in[0, T]}\left\|W_{t}\right\|_{s+1}^{2}\right. \\
& \left.+k^{2} \max _{t \in[0, T]}\left\|W_{t t}\right\|_{s+1}^{2}\right] T^{2} \\
\leq & {\left[12 e^{3}\left(4 C C_{0} M\right)^{2}+96\left(C C_{0} M\right)^{2}+k^{2}\right] } \\
& \left(\max _{t \in[0, T]}\|W\|_{s+1}^{2}+\max _{t \in[0, T]}\left\|W_{t}\right\|_{s+1}^{2}+\max _{t \in[0, T]}\left\|W_{t t}\right\|_{s+1}^{2}\right)\left(T^{2}+T\right) .
\end{aligned}
$$

If M, T satisfy (2.14) and (2.15), respectively and

$$
\begin{equation*}
T \leq \min \left\{1,\left[12 e^{3}\left(4 C C_{0} M\right)^{2}+96\left(C C_{0} M\right)^{2}+6 k^{2}\right]^{-1}\right\} \tag{2.30}
\end{equation*}
$$

then S is strictly contractive. This completes the proof of Lemma 2.3.

Theorem 2.1 Assume that $s>\frac{n}{2}+1, n \geq 1, u_{0} \in H^{s+1}$, $u_{1} \in H^{s+1}$, and $f, g \in C^{[s]+1}$; then problem (1.1), (1.2) has a unique local solution $u(x, t)$ defined on a maximal time interval $\left[0, T_{0}\right), T_{0}>0$ with

$$
u \in C^{2}\left(\left[0, T_{0}\right) ; H^{s+1}\right)
$$

Moreover, if

$$
\begin{equation*}
\sup _{t \in\left[0, T_{0}\right)}\left[\|u(., t)\|_{s+1}^{2}+\left\|u_{t}(., t)\right\|_{s+1}^{2}+\left\|u_{t t}(., t)\right\|_{s+1}^{2}\right]<\infty \tag{2.31}
\end{equation*}
$$

then $T_{0}=\infty$.
Proof From Lemmas 2.2, 2.3 and the contraction mapping principle, it follows that for appropriately chosen $T>0, S$ has a unique fixed point $u(x, t) \in X(M, T)$, which is a strong solution of problem (1.1), (1.2). It is not difficult to prove the uniqueness of the solution that belongs to $B\left(T^{\prime}\right)$ for each $T^{\prime}>0$.

In fact, let $u_{1}, u_{2} \in B\left(T^{\prime}\right)$ be 2 solutions of problem (1.1), (1.2). Let $u=u_{1}-u_{2}$, then

$$
u_{t t}-\triangle u-2 \triangle u_{t t}+\triangle^{2} u+\triangle^{2} u_{t t}-k \triangle u_{t}=\triangle\left[f\left(u_{1}\right)-f\left(u_{2}\right)\right]
$$

Multiplying the above equation by $(-\triangle)^{-1} u_{t}$ and integrating the product with respect to x, we obtain that

$$
\frac{1}{2} \frac{d}{d t}\left[\left\|(-\triangle)^{-\frac{1}{2}} u_{t}\right\|^{2}+\|u\|^{2}+2\left\|u_{t}\right\|^{2}+\|\nabla u\|^{2}+\left\|\nabla u_{t}\right\|^{2}\right]+k\left\|u_{t}\right\|^{2}=\int_{R^{n}}\left[f\left(u_{2}\right)-f\left(u_{1}\right)\right] u_{t} d x
$$

From the definition of $B\left(T^{\prime}\right), s>\frac{n}{2}+1$, and Sobolev imbedding theorem, we have $\left\|u_{i}(t)\right\|_{\infty} \leq C_{1}\left(T^{\prime}\right)$ for $i=1,2$ and $0 \leq t \leq T^{\prime}<T$, where $C_{1}\left(T^{\prime}\right)$ is a constant dependent on T^{\prime}. Thus, we get from the Cauchy inequality that

$$
\begin{aligned}
\left|\int_{R^{n}}\left[f\left(u_{1}\right)-f\left(u_{2}\right)\right] u_{t} d x\right| & \leq\left\|f\left(u_{1}\right)-f\left(u_{2}\right)\right\|\left\|u_{t}\right\| \\
& \leq C_{2}\left(T^{\prime}\right)\|u\|\left\|u_{t}\right\|
\end{aligned}
$$

where $C_{2}\left(T^{\prime}\right)$ is a constant dependent on $C_{1}\left(T^{\prime}\right)$. From the Young inequality it follows that

$$
\left[\left\|(-\triangle)^{-\frac{1}{2}} u_{t}\right\|^{2}+\|u\|^{2}+2\left\|u_{t}\right\|^{2}+\|\nabla u\|^{2}+\left\|\nabla u_{t}\right\|^{2}\right]+k \int_{0}^{t}\left\|u_{\tau}\right\|^{2} d \tau \leq C_{2}\left(T^{\prime}\right) \int_{0}^{t}\left[\|u\|^{2}+\left\|u_{\tau}\right\|^{2}\right] d \tau
$$

From the above inequality we have

$$
\begin{equation*}
\|u\|^{2}+\left\|u_{t}\right\|^{2} \leq\left[C_{2}\left(T^{\prime}\right)+2|k|\right] \int_{0}^{t}\left[\|u\|^{2}+\left\|u_{\tau}\right\|^{2}\right] d \tau \tag{2.32}
\end{equation*}
$$

By using Gronwall's inequality in (2.27), we get $\|u\|^{2}+\left\|u_{t}\right\|^{2} \equiv 0$ for $0 \leq t \leq T^{\prime}$. Hence $u \equiv 0$ for $0 \leq t \leq T^{\prime}$, i.e. problem $(1.1),(1.2)$ has at most one solution that belongs to $B\left(T^{\prime}\right)$.

Now, let $\left[0, T_{0}\right)$ be the maximal time interval of existence for $u \in B\left(T_{0}\right)$. We want to show that if (2.26) is satisfied, then $T_{0}=\infty$.

Suppose that (2.26) holds and $T_{0}<\infty$. For any $T^{\prime} \in\left[0, T_{0}\right)$, we consider the integral equation

$$
\begin{gather*}
v_{t t}-\Delta v-\Delta v_{t t}=-f(v)+G *\left[f(v)+k \triangle v_{t}\right] \tag{2.33}\\
v(x, 0)=u\left(x, T^{\prime}\right), \quad v_{t}(x, 0)=u_{t}\left(x, T^{\prime}\right) \tag{2.34}
\end{gather*}
$$

