Existence of 2-Factors in Tough Graphs without Forbidden Subgraphs

Elizabeth Grimm ${ }^{1}$, Anna Johnsen ${ }^{2}$, Songling Shan ${ }^{1}$
${ }^{1}$ Department of Mathematics, Illinois State University, Normal, IL 61790
${ }^{2}$ Department of Mathematics and Statistics, Georgia State University, Atlanta, GA 30303
evgrimm@ilstu.edu, ajohnsen2@student.gsu.edu, sshan12@ilstu.edu

April 8, 2022

Abstract

For a given graph R, a graph G is R-free if G does not contain R as an induced subgraph. It is known that every 2 -tough graph with at least three vertices has a 2 -factor. In graphs with restricted structures, it was shown that every $2 K_{2}$-free $3 / 2$ tough graph with at least three vertices has a 2 -factor, and the toughness bound $3 / 2$ is best possible. In viewing $2 K_{2}$, the disjoint union of two edges, as a linear forest, in this paper, for any linear forest R on 5,6 , or 7 vertices, we find the sharp toughness bound t such that every t-tough R-free graph on at least three vertices has a 2 -factor.

Keywords: 2-factor, toughness, forbidden subgraphs

1 Introduction

Let G be a simple, undirected graph and let $V(G)$ and $E(G)$ denote the vertex set and the edge set of G, respectively. We denote the set of neighbors of a vertex $x \in V(G)$ by $N_{G}(x)$. The closed neighborhood of a vertex x in G, denoted by $N_{G}[x]$, is the set $\{x\} \cup N_{G}(x)$. For any subset $S \subseteq V(G), G[S]$ is the subgraph of G induced by $S, G-S$ denotes the subgraph $G[V(G) \backslash S]$, and $N_{G}(S)=\bigcup_{v \in S} N_{G}(v)$. Given disjoint subsets S and T of $V(G)$, we denote by $E_{G}(S, T)$ the set of edges which have one end vertex in S and the other end vertex in T, and let $e_{G}(S, T)=\left|E_{G}(S, T)\right|$. If $S=\{s\}$ is a singleton, we write $e_{G}(s, T)$ for $e_{G}(\{s\}, T)$. If $H \subseteq G$ is a subgraph of G, and $T \subseteq V(G)$ with $T \cap V(H)=\emptyset$, we write $E_{G}(H, T)$ and $e_{G}(H, T)$ for notational simplicity.

For a given graph R, we say that G is R-free if there does not exist an induced copy of R in G. For integers a and b with $a \geq 0$ and $b \geq 1$, we denote by $a P_{b}$ the graph consisting of a disjoint
copies of the path P_{b}. When $a=1,1 P_{b}$ is just P_{b}, and when $a=0,0 P_{b}$ is the null graph. For two integers p and q, let $[p, q]=\{i \in \mathbb{Z}: p \leq i \leq q\}$.

Denote by $c(G)$ the number of components of G. Let $t \geq 0$ be a real number. We say a graph G is t-tough if for each cutset S of G we have $t \cdot c(G-S) \leq|S|$. The toughness of a graph G, denoted $\tau(G)$, is the maximum value of t for which G is t-tough if G is non-complete and is defined to be ∞ if G is complete.

For an integer $k \geq 1$, a k-regular spanning subgraph is a k-factor of G. It is well known, according to a theorem by Enomoto, Jackson, Katerinis, and Saito [3] from 1998, that every k tough graph with at least three vertices has a k-factor if $k|V(G)|$ is even and $|V(G)| \geq k+1$. In terms of a sharp toughness bound, particular research interest has been taken when $k=2$ for graphs with restricted structures. For example, it was shown that every $3 / 2$-tough 5 -chordal graph (graphs with no induced cycle of length at least 5) on at least three vertices has a 2 -factor [1] and that every $3 / 2$-tough $2 K_{2}$-free graph on at least three vertices has a 2 -factor [5]. The toughness bound $3 / 2$ is best possible in both results.

A linear forest is a graph consisting of disjoint paths. In viewing $2 K_{2}$ as a linear forest on 4 vertices and the result by Ota and Sanka [5] that every $3 / 2$-tough $2 K_{2}$-free graph on at least three vertices has a 2 -factor, we investigate the existence of 2 -factors in R-free graphs when R is a linear forest on 5,6 , or 7 vertices. These graphs R are listed below, where the unions are vertex disjoint unions.

$$
\begin{array}{lccccccccl}
\text { 1. } & P_{5} & P_{4} \cup P_{1} & P_{3} \cup P_{2} & P_{3} \cup 2 P_{1} & 2 P_{2} \cup P_{1} & P_{2} \cup 3 P_{1} & 5 P_{1} ; \\
\text { 2. } & P_{6} & P_{5} \cup P_{1} & P_{4} \cup P_{2} & P_{4} \cup 2 P_{1} & 2 P_{3} & P_{3} \cup P_{2} \cup P_{1} & P_{3} \cup 3 P_{1} & 3 P_{2} & 2 P_{2} \cup 2 P_{1} \\
P_{2} \cup 4 P_{1} & 6 P_{1} ; & & & & & & & \\
\text { 3. } & P_{7} & P_{6} \cup P_{1} & P_{5} \cup P_{2} & P_{5} \cup 2 P_{1} & P_{4} \cup P_{3} & P_{4} \cup P_{2} \cup P_{1} & P_{4} \cup 3 P_{1} & 2 P_{3} \cup P_{1} & P_{3} \cup 2 P_{2} \\
P_{3} \cup P_{2} \cup 2 P_{1} & P_{3} \cup 4 P_{1} & 3 P_{2} \cup P_{1} & 2 P_{2} \cup 3 P_{1} & P_{2} \cup 5 P_{1} & 7 P_{1} .
\end{array}
$$

Our main results are the following:
Theorem 1. Let $t>0$ be a real number, R be any linear forest on 5 vertices, and G be a t-tough R-free graph on at least 3 vertices. Then G has a 2-factor provided that
(1) $R \in\left\{P_{4} \cup P_{1}, P_{3} \cup 2 P_{1}, P_{2} \cup 3 P_{1}\right\}$ and $t=1$ unless
(a) $R=P_{2} \cup 3 P_{1}$, and $G \cong H_{0}$ or G contains H_{1}, H_{2} or H_{3} as a spanning subgraph such that $E(G) \backslash E\left(H_{i}\right) \subseteq E_{G}(S, V(G) \backslash(T \cup S))$ for each $i \in[1,3]$, where H_{i}, S and T are defined in Figure 1.
(b) $R=P_{3} \cup 2 P_{1}$ and G contains H_{1} as a spanning subgraph such that $E(G) \backslash E\left(H_{1}\right) \subseteq$ $E_{G}(S, V(G) \backslash(T \cup S))$.
(2) $R=5 P_{1}$ and $t>1$.

The graph H_{0}

The graph H_{1}

The graph H_{2}

The graph H_{3}

The graph H_{4}

Figure 1: The four exceptional graphs for Theorem 1(1), where $S=\{x\}$ and $T=\left\{t_{1}, t_{2}, t_{3}\right\}$.
(3) $R \in\left\{P_{5}, P_{3} \cup P_{2}, 2 P_{2} \cup P_{1}\right\}$ and $t=3 / 2$.

Theorem 2. Let $t>0$ be a real number, R be any linear forest on 6 vertices, and G be a t-tough R-free graph on at least 3 vertices. Then G has a 2-factor provided that
(1) $R \in\left\{P_{4} \cup 2 P_{1}, P_{3} \cup 3 P_{1}, P_{2} \cup 4 P_{1}, 6 P_{1}\right\}$ and $t>1$ unless $R=6 P_{1}$ and G contains H_{5} with $p=5$ as a spanning subgraph such that $E(G) \backslash E\left(H_{5}\right) \subseteq E_{G}(S, V(G) \backslash(T \cup S))$, where H_{5}, S and T are defined in Figure 2.
(2) $R \in\left\{P_{6}, P_{5} \cup P_{1}, P_{4} \cup P_{2}, 2 P_{3}, P_{3} \cup P_{2} \cup P_{1}, 3 P_{2}, 2 P_{2} \cup 2 P_{1}\right\}$ and $t=3 / 2$.

Theorem 3. Let $t>0$ be a real number, R be any linear forest on 7 vertices, and G be a t-tough R-free graph on at least 3 vertices. Then G has a 2-factor provided that
(1) $R \in\left\{P_{4} \cup 3 P_{1}, P_{3} \cup 4 P_{1}, P_{2} \cup 5 P_{1}\right\}$ and $t>1$ unless
(a) when $R \neq P_{4} \cup 3 P_{1}$, G contains H_{5} with $p=5$ as a spanning subgraph such that $E(G) \backslash E\left(H_{5}\right) \subseteq E_{G}(S, V(G) \backslash(T \cup S)) \cup E(G[S])$, where H_{5}, S and T are defined in Figure 2.
(b) $R=P_{2} \cup 5 P_{1}$ and G contains one of H_{6}, \ldots, H_{11} as a spanning subgraph such that $E(G) \backslash E\left(H_{i}\right) \subseteq E_{G}(S, V(G) \backslash(T \cup S)) \cup E(G[S]) \cup E(G[V(G) \backslash(T \cup S)])$, where H_{i}, S and T are defined in Figure 3 for each $i \in[6,11]$.

The graph H_{5}

Figure 2: The exceptional graph for Theorem 2(1), where $S=\left\{x_{1}, x_{2}\right\}, T=\left\{t_{1}, \ldots, t_{5}\right\}$, and $p=5$.
(2) $R=7 P_{1}$ and $t>\frac{7}{6}$ unless G contains H_{5} with $p=5$ as a spanning subgraph such that $E(G) \backslash E\left(H_{5}\right) \subseteq E_{G}(S, V(G) \backslash(T \cup S)) \cup E(G[S])$.
(3) $R \in\left\{P_{7}, P_{6} \cup P_{1}, P_{5} \cup P_{2}, P_{5} \cup 2 P_{1}, P_{4} \cup P_{2} \cup P_{1}, 2 P_{3} \cup P_{1}, P_{4} \cup P_{3}, P_{3} \cup 2 P_{2}, P_{3} \cup P_{2} \cup 2 P_{1}, 3 P_{2} \cup\right.$ $\left.P_{1}, 2 P_{2} \cup 3 P_{1}\right\}$ and $t=3 / 2$.

The graph H_{6}

The graph H_{9}

The graph H_{7}

The graph H_{10}

The graph H_{8}

The graph H_{11}

Figure 3: The five exceptional graphs for Theorem $3(1)(\mathrm{b})$, where $S=\left\{x_{1}, x_{2}\right\}, T=$ $\left\{t_{1}, t_{2}, t_{3}, t_{4}, t_{5}\right\}$, and "+" represents the join of $H_{i}[S]$ and $H_{i}[T], i \in[6,11]$.

