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EXISTENCE OF BLOW-UP SOLUTIONS
IN THE ENERGY SPACE

FOR THE CRITICAL GENERALIZED KDV EQUATION

FRANK MERLE

1. Introduction

In this paper we consider{
ut + (uxx + u5)x = 0, (t, x) ∈ R+ ×R,

u(0, x) = u0(x), x ∈ R,
(1)

for u0 ∈ H1(R). This model is called the critical generalized Korteweg–de Vries
equation.

Indeed, let us consider the generalized KdV equation, for any integer p > 1:{
ut + (uxx + up)x = 0, (t, x) ∈ R+ ×R,

u(0, x) = u0(x), x ∈ R.
(2)

This kind of problem appears in Physics, for example in the study of waves on
shallow water (see Korteweg and de Vries [13]). These equations, with nonlinear
Schrödinger equations, are considered as universal models for Hamiltonian systems
in infinite dimension. From this Hamiltonian structure, we have formally the two
following conservation laws in time:∫

u2(t) =
∫
u2

0(3)

and
1
2

∫
u2
x(t)− 1

p+ 1

∫
up+1(t) =

1
2

∫
u2

0x −
1

p+ 1

∫
up+1

0 .(4)

From these conservation laws, H1 appears as an energy space, so that it is a natural
space in which to study the solutions.

Note that p = 2 is a special case for equation (2). Indeed, from the integrability
theory (see Lax [14]), we have for suitable u0 (u0 and its derivatives with fast decay
at infinity) an infinite number of conservation laws.

The general question is to understand the dynamics induced by such equations.
Local existence in time of solutions of (2) in the energy space is now well under-

stood; see Kato [10], Ginibre and Tsutsumi [8] for the Hs theory (s > 3
2 ), Kenig,

Ponce and Vega [11] for the L2 theory in the case of equation (1) and sharp Hs

theory for (2), and Bourgain [3] and [4] for the periodic case.
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556 FRANK MERLE

In particular, we have the following existence and uniqueness result inH1(R): for
u0 ∈ H1(R), there exist T > 0 and a unique maximal solution u ∈ C([0, T ), H1(R))
of (2) on [0, T ), satisfying (3)–(4) for all 0 ≤ t < T . Moreover, either T = +∞, or
T < +∞, and then |u(t)|H1 → +∞, as t ↑ T (see [11], Corollary 2.11 and Corollary
2.12, for the fact that |u(t)|H1 → +∞, as t ↑ T ).

From a variational argument and the Sobolev embedding, it is clear that:
For p < 5, we have T = +∞ and ∀t ∈ R, |u(t)|H1 < C(u0).
For p > 5, blow up in finite time, i.e. T < +∞, may occur.
For p = 5, from Weinstein [25], we have the following Gagliardo–Nirenberg

inequality:

∀v ∈ H1(R),
1
6

∫
v6 ≤ 1

2

( ∫
v2∫
Q2

)2 ∫
v2
x,(5)

where Q(x) = R1(x) = 31/4

ch1/2(2x)
(called the ground state) is the solution (up to a

sign) of

Qxx +Q5 = Q.

Note that the constant is optimal in (5) since the Pohozaev identity yields

E(Q) = 0, where E(v) =
1
2

∫
v2
x −

1
6

∫
v6.

If u0 is such that |u0|L2 < |Q|L2 , then for all 0 ≤ t < T ,

1
2

(
1−

( ∫
u2

0∫
Q2

)2
)∫

u2
x(t) ≤ E0,

where E0 = E(u0), and then u(t) is globally defined in time.
Note that existence of singularity in finite time for u (i.e. T < +∞) in the space

H1 is still an open problem for p ≥ 5. To understand this type of phenomenon, we
need a more qualitative approach which includes an understanding of singularity
formation.

In a different context, if we consider the nonlinear Schrödinger equation in di-
mension one (NLSE), for p > 1,{

i ut = −uxx − |u|p−1u, (t, x) ∈ R+ ×R,

u(0, x) = u0(x), x ∈ R,
(6)

and the critical NLSE{
i ut = −uxx − |u|4u, (t, x) ∈ R+ ×R,

u(0, x) = u0(x), x ∈ R,
(7)

then the study of the formation of singularities has been more successful. Indeed,
this equation has the same invariants in time (3)–(4). Therefore, variational argu-
ments give the same results for existence of global solutions as for the generalized
KdV equation.

Nevertheless, the nonlinear Schrödinger equation has a conformal structure in
the following sense: for p = 5, if u(t, x) is a solution, then

1
t1/2

e
ix2
4t u

(
1
t
,
x

t

)
is also a solution.
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EXISTENCE OF BLOW-UP SOLUTIONS FOR THE KDV EQUATION 557

On the one hand, this implies obstruction to global existence for some initial
data, for p ≥ 5. Note that for u0 of negative energy and of fast decay at infinity,
the solution u(t) of (7) blows up in finite time. Indeed, we have the so-called Virial
identity which implies that

d2

dt2

∫
x2|u(t, x)|2dx ≤ c(p)E0,

where c(p) > 0 for p ≥ 5.
On the other hand, in the case p = 5, it gives explicit blow up solutions. Indeed,

we have special solutions for equation (7),

P (t, x) = eictRc(x),

where Rc satisfies the equation

Rcxx + Rpc = cRc.(8)

Applying the conformal transformation to this special solution, it follows that

S(t, x) =
1
t1/2

e−i
c
t+ix

2
4t Rc

(x
t

)
is also a solution, which blows up at t = 0. For more details on this approach, see
for example Merle [19], and the references therein.