By virtue of $(2.26), \sup _{t \in\left[0, T_{0}\right)}\left[\|u\|_{s+1}^{2}+\left\|u_{t}\right\|_{s+1}^{2}+\left\|u_{t t}\right\|_{s+1}^{2}\right]<\infty$ is uniformly bounded about $T^{\prime} \in\left[0, T_{0}\right)$, which allows us to choose $T^{*} \in\left(0, T_{0}\right)$ such that for each $T^{\prime} \in\left[0, T_{0}\right)$, the integral equation (2.28), (2.29) has a unique solution $v(x, t) \in B\left(T^{*}\right)$. The existence of such a T^{*} follows from Lemmas 2.2 and 2.3 and the contraction mapping principle. In particular, (2.15) and (2.25) reveal that T^{*} can be selected independent of $T^{\prime} \in\left[0, T_{0}\right)$. Set $T^{\prime}=T_{0}-T^{*} / 2$, let v denote the corresponding solution of the integral equation (2.28), (2.29) and define $\bar{u}(x, t)$ by

$$
\bar{u}(x, t)=\left\{\begin{align*}
u(x, t), & t \in\left[0, T^{\prime}\right] \tag{2.35}\\
v\left(x, t-T^{\prime}\right), & t \in\left[T^{\prime}, T_{0}+T^{*} / 2\right]
\end{align*}\right.
$$

By construction, $\bar{u}(x, t)$ is the solution of problem (1.1), (1.2) on $\left[0, T_{0}+T^{*} / 2\right]$, and by the local uniqueness, $\bar{u}(x, t)$ extends $u(x, t)$. This violates the maximality to $\left[0, T_{0}\right)$. Hence, if (2.26) holds, then $T_{0}=\infty$. This completes the proof of the theorem.

3. Existence and uniqueness of global solution

In this section we prove the existence and the uniqueness of the global solution for problem (1.1), (1.2). For this purpose we are going to make a priori estimates of the local solutions for the problem.

Lemma 3.1 Suppose that $f(u) \in C(R), F(u)=\int_{0}^{u} f(s) d s, u_{0} \in H^{1}, u_{1} \in H^{1}$ and $F\left(u_{0}\right) \in L^{1}$. Then for the solution $u(x, t)$ of problem (1.1), (1.2), we have the energy identity

$$
\begin{align*}
E(t) & =\left\|(-\triangle)^{-\frac{1}{2}} u_{t}\right\|^{2}+\|u\|^{2}+2\left\|u_{t}\right\|^{2}+\|\nabla u\|^{2}+\left\|\nabla u_{t}\right\|^{2}+2 k \int_{0}^{t}\left\|u_{\tau}\right\|^{2} d \tau+2 \int_{R^{n}} F(u) d x \\
& =E(0) \tag{3.1}
\end{align*}
$$

PİŞKİN and POLAT/Turk J Math

Here and in the sequel $(-\triangle)^{-\alpha} u(x)=\mathcal{F}^{-1}\left[|x|^{-2 \alpha} \mathcal{F} u(x)\right], \mathcal{F}$ and \mathcal{F}^{-1} denote respectively Fourier transformation and inverse Fourier transformation in R^{n} (see [10]).
Proof Multiplying Eq. (1.1) by $(-\triangle)^{-1} u_{t}$ and integrating the product with respect to x, we obtain that

$$
\begin{gathered}
\left(u_{t t}-\Delta u-2 \Delta u_{t t}+\triangle^{2} u+\triangle^{2} u_{t t}-k \Delta u_{t}-\Delta f(u),(-\triangle)^{-1} u_{t}\right)=0, \\
\left((-\triangle)^{-1} u_{t t}+u+2 u_{t t}-\Delta u-\Delta u_{t t}+k u_{t}+f(u), u_{t}\right)=0, \\
\left((-\triangle)^{-\frac{1}{2}} u_{t t},(-\triangle)^{-\frac{1}{2}} u_{t}\right)+\left(u, u_{t}\right)+2\left(u_{t t}, u_{t}\right)-\left(\Delta u, u_{t}\right)-\left(\Delta u_{t t}, u_{t}\right)+k\left(u_{t}, u_{t}\right)+\left(f(u), u_{t}\right)=0, \\
\frac{1}{2} \frac{d}{d t}\left[\left\|(-\triangle)^{-\frac{1}{2}} u_{t}\right\|^{2}+\|u\|^{2}+2\left\|u_{t}\right\|^{2}+\|\nabla u\|^{2}+\left\|\nabla u_{t}\right\|^{2}+2 \int_{R^{n}} F(u) d x\right]+k\left\|u_{t}\right\|^{2}=0,
\end{gathered}
$$

where (., .) denotes the inner product of L^{2} space. Integrating the above equality with respect to t over $[0, t]$, we get (3.1). The lemma is proved.

Lemma 3.2 Suppose that the assumptions of Lemma 3.1 hold and $F(u) \geq 0$ or $f^{\prime}(u)$ is bounded below, i.e. there is a constant A_{0} such that $f^{\prime}(u) \geq A_{0}$ for any $u \in R$, then the solution $u(x, t)$ of problem (1.1), (1.2) has the estimation

$$
\begin{equation*}
E_{1}(t)=\left\|(-\triangle)^{-\frac{1}{2}} u_{t}\right\|^{2}+\|u\|^{2}+2\left\|u_{t}\right\|^{2}+\|\nabla u\|^{2}+\left\|\nabla u_{t}\right\|^{2} \leq M_{1}(T), \quad \forall t \in[0, T] . \tag{3.2}
\end{equation*}
$$

Here and in the sequel $M_{i}(T)(i=1,2, \ldots)$ are constants dependent on T.
Proof i) If $F(u) \geq 0$, then from energy identity (3.1) we get

$$
E_{1}(t) \leq E(0)+2|k| \int_{0}^{t}\left\|u_{\tau}\right\|^{2} d \tau
$$

It follows from Gronwall's inequality and the above inequality that

$$
\begin{equation*}
E_{1}(t) \leq E(0) e^{2|k| T} . \tag{3.3}
\end{equation*}
$$

ii) If $f^{\prime}(u)$ is bounded below, let $f_{0}(u)=f(u)-k_{0} u$, where $k_{0}=\min \left\{A_{0}, 0\right\}(\leq 0)$, then $f_{0}(0)=0$, $f_{0}^{\prime}(u)=f^{\prime}(u)-k_{0} \geq 0$ and $f_{0}(u)$ is a monotonically increasing function. Then $F_{0}(u)=\int_{0}^{u} f_{0}(s) d s \geq 0$ and
$F(u)=\int_{0}^{u} f(s) d s=\int_{0}^{u}\left(f_{0}(s)+k_{0} s\right) d s=F_{0}(u)+\frac{k_{0}}{2} u^{2}$. From (3.1) we have

$$
\begin{aligned}
E_{1}(t)+2 \int_{R^{n}} F_{0}(u) d x & =E(0)-2 k \int_{0}^{t}\left\|u_{\tau}\right\|^{2} d \tau-k_{0}\|u\|^{2} \\
& \leq E(0)-2 k \int_{0}^{t}\left\|u_{\tau}\right\|^{2} d \tau-k_{0}\left\|u_{0}\right\|^{2}+\int_{0}^{t}\left(k_{0}^{2}\|u\|^{2}+\left\|u_{\tau}\right\|^{2}\right) d \tau \\
& \leq E(0)-k_{0}\left\|u_{0}\right\|^{2}+\left(2|k|+1+k_{0}^{2}\right) \int_{0}^{t}\left(\|u\|^{2}+\left\|u_{\tau}\right\|^{2}\right) d \tau
\end{aligned}
$$

It follows from Gronwall's inequality and the above inequality that

$$
\begin{equation*}
E_{1}(t) \leq\left(E(0)-k_{0}\left\|u_{0}\right\|^{2}\right) e^{\left(2|k|+1+k_{0}^{2}\right) T} \tag{3.4}
\end{equation*}
$$

We get (3.2) from inequalities (3.3) and (3.4). The lemma is proved.