Remark 4 (Examples demonstrating sharp toughness bounds). The toughness bounds in Theorems 1 to 3 are all sharp.
(1) Theorem 1(1) when $R \in\left\{P_{4} \cup P_{1}, P_{3} \cup 2 P_{1}, P_{2} \cup 3 P_{1}\right\}$ and $t=1$. The graph showing that the toughness 1 is best possible is the complete bipartite $K_{n-1, n}$ for any integer $n \geq 2$. The graph $K_{n, n-1}$ is P_{4}-free and so is R-free, with $\lim _{n \rightarrow \infty} \tau\left(K_{n, n-1}\right)=\lim _{n \rightarrow \infty} \frac{n-1}{n}=1$, but contains no 2-factor.
(2) Theorem 1(2), Theorem 2(1) and Theorem 3(1) and $t>1$. The graph showing that the toughness is best possible is the graph H_{12}, which is constructed as below: let $p \geq 3, K_{p}$ be a complete graph, and $y_{1}, y_{2}, y_{3} \in V\left(K_{p}\right)$ be distinct, $S=\{x\}$, and $T=\left\{t_{1}, t_{2}, t_{3}\right\}$, then H_{12} is obtained from K_{p}, S and T by adding edges $t_{i} x$ and $t_{i} y_{i}$ for each $i \in[1,3]$. See Figure 4 for a depiction. By inspection, the graph is $5 P_{1}$-free and $\left(P_{4} \cup 2 P_{1}\right)$-free. So the graph is R-free for any $R \in\left\{5 P_{1}, P_{4} \cup 2 P_{1}, P_{3} \cup 3 P_{1}, P_{2} \cup 4 P_{1}, 6 P_{1}, P_{4} \cup 3 P_{1}, P_{3} \cup 4 P_{1}, P_{2} \cup 5 P_{1}\right\}$. For any given $p \geq 3$, the graph H_{12} does not contain a 2-factor, as any 2-factor has to contain the edges $t_{1} x, t_{2} x$ and $t_{3} x$. We will show $\tau\left(H_{12}\right)=1$ in the last section.
(3) For Theorem 1(3), Theorem 2(2) and Theorem 3(3) and $t=\frac{3}{2}$: note that all the graphs R in these cases contain $2 K_{2}$ as an induced subgraph. Chvátal [2] constructed a sequence $\left\{G_{k}\right\}_{k=1}^{\infty}$ of split graphs (graphs whose vertex set can be partitioned into a clique and an independent set) having no 2-factors and $\tau\left(G_{k}\right)=\frac{3 k}{2 k+1}$ for each positive integer k. As the class of $2 K_{2}$ free graphs is a superclass of split graphs, $\frac{3}{2}$-tough is the best possible toughness bound for a $2 K_{2}$-free graph to have a 2-factor.
(4) Theorem 3(2) and $t>\frac{7}{6}$. The graph showing that the toughness is best possible is the graph H_{5} with $p \geq 6$, which is constructed as below: let $p \geq 5, K_{p}$ be a complete graph, and $y_{1}, y_{2}, y_{3}, y_{4}, y_{5} \in V\left(K_{p}\right)$ be distinct, $S=\left\{x_{1}, x_{2}\right\}$, and $T=\left\{t_{1}, t_{2}, t_{3}, t_{4}, t_{5}\right\}$. Then H_{5} is obtained from K_{p}, S and T by adding edges $t_{i} x_{j}$ and $t_{i} y_{i}$ for each $i \in[1,5]$ and each $j \in[1,2]$. See Figure 2 for a depiction. By inspection, the graph is $7 P_{1}$-free. For any given $p \geq 5$, the graph H_{5} does not contain a 2-factor, as any 2-factor has to contain at least three edges from one of x_{1} and x_{2} to at least three vertices of T. We will show $\tau\left(H_{5}\right)=\frac{7}{6}$ when $p \geq 6$ in the last section.

T
The graph H_{12}

Figure 4: Sharpness example for Theorem 1(2), Theorem 2(1) and Theorem 3(1), where $S=\{x\}$ and $T=\left\{t_{1}, t_{2}, t_{3}\right\}$.

To supplement Theorems 1 to 3 , we show that the exceptional graphs in Figures 1 to 3 satisfy the corresponding conditions below.

Theorem 5. The following statements hold.
(1) The graph H_{i} is $\left(P_{2} \cup 3 P_{1}\right)$-free, contains no 2-factor, and $\tau\left(H_{i}\right)=1$ for each $i \in[0,4]$, the graph H_{1} is also $\left(P_{3} \cup 2 P_{1}\right)$-free.
(2) The graph H_{i} is $\left(P_{2} \cup 5 P_{1}\right)$-free and contains no 2-factor for each $i \in[5,11]$, H_{5} with $p=5$ is $\left(P_{3} \cup 4 P_{1}\right)$-free and $6 P_{1}$-free. Furthermore, $\tau\left(H_{5}\right)=\frac{6}{5}$ when $p=5$ and $\tau\left(H_{i}\right)=\frac{7}{6}$ for each $i \in[6,11]$.

We have explained that H_{5} and H_{12} are R-free for the corresponding linear forests R and contain no 2-factor in Remark 4(2) and (4). The Theorem below is to verify the toughness of the graphs H_{5} with $p \geq 6$ and H_{12}.

Theorem 6. The following statements hold.
(1) $\tau\left(H_{5}\right)=\frac{7}{6}$ when $p \geq 6$;
(2) $\tau\left(H_{12}\right)=1$.

The remainder of this paper is organized as follows. In section 2, we introduce more notation and preliminary results on proving existence of 2-factors in graphs. In section 3, we prove Theorems 1-3. Theorems 5 and 6 are proved in the last section.

2 Preliminaries

One of the main proof ingredients of Theorems 1 to 3 is to apply Tutte's 2-factor Theorem. We start with some notation. Let S and T be disjoint subsets of vertices of a graph G, and D be a component of $G-(S \cup T)$. The component D is said to be an odd component (resp. even component) of $G-(S \cup T)$ if $e_{G}(D, T) \equiv 1(\bmod 2)\left(\right.$ resp. $\left.e_{G}(D, T) \equiv 0(\bmod 2)\right)$. Let $h(S, T)$ be the number of all odd components of $G-(S \cup T)$. Define

$$
\delta(S, T)=2|S|-2|T|+\sum_{y \in T} d_{G-S}(y)-h(S, T) .
$$

It is easy to see that $\delta(S, T) \equiv 0(\bmod 2)$ for every $S, T \subseteq V(G)$ with $S \cap T=\emptyset$. We use the following criterion for the existence of a 2 -factor, which is a restricted form of Tutte's f-factor Theorem.

Lemma 7 (Tutte [6]). A graph G has a 2 -factor if and only if $\delta(S, T) \geq 0$ for every $S, T \subseteq V(G)$ with $S \cap T=\emptyset$.

An ordered pair (S, T), consisting of disjoint subsets of vertices S and T in a graph G, is called a barrier if $\delta(S, T) \leq-2$. By Lemma 7, if G does not have a 2 -factor, then G has a barrier. In [4], a biased barrier of G is defined as a barrier (S, T) of G such that among all the barriers of G,
(1) $|S|$ is maximum; and
(2) subject to (1), $|T|$ is minimum.

The following properties of a biased barrier were derived in [4].
Lemma 8. Let G be a graph without a 2-factor, and let (S, T) be a biased barrier of G. Then each of the following holds.
(1) The set T is independent in G.
(2) If D is an even component with respect to (S, T), then $e_{G}(T, D)=0$.
(3) If D is an odd component with respect to (S, T), then for any $y \in T, e_{G}(y, D) \leq 1$.
(4) If D is an odd component with respect to (S, T), then for any $x \in V(D), e_{G}(x, T) \leq 1$.

Let G be a graph without a 2 -factor and (S, T) be a barrier of G. For an integer $k \geq 0$, let $\mathcal{C}_{2 k+1}$ denote the set of odd components D of $G-(S \cup T)$ such that $e_{G}(D, T)=2 k+1$. The following result was proved as a claim in [4] but we include a short proof here for self-completeness.

Lemma 9. Let G be a graph without a 2-factor, and let (S, T) be a biased barrier of G. Then $|T| \geq|S|+\sum_{k \geq 1} k\left|\mathcal{C}_{2 k+1}\right|+1$.

Proof. Let $U=V(G) \backslash S$. Since (S, T) is a barrier,

$$
\begin{aligned}
\delta(S, T) & =2|S|-2|T|+\sum_{y \in T} d_{G-S}(y)-h(S, T) \\
& =2|S|-2|T|+\sum_{y \in T} d_{G-S}(y)-\sum_{k \geq 0}\left|\mathcal{C}_{2 k+1}\right| \leq-2 .
\end{aligned}
$$

By Lemma 8(1) and Lemma 8(2),

$$
\sum_{y \in T} d_{G-S}(y)=\sum_{y \in T} e_{G}(y, U)=e_{G}(T, U)=\sum_{k \geq 0}(2 k+1)\left|\mathcal{C}_{2 k+1}\right| .
$$

Therefore, we have

$$
-2 \geq 2|S|-2|T|+\sum_{k \geq 0}(2 k+1)\left|\mathcal{C}_{2 k+1}\right|-\sum_{k \geq 0}\left|\mathcal{C}_{2 k+1}\right|,
$$

which yields $|T| \geq|S|+\sum_{k \geq 1} k\left|\mathcal{C}_{2 k+1}\right|+1$.
We use the following lemmas in our proof.
Lemma 10. Let $t \geq 1, G$ be a t-tough graph on at least three vertices containing no 2 -factor, and (S, T) be a barrier of G. Then the following statements hold.
(1) If $\mathcal{C}_{1} \neq \emptyset$, then $|S|+1 \geq 2 t$. Consequently, $S=\emptyset$ implies $\mathcal{C}_{1}=\emptyset$, and $|S|=1$ implies $\mathcal{C}_{1}=\emptyset$ when $t>1$.
(2) $\bigcup_{k \geq 1} \mathcal{C}_{2 k+1} \neq \emptyset$.

Proof. Since G is 1-tough and thus is 2-connected, $d_{G}(y) \geq 2$ for every $y \in T$. This together with Lemma 8(1)-(3) implies $|S|+\sum_{k \geq 0}\left|\mathcal{C}_{2 k+1}\right| \geq 2$.

For the first part of (1), suppose to the contrary that $|S|+1<2 t$. Let $D \in \mathcal{C}_{1}$ and $y \in V(T)$ be adjacent in G to some vertex $v \in V(D)$. As $e_{G}(D, T)=e_{G}(D, y)=1,|S|+\sum_{k \geq 0}\left|\mathcal{C}_{2 k+1}\right| \geq 2$. and $|T| \geq|S|+1$ by Lemma 9 , we have $c(G-(S \cup\{y\})) \geq 2$ regardless of whether or not $S=\emptyset$. But $c(G-(S \cup\{y\})) \geq 2$ implies $\tau(G)<2 t / 2=t$, contradicting G being t-tough. The second part of (1) is a consequence of the first part.

For (2), suppose to the contrary that $\bigcup_{k \geq 1} \mathcal{C}_{2 k+1}=\emptyset$. By Lemma $10(1),|S|+\left|\mathcal{C}_{1}\right| \geq 2$ implies $|S| \geq 1$. Consequently, $|T| \geq 2$ by Lemma 9 . As every component of $G-(S \cup T)$ in \mathcal{C}_{1} is connected to exactly one vertex of T, S is a cutset of G with $c(G-S) \geq|T|$. However, $|T| \geq|S|+\sum_{k \geq 1} k\left|\mathcal{C}_{2 k+1}\right|+1=|S|+1$, implying $\tau(G)<1$, a contradiction.

A path P connecting two vertices u and v is called a (u, v)-path, and we write $u P v$ or $v P u$ in order to specify the two endvertices of P. Let $u P v$ and $x Q y$ be two disjoint paths. If $v x$ is an edge, we write $u P v x Q y$ as the concatenation of P and Q through the edge $v x$. Let G be a graph without a 2 -factor, and let (S, T) be a barrier of G. For $y \in T$, define

$$
h(y)=\mid\left\{D: D \in \bigcup_{k \geq 1} \mathcal{C}_{2 k+1} \quad \text { and } \quad e_{G}(y, D) \geq 1\right\} \mid .
$$

Lemma 11. Let G be a graph without a 2-factor, and let (S, T) be a biased barrier of G. Then the following statements hold.
(1) If $\left|\bigcup_{k \geq 1} \mathcal{C}_{2 k+1}\right| \geq 1$, then G contains an induced $P_{4} \cup a P_{1}$, where $a=|T|-2$.
(2) If there exists $y_{0} \in T$ with $h\left(y_{0}\right) \geq 2$, then for some integer $b \geq 7, G$ contains an induced $P_{b} \cup a P_{1}$, where $a=|T|-3$. Furthermore, an induced $P_{b} \cup a P_{1}$ can be taken such that the vertices in $a P_{1}$ are from T and the path P_{b} has the form $y_{1} x_{1}^{*} P_{1} x_{1} y_{0} x_{2} P_{2} x_{2}^{*} y_{2}$, where $y_{0}, y_{1}, y_{2} \in T$ and $x_{1}^{*} P_{1} x_{1}$ and $x_{2}^{*} P_{2} x_{2}$ are respectively contained in two distinct components from $\bigcup_{k \geq 1} \mathcal{C}_{2 k+1}$ such that $e_{G}(x, T)=0$ for every internal vertex x from P_{1} and P_{2}.