Note that if we set, for any t0 ∈ R, t0 6= 0,

St0(x) = c1/2(t0)S(t0, xc(t0)) = e−i
c
t0

+i
t0x

2

4 Rc(x),

with c(t) = t, then

St0(t, x) = c1/2(t0)S(t0 + tc2(t0), xc(t0))

is the solution of (7) with St0 as initial data, by scaling invariance of the equation.
In conclusion, for any t0 6= 0, St0(t, x) blows up in finite time, and St0(x)→ Rc(x)
in H1 as t0 → 0 (up to phase). It follows that Rc is unstable and we see from this
example that the understanding of the flow close to Rc in a certain sense is linked
to the singularity formation.

For the generalized KdV equation (2), special types of solutions which are the
only explicit solutions, called solitons, play an important role. Indeed, there exist
solutions of (2) of the form

u(t, x) = Rc(x− ct), where c > 0,

where Rc is defined in (8) or, equivalently, Rc(x) =
(

c(p+1)

2ch2( p−1
2
√
c x)

) 1
p−1

. Note that

Rc(x) > 0, ∀x > 0, and the set Rc, c ∈ R+, is a continuum of traveling waves.
In the subcritical case p < 5, it follows for energetic arguments that the solitons

are H1 stable (see Cazenave and Lions [5], Weinstein [27], and Bona, Souganidis
and Strauss [2]). In [17] Martel and Merle prove in H1 the asymptotic completeness
of the solitons (see also [21]).

In the supercritical case p > 5, in [2] Bona, Souganidis, and Strauss prove, using
Grillakis, Shatah, and Strauss [9] type arguments, the H1 instability of solitons.
Numerical simulations (see Bona et al. [1] and references therein) suggest that blow
up in finite time occurs for some initial data close to solitons.
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In the case p = 5 (called the critical case), Q(x), where Q(x) = R1(x) = 31/4

ch1/2(2x)

(called the ground state), is the solution of

Qxx +Q5 = Q.

From the Gagliardo–Nirenberg inequality, if u0 is such that |u0|L2 < |Q|L2 , then
u(t) is globally defined and bounded in time.

It was conjectured that there exist blow up solutions of (1) such that |u0|L2 ≥
|Q|L2 (see also the numerical results of [1]). However, unlike NLSE, there is no
conformal invariance or variance identity with constant sign which would allow us
to have explicit blow up solutions. Note that by energy arguments (similar to the
ones for the NLSE), we already know that if blow up in H1 occurs, then we can at
least show a result of concentration of L2 norm at the blow up time

∃x(t), such that ∀R > 0, limt→T

∫
|x−x(t)|≤R

u2(t, x)dx ≥
∫
Q2.

(Note that this result was extended in the Hs case for s > 0 in [12].)
One can remark that the flow of equation (1) close to Rc (at least generically)

should make precise the flow for all initial data in H1. Indeed, one can expect that
in the case of a global bounded solution u(t),

u(t) ∼
∑
i

Rci(x− xi(t)) + uR,

as t → +∞, where uR is a dispersive part, |uR(t)|L∞ → 0, as t → +∞, and
0 < C1 < ci < C2; in the case of initial data u0 such that |u0|L2 is of order |Q|L2 ,
we have

u(t) ∼ Rc(x− x(t)) + uR.

In the case of a solution blowing up at t = 0 (with one blow up point), one can
conjecture from the scaling properties that

u(t) ∼ u∗(x) +Rc(t)(x− x(t)) or u(t) ∼ u∗(x) +
1

c
1
2 (t)

g(
x− x(t)
c(t)

),

where |g|L2 ≥ |Q|L2 and c(t)→ 0, as t→ 0. In this case, u∗ ∈ H1 and corresponds
to the regular part of the solution, and Rc(t) or 1

c
1
2 (t)

g(x−x(t)
c(t) ) is the singular part

which concentrates in one point a certain part of the L2 mass. Therefore, from this
picture, one can see that the instability of the solitons is linked to blow up in finite
time and this points out the importance of understanding the flow close to Rc or
Q∗ = {c1/40 Q(

√
c0(x− x0)) , c0 > 0}.

For p = 5 , a first result in this direction has been established in Martel and
Merle [15] by showing that u(t, x) = Q(x − t) is an unstable solution (note that
the instability result of Bona et al. [2] does not apply to the critical case). This
suggests the existence of blow up solutions close to Q. This result was established
in a qualitative way by finding the interior of a parabola as the instability region,
and was a consequence of a Virial type identity, energy arguments, and a property
of decay of the linearized flow around Q.

In [16], Martel and Merle analyzed in the equation the role of the dispersion in
a neighborhood of

Q∗c1,c2 = {c1/40 Q(
√
c0(x− x0)) , c0 ∈ (c1, c2), x0 ∈ R}.
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EXISTENCE OF BLOW-UP SOLUTIONS FOR THE KDV EQUATION 559

In particular, we proved a rigidity theorem of equation (1) close to Q∗c1,c2 in the en-
ergy space (i.e. a characterization of the soliton) related to the notion of dispersion
in L2.