Lemma 3.3 Under the conditions of Lemma 3.2 assume that $1 \leq n \leq 3$ and $\left|f^{\prime}(s)\right| \leq A|s|^{\rho}+B$, for $n=2$ or 3 , where ρ satisfies

$$
\begin{aligned}
& \frac{1}{2} \leq \rho<\infty \text { if } n=2 \\
& \frac{1}{2} \leq \rho \leq \frac{3}{2} \text { if } n=3
\end{aligned}
$$

Then the solution $u(x, t)$ of problem (1.1), (1.2) has the estimation

$$
\begin{equation*}
E_{2}(t)=\left\|\nabla u_{t}\right\|^{2}+\|\Delta u\|^{2}+2\left\|\Delta u_{t}\right\|^{2}+\left\|\nabla^{3} u\right\|^{2}+\left\|\nabla^{3} u_{t}\right\|^{2} \leq M_{2}(T), \forall t \in[0, T] \tag{3.5}
\end{equation*}
$$

Proof Multiplying equation (1.1) by $\triangle u_{t}$ and integrating the product over R^{n}, we obtain that

$$
\begin{equation*}
\frac{d}{d t} E_{2}(t)+2 k\left\|\triangle u_{t}\right\|^{2}=2 \int_{R^{n}} \triangle f(u) \triangle u_{t} d x \tag{3.6}
\end{equation*}
$$

PİŞKİN and POLAT/Turk J Math

When $n=1$, we conclude from Lemma 3.2 and Sobolev imbedding theorem that $u \in L^{\infty}, \nabla u \in L^{\infty}$. Therefore, from (3.6), Hölder inequality, Cauchy inequality, Lemma 1.1, and (3.2), we get

$$
\begin{align*}
\frac{d}{d t} E_{2}(t) & =-2 k\left\|\Delta u_{t}\right\|^{2}+2\left(\triangle f(u), \triangle u_{t}\right) \\
& \leq 2|k|\left\|\triangle u_{t}\right\|^{2}+2\|\Delta f(u)\|\left\|\triangle u_{t}\right\| \\
& \leq 2|k|\left\|\triangle u_{t}\right\|^{2}+2\|f(u)\|_{H^{2}}\left\|\triangle u_{t}\right\| \\
& \leq 2|k|\left\|\triangle u_{t}\right\|^{2}+2 K_{1}\left(\|u\|_{\infty}\right)\|u\|_{H^{2}}\left\|\triangle u_{t}\right\| \\
& \leq 2|k|\left\|\triangle u_{t}\right\|^{2}+K_{1}\left(\|u\|_{\infty}\right)\|u\|_{H^{2}}^{2}+\left\|\triangle u_{t}\right\|^{2} \\
& \leq 2|k|\left\|\triangle u_{t}\right\|^{2}+2 K_{1}\left(\|u\|_{\infty}\right)\left(\|u\|^{2}+\|\nabla u\|^{2}+\|\triangle u\|^{2}\right)+\left\|\Delta u_{t}\right\|^{2} \\
& \leq C_{1}\left(M_{1}(T)\right)\left(\|\triangle u\|^{2}+\left\|\triangle u_{t}\right\|^{2}+1\right) \tag{3.7}
\end{align*}
$$

Here and in the sequel $C_{i}\left(M_{j}(T)\right)(i=1,2, \ldots, \quad j=1,2, \ldots)$ are constants dependent on $M_{j}(T)$. Integrating (3.7) with respect to t and using the Gronwall's inequality we obtain (3.5).

When $n=2$ or 3 , from Hölder inequality, Cauchy inequality, Lemma 1.3 and (3.2) we have

$$
\begin{aligned}
\int_{R^{n}} \triangle f(u) \Delta u_{t} d x & =-\int_{R^{n}} \nabla f(u) \nabla^{3} u_{t} d x \\
& =-\int_{R^{n}} f^{\prime}(u) \nabla u \nabla^{3} u_{t} d x \\
& \leq\left\|f^{\prime}(u)\right\|_{4}\|\nabla u\|_{4}\left\|\nabla^{3} u_{t}\right\| \\
& \leq\left\|f^{\prime}(u)\right\|_{4}\|\nabla u\|_{H^{1}}\left\|\nabla^{3} u_{t}\right\| \\
& \leq\left\|f^{\prime}(u)\right\|_{4}\|u\|_{H^{2}}\left\|\nabla^{3} u_{t}\right\| \\
& \leq\left\|f^{\prime}(u)\right\|_{4}\left(\|u\|_{H^{2}}^{2}+\left\|\nabla^{3} u_{t}\right\|^{2}\right) \\
& \leq\left\|f^{\prime}(u)\right\|_{4}\left(\|u\|^{2}+\|\nabla u\|^{2}+\|\triangle u\|^{2}+\left\|\nabla^{3} u_{t}\right\|^{2}\right)
\end{aligned}
$$

When $n=2$, we have $H^{1} \hookrightarrow L^{q}$ for $2 \leq q<\infty$. From $\frac{1}{2} \leq \rho<\infty$, we have $2 \leq 4 \rho<\infty$. Hence by (3.2) we have $\left\|f^{\prime}(u)\right\|_{4} \leq C(\rho)$. Similarly, when $n=3$, we have $H^{1} \hookrightarrow L^{q}$ for $2 \leq q \leq 6$. From $\frac{1}{2} \leq \rho \leq \frac{3}{2}$ we have $2 \leq 4 \rho \leq 6$. Hence by (3.2) we have $\left\|f^{\prime}(u)\right\|_{4} \leq C(\rho)$.

Substitute the above inequality into (3.6) to get

$$
\begin{equation*}
\frac{d}{d t} E_{2}(t) \leq 2|k|\left\|\triangle u_{t}\right\|^{2}+2\left(\triangle f(u), \triangle u_{t}\right) \leq C_{3}\left(M_{1}(T)\right)\left(\|u\|^{2}+\|\nabla u\|^{2}+\|\triangle u\|^{2}+\left\|\nabla^{3} u_{t}\right\|^{2}\right) \tag{3.8}
\end{equation*}
$$

Integrating (3.8) with respect to t and using the Gronwall's inequality, we obtain (3.5). The lemma is proved.