Proof. Lemma 8(1), (3) and (4) will be applied frequently in the arguments sometimes without mentioning it.

Let $D \in \bigcup_{k \geq 1} \mathcal{C}_{2 k+1}$. The existence of D implies $|T| \geq 3$ and $|V(D)| \geq 3$ by Lemma 8(3) and (4). We claim that for a fixed vertex $x_{1} \in V(D)$ such that $e_{G}\left(x_{1}, T\right)=1$, there exists distinct $x_{2} \in V(D)$ and an induced (x_{1}, x_{2})-path P in D with the following two properties: (a) $e_{G}\left(x_{2}, T\right)=1$, and (b) $e_{G}(x, T)=0$ for every $x \in V(P) \backslash\left\{x_{1}, x_{2}\right\}$. Note that the vertex x_{1} exists by Lemma 8(4). Let $y_{1} \in T$ be the vertex such that $e_{G}\left(x_{1}, T\right)=e_{G}\left(x_{1}, y_{1}\right)=1$ and $W=N_{G}\left(T \backslash\left\{y_{1}\right\}\right) \cap V(D)$.

By Lemma 8(4), $x_{1} \notin W$. Now in D, we find a shortest path P connecting x_{1} and some vertex from W, say x_{2}. Then x_{2} and P satisfy properties (a) and (b), respectively. Let $y_{2} \in T$ such that $e_{G}\left(x_{2}, T\right)=e_{G}\left(x_{2}, y_{2}\right)=1$. The vertex y_{2} uniquely exists by the choice x_{2} and Lemma 8(4). By Lemma 8(1) and (4), and the choice of P, we know that $y_{1} x_{1} P x_{2} y_{2}$ and $T \backslash\left\{y_{1}, y_{2}\right\}$ together contains an induced $P_{4} \cup a P_{1}$. This proves (1).

We now prove (2). By Lemma 8(3), the existence of y_{0} implies $\left|\bigcup_{k \geq 1} \mathcal{C}_{2 k+1}\right| \geq 2$, which in turn gives $|T| \geq 3$ by Lemma 8(3) again. We let $D_{1}, D_{2} \in \bigcup_{k \geq 1} \mathcal{C}_{2 k+1}$ be distinct such that $e_{G}\left(y_{0}, D_{1}\right)=1$ and $e_{G}\left(y_{0}, D_{2}\right)=1$. Let $x_{i} \in D_{i}$ such that $e_{G}\left(y_{0}, D_{i}\right)=e_{G}\left(y_{0}, x_{i}\right)=1$. By the argument in the first paragraph above, we can find $x_{i}^{*} \in V\left(D_{i}\right) \backslash\left\{x_{i}\right\}$ and an $\left(x_{i}, x_{i}^{*}\right)$-path P_{i} in D_{i} for each $i \in\{1,2\}$. By the choice of P_{i} and Lemma 8(4), there are unique $y_{1}, y_{2} \in T \backslash\left\{y_{0}\right\}$ such that $x_{i}^{*} y_{i} \in E(G)$. If $y_{1} \neq y_{2}$, by the choice of P_{1} and P_{2} and Lemma 8(1) and (4), we know that $y_{1} x_{1}^{*} P_{1} x_{1} y_{0} x_{2} P_{2} x_{2}^{*} y_{2}$ and $T \backslash\left\{y_{0}, y_{1}, y_{2}\right\}$ together contain an induced $P_{b} \cup a P_{1}$ for some integer $b \geq 7$. Thus we assume $y_{1}=y_{2}$. Then the vertex y_{1} can also play the role of y_{0}. Let $W=N_{G}\left(T \backslash\left\{y_{0}, y_{1}\right\}\right) \cap V\left(D_{2}\right)$. By Lemma $8(4), x_{2}, x_{2}^{*} \notin W$. Now in D_{2}, we find a shortest path P_{2}^{*} connecting some vertex of $\left\{x_{2}, x_{2}^{*}\right\}$ and some vertex from W, say z. If P_{2}^{*} is an $\left(x_{2}, z\right)$-path, then $y_{1} x_{1}^{*} P_{1} x_{1} y_{0} x_{2} P_{2}^{*} z$ and $T \backslash\left\{y_{0}, y_{1}, y_{2}\right\}$ together contain an induced $P_{b} \cup a P_{1}$. If P_{2}^{*} is an $\left(x_{2}^{*}, z\right)$-path, then $y_{0} x_{1} P_{1} x_{1}^{*} y_{1} x_{2}^{*} P_{2}^{*} z$ and $T \backslash\left\{y_{0}, y_{1}, y_{2}\right\}$ together contain an induced $P_{b} \cup a P_{1}$. The second part of (2) is clear by the construction above.

Let G be a non-complete graph. A cutset S of $V(G)$ is a toughset of G if $\frac{|S|}{c(G-S)}=\tau(G)$.
Lemma 12. If G is a connected graph and S is a toughset of G, then for every $x \in S, x$ is adjacent in G to vertices from at least two components of $G-S$.

Proof. Assume to the contrary that there exists $x \in S$ such that x is adjacent in G to vertices from at most one component of $G-S$. Then $c(G-(S \backslash\{x\}))=c(G-S) \geq 2$ and

$$
\frac{|S \backslash\{x\}|}{c(G-(S \backslash\{x\}))}<\frac{|S|}{c(G-S)}=\tau(G),
$$

contradicting G being $\tau(G)$-tough.

3 Proof of Theorems 1, 2, and 3

Let R be any linear forest on at most 7 vertices. If G is R-free, then G is also R^{*}-free for any supergraph R^{*} of R. To prove Theorems 1 to 3 , we will show that the corresponding statements hold for a supergraph R^{*} of R, which simplifies the cases of possibilities of R. Let us first list the supergraphs that we will use.
(1) $P_{4} \cup 3 P_{1}$ is a supergraph of the following graphs: $P_{4} \cup 2 P_{1}, P_{3} \cup 3 P_{1}$, and $P_{2} \cup 4 P_{1}$;
(2) $6 P_{1}$ is a supergraph of $5 P_{1}$;
(3) $P_{3} \cup 2 P_{2}$ is a supergraph of $3 P_{2}$;
(4) $P_{7} \cup 2 P_{1}$ is a supergraph of the following graphs:
(a) $P_{5}, P_{3} \cup P_{2}, 2 P_{2} \cup P_{1}$;
(b) $P_{6}, P_{5} \cup P_{1}, P_{4} \cup P_{2}, 2 P_{3}, P_{3} \cup P_{2} \cup P_{1}, 2 P_{2} \cup 2 P_{1}$;
(c) $P_{7}, P_{6} \cup P_{1}, P_{5} \cup 2 P_{1}, P_{4} \cup P_{2} \cup P_{1}, 2 P_{3} \cup P_{1}, P_{3} \cup P_{2} \cup 2 P_{1}, 2 P_{2} \cup 3 P_{1}$.

Those supergraphs above together with the graphs R listed below cover all the $33 R$ graphs described in Theorems 1 to 3 . Theorems 1 to 3 are then consequences of the theorem below.

Theorem 13. Let $t>0$ be a real number, R be a linear forest, and G be a t-tough R-free graph on at least 3 vertices. Then G has a 2-factor provided that
(1) $R \in\left\{P_{4} \cup P_{1}, P_{3} \cup 2 P_{1}, P_{2} \cup 3 P_{1}\right\}$ and $t=1$ unless
(a) $R=P_{2} \cup 3 P_{1}$, and $G \cong H_{0}$ or G contains H_{1}, H_{2}, H_{3} or H_{4} as a spanning subgraph such that $E(G) \backslash E\left(H_{i}\right) \subseteq E_{G}(S, V(G) \backslash(T \cup S))$ for each $i \in[1,3]$, where H_{i}, S and T are defined in Figure 1.
(b) $R=P_{3} \cup 2 P_{1}$ and G contains H_{1} as a spanning subgraph such that $E(G) \backslash E\left(H_{1}\right) \subseteq$ $E_{G}(S, V(G) \backslash(T \cup S))$.
(2) $R \in\left\{P_{4} \cup 3 P_{1}, P_{3} \cup 4 P_{1}, P_{2} \cup 5 P_{1}, 6 P_{1}\right\}$ and $t>1$ unless
(a) when $R \neq P_{4} \cup 3 P_{1}, G$ contains H_{5} with $p=5$ as a spanning subgraph such that $E(G) \backslash E\left(H_{5}\right) \subseteq E_{G}(S, V(G) \backslash(T \cup S)) \cup E(G[S])$, where H_{5}, S and T are defined in Figure 2.
(b) $R=P_{2} \cup 5 P_{1}$ and G contains one of H_{6}, \ldots, H_{11} as a spanning subgraph such that $E(G) \backslash E\left(H_{i}\right) \subseteq E_{G}(S, V(G) \backslash(T \cup S)) \cup E(G[S]) \cup E(G[V(G) \backslash(T \cup S)])$, where H_{i}, S and T are defined in Figure 3 for each $i \in[6,11]$.
(3) $R=7 P_{1}$ and $t>\frac{7}{6}$ unless G contains H_{5} with $p=5$ as a spanning subgraph such that $E(G) \backslash E\left(H_{5}\right) \subseteq E_{G}(S, V(G) \backslash(T \cup S)) \cup E(G[S])$.
(4) $R \in\left\{P_{7} \cup 2 P_{1}, P_{5} \cup P_{2}, P_{4} \cup P_{3}, P_{3} \cup 2 P_{2}, 3 P_{2} \cup P_{1}\right\}$ and $t=3 / 2$.

Proof. Assume by contradiction that G does not have a 2 -factor. By Lemma 7, G has a barrier. We choose (S, T) to be a biased barrier. Thus (S, T) and G satisfy all the properties listed in Lemma 8. These properties will be used frequently even without further mentioning sometimes. By Lemma 9,

$$
\begin{equation*}
|T| \geq|S|+\sum_{k \geq 1} k\left|\mathcal{C}_{2 k+1}\right|+1 \tag{1}
\end{equation*}
$$

Since $t \geq 1$, by Lemma 10 (2), we know that

$$
\begin{equation*}
\bigcup_{k \geq 1} \mathcal{C}_{2 k+1} \neq \emptyset \tag{2}
\end{equation*}
$$

This implies $|T| \geq 3$ and so G contains an induced $P_{4} \cup P_{1}$ by Lemma 11 (1). Thus we assume $R \neq P_{4} \cup P_{1}$ in the rest of the proof.

Claim 1. $R \notin\left\{P_{3} \cup 2 P_{1}, P_{2} \cup 3 P_{1}\right\}$ unless G falls under one of the exceptional cases as in (a) and (b) of Theorem 13(1).

Proof. Assume instead that $R \in\left\{P_{3} \cup 2 P_{1}, P_{2} \cup 3 P_{1}\right\}$. Thus $t=1$. We may assume that G does not fall under any of the exceptional cases as in (a) and (b) of Theorem 13 (1).

It must be the case that $|T|=3$, as otherwise G contains an induced $P_{4} \cup 2 P_{1}$ by Lemma 11(1), and so contains an induced R. By Equation (1), we have $\left|\bigcup_{k \geq 1} \mathcal{C}_{2 k+1}\right|+|S| \leq 2$. By Lemma 10(1), we have that $\mathcal{C}_{0}=\emptyset$ if $S=\emptyset$. Since G is 1-tough and so $\delta(G) \geq 2$, Lemma $8(1)$-(3) implies that $\left|\bigcup_{k \geq 1} \mathcal{C}_{2 k+1}\right|+|S|=2$. By (2), we have the two cases below.

CASE 1: $\left|\bigcup_{k \geq 1} \mathcal{C}_{2 k+1}\right|=2$ and $S=\emptyset$.