Liouville property close to Q∗c1,c2 (p = 5). Let u0 ∈ H1(R) and suppose
that the solution u(t) of (1) is defined for all time t ∈ R. Assume that for some
c1, c2 > 0,

∀t ∈ R, c1 ≤ |u(t)|H1 ≤ c2,(9)

and there exists x(t) such that v(t, x) = u(t, x+ x(t)) satisfies

∀ε0, ∃R0 > 0, ∀t ∈ R,
∫
|x|>R0

v2(t, x)dx ≤ ε0.(10)

There exists α0 > 0, such that if |u0−Q|H1 < α0, then there exist λ0, x0 such that

u(t, x) = λ
1/2
0 Q(λ0(x − x0)− λ3

0t).

Remark. The classification of entire PDE has been established for some problems.
In elliptic problems, the moving plane technique (related to the maximum principle)
has been applied successfully to find all positive solutions of problems of the type

∆u+ up = 0, u > 0, x ∈ Rn.

(See Gidas, Ni and Nirenberg [6], and Gigas and Spruck [7].) In the parabolic
situation, for the blow up solution of

ut = ∆u+ |u|p−1u,

where u : RN → RM , a Liouville theorem has been established by Merle and Zaag
[20] (using blow-up arguments).

In some sense, the preceding property says that if the solution is not a traveling
wave, then it has to disperse in L2. From this result, Martel and Merle in [16] have
derived an asymptotic stability property of Q (and of Rc by rescaling).

Asymptotic stability of Q∗c1,c2. Let u0 ∈ H1, suppose that the solution u(t) of
(1) is defined for all t ≥ 0, and assume that for some c1, c2 > 0,

∀t ≥ 0, c1 ≤ |u(t)|H1 ≤ c2.
There exists α1 > 0, such that if |u0 −Q|H1 < α1, then there exist λ(t), x(t) such
that

λ1/2(t)u(t, λ(t)(x − x(t))) = Q(x) + uR(t, x),

where uR(t) ⇀ 0 in H1 as t→ +∞.

In this paper, by carefully using the results of [16], the techniques introduced
in this paper, and some additional ideas, we are able to prove the existence of a
large class of blow-up solutions in the energy space H1 of equation (1). The result
is in some sense a small initial data result (for the blowing up solution). For an
α0 > 0, assume that

∫
u0

2 <
∫
Q2 + α0 (note that if

∫
u0

2 <
∫
Q2, then blow-up

does not occur). Then if in addition we suppose that the energy of the initial data
is nonpositive (which is expected to be the standard blow-up criterion for equation
(1)), then the solution of equation (1) blows up in finite time or infinite time. We
claim the following theorem.
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560 FRANK MERLE

Theorem (Blow-up results for the critical KdV equation). There exists α0 > 0
such that the following property is true. Let u0 ∈ H1(R), and let u(t) be the
solution of (1). Assume that

E(u0) < 0 and
∫
u0

2 <

∫
Q2 + α0;

then the solution u(t) blows up in H1 in finite or infinite time.

Remark. Since we have E(Q) = 0 from Pohozaev’s identity, and ∇E(Q) = −Q by
direct calculation, we have produced a large class of blow-up solutions (open set)
close to soliton. Note that the smallness condition is reasonable from the physical
point of view since the generic behavior of a blow-up solution is conjectured to be
a local perturbation of the function Q (up to scaling and translation) plus some
residual mass far in space from it.

Remark. From the proof of the Theorem, we will recover the fact that the blow-up
solution is concentrated in L2 at the blow-up time. In particular, blow-up occurs
in Hs for s > 0. However, it is an open problem to show that the blow-up occurs
in finite time.

The proof of such a result is not a nonexistence proof given by global obstruction
for existence for all time of a solution of equation (1), such as a result of this type
in PDE. It is in some sense one of the first results in the direction of understanding
a blow-up mechanism in the Hamiltonian context (except in the case where explicit
invariance of the equation yields explicit blow-up solutions). It decomposes the
mechanism of blow-up of such an equation relating the nonlinear dynamic and the
mechanism of dispersion in some sense. The proof shows in fact, that the blow-up
is a combination of two effects:

- a process of ejection of mass at infinity in some suitable coordinates system,
- the conservation of the energy.
In section 2, we will explain the strategy of the proof of the main result. In

section 3, we prove some basic estimates and establish some relations related to the
equation. Section 4 will be devoted to the proof of the main Theorem. The author
thanks Stanford University where part of this work was done.