Lemma 3.4 Under the conditions of Lemma 3.3 assume that $1 \leq n \leq 3, f(u) \in C^{[s]}(R), u_{0} \in H^{s+1}$, and $u_{1} \in H^{s+1}$; then the solution $u(x, t)$ of problem (1.1), (1.2) has the estimation

$$
\begin{equation*}
E_{3}(t)=\left\|\nabla^{s-1} u_{t}\right\|^{2}+\left\|\nabla^{s} u\right\|^{2}+2\left\|\nabla^{s} u_{t}\right\|^{2}+\left\|\nabla^{s+1} u\right\|^{2}+\left\|\nabla^{s+1} u_{t}\right\|^{2} \leq M_{3}(T), \forall t \in[0, T] \tag{3.9}
\end{equation*}
$$

Proof Multiplying Eq. (1.1) by $\triangle^{s-1} u_{t}$ and integrating the product over R^{n}, we obtain that

$$
\begin{equation*}
\frac{d}{d t} E_{3}(t)+2 k\left\|\nabla^{s} u_{t}\right\|^{2}=2 \int_{R^{n}} \nabla^{s} f(u) \nabla^{s} u_{t} d x \tag{3.10}
\end{equation*}
$$

From Lemmas 3.2 and 3.3 and Sobolev imbedding theorem, we know that $\nabla u \in L^{\infty}, u_{t} \in L^{\infty}, u \in L^{\infty}$. We get from Hölder inequality, Cauchy inequality, Lemma 1.1, and (3.2) that

$$
\begin{aligned}
\frac{d}{d t} E_{3}(t) & =-2 k\left\|\nabla^{s} u_{t}\right\|^{2}+2 \int_{R^{n}} \nabla^{s} f(u) \nabla^{s} u_{t} d x \\
& \leq 2|k|\left\|\nabla^{s} u_{t}\right\|^{2}+2 K_{2}\left(\|u\|_{\infty}\right)\left(\|u\|+\left\|\nabla^{s} u\right\|\right)\left\|\nabla^{s} u_{t}\right\| \\
& \leq C_{4}\left(M_{1}(T)\right)\left(\left\|\nabla^{s} u\right\|+\left\|\nabla^{s} u_{t}\right\|\right)
\end{aligned}
$$

Integrating the above inequality with respect to t and using the Gronwall's inequality, we obtain (3.9). The lemma is proved.

Theorem 3.1 Assume that $1 \leq n \leq 3, s>\frac{n}{2}+1$, $u_{0} \in H^{s+1}, u_{1} \in H^{s+1}, f(u) \in C^{[s]+1}(R), f^{\prime}(u)$ is bounded below, i.e. there is a constant A_{0} such that $f^{\prime}(u) \geq A_{0}$ for any $u \in R$. Moreover, assume that $1 \leq n \leq 3$, and $\left|f^{\prime}(s)\right| \leq A|s|^{\rho}+B$, for $n=2$ or 3 , where ρ satisfies

$$
\begin{aligned}
& \frac{1}{2} \leq \rho<\infty \text { if } n=2 \\
& \frac{1}{2} \leq \rho \leq \frac{3}{2} \text { if } n=3
\end{aligned}
$$

Then problem (1.1), (1.2) admits a unique global solution $u(x, t) \in C^{2}\left([0, \infty) ; H^{s+1}\right)$.
Proof By virtue of Theorem 2.1, it is enough to show that

$$
\begin{equation*}
\sup _{t \in\left[0, T_{0}\right)}\left[\|u(., t)\|_{s+1}^{2}+\left\|u_{t}(., t)\right\|_{s+1}^{2}+\left\|u_{t t}(., t)\right\|_{s+1}^{2}\right]<\infty \tag{3.11}
\end{equation*}
$$

From Lemmas 3.2-3.4, we know that

$$
\begin{equation*}
\|u(., t)\|_{s+1}^{2}+\left\|u_{t}(., t)\right\|_{s+1}^{2}<M_{4}(T), \forall t \in[0, T) \tag{3.12}
\end{equation*}
$$

where $M_{4}(T)$ is a constant dependent on T. From equation (2.2) we obtain

$$
u_{t t}=\Delta u+\triangle u_{t t}-f(u)+G *\left[f(u)+k \Delta u_{t}\right]
$$

Using Lemmas 1.1 and 1.4 and (3.12), we get

$$
\begin{aligned}
\left\|u_{t t}\right\|_{s+1} & \leq\|\Delta u\|_{s+1}+\|-f(u)\|_{s+1}+\left\|G *\left[f(u)+k \Delta u_{t}\right]\right\|_{s+1} \\
& \leq\|\triangle u\|_{s+1}+C_{0}\left(M_{1}(T)\right)\|u\|_{s+1}+\left\|f(u)+k \Delta u_{t}\right\|_{s-1}
\end{aligned}
$$

And hence by Lemma 3.4 we have

$$
\|u(., t)\|_{s+1}^{2}+\left\|u_{t}(., t)\right\|_{s+1}^{2}+\left\|u_{t t}(., t)\right\|_{s+1}^{2}<M_{4}(T), \quad \forall t \in[0, T)
$$

i.e.

$$
\sup _{t \in\left[0, T_{0}\right)}\left[\|u(., t)\|_{s+1}^{2}+\left\|u_{t}(., t)\right\|_{s+1}^{2}+\left\|u_{t t}(., t)\right\|_{s+1}^{2}\right]<\infty
$$

by Theorem 2.1, we get $T \rightarrow \infty$, namely, the Cauchy problem (1.1), (1.2) admits a unique global solution $u(x, t) \in C^{2}\left([0, \infty) ; H^{s+1}\right)$. The theorem is proved.

4. Nonexistence of global solution

In this section, we are going to consider the nonexistence of the solution for problem (1.1), (1.2) by the concavity method. For this purpose, we give the following lemma [3] which is a generalization of Levine's result [4].

Lemma 4.1 (see [3]). Suppose that a positive, twice differentiable function $F(t)$ satisfies on $t \geq 0$ the inequality

$$
F(t) F^{\prime \prime}(t)-(1+v)\left(F^{\prime}(t)\right)^{2} \geq-2 M_{1} F(t) F^{\prime}(t)-M_{2}(F(t))^{2}
$$

where $v>0$ and $M_{1}, M_{2} \geq 0$ are constants.
(i) If $M_{1}=M_{2}=0, F(0)>0$ and $F^{\prime}(0)>0$, then there is a $t_{1} \leq t_{2}=\frac{F(0)}{v F^{\prime}(0)}$ such that $F(t) \longrightarrow \infty$ as $t \longrightarrow t_{1}$.
(ii) If $M_{1}+M_{2}>0, F(0)>0$ and $F^{\prime}(0)>-\gamma_{2} v^{-1} F(0)$, then there is a $t_{1} \leq t_{2}$ such that $F(t) \longrightarrow \infty$ as $t \longrightarrow t_{1}$, where $\gamma_{1,2}=-M_{1} \mp \sqrt{M_{1}^{2}+v M_{2}}$ and

$$
t_{2}=\frac{1}{2 \sqrt{M_{1}^{2}+v M_{2}}} \ln \frac{\gamma_{1} F(0)+v F^{\prime}(0)}{\gamma_{2} F(0)+v F^{\prime}(0)}
$$

Theorem 4.1 Assume that $k \geq 0, f(u) \in C(R), u_{0} \in H^{1}, u_{1} \in H^{1},(-\triangle)^{-\frac{1}{2}} u_{0},(-\triangle)^{-\frac{1}{2}} u_{1} \in L^{2}$, $F(u)=\int_{0}^{u} f(s) d s, F\left(u_{0}\right) \in L^{1}$, and there exists a constant $\alpha>0$ such that

$$
\begin{equation*}
u f(u) \leq(2+\alpha+k) F(u)+\frac{\alpha}{2} u^{2}, \forall u \in R \tag{4.1}
\end{equation*}
$$