Let $D_{1}, D_{2} \in \bigcup_{k>1} \mathcal{C}_{2 k+1}$ be the two odd components of $G-(S \cup T)$. Since $|T|=3$, Lemma 8(3) implies that $e_{G}\left(D_{i}, T\right)=3$ for each $i \in[1,2]$. Let $y \in T$ and $x \in V\left(D_{1}\right)$ such that $x y \in E(G)$. We let x_{1} be a neighbor of x from D_{1}. Then $y x x_{1}$ is an induced P_{3} by Lemma $8(3)$. Let $y_{1} \in T \backslash\{y\}$ such that $y_{1} x_{1} \notin E(G)$, which is possible as $|T|=3$ and $e_{G}\left(x_{1}, T\right) \leq 1$ by Lemma 8(4). We now let $x_{2} \in V\left(D_{2}\right)$ such that $e_{G}\left(x_{2},\left\{y, y_{1}\right\}\right)=0$, which is again possible as $\left|N_{G}(T) \cap V\left(D_{2}\right)\right|=3$ and each vertex of D_{2} is adjacent in G to at most one vertex of T. However, $y x x_{1}, y_{1}$ and x_{2} together form an induced copy of $P_{3} \cup 2 P_{1}$. Therefore, we assume $R=P_{2} \cup 3 P_{1}$.

We first claim that $\left|V\left(D_{i}\right)\right|=3$ for each $i \in[1,2]$. Otherwise, say $\left|V\left(D_{2}\right)\right| \geq 4$. Let $y \in T$ and $x \in V\left(D_{1}\right)$ such that $x y \in E(G)$. Take $x_{1} \in V\left(D_{2}\right)$ such that $e_{G}\left(x_{1}, T\right)=0$, which exists as $\left|N_{G}(T) \cap V\left(D_{2}\right)\right|=3$. Then $x y, x_{1}$ and $T \backslash\{y\}$ together form an induced copy of $P_{2} \cup 3 P_{1}$, giving a contradiction. We next claim that $D_{i}=K_{3}$ for each $i \in[1,2]$. Otherwise, say $D_{1} \neq K_{3}$. As D_{1} is connected, it follows that $D_{1}=P_{3}$. If also $D_{2} \neq K_{3}$ and so $D_{2}=P_{3}$, then deleting the two vertices of degree 2 from both D_{1} and D_{2} gives three components (note that each vertex of T is adjacent in G to one vertex of D_{1} and one vertex of D_{2}, showing that $\tau(G) \leq 2 / 3<1$. Thus $D_{2}=K_{3}$. We let $x_{1}, x_{2} \in V\left(D_{1}\right)$ be nonadjacent, $y_{1}, y_{2} \in T$ such that $e_{G}\left(x_{i}, y_{i}\right)=1$ for each $i \in[1,2]$, and $z_{1}, z_{2} \in V\left(D_{2}\right)$ such that $e_{G}\left(y_{i}, z_{i}\right)=1$ for each $i \in[1,2]$. Let $y \in T \backslash\left\{y_{1}, y_{2}\right\}$. Then $z_{1} z_{2}, y, x_{1}$ and x_{2} together form an induced copy of $P_{2} \cup 3 P_{1}$, giving a contradiction.

Thus $\left|V\left(D_{i}\right)\right|=3$ and $D_{i}=K_{3}$ for each $i \in[1,2]$. However, this implies that $G \cong H_{0}$.

CASE 2: $\left|\bigcup_{k \geq 1} \mathcal{C}_{2 k+1}\right|=1$ and $|S|=1$.

Let $D \in \bigcup_{k \geq 1} \mathcal{C}_{2 k+1}$ be the odd component of $G-(S \cup T)$. Assume first that $R=P_{3} \cup 2 P_{1}$. Then we have $|V(D)|=3$. Otherwise, $|V(D)| \geq 4$. Let $x \in V(D)$ such that $e_{G}(x, T)=0$ and P be a shortest path of D from x to a vertex, say $x_{1} \in V(D) \cap N_{G}(T)$. Let $y \in T$ such that $e_{G}\left(x_{1}, y\right)=1$. Then $x P x_{1} y$ and $T \backslash\{y\}$ form an induced copy of R, a contradiction.

Since G does not contain H_{1} as a spanning subgraph such that $E(G) \backslash E\left(H_{1}\right) \subseteq E_{G}(S, V(G) \backslash(T \cup S))$, it follows that $D \neq K_{3}$. As D is connected, it follows that $D=P_{3}$. Now deleting the vertex in S together with the degree 2 vertex of D produces three components, showing that $\tau(G) \leq 2 / 3<1$.

Therefore, we assume now that $R=P_{2} \cup 3 P_{1}$. Since G does not contain H_{1} as a spanning subgraph such that $E(G) \backslash E\left(H_{1}\right) \subseteq E_{G}(S, V(G) \backslash(T \cup S))$, the argument for the case $R=P_{3} \cup 2 P_{1}$ above implies that $|V(D)| \geq 4$. We claim that $|V(D)|=4$. If $|V(D)| \geq 5$, we let $x_{1}, x_{2} \in$ $V(D) \backslash N_{G}(T)$ be any two distinct vertices. If $x_{1} x_{2} \in E(G)$, then $x_{1} x_{2}$ together with T form an induced copy of R, a contradiction. Thus $V(D) \backslash N_{G}(T)$ is an independent set in G. However, $c\left(G-\left(S \cup\left(N_{G}(T) \cap V(D)\right)\right)\right)=|T|+\left|V(D) \backslash N_{G}(T)\right| \geq 5$, implying that $\tau(G) \leq 4 / 5<1$.

Thus $|V(D)|=4$. Let $x \in V(D)$ such that $e_{G}(x, T)=0$. Since G does not contain H_{i} as a spanning subgraph such that $E(G) \backslash E\left(H_{i}\right) \subseteq E_{G}(S, V(G) \backslash(T \cup S))$ for each $i \in[2,4]$, it follows that either $d_{D}(x) \leq 2$ or $d_{D}(x)=3$ and $D=K_{1,3}$. If $d_{D}(x)=3$, then as $D=K_{1,3}$, we have $c(G-(S \cup\{x\}))=3$, implying $\tau(G) \leq 2 / 3<1$. Thus $d_{D}(x) \leq 2$. Let $V(D)=\left\{x, x_{1}, x_{2}, x_{3}\right\}$ and assume $x x_{1} \notin E(D)$. Then $c\left(G-\left(S \cup\left\{x_{2}, x_{3}\right\}\right)\right)=4$, implying $\tau(G) \leq 3 / 4<1$. The proof of Case 2 is complete.

Thus by Claim 1 and the fact that $R \neq P_{4} \cup P_{1}$, we can assume $R \notin\left\{P_{4} \cup P_{1}, P_{3} \cup 2 P_{1}, P_{2} \cup 3 P_{1}\right\}$ from this point on. Therefore we have $t>1$. This implies that G is 3 -connected and so $\delta(G) \geq 3$. Thus $|S|+\left|\bigcup_{k \geq 0} \mathcal{C}_{2 k+1}\right| \geq 3$ by Lemma 8(1)-(4).

Claim 2. $|T| \geq 5$.

Proof. Equation (2) implies $|T| \geq 3$. Assume to the contrary that $|T| \leq 4$. We consider the following two cases.

Case 1: $|T|=3$.

Since $|S|+\left|\bigcup_{k \geq 0} \mathcal{C}_{2 k+1}\right| \geq 3$, we already have a contradiction to Equation (1) if $\mathcal{C}_{1}=\emptyset$. Thus $\mathcal{C}_{1} \neq \emptyset$, which gives $|S| \geq 2$ by Lemma 10(1). However, we again get a contradiction to Equation (1) as $\bigcup_{k \geq 1} \mathcal{C}_{2 k+1} \neq \emptyset$ by Equation (2).

CASE 2: $|T|=4$.

By Lemma 8 (3), we know that $\mathcal{C}_{2 k+1}=\emptyset$ for any $k \geq 2$. First assume $|S| \leq 1$. Then $\mathcal{C}_{1}=\emptyset$ by Lemma 10 (1). By Lemma 8, there are at least $3|T|=12$ edges going from T to vertices in S and components in $\bigcup_{k \geq 1} \mathcal{C}_{2 k+1}$. As $\mathcal{C}_{2 k+1}=\emptyset$ for any $k \geq 2$, it follows that $\left|\mathcal{C}_{3}\right| \geq 4$ if $|S|=0$ and $\left|\mathcal{C}_{3}\right| \geq 3$ if $|S|=1$, contradicting Equation (1).

Next, assume $|S| \geq 2$. By Equations (1) and (2), we have $|S|=2$. Let D be the single component in \mathcal{C}_{3}. Define W_{D} to be a set of 2 vertices in D which are all adjacent in G to some vertex from T. Then $S \cup W_{D}$ is a cutset in G such that $\left|S \cup W_{D}\right|=4$ and $c\left(G-\left(S \cup W_{D}\right)\right) \geq|T|=4$, contradicting
$\tau(G) \geq t>1$.

By Claim 2 and Lemma 11 (1), we see that G contains an induced $R=P_{4} \cup 3 P_{1}$. Thus we may assume $R \notin\left\{P_{4} \cup P_{1}, P_{3} \cup 2 P_{1}, P_{2} \cup 3 P_{1}, P_{4} \cup 3 P_{1}\right\}$ from this point on.

Claim 3. $R \notin\left\{P_{3} \cup 4 P_{1}, P_{2} \cup 5 P_{1}, 6 P_{1}, 7 P_{1}\right\}$ unless G falls under the exceptional cases as in (a) and (b) of Theorem 13(2).

Proof. We may assume that G does not fall under the exceptional cases as in (a) and (b) of Theorem 13(2). Thus we show that $R \notin\left\{P_{3} \cup 4 P_{1}, P_{2} \cup 5 P_{1}, 6 P_{1}, 7 P_{1}\right\}$.

Assume to the contrary that $R \in\left\{P_{3} \cup 4 P_{1}, P_{2} \cup 5 P_{1}, 6 P_{1}, 7 P_{1}\right\}$. By Lemma 11(1), G contains an induced $P_{4} \cup a P_{1}$, where $a=|T|-2$. If $a \geq 5$, then each of $P_{3} \cup 4 P_{1}, P_{2} \cup 5 P_{1}, 6 P_{1}$, and $7 P_{1}$ is an induced subgraph of $P_{4} \cup a P_{1}$, a contradiction. Thus $a \leq 4$ and so $|T| \leq 6$. As $|T| \leq 6$, we have that $\bigcup_{k>2} \mathcal{C}_{2 k+1}=\emptyset$ by Lemma 8 (3). Since G is more than 1-tough and so is 3 -connected, we have $\delta(G) \geq 3$. By Claim $2,|T| \geq 5$. Thus, we have two cases.

Case 1: $|T|=5$.
As $|T|=5$, we have $\mathcal{C}_{2 k+1}=\emptyset$ for any $k \geq 3$. We consider two cases regarding whether or not $\left|\mathcal{C}_{3} \cup \mathcal{C}_{5}\right| \geq 2$.