2. Strategy of the proof

2.1. Parameterization of the problem. Note that Rc is a family of traveling
waves which have the same L2 norm and energy. Thus the conservation laws are
not an obstruction to the following strategy: construct blow-up solutions such that
for all time there are c(t) and x(t), such that

|Rc(t)(x − x(t))− u(t)|L2

is uniformly small in time. Variational arguments give such a property. Consider
now an initial data u0 ∈ H1(R) such that

E(u0) < 0 and
∫
u0

2 <

∫
Q2 + α0,

for α0 > 0 small enough, and let u be the solution of (1).
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EXISTENCE OF BLOW-UP SOLUTIONS FOR THE KDV EQUATION 561

We then use the structure of the equation around Q (or Qc = c1/4Q(c1/2x)),
which allows us to do explicit calculations on the flow, following the different di-
rections of instability using modulation theory as in [15]. To be more precise, let

v(t, y) = λ1/2(t)u(t, λ(t)y + x(t))(11)

and

ε(t, y) = v(t, y)−Q(y) = λ1/2(t)u(t, λ(t)y + x(t)) −Q(y),(12)

for u a solution of (1), and for λ(t) > 0 and x(t) two C1 functions to be chosen
later. If we change the time variable as follows:

s =
∫ t

0

dt′

λ3(t′)
or, equivalently,

ds

dt
=

1
λ3
,(13)

then ε(s) satisfies, for s ≥ 0, y ∈ R,

εs = (Lε)y +
λs
λ

(
Q

2
+ yQy

)
+
(xs
λ
− 1
)
Qy

+
λs
λ

(ε
2

+ yεy

)
+
(xs
λ
− 1
)
εy − (10Q3ε2 + 10Q2ε3 + 5Qε4 + ε5)y,

(14)

where

Lε = −εxx + ε− 5Q4ε = −εxx + ε− 15
ch2(2x)

ε.(15)

(See Lemma 1 in [15].) Recall that x(t) and λ(t) are geometrical parameters re-
lated to the two invariances of equation (1) (respectively, translation and dilatation
invariance), and that the operator L is a classical operator (see for example Titch-
marsh [24]).

If, for all t ≥ 0, u(t) is sufficiently close to Q in H1, up to translation and scaling,
we can define s→ (λ(s), x(s)) such that

∀s ≥ 0,
∫
Q3ε(s) =

∫
Qyε(s) = 0.

A relation between λ, x and their derivatives and ε is given later (see section 3).
Recall also that by the invariance of equation (1), we can assume λ(0) = 1 and
x(0) = 0, so that u0 = Q+ ε(0) (see the beginning of section 5 in [15]). The reason
we choose such orthogonality conditions on ε(s) is the fact that by Lemma 2 in
[15], we have

(LQ3, Q3) < 0, (LQy, Qy) = 0,

∀ε ∈ H1(R), if
∫
Q3ε =

∫
Qxε = 0, then (Lε, ε) ≥ (ε, ε),

where (Lε, ε) is a quantity related to the energy of the solution.
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2.2. Ideas for the proof of the Theorem. We claim now that under the as-
sumptions of the Theorem, the solution u(t) has to blow-up in finite time or infinite
time in H1. That is, for T finite or infinite, we have

|u(t)|H1 → +∞ or, equivalently, λ(t)→ 0 as t→ T.

We argue by contradiction. We assume that u(t) is defined for all t > 0 and,
for a sequence tn → +∞, we have that |u(tn)|H1 ≤ C(u0) for a constant C(u0).
It corresponds in the variable s to a sequence sn → +∞ such that for a constant
λ(u0) > 0,

λ(sn) ≥ λ(u0).

The first idea is to use in various ways that the Airy equation (the linear part
of the generalized KdV equation) pushes the mass on the left side, and that the
nonlinear soliton travels to the right, which means that, in some sense, linear and
nonlinear effects are decoupled. From this fact, we introduce a notion of the L2

local norm of ε(s) and see it is a monotonic function of s. Then the assumption on
λ(sn) and energy identities imply that the L2 local norm of ε(s) goes to the limit
as s goes to infinity which is not zero. Consider now a limit object as the time goes
to infinity. From the recurrence in time of this object, we are able to show that it
satisfies a surprising decay property in space. Indeed, in this problem related to
the oscillatory integral, we obtain a decay in space related to the elliptic problem.

Let us consider ε̂0 ∈ H1(R) and λ̂0 > 0 such that

ε(sn) ⇀ ε̂0 in H1 and λ(sn)→ λ̂0,(16)

and also the associated functions ε̂(s), û(t) with (−T̂1, T̂2) the maximal time exis-
tence interval. Note that, in particular,

E(û(t)) < 0.

Delicate estimates involving front type estimates and monotonicity of mass imply

∀x ∈ R, |ε̂(t, x)| ≤ c(δ0)
1
4 e−c2λ̂0(t)|x|.

This is the key part of the proof which says that, in fact, independent of the oscil-
lation in time of the function ε(s) (compared to the case [16]) the L2 compactness
in a certain sense û(t) will imply some exponential estimates on û(t) on both sides.

Now, we see that the exponential estimates will give a rigidity in the time oscil-
lation of û(t). Indeed, these imply that

û(t) ∈ L1.

In L1, equation (1) has a third invariant which is the following:

∀t ∈ (−T̂1, T̂2),
∫
û(t, x)dx =

∫
û(0, x)dx.

Using the exponential estimates again together with this invariant, we obtain that
û(t) is defined for all time and

∀t ∈ R, λ̂1 ≤ λ̂(t) ≤ λ̂2,

for some λ̂2 > λ̂1 > 0.
Since the solution û(t) is L2 compact, it follows from the Liouville theorem

obtained in a regular regime by Martel and Merle in [16] that

∀s ∈ R, ε̂(s) = 0,
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EXISTENCE OF BLOW-UP SOLUTIONS FOR THE KDV EQUATION 563

which is a contradiction with the energy condition on the function û since E(Q) = 0.
(Note that only parts A, B of [16] are used.) This concludes the proof.