Then the solution $u(x, t)$ of problem (1.1), (1.2) blows up in finite time if one of the following conditions is valid:
(i) $E(0)=\left\|(-\triangle)^{-\frac{1}{2}} u_{1}\right\|^{2}+\left\|u_{0}\right\|^{2}+2\left\|u_{1}\right\|^{2}+\left\|\nabla u_{0}\right\|^{2}+\left\|\nabla u_{1}\right\|^{2}+2 \int_{R^{n}} F\left(u_{0}\right) d x<0$,

PİŞKİN and POLAT/Turk J Math

(ii) $E(0)=0$ and $\left((-\triangle)^{-\frac{1}{2}} u_{0},(-\triangle)^{-\frac{1}{2}} u_{1}\right)+\left(\nabla u_{0}, \nabla u_{1}\right)+2\left(u_{0}, u_{1}\right)>0$,
(iii) $E(0)>0$ and $\left((-\triangle)^{-\frac{1}{2}} u_{0},(-\triangle)^{-\frac{1}{2}} u_{1}\right)+\left(\nabla u_{0}, \nabla u_{1}\right)+2\left(u_{0}, u_{1}\right)$

$$
>\sqrt{2 \frac{4 \alpha+k+2}{\alpha+2} E(0)\left(\left\|(-\triangle)^{-\frac{1}{2}} u_{0}\right\|^{2}+\left\|\nabla u_{0}\right\|^{2}+2\left\|u_{0}\right\|^{2}\right)} .
$$

Proof Suppose that the maximal time of existence of the solution for problem (1.1), (1.2) is infinite. A contradiction will be obtained by Lemma 4.1. Let

$$
\begin{equation*}
F(t)=\left\|(-\triangle)^{-\frac{1}{2}} u\right\|^{2}+\|\nabla u\|^{2}+2\|u\|^{2}+\beta(t+\tau)^{2} \tag{4.2}
\end{equation*}
$$

where β and τ are nonnegative constants to be specified later. Obviously we have

$$
\begin{equation*}
F^{\prime}(t)=2\left[\left((-\triangle)^{-\frac{1}{2}} u,(-\triangle)^{-\frac{1}{2}} u_{t}\right)+\left(\nabla u, \nabla u_{t}\right)+2\left(u, u_{t}\right)+\beta(t+\tau)\right] \tag{4.3}
\end{equation*}
$$

Using the Schwartz inequality and the inequality

$$
\left(a_{1} b_{1}+a_{2} b_{2}+\ldots+a_{n} b_{n}\right)^{2} \leq\left(a_{1}^{2}+a_{2}^{2}+\ldots+a_{n}^{2}\right)\left(b_{1}^{2}+b_{2}^{2}+\ldots+b_{n}^{2}\right)
$$

where $a_{i}, b_{i} \geq 0, i=1,2, \ldots, n$, we have

$$
\begin{align*}
\left(F^{\prime}(t)\right)^{2} \leq & 4\left[\left\|(-\triangle)^{-\frac{1}{2}} u\right\|^{2}+\|\nabla u\|^{2}+2\|u\|^{2}+\beta(t+\tau)^{2}\right] \\
& \cdot\left[\left\|(-\triangle)^{-\frac{1}{2}} u_{t}\right\|^{2}+\left\|\nabla u_{t}\right\|^{2}+2\left\|u_{t}\right\|^{2}+\beta\right] \\
= & 4 F(t)\left[\left\|(-\triangle)^{-\frac{1}{2}} u_{t}\right\|^{2}+\left\|\nabla u_{t}\right\|^{2}+2\left\|u_{t}\right\|^{2}+\beta\right] \tag{4.4}
\end{align*}
$$

We get from equation (1.1)

$$
\begin{align*}
F^{\prime \prime}(t)= & 2\left\|(-\triangle)^{-\frac{1}{2}} u_{t}\right\|^{2}+2\left\|\nabla u_{t}\right\|^{2}+4\left\|u_{t}\right\|^{2}+2\left((-\triangle)^{-\frac{1}{2}} u,(-\triangle)^{-\frac{1}{2}} u_{t t}\right) \\
& +2\left(\nabla u, \nabla u_{t t}\right)+4\left(u, u_{t t}\right)+2 \beta \\
= & 2\left\|(-\triangle)^{-\frac{1}{2}} u_{t}\right\|^{2}+2\left\|\nabla u_{t}\right\|^{2}+4\left\|u_{t}\right\|^{2}+2 \beta+2\left(u,(-\triangle)^{-1} u_{t t}-\triangle u_{t t}+2 u_{t t}\right) \\
= & 2\left\|(-\triangle)^{-\frac{1}{2}} u_{t}\right\|^{2}+2\left\|\nabla u_{t}\right\|^{2}+4\left\|u_{t}\right\|^{2}+2 \beta-2\left(u, u-\triangle u+k u_{t}+f(u)\right) \\
= & 2\left\|(-\triangle)^{-\frac{1}{2}} u_{t}\right\|^{2}+2\left\|\nabla u_{t}\right\|^{2}+4\left\|u_{t}\right\|^{2}+2 \beta-2\|u\|^{2}-2\|\nabla u\|^{2} \\
& -2 k\left(u, u_{t}\right)-2 \int_{R^{n}} u f(u) d x . \tag{4.5}
\end{align*}
$$

PİŞKİN and POLAT/Turk J Math

By the aid of the Cauchy inequality and equality (3.1), we have

$$
\begin{align*}
2 k\left(u, u_{t}\right) \leq & k\left(\|u\|^{2}+\left\|u_{t}\right\|^{2}\right) \\
\leq & k\left(\|u\|^{2}+2\left\|u_{t}\right\|^{2}\right) \\
= & k\left[E(0)-\left\|(-\triangle)^{-\frac{1}{2}} u_{t}\right\|^{2}-\|\nabla u\|^{2}\right. \\
& \left.-\left\|\nabla u_{t}\right\|^{2}-2 k \int_{0}^{t}\left\|u_{\tau}\right\|^{2} d \tau-2 \int_{R^{n}} F(u) d x\right] . \tag{4.6}
\end{align*}
$$

From (4.2)-(4.6) we obtain that

$$
\begin{align*}
& F(t) F^{\prime \prime}(t)-\left(1+\frac{\alpha}{4}\right)\left(F^{\prime}(t)\right)^{2} \\
\geq & F(t) F^{\prime \prime}(t)-\left(1+\frac{\alpha}{4}\right) 4 F(t)\left[\left\|(-\triangle)^{-\frac{1}{2}} u_{t}\right\|^{2}+\left\|\nabla u_{t}\right\|^{2}+2\left\|u_{t}\right\|^{2}+\beta\right] \\
\geq & F(t)\left[(k-\alpha-2)\left\|(-\triangle)^{-\frac{1}{2}} u_{t}\right\|^{2}+(k-\alpha-2)\left\|\nabla u_{t}\right\|^{2}\right. \\
& +(-2 \alpha-4)\left\|u_{t}\right\|^{2}+(-\alpha-2) \beta+(k-2)\|\nabla u\|^{2}+ \\
& \left.\int_{R^{n}}\left[2 k F(u)-2 u f(u)-2 u^{2}\right] d x+2 k^{2} \int_{0}^{t}\left\|u_{\tau}\right\|^{2} d \tau-k E(0)\right] . \tag{4.7}
\end{align*}
$$