Case 1.1: $\left|\mathcal{C}_{3} \cup \mathcal{C}_{5}\right|=1$.
Let $D \in \mathcal{C}_{2 k+1} \subseteq \mathcal{C}_{3} \cup \mathcal{C}_{5}$. By Equation (1), $5 \geq|S|+k+1$, so $|S| \leq 4-k$. If $k=1$, let W_{D} be a set of $2 k$ vertices (which exist by Lemma $8(4)$) from D which are adjacent in G to vertices from T. Then $S \cup W_{D}$ forms a cutset and we have

$$
t \leq \frac{|S|+2 k}{5} \leq \frac{4+k}{5}=\frac{5}{5}=1,
$$

contradicting $t>1$. Thus we assume $k=2$. We consider two subcases.
CASE 1.1.1: $|V(D)| \geq 6$.
For $R=P_{3} \cup 4 P_{1}$, let $x \in V(D)$ such that $e_{G}(x, T)=0$. Let P be a shortest path in D from x to a vertex, say x^{*} from $N_{G}(T) \cap V(D)$. Let $y^{*} \in T$ such that $e_{G}\left(x^{*}, y^{*}\right)=1$. Then $x P x^{*} y^{*}$ and $T \backslash\left\{y^{*}\right\}$ contain $P_{3} \cup 4 P_{1}$ as an induced subgraph. We consider next that $R=6 P_{1}$. Then T and the vertex of D that is not adjacent in G to any vertex from T for an induced $6 P_{1}$, giving a contradiction. For $R=7 P_{1}$, let W_{D} be the set of $2 k+1$ vertices (which exist by Lemma 8(4)) from D which are adjacent in G to vertices from T. Then $S \cup W_{D}$ forms a cutset and we have

$$
t \leq \frac{|S|+2 k+1}{|T|+1} \leq \frac{4+k+1}{6}=\frac{7}{6},
$$

giving a contradiction to $t>7 / 6$.
Lastly, we consider $R=P_{2} \cup 5 P_{1}$. For any $x \in V(D)$ such that $e_{G}(x, T)=0$, it must be the case that x is adjacent in G to every vertex from $N_{G}(T) \cap V(D)$. Otherwise, let $x^{*} \in N_{G}(T) \cap V(D)$
such that $x x^{*} \notin E(G)$. Let $y^{*} \in T$ such that $e_{G}\left(x^{*}, y^{*}\right)=1$. Then $x^{*} y^{*}$ and $\left(T \backslash\left\{y^{*}\right\}\right) \cup\{x\}$ contain $P_{2} \cup 5 P_{1}$ as an induced subgraph. Furthermore, if $|V(D)|-\left|N_{G}(T) \cap V(D)\right| \geq 2$, then $V(D) \backslash\left(N_{G}(T) \cap V(D)\right)$ is an independent set in G. Otherwise, an edge with both endvertices from $V(D) \backslash\left(N_{G}(T) \cap V(D)\right)$ together with T induces $P_{2} \cup 5 P_{1}$. Thus if $|V(D)| \geq 7$, let W_{D} be the set of $2 k+1$ vertices (which exist by Lemma 8(4)) from D which are adjacent in G to vertices from T. Then $S \cup W_{D}$ forms a cutset and we have

$$
t \leq \frac{|S|+5}{|T|+2} \leq \frac{7}{7}
$$

giving a contradiction to $t>1$. Thus $|V(D)|=6$. Let $x \in V(D)$ be the vertex such that $e_{G}(x, T)=0$. Then it must be the case that $D-x$ has at most two components. Otherwise, we have $t \leq \frac{|S \cup\{x\}|}{3}=1$.

Assume first that $c(D-x)=2$. Let D_{1} and D_{2} be the two components of $D-x$, and assume further that $\left|V\left(D_{1}\right)\right| \leq\left|V\left(D_{2}\right)\right|$. Then as $|V(D-x)|=5$, we have two possibilities: either $\left|V\left(D_{1}\right)\right|=1$ and $\left|V\left(D_{2}\right)\right|=4$ or $\left|V\left(D_{1}\right)\right|=2$ and $\left|V\left(D_{2}\right)\right|=3$. Since $\delta(G) \geq 3$, if $\left|V\left(D_{1}\right)\right|=1$, then the vertex from D_{1} must be adjacent in G to at least one vertex from S. When $\left|V\left(D_{2}\right)\right|=4$ and $D_{2} \neq K_{4}$, then D_{2} has a cutset W of size 2 such that $c\left(D_{2}-W\right)=2$. Then $S \cup W \cup\{x\}$ is a cutset of G such that $c(G-(S \cup W \cup\{x\}))=5$, showing that $t \leq 1$. Thus $D_{2}=K_{4}$. However, this shows that G contains H_{6} as a spanning subgraph. When $\left|V\left(D_{2}\right)\right|=3$ and $D_{2} \neq K_{3}$, then D_{2} has a cutvertex x^{*}. Then $S \cup\left\{x, x^{*}\right\}$ is a cutset of G such that $c\left(G-\left(S \cup\left\{x, x^{*}\right\}\right)\right)=4$, showing that $t \leq \frac{4}{4}=1$. Thus $D_{2}=K_{3}$; however, this shows that G contains H_{7} as a spanning subgraph.

Assume then that $c(D-x)=1$. Let $D^{*}=D-x$. If $\delta\left(D^{*}\right) \geq 3$, then D^{*} is Hamiltonian and so G contains H_{10} as a spanning subgraph. Thus we assume $\delta\left(D^{*}\right) \leq 2$.

Assume first that D^{*} has a cutvertex x^{*}. Then $c\left(D^{*}-x\right)=2$: as if $c\left(D^{*}-x\right) \geq 3$, then $c(G-$ $\left.\left(S \cup\left\{x, x^{*}\right\}\right)\right) \geq 4$, implying $t \leq 1$. Let D_{1}^{*} and D_{2}^{*} be the two components of $D^{*}-x^{*}$, and assume further that $\left|V\left(D_{1}^{*}\right)\right| \leq\left|V\left(D_{2}^{*}\right)\right|$. Then as $\left|V\left(D^{*}-x^{*}\right)\right|=4$, we have two possibilities: either $\left|V\left(D_{1}^{*}\right)\right|=1$ and $\left|V\left(D_{2}^{*}\right)\right|=3$ or $\left|V\left(D_{1}^{*}\right)\right|=2$ and $\left|V\left(D_{2}^{*}\right)\right|=2$. Since $\delta(G) \geq 3$, if $\left|V\left(D_{1}^{*}\right)\right|=1$, then the vertex from D_{1}^{*} must be adjacent in G to at least one vertex from S. When $\left|V\left(D_{2}^{*}\right)\right|=3$ and $D_{2}^{*} \neq K_{3}$, then D_{2}^{*} has a cutvertex $x^{* *}$. Then $S \cup\left\{x, x^{*}, x^{* *}\right\}$ is a cutset of G such that $c\left(G-\left(S \cup\left\{x, x^{*}, x^{* *}\right\}\right)\right)=5$, showing that $t \leq 1$. Thus $D_{2}^{*}=K_{3}$. The vertex x^{*} is a cutvertex of D^{*} and so is adjacent in D^{*} to a vertex of D_{1}^{*} and a vertex of D_{2}^{*}. However, this shows that G contains H_{8} as a spanning subgraph. When $\left|V\left(D_{2}^{*}\right)\right|=2$, as G does not contain H_{8} or H_{9} as a spanning subgraph, x^{*} is adjacent in G to exactly one vertex, say x_{1}^{*}, of D_{1}^{*} and to exactly one vertex, say x_{2}^{*}, of D_{2}^{*}. Then $S \cup\left\{x, x_{1}^{*}, x_{2}^{*}\right\}$ is a cutset of G whose removal produces 5 components, showing that $\tau(G) \leq 1$.

Assume then that D^{*} is 2 -connected. As $\delta\left(D^{*}\right) \leq 2, D^{*}$ has a minimum cutset W of size 2 . If $c\left(D^{*}-W\right)=3$, then we have $c(G-(S \cup W \cup\{x\}))=5$, showing that $t \leq 1$. Thus $c\left(D^{*}-W\right)=2$. Then by analyzing the connection in D^{*} between W and the two components of $D^{*}-W$, we see that D^{*} contains C_{5} as a spanning subgraph, showing that G contains H_{10} as a spanning subgraph.

Case 1.1.2: $|V(D)|=5$.

Since G does not contain H_{5} as a spanning subgraph, we have $D \neq K_{5}$. As $D \neq K_{5}, D$ has a cutset W_{D} of size at most 3 such that each component of $D-W_{D}$ is a single vertex. Then

$$
t \leq \frac{|S|+\left|W_{D}\right|}{|T|} \leq \frac{4-2+3}{5}=1,
$$

a contradiction.
Case 1.2: $\left|\mathcal{C}_{3} \cup \mathcal{C}_{5}\right| \geq 2$.
By Equation (1), we have

$$
4 \geq|S|+\sum_{k \geq 1} k\left|\mathcal{C}_{2 k+1}\right|
$$

So one of the following holds:

1. $S=\emptyset$ and either $\left|\mathcal{C}_{5}\right| \leq 2,\left|\mathcal{C}_{5}\right| \leq 1$ and $\left|\mathcal{C}_{3}\right| \leq 2$, or $\left|\mathcal{C}_{3}\right| \leq 4$. In this case, $\mathcal{C}_{1}=\emptyset$ by Lemma 10 (1). Thus by Lemma 8(3), we have $e_{G}(T, V(G) \backslash T) \leq 12<3|T|=15$.
2. $|S|=1$ and either $\left|\mathcal{C}_{5}\right|=1$ and $\left|\mathcal{C}_{3}\right|=1$ or $\left|\mathcal{C}_{3}\right| \leq 3$. In this case, again $\mathcal{C}_{1}=\emptyset$ by Lemma $10(1)$. This implies there are a maximum of 14 edges incident to vertices in T, a contradiction.
3. $|S|=2$ and $\left|\mathcal{C}_{3}\right|=2$.

Let $\mathcal{C}_{3}=\left\{D_{1}, D_{2}\right\}$. Note that $\left|V\left(D_{i}\right)\right| \geq 3$ by Lemma $8(4)$ for each $i \in[1,2]$. Since $|T|=5$, there exists $y_{0} \in T$ such that $e_{G}\left(y_{0}, D_{i}\right)=1$ for each $i \in[1,2]$. If $R=P_{3} \cup 4 P_{1}$, then T together with the two neighbors of y_{0} from $V\left(D_{1}\right) \cup V\left(D_{2}\right)$ induce R. If $R=6 P_{1}$, then $T \backslash\left\{y_{0}\right\}$ together with the two neighbors of y_{0} from $V\left(D_{1}\right) \cup V\left(D_{2}\right)$ gives an induced $6 P_{1}$. If $R=7 P_{1}$, let $W_{D_{i}} \subseteq V\left(D_{i}\right) \backslash N_{G}\left(y_{0}\right)$ be the two vertices of D_{i} that are adjacent in G to vertices from T. Then $c\left(G-\left(S \cup W_{D_{1}} \cup W_{D_{2}} \cup\left\{y_{0}\right\}\right)\right)=|T|-1+2=6$. Thus $t \leq \frac{2+2+2+1}{6}=\frac{7}{6}$, contradicting $t>\frac{7}{6}$. Lastly, assume $R=P_{2} \cup 5 P_{1}$. If one of D_{i} has at least 4 vertices, say $\left|V\left(D_{2}\right)\right| \geq 4$, then let $x \in V\left(D_{2}\right)$ such that $e_{G}(x, T)=0, x^{*} \in V\left(D_{1}\right)$ and $y^{*} \in T$ such that $e_{G}\left(x^{*}, y^{*}\right)=1$. Then $x^{*} y^{*}$ and $\left(T \backslash\left\{y^{*}\right\}\right) \cup\{x\}$ induce $P_{2} \cup 5 P_{1}$. Thus $\left|V\left(D_{1}\right)\right|=\left|V\left(D_{2}\right)\right|=3$. If one of D_{i}, say $D_{2} \neq K_{3}$, then D_{2} has a cutvertex x. Let W be the set of any two vertices of D_{1}. Then $S \cup W \cup\{x\}$ is a cutset of G such that $c(G-(S \cup W \cup\{x\}))=5$, showing that $t \leq \frac{5}{5}=1$. Thus $D_{1}=D_{2}=K_{3}$. However, this shows that G contains H_{11} as a spanning subgraph.

Case 2: $|T|=6$.
In this case, by Lemma 11(1), G has an induced $P_{4} \cup 4 P_{1}$, which contains each of $P_{3} \cup 4 P_{1}, P_{2} \cup 5 P_{1}$ and $6 P_{1}$ as an induced subgraph. So we assume $R=7 P_{1}$ in this case and thus $t>\frac{7}{6}$.