3. Some qualitative properties of the solutions

In this section, we consider u0 ∈ H1(R) such that

E(u0) < 0 and α(u0) =
∫
u0

2 −
∫
Q2 < α1,

where α1 is a constant to be chosen later. For α1 small enough, let us give some
properties of the solution u(t) of equation (1).

3.1. Decomposition of the solution and related variational structures.
Let us start with a classical lemma of proximity of the solution up to scaling and
translation factors to the function Q related to the variational structure of Q and
the energy condition. We then deduce from this result a decomposition of the
solution involving translation and size parameters.

Lemma 1 (Variational estimates on u). Let u ∈ H1(R). There exists a δ1 > 0
such that the following property is true. Assume that E(u) < 0 and α(u) < δ1;
then there exist some parameters x0 ∈ R, λ0 > 0 and ε0 ∈ {1,−1} such that

|Q− ε0λ1/2
0 u(λ0(x + x0))|H1(R) < δ(α(u)),

where δ(α(u))→ 0 as α(u) goes to 0.

Proof of Lemma 1. Recall from the variational characterization of the function Q
(following from the Gagliardo–Nirenberg inequality) that, for u ∈ H1(R), we have

E(u) = 0,
∫
u2 =

∫
Q2,

∫
ux

2 =
∫
Qx

2

is equivalent to

u = ε0Q(·+ x0) for ε0 = 1,−1 and x0 ∈ R.

Arguing by contradiction, assume that there is a sequence un ∈ H1(R) such that

E(un) < 0 and
∫
un

2 →
∫
Q2 as n goes to infinity.

Consider now vn = λ
1/2
n un(λnx), where λn = |Qx|L2

|unx|L2
. We have the following prop-

erties for vn:∫
vn

2 →
∫
Q2 and

∫
v2
nx =

∫
Qx

2 and E(vn) < 0.

From the Gagliardo–Nirenberg inequality, we then have E(vn) → 0. Using a clas-
sical concentration compactness procedure, we are able to show that there exist
xn ∈ R and εn ∈ {1,−1} such that εnvn(x+ xn)→ Q in H1. See for example [18]
and [25]. Note that in dimension one the nonvanishing property of the sequence
vn comes from the facts that |vn|L∞ > c0 > 0 for n large and that H1 bounded
functions are uniformly continuous. Indeed, a subsequence vn(x+ xn) ⇀ V in H1

which satisfies

0 <
∫
V 2 ≤

∫
Q2 , E(V ) ≤ 0.

Thus,
∫
V 2 =

∫
Q2, E(V ) = 0, and vn(x+ xn)→ V in H1. The conclusion follows

from the characterization of Q, and this concludes the proof of the lemma.
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We are now able to have the following decomposition of the solution u(t, x) of
(1) for α(u0) small enough. Let us first remark that for δ(δ1) < |Q|L2

4 , we have that
ε0(t) defined with the function u(t) by Lemma 1 is independent of time. Indeed,
let us remark that ε0(t) is uniquely defined by

|ε0Q− λ1/2
0 u(λ0(x+ x0))|H1(R) < δ(δ1).

If not, after rescaling we will have some λ0 and x0, such that

|Q− λ0Q(λ0(+x0))|L2(R) <
|Q|L2

2
;

thus |Q|L2(R) <
|Q|L2

2 , which is a contradiction. Then using the fact that the
function u(t, x) is continuous in H1, it is easy to conclude from the uniqueness of
ε0(t) that ε0(t) is continuous in time and constant.

Therefore, under the assumptions of the theorem, the function u is close up to
scaling and translation parameters Q for all time (or for all time to −Q). Since
if u(t, x) is a solution of equation (1), then −u(t, x) is also a solution of equation
(1), we can alway assume (taking eventually δ1 smaller and −u) from now on that
for α(u0) < δ1, for all time u(t) is defined and there exist from Lemma 1 some
parameters x0(t) ∈ R, λ0(t) > 0 such that

|Q− λ0(t)1/2u(t, λ0(t)x+ x0(t))|H1(R) < δ(α(u0)),(17)

where δ(α(u0))→ 0 as α(u0) goes to 0.

Lemma 2 (Decomposition and modulation of u). There exists a δ2 > 0 such that
if α(u0) < δ2, then for all time and for some continuous functions λ(t) and x(t) we
have that

ε(t, y) = λ1/2(t)u(t, λ(t)y + x(t))−Q(y)(18)

satisfies the properties

(Q3, ε(t)) = (Qy, ε(t)) = 0.

Moreover, we have that
|λ0(t)
λ(t) |+ |x0(t)−x(t)|+ |ε(t, y)|H1(R) < δ(α(u0)), where δ(α(u0))→ 0 as α(u0)→ 0.