From equality (3.1) we have

$$
\begin{aligned}
& (k-\alpha-2)\left\|(-\triangle)^{-\frac{1}{2}} u_{t}\right\|^{2}+(k-\alpha-2)\left\|\nabla u_{t}\right\|^{2}+(k-2)\|\nabla u\|^{2}+2(-\alpha-2)\left\|u_{t}\right\|^{2} \\
\geq & (-\alpha-2)\left(\left\|(-\triangle)^{-\frac{1}{2}} u_{t}\right\|^{2}+\left\|\nabla u_{t}\right\|^{2}+\|\nabla u\|^{2}+2\left\|u_{t}\right\|^{2}\right) \\
\geq & (\alpha+2)\left(\|u\|^{2}+2 k \int_{0}^{t}\left\|u_{\tau}\right\|^{2} d \tau+2 \int_{R^{n}} F(u) d x-E(0)\right)
\end{aligned}
$$

Thus, from the above inequality and inequalities (4.7) and (4.1), we get

$$
\begin{align*}
& F(t) F^{\prime \prime}(t)-\left(1+\frac{\alpha}{4}\right)\left(F^{\prime}(t)\right)^{2} \\
\geq & F(t)\left[-(2+\alpha) \beta-(2+\alpha+k) E(0)+\left(2 k(2+\alpha)+2 k^{2}\right) \int_{0}^{t}\left\|u_{\tau}\right\|^{2} d \tau\right. \\
& \left.+\int_{R^{n}}\left[2(2+\alpha+k) F(u)+\alpha u^{2}-2 u f(u)\right] d x\right] \\
\geq & -[(2+\alpha) \beta+(2+\alpha+k) E(0)] F(t) . \tag{4.8}
\end{align*}
$$

PİŞKİN and POLAT/Turk J Math

If $E(0)<0$, taking $\beta=-\frac{(2+\alpha+k)}{(2+\alpha)} E(0)>0$, then

$$
F(t) F^{\prime \prime}(t)-\left(1+\frac{\alpha}{4}\right)\left(F^{\prime}(t)\right)^{2} \geq 0
$$

We may now choose τ so large that $F^{\prime}(0)>0$. From Lemma 4.1 we know that $F(t)$ becomes infinite at a time T_{1} at most equal to

$$
T_{2}=\frac{4 F(0)}{\alpha F^{\prime}(0)}<\infty
$$

If $E(0)=0$, taking $\beta=0$, then we get from (4.8) that

$$
F(t) F^{\prime \prime}(t)-\left(1+\frac{\alpha}{4}\right)\left(F^{\prime}(t)\right)^{2} \geq 0
$$

Also $F^{\prime}(0)>0$ by assumption (ii). Thus, we obtain from Lemma 4.1 that $F(t)$ becomes infinite at a time T_{1} at most equal to

$$
T_{2}=\frac{4 F(0)}{\alpha F^{\prime}(0)}<\infty
$$

If $E(0)>0$, then taking $\beta=0$, inequality (4.8) becomes

$$
\begin{equation*}
F(t) F^{\prime \prime}(t)-\left(1+\frac{\alpha}{4}\right)\left(F^{\prime}(t)\right)^{2} \geq-(2+\alpha+k) E(0) F(t) \tag{4.9}
\end{equation*}
$$

Define $J(t)=(F(t))^{-v}$, where $v=\frac{\alpha}{4}$. Then

$$
\begin{gather*}
J^{\prime}(t)=-v(F(t))^{-v-1} F^{\prime}(t) \\
J^{\prime \prime}(t)=-v(F(t))^{-v-2}\left[F(t) F^{\prime \prime}(t)-(1+v)\left(F^{\prime}(t)\right)^{2}\right] \\
\leq v(2+\alpha+4 v) E(0)(F(t))^{-v-1} \tag{4.10}
\end{gather*}
$$

where inequality (4.9) is used. Assumption (iii) implies $J^{\prime}(0)<0$. Let

$$
\begin{equation*}
t^{*}=\sup \left\{t \mid J^{\prime}(\tau)<0, \tau \in(0, t)\right\} \tag{4.11}
\end{equation*}
$$

By the continuity of $J^{\prime}(t), t^{*}$ is positive. Multiplying (4.10) by $2 J^{\prime}(t)$ yields

$$
\begin{align*}
{\left[\left(J^{\prime}(t)\right)^{2}\right]^{\prime} } & \geq-2 v^{2}(2+\alpha+4 v) E(0)(F(t))^{-2 v-2} F^{\prime}(t) \\
& =2 v^{2} \frac{(2+\alpha+4 v)}{2 v+1} E(0)\left[(F(t))^{-2 v-1}\right]^{\prime}, \forall t \in\left[0, t^{*}\right) \tag{4.12}
\end{align*}
$$

Integrating (4.12) with respect to t over $[0, t)$ gives

$$
\begin{aligned}
\left(J^{\prime}(t)\right)^{2} \geq & \left(J^{\prime}(0)\right)^{2}+2 v^{2} \frac{(2+\alpha+4 v)}{2 v+1} E(0)(F(t))^{-2 v-1} \\
& -2 v^{2} \frac{(2+\alpha+4 v)}{2 v+1} E(0)(F(0))^{-2 v-1} \\
\geq & \left(J^{\prime}(0)\right)^{2}-2 v^{2} \frac{(2+\alpha+4 v)}{2 v+1} E(0)(F(0))^{-2 v-1}
\end{aligned}
$$

By assumption (iii)

$$
\left(J^{\prime}(0)\right)^{2}-2 v^{2} \frac{(2+\alpha+4 v)}{2 v+1} E(0)(F(0))^{-2 v-1}>0
$$

Hence by continuity of $J^{\prime}(t)$, we obtain

$$
\begin{equation*}
J^{\prime}(t) \leq-\left[\left(J^{\prime}(0)\right)^{2}-2 v^{2} \frac{(2+\alpha+4 v)}{2 v+1} E(0)(F(0))^{-2 v-1}\right]^{\frac{1}{2}} \tag{4.13}
\end{equation*}
$$

for $0 \leq t<t^{*}$. By the definition of t^{*}, it follows that inequality (4.13) holds for all $t \geq 0$. Therefore,

$$
J(t) \leq J(0)-\left[\left(J^{\prime}(0)\right)^{2}-2 v^{2} \frac{(2+\alpha+4 v)}{2 v+1} E(0)(F(0))^{-2 v-1}\right]^{\frac{1}{2}} t, \forall t>0
$$

So, $J\left(T_{1}\right)=0$ for some T_{1} and

$$
0<T_{1} \leq T_{2}=\frac{J(0)}{\left[\left(J^{\prime}(0)\right)^{2}-2 \alpha^{2} \frac{(2+\alpha+k)}{4 \alpha+8} E(0)(F(0))^{-\frac{\alpha+2}{2}}\right]^{\frac{1}{2}}}
$$

Thus, $F(t)$ becomes infinite at a time T_{1}.
Therefore, $F(t)$ becomes infinite at a time T_{1} under either assumptions (i), (ii), or (iii). We have a contradiction with the fact that the maximal time of existence is infinite. Hence the maximal time of existence is finite. This completes the proof.