Recall for $y \in T, h(y)=\mid\left\{D: D \in \bigcup_{k \geq 1} \mathcal{C}_{2 k+1}\right.$ and $\left.e_{G}(y, D) \geq 1\right\} \mid$. If there exists $y_{0} \in T$ such that $h\left(y_{0}\right) \geq 2$, we let x_{1}, x_{2} be the two neighbors of y_{0} from the two corresponding components in $\bigcup_{k \geq 1} \mathcal{C}_{2 k+1}$, respectively. Then $T \backslash\left\{y_{0}\right\}$ together with $\left\{x_{1}, x_{2}\right\}$ induces $7 P_{1}$. Thus $h(y) \leq 1$ for each $y \in T$. This, together with $|T|=6$, implies that we have either $\left|\mathcal{C}_{3}\right| \in\{1,2\}$ and $\mathcal{C}_{2 k+1}=\emptyset$ for any $k \geq 2$ or $\left|\mathcal{C}_{5}\right|=1$ and $\mathcal{C}_{2 k+1}=\emptyset$ for any $1 \leq k \neq 2$.

If $\left|\mathcal{C}_{3}\right|=1$ and $\mathcal{C}_{2 k+1}=\emptyset$ for any $k \geq 2$, then $|S| \leq 4$ by Equation (1). Let W be a set of two vertices from the component in \mathcal{C}_{3} that are adjacent in G to vertices from T. Then $c(G-(S \cup W)) \geq 6$, indicating that $t \leq \frac{4+2}{6}<\frac{7}{6}$. For the other two cases, we have $|S| \leq 3$. If $\left|\mathcal{C}_{3}\right|=2$ and $\mathcal{C}_{2 k+1}=\emptyset$ for any $k \geq 2$, let W be a set of four vertices, with two from one component in \mathcal{C}_{3} and the other two from the other component in \mathcal{C}_{3}, which are adjacent in G to vertices from T. If $\left|\mathcal{C}_{5}\right|=1$ and $\mathcal{C}_{2 k+1}=\emptyset$ for any $1 \leq k \leq 2$, let W be a set of four vertices from the component in \mathcal{C}_{5} that are adjacent in G to vertices from T. Then we have $c(G-(S \cup W)) \geq 6$, indicating that $t \leq \frac{3+4}{6}=\frac{7}{6}$.

By Claim 3, we now assume that $R \in\left\{P_{7} \cup 2 P_{1}, P_{5} \cup P_{2}, P_{4} \cup P_{3}, P_{3} \cup 2 P_{2}, 3 P_{2} \cup P_{1}\right\}$ and $t=3 / 2$.
Claim 4. There exists $y \in T$ with $h(y)>2$.

Proof. Assume to the contrary that for every $y \in T$, we have $h(y) \leq 1$. Define the following partition of T :

$$
\begin{aligned}
& T_{0}=\left\{y \in T: e_{G}(y, D)=0 \text { for all } D \in \bigcup_{k \geq 1} \mathcal{C}_{2 k+1}\right\} \\
& T_{1}=\left\{y \in T: e_{G}(y, D)=1 \text { for some } D \in \bigcup_{k \geq 1} \mathcal{C}_{2 k+1}\right\} .
\end{aligned}
$$

Note that $\left|T_{1}\right|=\sum_{k \geq 1}(2 k+1)\left|\mathcal{C}_{2 k+1}\right|$ by Lemma $8(3)$ and (4). For each $D \in \mathcal{C}_{2 k+1}$ for some $k \geq 1$, we let W_{D} be a set of $2 k$ vertices that each has in G a neighbor from T. As each $D-W_{D}$ is connected to exactly one vertex from T and each component from \mathcal{C}_{1} is connected to exactly one vertex from T, it follows that

$$
W=S \cup \bigcup_{D \in \bigcup_{k \geq 1} \mathcal{C}_{2 k+1}} W_{D}
$$

satisfies $c(G-W) \geq|T| \geq 5$, where $|T| \geq 5$ is by Claim 2 .
By the toughness of G, we have

$$
\begin{align*}
|S|+\sum_{k \geq 1} 2 k\left|\mathcal{C}_{2 k+1}\right| & =|W| \geq t|T|=t\left(\left|T_{0}\right|+\left|T_{1}\right|\right) \\
& =t\left(\left|T_{0}\right|+\sum_{k \geq 1}(2 k+1)\left|\mathcal{C}_{2 k+1}\right|\right) . \tag{3}
\end{align*}
$$

Since $t=3 / 2$, the inequality above implies that $|S| \geq 3\left|T_{0}\right| / 2+\sum_{k \geq 1}(k+3 / 2)\left|\mathcal{C}_{2 k+1}\right|$. Thus

$$
|S|+\sum_{k \geq 1} k\left|\mathcal{C}_{2 k+1}\right| \geq 3\left|T_{0}\right| / 2+\sum_{k \geq 1}(2 k+3 / 2)\left|\mathcal{C}_{2 k+1}\right|>\left|T_{0}\right|+\sum_{k \geq 1}(2 k+1)\left|\mathcal{C}_{2 k+1}\right|=|T|,
$$

contradicting Equation (1).
By Claim 4 , there exists $y \in T$ such that $h(y) \geq 2$. Then as $|T| \geq 5$, by Lemma $11(2), G$ contains an induced $P_{7} \cup 2 P_{1}$. Thus we assume that $R \neq P_{7} \cup 2 P_{1}$. We assume first that $\left|\bigcup_{k \geq 1} \mathcal{C}_{2 k+1}\right| \geq 3$ and let D_{1}, D_{2}, D_{3} be three distinct odd components from $\bigcup_{k \geq 1} \mathcal{C}_{2 k+1}$. Let $y_{0} \in T$ such that $h\left(y_{0}\right) \geq 2$.

We assume, without loss of generality, that $e_{G}\left(y_{0}, D_{1}\right)=e_{G}\left(y_{0}, D_{2}\right)=1$. By Lemma 11(2), G contains an induced $P_{b} \cup a P_{1}$, where $b \geq 7$ and $a=|T|-3$, and the graph $P_{b} \cup a P_{1}$ can be chosen such that the vertices in $a P_{1}$ are from T and the path P_{b} has the form $y_{1} x_{1}^{*} P_{1} x_{1} y_{0} x_{2} P_{2} x_{2}^{*} y_{2}$, where $y_{0}, y_{1}, y_{2} \in T$ and $x_{1}^{*} P_{1} x_{1}$ and $x_{2}^{*} P_{2} x_{2}$ are respectively contained in D_{1} and D_{2} such that $e_{G}(x, T)=0$ for every internal vertex x from P_{1} and P_{2}. If one of y_{1} and y_{2}, say y_{1} has a neighbor z_{1} from $V\left(D_{3}\right)$, then $z_{1} y_{1} x_{1}^{*} P_{1} x_{1} y_{0} x_{2} P_{2} x_{2}^{*} y_{2}$ and $T \backslash\left\{y_{0}, y_{1}, y_{2}\right\}$ induce $P_{8} \cup 2 P_{1}$, which contains each of $P_{5} \cup P_{2}, P_{4} \cup P_{3}$, and $3 P_{2} \cup P_{1}$ as an induced subgraph. Let $z_{2} \in V\left(D_{3}\right)$ be a neighbor of z_{1}. Then $z_{2} z_{1} y_{1} x_{1}^{*} P_{1} x_{1} y_{0} x_{2} P_{2} x_{2}^{*} y_{2}$ contains an induced $P_{3} \cup 2 P_{2}$ whether $e_{G}\left(z_{2},\left\{y_{0}, y_{2}\right\}\right)=0$ or 1 . Thus we assume $e_{G}\left(y_{i}, D_{3}\right)=0$ for each $i \in[1,2]$ and so we can find $y_{3} \in T \backslash\left\{y_{0}, y_{1}, y_{2}\right\}$ and $z \in V\left(D_{3}\right)$ such that $y_{3} z \in E(G)$. Then $y_{1} x_{1}^{*} P_{1} x_{1} y_{0} x_{2} P_{2} x_{2}^{*} y_{2}$ and $z y_{3}$ contains an induced $P_{7} \cup P_{2}$, which contains each of $P_{5} \cup P_{2}, P_{3} \cup 2 P_{2}$ and $3 P_{2} \cup P_{1}$ as an induced subgraph. We are only left to consider $R=P_{4} \cup P_{3}$. As $e_{G}\left(y_{i}, D_{3}\right)=0$ for each $i \in[1,2]$, we can find distinct $y_{3}, y_{4} \in T \backslash\left\{y_{0}, y_{1}, y_{2}\right\}$ and distinct $z_{1}, z_{2} \in V\left(D_{3}\right)$ such that $y_{3} z_{1}, y_{4} z_{2} \in E(G)$. We let P be a shortest path in D_{3} connecting z_{1} and z_{2}. If $e_{G}\left(y_{0}, V(P)\right)=0$, then $y_{3} z_{1} P z_{2} y_{4}$ and $y_{1} x_{1}^{*} P_{1} x_{1} y_{0} x_{2} P_{2} x_{2}^{*} y_{2}$ contains an induced $P_{4} \cup P_{3}$. Thus $e_{G}\left(y_{0}, V(P)\right)=1$. This in particular, implies that $|V(P)| \geq 3$. Then $y_{3} z_{1} P z_{2} y_{4}$ and $y_{1} x_{1}^{*} P_{1} x_{1}$ together contain an induced $P_{4} \cup P_{3}$.

Thus $\left|\cup_{k \geq 1} \mathcal{C}_{2 k+1}\right|=2$. Let $D_{1}, D_{2} \in \bigcup_{k \geq 1} \mathcal{C}_{2 k+1}$ be the two components. Define the following partition of T :

$$
\begin{aligned}
T_{0} & =\left\{y \in T: e_{G}\left(y, D_{1}\right)=e_{G}\left(y, D_{2}\right)=0\right\}, \\
T_{11} & =\left\{y \in T: e_{G}\left(y, D_{1}\right)=1 \text { and } e_{G}\left(y, D_{2}\right)=0\right\}, \\
T_{12} & =\left\{y \in T: e_{G}\left(y, D_{1}\right)=0 \text { and } e_{G}\left(y, D_{2}\right)=1\right\}, \\
T_{2} & =\left\{y \in T: e_{G}\left(y, D_{1}\right)=e_{G}\left(y, D_{2}\right)=1\right\} .
\end{aligned}
$$

We have either $T_{2}=\emptyset$ or $T_{2} \neq \emptyset$. First suppose $T_{2}=\emptyset$. Define the following vertex sets:

$$
W_{1}=N_{G}\left(T_{11}\right) \cap V\left(D_{1}\right) \quad \text { and } \quad W_{2}=N_{G}\left(T_{12}\right) \cap V\left(D_{2}\right) .
$$

Then $\left|W_{1}\right|=\left|T_{11}\right|=2 k_{1}+1$ and $\left|W_{2}\right|=\left|T_{12}\right|=2 k_{2}+1$, where we assume $e_{G}\left(T, D_{1}\right)=2 k_{1}+1$ and $e_{G}\left(T, D_{2}\right)=2 k_{2}+1$ for some integers k_{1} and k_{2}. Then $W=S \cup W_{1} \cup W_{2}$ is a cutset of G with $c(G-W) \geq|T|$. By toughness, $|W| \geq \frac{3}{2}|T|=|T|+\frac{1}{2}|T|$. Since $|T|=\left|T_{0}\right|+\left|T_{11}\right|+\left|T_{12}\right|$, this gives us

$$
\begin{aligned}
|W| & \geq|T|+\frac{1}{2}\left|T_{0}\right|+\frac{1}{2}\left(\left|T_{11}\right|+\left|T_{12}\right|\right) \\
& =|T|+\frac{1}{2}\left|T_{0}\right|+\frac{1}{2}\left(2 k_{1}+1+2 k_{2}+1\right) \\
& =|T|+\frac{1}{2}\left|T_{0}\right|+k_{1}+k_{2}+1 .
\end{aligned}
$$

Thus $|W|=|S|+\left|W_{1}\right|+\left|W_{2}\right|=|S|+2 k_{1}+2 k_{2}+2 \geq|T|+\frac{1}{2}\left|T_{0}\right|+k_{1}+k_{2}+1$, which implies $|S|+k_{1}+k_{2}+1 \geq|T|+\frac{1}{2}\left|T_{0}\right|$. Hence, by Equation (1), we have $|T| \geq|T|+\frac{1}{2}\left|T_{0}\right|$, giving a contradiction.