Proof of Lemma 2. The existence of the decomposition is a consequence of the im-
plicit function theorem (see [15] for more details). For α > 0, let

Uα =
{
u ∈ H1(R); |u−Q|H1 ≤ α

}
,

and for u ∈ H1(R), λ1 ∈ R, and x1 ∈ R, with λ1 > 0, we define

ελ1,x1(y) = λ
1/2
1 u(λ1y + x1)−Q.(19)

We claim that there exist α > 0 and a unique C1 map: Uα → (1 − λ, 1 + λ) ×
(−x, x), such that if u ∈ Uα, then there is a unique (λ1, x1) such that ελ1,x1 defined
as in (19) is such that

ελ1,x1 ⊥ Q3 and ελ1,x1 ⊥ Qx.(20)

Moreover, there exists a constant C1 > 0, such that if u ∈ Uα, then

|ελ1,x1 |H1 + |λ1 − 1|+ |x1| ≤ C1α.(21)
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Indeed, we define the following functionals:

ρ1
λ1,x1

(u) =
∫
ελ1,x1Qx and ρ2

λ1,x1
(u) =

∫
ελ1,x1Q

3.(22)

Since ∂ελ1,x1
∂x1

|λ1=1,x1=0 = ux and ∂ελ1,x1
∂λ1

|λ1=1,x1=0 = u
2 + xux, we obtain at the

point (λ1, x1, u) = (1, 0, Q) :

∂ρ1
λ1,x1

∂x1
=
∫
Q2
x and

∂ρ1
λ1,x1

∂λ1
=
∫
Qx

(
Q

2
+ xQx

)
= 0,

∂ρ2
λ1,x1

∂x1
=
∫
QxQ

3 = 0 and
∂ρ2

λ1,x1

∂λ1
=
∫ (

Q

2
+ xQx

)
Q3 =

1
4

∫
Q2.

By the implicit function theorem, there exist α > 0, a neighborhood V1,0 of (1, 0)
in R2, and a unique C1 map (λ1, x1) : {u ∈ H1; |u−Q|H1 < α} → V1,0, such that
(20) holds. Now, consider δ2 > 0 such that δ(α(u0)) < α. For all time, there are
parameters x0(t) ∈ R, λ0(t) > 0 such that

|Q− λ0(t)1/2u(t, λ0(t)x + x0(t))|H1(R) < α.

Existence and local uniqueness follows from the previous result applied to the func-
tion λ0(t)1/2u(t, λ0(t)x+x0(t)). Smallness estimates follow from direct calculations.

Let us now give some properties of the decomposition. We introduce

s =
∫ t

0

dt′

λ3(t′)
or, equivalently,

ds

dt
=

1
λ3
.(23)

The functions ε, λ, and x are now functions of s. Let us check that {s(t)} = [0,+∞).
On one hand, the fact that the energy is negative and Gagliardo–Nirenberg implies
that λ is bounded from above and if u is defined for t > 0 then the conclusion follows.
If the u blow-up in finite time T , scaling estimates imply that λ(t) ≥ c(T − t)

1
3 (if

not vt0(τ, x) = (T − t0)
1
6u(t0 + (T − t0)τ, (T − t0)

1
3x) is defined for τ greater than

a constant by the fact that the Cauchy problem is well-posed in H1) and again the
conclusion follows. We now have the following properties:

Lemma 3 (Properties of the decomposition). i) (Equation for ε, λ, and x.) The
function ε(s) satisfies equation (14), for s ∈ R and y ∈ R.

Moreover λ and x are C1 functions of s and
λs
λ

(
1
4

∫
Q4 −

∫
y(Q3)yε

)
−
(xs
λ
− 1
)∫

(Q3)yε

=
∫
L((Q3)y)ε− 10

∫
(Q3)yQ3ε2 −

∫
(Q3)yR(ε),

(24)

−λs
λ

∫
yQyyε+

(xs
λ
− 1
)(1

2

∫
Q2 −

∫
Qyyε

)
= 20

∫
Q3Q2

yε− 10
∫
QyyQ

3ε2 −
∫
QyyR(ε),

(25)

where

Lε = −εxx + ε− 5Q4ε and R(ε) = 10Q3ε2 + 10Q2ε3 + 5Qε4 + ε5.

ii) (Smallness properties.) There exists a δ3 > 0 such that if α(u0) < δ3, then,
for a constant C > 0,

∀s ∈ [0,∞), |ε(s)|L2 + |εy(s)|L2 ≤ C
√
α(u0).
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Proof of Lemma 3. i) The equation of ε(s, y) follows from direct substitution in
equation (1). Formulas (24) and (25) are obtained formally by multiplying the
equation of ε by the functions Q3 and Qy, respectively, and integrating by parts.
(Regularization arguments can make it rigorous; see [15] for more details).

ii) The result follows from the conservation of energy and mass of the solution of
(1). Indeed from (3) and (4), we have the following relations, for all s ≥ 0 (Lemma
3 (i)-(iii) in [15]):∫

Qε(s) +
1
2

∫
ε2(s) =

1
2
{
∫

(Q + ε(s))2 −
∫
Q2} =

α(u0)
2

,(26)

E(Q + ε(s)) = λ2(s)E0.(27)

Let us show first that for α(u0) small, ii) is satisfied. By straightforward calcu-
lations, we have from (27),

E(Q+ ε) +
(∫

Qε+
1
2

∫
ε2

)
=

1
2

(Lε, ε)

−1
6

[
20
∫
Q3ε3 + 15

∫
Q2ε4 + 6

∫
Qε5 +

∫
ε6

]
.(28)

Therefore, for all s,∣∣∣∣E(Q+ ε(s)) +
α(u0)

2
− 1

2
(Lε(s), ε(s))

∣∣∣∣ ≤ C|ε(s)|H1 |ε(s)|2L2 ,(29)

and for α(u0) small enough (using the estimates on |ε(s)|H1 of Lemma 2), we have

(Lε(s), ε(s)) < α(u0) + E(Q+ ε(s)) +
(ε(s), ε(s))

2
< α(u0) +

(ε(s), ε(s))
2

.(30)

From the spectral properties of the operator L and the fact (Q3, ε(s)) = (Q3, ε(s)) =
0, we have (ε(s), ε(s)) < (Lε(s), ε(s)). Thus, for all s,

(ε(s), ε(s)) < 2α(u0) and (Lε(s), ε(s)) < 3α(u0).