5. Asymptotic behavior of solution

In this section, we discuss the asymptotic behavior of the solution for problem (1.1), (1.2).
Theorem 5.1 Let $k>0$ and assume that

$$
0 \leq F(u) \leq f(u) u, \quad \forall u \in R, \quad F(u)=\int_{0}^{u} f(s) d s
$$

Then for the global solution of problem (1.1), (1.2) there exist positive constants c and λ such that

$$
\begin{equation*}
E(t) \leq c E(0) e^{-\lambda t}, \quad 0 \leq t<\infty \tag{5.1}
\end{equation*}
$$

where

$$
E(t)=\frac{1}{2}\left(\left\|(-\triangle)^{-\frac{1}{2}} u_{t}\right\|^{2}+\|u\|^{2}+2\left\|u_{t}\right\|^{2}+\|\nabla u\|^{2}+\left\|\nabla u_{t}\right\|^{2}\right)+\int_{R^{n}} F(u) d x
$$

Proof Let $u(x, t)$ be a global solution of problem (1.1), (1.2). Multiplying (1.1) by $(-\triangle)^{-1} u_{t}$ and integrating on R^{n}, it follows that

$$
\begin{equation*}
\frac{d}{d t} E(t)+k\left\|u_{t}\right\|^{2}=0 \tag{5.2}
\end{equation*}
$$

Multiplying (5.2) by $e^{\delta t}$ we get

$$
\begin{equation*}
\frac{d}{d t}\left(e^{\delta t} E(t)\right)+k e^{\delta t}\left\|u_{t}\right\|^{2}=\delta e^{\delta t} E(t) \tag{5.3}
\end{equation*}
$$

Integrating (5.3) over $(0, t)$ we get

$$
\begin{align*}
e^{\delta t} E(t)+k \int_{0}^{t} e^{\delta \tau}\left\|u_{\tau}\right\|^{2} d \tau= & E(0)+\delta \int_{0}^{t} e^{\delta \tau} E(\tau) d \tau \\
= & E(0)+\frac{\delta}{2} \int_{0}^{t} e^{\delta \tau}\left(\left\|(-\triangle)^{-\frac{1}{2}} u_{\tau}\right\|^{2}+\|u\|^{2}+2\left\|u_{\tau}\right\|^{2}+\left\|\nabla u_{\tau}\right\|^{2}\right) d \tau \\
& +\delta \int_{0}^{t} e^{\delta \tau}\left(\frac{1}{2}\|\nabla u\|^{2}+\int_{R^{n}} F(u) d x\right) d \tau \tag{5.4}
\end{align*}
$$

From $0 \leq F(u) \leq f(u) u$ and Eq. (1.1) we have

$$
\begin{aligned}
\frac{1}{2}\|\nabla u\|^{2}+\int_{R^{n}} F(u) d x \leq & \frac{1}{2}\|\nabla u\|^{2}+\int_{R^{n}} f(u) u d x \\
= & \frac{1}{2}\|\nabla u\|^{2}-\left((-\triangle)^{-1} u_{t t}+u+2 u_{t t}-\triangle u-\triangle u_{t t}+k u_{t}, u\right) \\
= & \frac{1}{2}\|\nabla u\|^{2}-\left((-\triangle)^{-1} u_{t t}, u\right)+\left(\triangle u_{t t}, u\right)-2\left(u_{t t}, u\right) \\
& -\|u\|^{2}-\|\nabla u\|^{2}-\frac{k}{2} \frac{d}{d t}\|u\|^{2}
\end{aligned}
$$

Hence we have

$$
\begin{align*}
\delta \int_{0}^{t} e^{\delta \tau}\left(\frac{1}{2}\|\nabla u\|^{2}+\int_{R^{n}} F(u) d x\right) d \tau \leq & \delta \int_{0}^{t} e^{\delta \tau}\left[-\frac{1}{2}\|\nabla u\|^{2}-\left((-\triangle)^{-1} u_{\tau \tau}, u\right)-\left(\nabla u_{\tau \tau}, \nabla u\right)\right. \\
& \left.-2\left(u_{\tau \tau}, u\right)-\|u\|^{2}-\frac{k}{2} \frac{d}{d \tau}\|u\|^{2}\right] d \tau \tag{5.5}
\end{align*}
$$

PİŞKİN and POLAT/Turk J Math

We will estimate the terms on the right-hand side of (5.5) separately. For the second, third, and fourth terms, by using integration by parts and the Cauchy inequality, we have

$$
\begin{align*}
& -\int_{0}^{t} e^{\delta \tau}\left((-\triangle)^{-1} u_{\tau \tau}, u\right) d \tau=-e^{\delta t}\left((-\triangle)^{-\frac{1}{2}} u_{t},(-\triangle)^{-\frac{1}{2}} u\right)+\left((-\triangle)^{-\frac{1}{2}} u_{1},(-\triangle)^{-\frac{1}{2}} u_{0}\right) \\
& +\delta \int_{0}^{t} e^{\delta \tau}\left((-\triangle)^{-\frac{1}{2}} u_{\tau},(-\triangle)^{-\frac{1}{2}} u\right) d \tau+\int_{0}^{t} e^{\delta \tau}\left\|(-\triangle)^{-\frac{1}{2}} u_{\tau}\right\|^{2} d \tau \\
& \leq \frac{1}{2} e^{\delta t}\left(\left\|(-\triangle)^{-\frac{1}{2}} u_{t}\right\|^{2}+\left\|(-\triangle)^{-\frac{1}{2}} u\right\|^{2}\right) \\
& +\frac{1}{2}\left(\left\|(-\triangle)^{-\frac{1}{2}} u_{1}\right\|^{2}+\left\|(-\triangle)^{-\frac{1}{2}} u_{0}\right\|^{2}\right) \\
& +\frac{\delta}{2} \int_{0}^{t} e^{\delta \tau}\left(\left\|(-\triangle)^{-\frac{1}{2}} u_{\tau}\right\|^{2}+\left\|(-\triangle)^{-\frac{1}{2}} u\right\|^{2}\right) d \tau \\
& +\int_{0}^{t} e^{\delta \tau}\left\|(-\triangle)^{-\frac{1}{2}} u_{\tau}\right\|^{2} d \tau, \tag{5.6}\\
& -\int_{0}^{t} e^{\delta \tau}\left(\nabla u_{\tau \tau}, \nabla u\right) d \tau=-e^{\delta t}\left(\nabla u_{t}, \nabla u\right)+\left(\nabla u_{1}, \nabla u_{0}\right)+\delta \int_{0}^{t} e^{\delta \tau}\left(\nabla u_{\tau}, \nabla u\right) d \tau+\int_{0}^{t} e^{\delta \tau}\left\|\nabla u_{\tau}\right\|^{2} d \tau \\
& \leq \frac{1}{2} e^{\delta t}\left(\left\|\nabla u_{t}\right\|^{2}+\|\nabla u\|^{2}\right)+\frac{1}{2}\left(\left\|\nabla u_{1}\right\|^{2}+\left\|\nabla u_{0}\right\|^{2}\right) \\
& +\frac{\delta}{2} \int_{0}^{t} e^{\delta \tau}\left(\left\|\nabla u_{\tau}\right\|^{2}+\|\nabla u\|^{2}\right) d \tau+\int_{0}^{t} e^{\delta \tau}\left\|\nabla u_{\tau}\right\|^{2} d \tau, \tag{5.7}
\end{align*}
$$