So we may assume $T_{2} \neq \emptyset$. Now define the following vertex sets:

$$
W_{1}=N_{G}\left(T_{11}\right) \cap V\left(D_{1}\right), \quad W_{2}=N_{G}\left(T_{12}\right) \cap V\left(D_{2}\right), \quad \text { and } \quad W_{3}=N\left(T_{2}\right) \cap\left(V\left(D_{1}\right) \cup V\left(D_{2}\right)\right) .
$$

We have that $\left|W_{1}\right|=\left|T_{11}\right|,\left|W_{2}\right|=\left|T_{12}\right|$, and $\left|W_{3}\right|=2\left|T_{2}\right|$. Now let $W=S \cup W_{1} \cup W_{2} \cup W_{3}$. Then W is a cutset of G with $c(G-W) \geq\left|T_{0}\right|+\left|T_{11}\right|+\left|T_{12}\right|+1$ since $T_{2} \neq \emptyset$. By toughness, $|W| \geq \frac{3}{2}\left(\left|T_{0}\right|+\left|T_{11}\right|+\left|T_{12}\right|+1\right)$. Since $|W|=|S|+\left|W_{1}\right|+\left|W_{2}\right|+\left|W_{3}\right|=|S|+\left|T_{11}\right|+\left|T_{12}\right|+2\left|T_{2}\right|$, we have $|S|+\left|T_{11}\right|+\left|T_{12}\right|+2\left|T_{2}\right| \geq \frac{3}{2}\left|T_{0}\right|+\frac{3}{2}\left|T_{11}\right|+\frac{3}{2}\left|T_{12}\right|+\frac{3}{2}$. This implies

$$
|S| \geq \frac{3}{2}\left|T_{0}\right|+\frac{1}{2}\left|T_{11}\right|+\frac{1}{2}\left|T_{12}\right|+1 .
$$

Thus,

$$
\begin{equation*}
|S|+k_{1}+k_{2} \geq \frac{3}{2}\left|T_{0}\right|+\frac{1}{2}\left|T_{11}\right|+\frac{1}{2}\left|T_{12}\right|+1+k_{1}+k_{2} . \tag{4}
\end{equation*}
$$

We have that either $T_{11} \cup T_{12} \cup T_{0}=\emptyset$ or $T_{11} \cup T_{12} \cup T_{0} \neq \emptyset$. First suppose $T_{11} \cup T_{12} \cup T_{0}=\emptyset$. Then $|T|=\left|T_{2}\right|=\frac{1}{2}\left(2 k_{1}+1+2 k_{2}+1\right)=k_{1}+k_{2}+1$. Thus $|S|+k_{1}+k_{2} \geq|T|$, showing a contradiction to Equation (1).

So we may assume $T_{11} \cup T_{12} \cup T_{0} \neq \emptyset$. Then

$$
\begin{aligned}
|T| & =\left|T_{0}\right|+\left(2 k_{1}+1+2 k_{2}+1-\left|T_{2}\right|\right) \\
& =\left|T_{0}\right|+\left(2 k_{1}+2 k_{2}+2\right)-\frac{1}{2}\left(2 k_{1}+1+2 k_{2}+1-\left|T_{11}\right|-\left|T_{12}\right|\right) \\
& =\left|T_{0}\right|+\frac{1}{2}\left(2 k_{1}+2 k_{2}+2\right)+\frac{1}{2}\left|T_{11}\right|+\frac{1}{2}\left|T_{12}\right| \\
& =\left|T_{0}\right|+k_{1}+k_{2}+1+\frac{1}{2}\left|T_{11}\right|+\frac{1}{2}\left|T_{12}\right| .
\end{aligned}
$$

Using the size of T and (4), we get $|S|+k_{1}+k_{2} \geq|T|$, showing a contradiction to Equation (1).
The proof of Theorem 13 is now finished.

4 Proof of Theorems 5 and 6

Recall that for a graph $G, \alpha(G)$, the independence number of G, is the size of a largest independent set in G.

Proof of Theorem 5. For each $i \in[0,11], H_{i}$ does not contain a 2-factor by Theorem 7. Thus to finish proving Theorem 13, we are only left to show the three claims below.

Claim 5. The graph H_{i} is $\left(P_{2} \cup 3 P_{1}\right)$-free, H_{1} is $\left(P_{3} \cup 2 P_{1}\right)$-free, and $\tau\left(H_{i}\right)=1$ for each $i \in[0,4]$.
Proof. We first show that H_{i} is $\left(P_{2} \cup 3 P_{1}\right)$-free for each $i \in[0,4]$. We only show this for H_{0}, as the proofs for H_{i} for $i \in[1,4]$ are similar. In H_{0}, there are two types of edges $x y: x, y \in$ $V\left(D_{j}\right)$ or $x \in V\left(D_{j}\right)$ and $y \in V(T)$, where $j \in[1,2]$. Without loss of generality first consider the edge $v_{1} v_{2} \in E\left(D_{1}\right)$ and the subgraph $F_{1}=H_{0}-\left(N_{H_{0}}\left[v_{1}\right] \cup N_{H_{0}}\left[v_{2}\right]\right)$. We see $\alpha\left(F_{1}\right)=2$. Now, without loss of generality, consider the edge $v_{1} t_{1}$ and the subgraph $F_{2}=H_{0}-\left(N_{H_{0}}\left[v_{1}\right] \cup N_{H_{0}}\left[t_{1}\right]\right)$. We see $\alpha\left(F_{2}\right)=2$. In either case, $P_{2} \cup 3 P_{1}$ cannot exist as an induced subgraph in H_{0}. Thus H_{0} is $\left(P_{2} \cup 3 P_{1}\right)$-free.

Then we show that H_{1} is $\left(P_{3} \cup 2 P_{1}\right)$-free. Two types of induced paths $a b c$ of length 3 exist: $a \in$ $S, b \in T, c \in V(D)$ or $a \in T, b, c \in V(D)$. Without loss of generality, consider the path $x t_{1} v_{1}$ and the subgraph $F_{1}=H_{1}-\left(N_{H_{1}}[x] \cup N_{H_{1}}\left[t_{1}\right] \cup N_{H_{1}}\left[v_{1}\right]\right)$. We see that F_{1} is a null graph. Now, without loss of generality, consider the path $t_{1} v_{1} v_{2}$ and the subgraph $F_{2}=H_{1}-\left(N_{H_{1}}\left[t_{1}\right] \cup N_{H_{1}}\left[v_{1}\right] \cup N_{H_{1}}\left[v_{2}\right]\right)$. We see $\left|V\left(F_{2}\right)\right|=1$. In either case, $P_{3} \cup 2 P_{1}$ cannot exist as an induced subgraph in H_{1}. Thus H_{1} is $\left(P_{3} \cup 2 P_{1}\right)$-free.

Let $i \in[0,4]$. As $\delta\left(H_{i}\right)=2, \tau\left(H_{i}\right) \leq 1$. It suffices to show $\tau\left(H_{i}\right) \geq 1$. Since H_{i} is 2-connected, we show that $c\left(H_{i}-W\right) \leq|W|$ for any $W \subseteq V\left(H_{i}\right)$ such that $|W| \geq 2$. If $|W|=2$, by considering all the possible formations of W, we have $c\left(H_{i}-W\right) \leq|W|$. Thus we assume $|W| \geq 3$.

Assume by contradiction that there exists $W \subseteq V\left(H_{i}\right)$ with $|W| \geq 3$ and $c\left(H_{i}-W\right) \geq|W|+1 \geq 4$. The size of a largest independent set of each H_{0}, H_{2}, H_{3}, and H_{4} is 4 , and of H_{1} is 3 . Since $c\left(H_{i}-W\right)$ is bounded above by the size of a largest independent set of H_{i}, we already obtain a contradiction if $i=1$ or $|W| \geq 4$. So we assume $i \in\{0,2,3,4\}$ and $|W|=3$.

As $c\left(H_{i}-W\right) \geq 4$, for the graph H_{0}, we must have $\left\{v_{1}, v_{2}, v_{3}\right\} \cap W \neq \emptyset$ and $\left\{v_{4}, v_{5}, v_{6}\right\} \cap W \neq \emptyset$. As $|W|=3$, we have either $W \cap T=\emptyset$ or $|W \cap T|=1$. In either case, by checking all the possible formations of W, we get $c\left(H_{0}-W\right) \leq 2$, contradicting the choice of W.

As $c\left(H_{i}-W\right) \geq 4$, for each $i \in[2,4]$, we must have $x \in W$. Thus $t_{j} \notin W$ for $j \in[1,3]$, as otherwise, $c\left(H_{i}-\left(W \backslash\left\{t_{j}\right\}\right)\right) \geq 4$, contradicting the argument previously that $c\left(H_{i}-W^{*}\right) \leq 2$ for any $W^{*} \subseteq V\left(H_{i}\right)$ and $\left|W^{*}\right| \leq 2$. As $|W|=3$, we then have $\left|W \cap\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}\right|=2$. However, $c\left(H_{i}-W\right) \leq 3$ for $W=\left\{x, v_{k}, v_{\ell}\right\}$ for all distinct $k, \ell \in[1,4]$. We again get a contradiction to the choice of W.

Claim 6. The graph H_{5} with $p=5$ is $\left(P_{3} \cup 4 P_{1}\right)$-free, $\left(P_{2} \cup 5 P_{1}\right)$-free, and $6 P_{1}$-free with $\tau\left(H_{5}\right)=\frac{6}{5}$.
Proof. Let $p=5$ and D be the odd component of $H_{5}-(S \cup T)$. Note that $D=K_{p}=K_{5}$.
We first show that H_{5} is $\left(P_{3} \cup 4 P_{1}\right)$-free. There are three types of induced paths $x y z$ of length 3 in $H_{5}: x \in S, y \in T, z \in V(D)$ or $x \in T, y, z \in V(D)$ or $x, z \in T, y \in S$. Without loss of generality, consider the path $x_{1} t_{1} y_{1}$ and the subgraph $F_{1}=H_{5}-\left(N_{H_{5}}\left[x_{1}\right] \cup N_{H_{5}}\left[t_{1}\right] \cup N_{H_{5}}\left[y_{1}\right]\right)$. We see that F_{1} is a null graph. Now consider the path $t_{1} y_{1} y_{2}$ and the subgraph $F_{2}=H_{5}-$ $\left(N_{H_{5}}\left[t_{1}\right] \cup N_{H_{5}}\left[y_{1}\right] \cup N_{H_{5}}\left[y_{2}\right]\right)$. We see $\alpha\left(F_{2}\right)=3$. Finally consider the path $t_{1} x_{1} t_{2}$ and the subgraph $F_{3}=H_{5}-\left(N_{H_{5}}\left[t_{1}\right] \cup N_{H_{5}}\left[x_{1}\right] \cup N_{H_{5}}\left[t_{2}\right]\right)$. We see $\alpha\left(F_{3}\right)=3$. In any case, an induced copy of $P_{3} \cup 4 P_{1}$ cannot exist in H_{5}. Thus H_{5} is $\left(P_{3} \cup 4 P_{1}\right)$-free.

We then show that H_{5} is $\left(P_{2} \cup 5 P_{1}\right)$-free. There are three types of edges $x y$ in $H_{5}: x \in S, y \in$ T or $x \in T, y \in V(D)$ or $x, y \in V(D)$. Without loss of generality, consider the edge $x_{1} t_{1}$ and the subgraph $F_{1}=H_{5}-\left(N_{H_{5}}\left[x_{1}\right] \cup N_{H_{5}}\left[t_{1}\right]\right)$. We see $\left|V\left(F_{1}\right)\right|=4$. Now consider the edge $t_{1} y_{1}$ and the subgraph $F_{2}=H_{5}-\left(N_{H_{5}}\left[t_{1}\right] \cup N_{H_{5}}\left[y_{1}\right]\right)$. We see $\left|V\left(F_{2}\right)\right|=4$. Finally, consider the edge $y_{1} y_{2}$ and the subgraph $F_{3}=H_{5}-\left(N_{G} H_{5}\left[y_{1}\right] \cup N_{H_{5}}\left[y_{2}\right]\right)$. We see $\alpha\left(F_{3}\right)=3$. In any case, no induced copy of $P_{2} \cup 5 P_{1}$ can exist in H_{5}. Thus H_{5} is $\left(P_{2} \cup 5 P_{1}\right)$-free.