From the fact that

|ε(s)|2H1 = (Lε(s), ε(s)) + 5
∫
Q4ε2(s) ≤ (Lε(s), ε(s)) + c1|ε(s)|2L2 ≤ C(Lε, ε),

we have the conclusion. This concludes the proof of Lemma 3.

As a corollary, we have

Corollary 1. There is a constant δ3 such that for α(u0) < δ3 we have for all
s ∈ [0,∞),

|λs
λ
− 4

∫
(Q3)yε∫
Q4

|+ |(xs
λ
− 1)−

40
∫
Q3Q2

yε∫
Q2

| < C|ε|2L2 ≤ Cα(u0).

3.2. Monotonicity of the mass at the left of the soliton. We claim in this
section that in some sense the mass in L2 of the solution u of equation (1) close
to the soliton is in a certain sense a decreasing function of time. Let us define for
K > 0,

∀x ∈ R, φ(x) = cQ
( x
K

)
, ψ(x) =

∫ x

−∞
φ(y)dy, where c =

1

K
∫ +∞
−∞ Q

,
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so that

∀x ∈ R, 0 ≤ ψ(x) ≤ 1, lim
x→−∞

ψ(x) = 0, lim
x→+∞

ψ(x) = 1.(31)

First we have a monotonicity result concerning small solutions in L2 of the
generalized KdV equation. This monotonicity property says that in some sense the
mass in L2 of a small solution cannot travel fast to the right. (Note that the result
is not true for a large solution like uc(t, x) = Qc(x − ct) which is such that the L2

norm is independent of c.) Consider a solution z of equation (1) with initial data
z0, and define for σ > 0,

∀t, Iσ(t) =
∫
z2(t, x)ψ(x − σt)dx.

Lemma 4 (Monotonicity of I for small solutions in L2 of (1)). For any σ > 0

and K ≥
√

2
σ , there is a constant c(σ) > 0 such that if |z0|L2 ≤ c(σ), then the

function Iσ is nonincreasing in t.

We now consider the solution u(t, x) of the equation (1) and functions x(t) and
λ(t) such as in Lemma 2. We claim that the mass of solution around x(t) (at a
distance of order supt>t0 λ(t)) and at the right of the soliton is in some sense a
decreasing function of t0. Note that to the right of the soliton the solution is small
in L2 and the dynamic is more linear. This says that, in an L2 sense, the linear
dynamic which moves the mass slower decoupled from the nonlinear dynamic which
moves the mass at a faster speed.

From now on fix

K = 2
√

3.

Let us define for x0 ∈ R, t0 ∈ R and ∀t ≥ t0,

Ix0,t0(t) =
∫
z2(t, x)ψ(x − x(t0)− x0 −

1
4

(x(t) − x(t0)))dx.

Lemma 5 (Almost monotonicity of the mass). Let t0 ∈ R such that λ(t0) = 1
and 0 < λ(t) < 1.1 for all t ≥ t0. There exist δ4 > 0 and a0 > 0 such that
0 < α(u0) < δ4. Then for a C > 0,

∀x0 ≤ −a0, ∀t ≥ t0, Ix0,t0(t)− Ix0,t0(t0) ≤ Ce
x0
3 .

Remark. Note that the case for t > t0, 0 < λ(t) < λ0, can be treated by rescaling
the solution. The result was first proved in a regular regime, that is, for t > t0, λ1 <
λ(t) < λ2, where the constants 0 < λ1 < λ2, by Martel and Merle in [16]. The
result up to a singular regime (λ close to zero) is in fact a consequence of techniques
introduced in the context of nonlinear Schrödinger equations in [19] to localize the
L2 conservation law (space where the solution is bounded).

Let us prove this lemma.

Lemma 6. There is a constant c̃ such that for u ∈ H1 and a ∈ R,
i) |u2φ

1
2 |2L∞(x>a) ≤ c̃ (

∫
x>a u

2)(
∫
u2
xφ+

∫
u2φ),

ii) |u2φ
1
2 |2L∞(x<a) ≤ c̃ (

∫
x<a

u2)(
∫
u2
xφ+

∫
u2φ),

iii) |u2φ
1
2 |2L∞ ≤ c̃ (

∫
u2)(

∫
u2
xφ+

∫
u2φ).
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Proof. i) (Same arguments apply for ii) and iii)). For x > a, we have

|u2φ
1
2 (x)| <

∫
x>a

|2uu′φ 1
2 |+

∫
x>a

|1
2
u2φ−

1
2φ′|.

Since 1
2Q

2
x = 1

2Q
2 − 1

6Q
6, we have from the definition of φ, |φ′| < φ, and the

Cauchy Schwartz inequality,

|u2φ
1
2 |2L∞(x>a) < c(

∫
x>a

|u||u′|φ 1
2 +

∫
x>a

u2φ
1
2 )2 < c(

∫
x>a

u2)(
∫
u2
xφ+

∫
u2φ).