and

$$
\begin{align*}
-2 \int_{0}^{t} e^{\delta \tau}\left(u_{\tau \tau}, u\right) d \tau= & -2 e^{\delta t}\left(u_{t}, u\right)+2\left(u_{1}, u_{0}\right)+2 \delta \int_{0}^{t} e^{\delta \tau}\left(u_{\tau}, u\right) d \tau+2 \int_{0}^{t} e^{\delta \tau}\left\|u_{\tau}\right\|^{2} d \tau \\
\leq & e^{\delta t}\left(\left\|u_{t}\right\|^{2}+\|u\|^{2}\right)+\left(\left\|u_{1}\right\|^{2}+\left\|u_{0}\right\|^{2}\right) \\
& +\delta \int_{0}^{t} e^{\delta \tau}\left(\left\|u_{\tau}\right\|^{2}+\|u\|^{2}\right) d \tau+2 \int_{0}^{t} e^{\delta \tau}\left\|u_{\tau}\right\|^{2} d \tau \tag{5.8}
\end{align*}
$$

For the last term, by using the integrating by parts, we have

$$
\begin{equation*}
-\frac{k}{2} \int_{0}^{t} e^{\delta \tau} \frac{d}{d \tau}\|u\|^{2} d \tau=-\frac{k}{2} e^{\delta t}\|u\|^{2}+\frac{k}{2}\left\|u_{0}\right\|^{2}+\frac{k}{2} \delta \int_{0}^{t} e^{\delta \tau}\|u\|^{2} d \tau \tag{5.9}
\end{equation*}
$$

Substituting (5.6)-(5.9) into (5.4) and (5.5) it follows that there exist positive constants c_{0}, c_{1}, and c_{2} such that

$$
\begin{align*}
e^{\delta t} E(t)+k \int_{0}^{t} e^{\delta \tau}\left\|u_{\tau}\right\|^{2} d \tau \leq & c_{0} E(0)+c_{1} \delta e^{\delta t} E(t) \\
& +c_{2} \delta^{2} \int_{0}^{t} e^{\delta \tau} E(\tau) d+\frac{3}{2} \delta \int_{0}^{t} e^{\delta \tau}\left\|u_{\tau}\right\|^{2} d \tau \tag{5.10}
\end{align*}
$$

Taking δ satisfying $0<\delta<\min \left\{\frac{1}{2 c_{1}}, \frac{2 k}{3}\right\}$ we get from (5.10) that

$$
e^{\delta t} E(t) \leq 2 c_{0} E(0)+2 c_{2} \delta^{2} \int_{0}^{t} e^{\delta \tau} E(\tau) d \tau
$$

which together with the Gronwall inequality gives

$$
e^{\delta t} E(t) \leq 2 c_{0} E(0) e^{2 c_{2} \delta^{2} t}, \quad 0 \leq t<\infty
$$

and

$$
E(t) \leq 2 c_{0} E(0) e^{-\left(\delta-2 c_{2} \delta^{2}\right) t}, \quad 0 \leq t<\infty
$$

Again taking δ satisfying $0<\delta<\min \left\{\frac{1}{2 c_{1}}, \frac{2 k}{3}, \frac{1}{2 c_{2}}\right\}$ we can obtain (5.1), where $\lambda=\delta-2 c_{2} \delta^{2}>0, c=2 c_{0}$. Thus, the theorem is proved.

References

[1] Chen, X., Chen, G.: Asymptotic behavior and blow-up of solutions to a nonlinear evolution equation of fourth order, Nonlinear Anal-Theor., 68, 892-904 (2008).
[2] Duruk, N., Erkip, A., Erbay, H.A.: A higher-order Boussinesq equation in locally non-linear theory of onedimensional non-local elasticity, IMA Journal of App. Math., 74, 97-106 (2009).
[3] Kalantarov, V.K., Ladyzhenskaya, O.A.: The occurrence of collapse for quasilinear equations of parabolic and hyperbolic types, J. Soviet Math., 10, 53-70 (1978).
[4] Levine, H.A.: Instability and nonexistence of global solutions of nonlinear wave equations of the form $P u_{t t}=$ $A u+F(u)$, Trans. Amer. Math. Soc., 192, 1-21 (1974).
[5] Li, T.T., Chen, Y.M.: Global classical solution for nonlinear evolution equations, Pitman Monographs and Surveys in Pure and Applied Mathematics, Volume 45, Longman Scientific and Technical, New York, 1992.
[6] Polat, N., Ertaş, A.: Existence and blow up of solution of Cauchy problem for the generalized damped multidimensional Boussinesq equation, J. Math. Anal. Appl., 349, 10-20 (2009).
[7] Polat, N., Kaya, D.: Existence, asymptotic behaviour, and blow up of solution for a class of nonlinear wave equations with dissipative and dispersive term, Z. Naturforsch, 64a, 1-12 (2009).
[8] Polat, N., Kaya, D., Tutalar, H.I.: Blow-up of solutions for the damped Boussinesq equation, Z. Naturforsch, 60a, 473-476 (2005).
[9] Schneider, G., Eugene, C.W.: Kawahara dynamics in dispersive media, Physica D: Nonlinear Phenomena, 152-153, 384-394 (2001).
[10] Stein, E.M.: Singular integrals and differentiability properties of functions, Princeton Univ. Press, Princeton, 1970.
[11] Taylor, M.E.: Partial differential equations III, Nonlinear equations, Springer, New York, 2011.
[12] Varlamov, V.V.: Eigenfunction expansion method and the long-time asymptotics for the damped Boussinesq equation, Discrete Contin. Dyn. Syst., 7 (4), 675-702 (2001).
[13] Wang, S., Chen, G.: Small amplitude solutions of the generalized IMBq Equation, J. Math. Anal. Appl., 274, 846-866 (2002).
[14] Wang, S., Chen, G.: Cauchy problem of the generalized double dispersion equation, Nonlinear Anal., 64, 159-173 (2006).
[15] Wang, Y., Mu, C.: Global existence and blow-up of the solutions for the multidimensional generalized Boussinesq equation, Math. Meth. Appl. Sci., 30, 1403-1417 (2007).
[16] Wang, Y., Guo, B.: Blow-up solution for a generalized Boussinesq equation, Appl. Math. Mech-Engl., 28 (11), 1437-1443 (2007).
[17] Wang, S., Xue, H.: Global solution for a generalized Boussinesq equation, Appl. Math. Comput., 204, 130-136 (2008).
[18] Wang, S., Xu, G.: The Cauchy problem for the Rosenau equation, Nonlinear Anal-Theor., 71, 456-466 (2009).

[^0]: *Correspondence: npolat@dicle.edu.tr
 2000 AMS Mathematics Subject Classification: 35A01; 35B40; 35B44.