We lastly show that H_{5} is $6 P_{1}$-free. There are three types of vertices x in $H_{5}: x \in S, x \in T$, or
$x \in V(D)$. Without loss of generality, consider the vertex x_{1} and the subgraph $F_{1}=H_{5}-N_{H_{5}}\left[x_{1}\right]$. We see $\alpha\left(F_{1}\right)=1$. Now consider the vertex t_{1} and the subgraph $F_{2}=H_{5}-N_{H_{5}}\left[t_{1}\right]$. We see $\alpha\left(F_{2}\right)=4$. Finally, consider the vertex y_{1} and the subgraph $F_{3}=H_{5}-N_{H_{5}}\left[y_{1}\right]$. We see $\alpha\left(F_{3}\right)=4$. In any case, no induced copy of $6 P_{1}$ can exist in H_{5}. Thus H_{5} is $6 P_{1}$-free.

We now show that $\tau\left(H_{5}\right)=\frac{6}{5}$. Let W be a toughset of H_{5}. Then $S \subseteq W$. Otherwise, by the structure of H_{5}, we have $c\left(H_{5}-W\right) \leq 3$ and $|W| \geq 5$. As $S \subseteq W$ and the only neighbor of each vertex of T in $H_{5}-S$ is contained in a clique of H_{5}, we have $T \cap W=\emptyset$. Since $c\left(H_{5}-W\right) \geq 2$, it follows that $W \cap V(D) \neq \emptyset$. Then $c\left(H_{5}-W\right)=|W \cap V(D)|$ if $|W \cap V(D)| \leq 3$ or $|W \cap V(D)|=5$, and $c\left(H_{5}-W\right)=|W \cap V(D)|+1$ if $|W \cap V(D)|=4$. The smallest ratio of $\frac{|W|}{c\left(H_{5}-W\right)}$ is $\frac{6}{5}$, which happens when $|W \cap V(D)|=4$.
Claim 7. The graph H_{i} is $\left(P_{2} \cup 5 P_{1}\right)$-free with $\tau\left(H_{i}\right)=\frac{7}{6}$ for each $i \in[6,11]$.
Proof. We show first that each H_{i} is $\left(P_{2} \cup 5 P_{1}\right)$-free. We do this only for the graph H_{6}, as the proofs for the rest graphs are similar. For any edge $a b \in E\left(H_{6}\right)$, we see $\alpha\left(H_{6}-\left(N_{H_{6}}[a] \cup N_{H_{6}}[b]\right)\right) \leq$ 4. Thus no induced copy of $\left(P_{2} \cup 5 P_{1}\right)$ can exist in H_{6}. Thus H_{6} is $\left(P_{2} \cup 5 P_{1}\right)$-free.

We next show that $\tau\left(H_{i}\right)=\frac{7}{6}$ for each $i \in[6,10]$. We have $c\left(H_{i}-\left(S \cup\left\{v_{1}, \ldots, v_{5}\right\}\right)\right)=6$, implying $\tau\left(H_{i}\right) \leq \frac{7}{6}$. Suppose $\tau\left(H_{i}\right)<\frac{7}{6}$. Let W be a toughset of H_{i}. As each H_{i} is 3-connected, we have $|W| \geq 3$. Thus $c\left(H_{i}-W\right) \geq 3$. We have that either $S \subseteq W$ or $S \nsubseteq W$. Suppose the latter. Then we have $S \cap V\left(H_{i}-W\right) \neq \emptyset$. Then all vertices in $T \backslash W$ are contained in the same component as the one which contains $S \backslash W$. Since $c\left(H_{i}-W\right) \geq 3$, by the structure of H_{i}, it follows that we have either $T \subseteq W$ or $\left\{v_{1}, \ldots, v_{5}\right\} \subseteq W$. In either case, we have $c\left(H_{i}-W\right) \leq 3$, implying $\frac{|W|}{c\left(H_{i}-W\right)} \geq \frac{5}{3}>\frac{7}{6}$, a contradiction. So $S \subseteq W$. By Lemma $12, t_{j} \notin W$ for all $j \in[1,5]$. Thus each $t_{j} \in V\left(H_{i}-W\right)$. Now either $v_{0} \in W$ or $v_{0} \notin W$. Suppose $v_{0} \in W$, then we cannot have all $v_{j} \in W$ without violating Lemma 12. In this case, the minimum ratio $\frac{|W|}{c\left(H_{i}-W\right)}$ occurs when $\left|W \cap\left\{v_{1}, v_{2}, v_{3}, v_{4}, v_{5}\right\}\right|=3$. This implies $\frac{|W|}{c\left(H_{i}-W\right.} \geq \frac{6}{5}>\frac{7}{6}$, a contradiction. Thus $v_{0} \notin W$ and we must have $v_{0} \in V\left(H_{i}-W\right)$. This implies $\left\{v_{1} \ldots v_{5}\right\} \subseteq W$ and $\frac{|W|}{c\left(H_{i}-W\right)}=\frac{7}{6}$, a contradiction. Thus $\tau\left(H_{i}\right)=\frac{7}{6}$ for each $i \in[6,10]$.

Lastly we show $\tau\left(H_{11}\right)=\frac{7}{6}$. We have $c\left(H_{11}-\left(S \cup\left\{v_{1}, v_{2}, t_{3}, v_{4}, v_{5}\right\}\right)\right)=6$, implying $\tau\left(H_{11}\right) \leq \frac{7}{6}$. Suppose $\tau\left(H_{11}\right)<\frac{7}{6}$. Let W be a tough set of H_{11}. As H_{11} is 3 -connected, we have $|W| \geq 3$. Thus $c\left(H_{11}-W\right) \geq 3$. We have that either $S \subseteq W$ or $S \nsubseteq W$. Suppose the latter. Then we have $S \cap V\left(H_{11}-W\right) \neq \emptyset$. Then all vertices in $T \backslash W$ are contained in the same component as the one which contains $S \backslash W$. Since $c\left(H_{11}-W\right) \geq 3$, by the structure of H_{11}, it follows that $|W| \geq 5$ and $c\left(H_{11}-W\right) \leq 4$. This implies $\frac{|W|}{c\left(H_{11}-W\right)} \geq \frac{5}{4}>\frac{7}{6}$, a contradiction. So $S \subseteq W$. By Lemma 12, $t_{i} \notin W$ for $i \in\{1,2,4,5\}$. Thus $t_{i} \in V\left(H_{11}-W\right)$ for $i \in\{1,2,4,5\}$ and we must have $W \cap\left\{v_{1}, v_{2}, v_{3}, v_{4}, v_{5}, v_{6}, t_{3}\right\} \neq \emptyset$. If $t_{3} \notin W$, then $\frac{|W|}{c\left(H_{11-W)}\right.} \geq \frac{6}{5}>\frac{7}{6}$, a contradiction. Thus $t_{3} \in W$. Then v_{3} and v_{4} are respectively in two distinct components of $H_{11}-W$ by Lemma 12 . Thus $W \cap\left\{v_{1}, v_{2}, v_{5}, v_{6}\right\} \neq \emptyset$ as $c\left(H_{11}-W\right) \geq 3$. Furthermore, we have $c\left(H_{11}-W\right)=\mid W \cap$ $\left\{v_{1}, v_{2}, v_{5}, v_{6}\right\} \mid+2$. The smallest ratio of $\frac{|W|}{c\left(H_{11}-W\right)}$ is $\frac{7}{6}$, which happens when $\left\{v_{1}, v_{2}, v_{5}, v_{6}\right\} \subseteq W$. Again we get a contradiction to the assumption that $\tau\left(H_{11}\right)<\frac{7}{6}$. Thus $\tau\left(H_{11}\right)=\frac{7}{6}$.

The proof of Theorem 13 is complete.

Proof of Theorem 6. Let $p \geq 6$ and D be the odd component of $H_{5}-(S \cup T)$. Note that $D=K_{p}$. Since $c\left(H_{5}-\left(S \cup\left\{y_{1}, \ldots, y_{5}\right\}\right)\right)=6$, we have $\tau\left(H_{5}\right) \leq \frac{7}{6}$. We show $\tau\left(H_{5}\right) \geq \frac{7}{6}$. Let W be a toughset of H_{5}. Then either $S \subseteq W$ or $S \nsubseteq W$. Suppose the latter. Then we have $S \cap V\left(H_{5}-W\right) \neq \emptyset$. Then all vertices in $T \backslash W$ are contained in the same component as the one containing $S \backslash W$. Since $c\left(H_{5}-W\right) \geq 2$, by the structure of H_{5}, it follows that we have either $T \subseteq W$ or $\left\{y_{1}, \ldots, y_{5}\right\} \subseteq W$. In either case, we have $c\left(H_{5}-W\right) \leq 3$, implying $\frac{|W|}{c\left(H_{5}-W\right)} \geq \frac{5}{3}>\frac{7}{6}$. Now suppose $S \subseteq W$. By Lemma $12, t_{i} \notin W$ for all i. Thus each $t_{i} \in V\left(H_{5}-W\right)$. Furthermore, $c\left(H_{5}-W\right)=|W \cap V(D)|+1$. Since W is a cutset of G, we have $|W \cap V(D)| \geq 2$. The smallest ratio of $\frac{|W|}{c\left(H_{5}-W\right)}$ is $\frac{7}{6}$, which happens when $|W \cap V(D)|=5$.

For the graph H_{12}, we have $c\left(H_{12}-\left(S \cup\left\{y_{1}, y_{2}, y_{3}\right\}\right)\right)=4$, implying $\tau\left(H_{12}\right) \leq \frac{4}{4}=1$. We show $\tau\left(H_{12}\right) \geq 1$. Let W be a toughset of H_{12}. Then either $S \subseteq W$ or $S \nsubseteq W$. Suppose the latter. Then we have $S \cap V\left(H_{12}-W\right) \neq \emptyset$. Then all vertices in $T \backslash W$ are contained in the same component as the one containing $S \backslash W$. Since $c\left(H_{12}-W\right) \geq 2$, by the structure of H_{12}, it follows that we have either $T \subseteq W$ or $\left\{y_{1}, y_{2}, y_{3}\right\} \subseteq W$. In either case, we have $c\left(H_{12}-W\right) \leq 2$, implying $\frac{|W|}{c\left(H_{12}-W\right)} \geq \frac{3}{2}>1$. Now suppose $S \subseteq W$. By Lemma $12, t_{i} \notin W$ for all i. Thus each $t_{i} \in V\left(H_{12}-W\right)$. This implies $\left|\left\{y_{1}, y_{2}, y_{3}\right\} \cap W\right|=2$ or 3 . In either case we see $\frac{|W|}{c\left(H_{12}-W\right)}=1$.

References

[1] D. Bauer, G.Y. Katona, D. Kratsch, and H.J. Veldman. Chordality and 2-factors in tough graphs. Discrete Applied Mathematics, 99:323-329, 2000.
[2] V. Chvátal. Tough graphs and Hamiltonian circuits. Discrete Math., 5:87-95, 1973.
[3] H. Enomoto, B. Jackson, P. Katerinis, and A. Saito. Toughness and the existence of k-factors. III. Discrete Mathematics, 189(1):277-282, 1998.
[4] J. Kanno and S. Shan. Vizing's 2-factor conjecture involving toughness and maximum degree conditions. Electron. J. Comb., 26(2):P2.17, 2019.
[5] K. Ota and M. Sanka. Toughness, 2-factors and hamiltonian cycles in $2 k_{2}$-free graphs. 2021.
[6] W.T. Tutte. A short proof of the factor theorem for finite graphs. Canadian J. Math., 6:347-352, 1954.