Proof of Lemma 4. Note that if |z0|L2 ≤ c(σ), then z ∈ L∞([0,+∞), H1(R)). We
recall (Lemma 5 in [15] for example) that if x 7→ ϕ(x) is a C3 function such that for
a constant C, |ϕ(x)| + |ϕ′(x)|+ |ϕ′′(x)| + |ϕ(3)(x)| ≤ C, then t 7→

∫
z2(t, x)ϕ(x)dx

is C1 and
d

dt

∫
z2(t)ϕ = −3

∫
z2
x(t)ϕ′ +

∫
z2(t)ϕ(3) +

5
3

∫
z6(t)ϕ′.(32)

Therefore, if we denote xσ = x− σt we have

Iσ ′(t) = −3
∫
z2
x(t)ψ′(xσ)− σ

∫
z2(t)ψ′(xσ)

+
∫
z2(t)ψ(3)(xσ) +

5
3

∫
z6(t)ψ′(xσ).

(33)

Note that ψ′′(x) = φ′(x) = c
KQx

(
x
K

)
and ψ(3)(x) = c

K2Qxx
(
x
K

)
. Since Qxx =

Q−Q5 ≤ Q, we have

∀x ∈ R, φ′′(x) ≤ c

K2
Q
( x
K

)
=

1
K2

φ(x).(34)

Thus, from Lemma 6 we have

Iσ ′(t) = −3
∫
z2
x(t)φ(xσ)− σ

∫
z2(t)φ(xσ) +

∫
z2(t)φ′′(xσ) +

5
3

∫
z6(t)φ(xσ)

≤ −3
∫
z2
x(t)φ(xσ)− σ

2

∫
z2(t)φ(xσ) +

5
3

∫
z6(t)φ(xσ)

≤ −3
∫
z2
x(t)φ(xσ)− σ

2

∫
z2(t)φ(xσ) +

5
3
|z2(t, x)φ

1
2 (xσ)|2L∞

∫
z2(t)

≤ −3
∫
z2
x(t)φ(xσ)− σ

2

∫
z2(t)φ(xσ) + c|z0|4L2(

∫
z2
xφ(xσ) +

∫
z2φ(xσ)).

The conclusion follows for |z0|L2 small enough and Lemma 4 is proved.

Proof of Lemma 5. Assume t0 = 0. We now define x̃ = x−x(0)− 1
4 (x(t)−x(0))−x0 .

As before, for t ≥ 0 we have

I ′x0,t0(t) ≤ −3
∫
u2
x(t, x)φ(x̃)− xt

4

∫
u2(t, x)φ(x̃)

+
1
18

∫
u2(t, x)φ(x̃) +

5
3

∫
u6(t, x)φ(x̃).

Let us remark that, from Lemma 3, we have |xsλ − 1| < C|ε(s)|L2 < C
√
α(u0)

for all s ≥ 0. For α(u0) small enough, we have 9
10 <

xs
λ < 11

10 . Since xt = xs
λ3 , we

have
9

10λ2
< xt <

11
10λ2

.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



EXISTENCE OF BLOW-UP SOLUTIONS FOR THE KDV EQUATION 569

In particular, xt8 > 9
80(1.1)2

> 1
18 , and

I ′x0,t0(t) ≤ −3
∫
u2
x(t, x)φ(x̃)− 1

18

∫
u2(t, x)φ(x̃) +

5
3

∫
u6(t, x)φ(x̃).

Here, since u is not small, the way we treat
∫
u6(t, x)φ(x̃) is different from before.

We will treat the regions where |u(t, x)| is large compared to |u(t)|L∞ and where
it is small in a different way. We will see that the contribution that makes Ix0,t0

increase is controlled by a term which is integrable in time, which will allow us to
conclude the proof.

Let us consider a0 and α(u0) small enough such that

16c̃(
∫

1.1|x|>a0

Q2)2 <
1
36

and
∫
ε2(t) <

∫
1.1|x|>a0

Q2,

where the constant c̃ is defined in Lemma 6. We then have that∫
u6(t, x)φ(x̃) = (I) + (II),

where

(I) =
∫
|x−x(t)|>a0

u6(t, x)φ(x̃) and (II) =
∫
|x−x(t)|<a0

u6(t, x)φ(x̃).

On one hand, from Lemma 6,

(I) =
∫
x−x(t)>a0

u6(t, x)φ(x̃) +
∫
x−x(t)<−a0

u6(t, x)φ(x̃)

≤ c̃(
∫
|x−x(t)|>a0

u2) |u2φ
1
2 |2L∞(|x−x(t)|>a0)

< c̃ (
∫
|x−x(t)|>a0

u2)2(
∫
u2
xφ+

∫
u2φ).

Since∫
|x−x(t)|>a0

u2 ≤ 2
∫
|x−x(t)|>a0

λ(t)−1
Q(λ(t)−1(x− x(t)))2

+λ(t)−1
ε(λ(t)−1(x − x(t)))2

≤ 2
∫

1.1|x|>a0

Q(x)2 + 2
∫
ε2(t, x) ≤ 4

∫
1.1|x|>a0

Q(x)2,

we have

(I) ≤ 16c̃(
∫

1.1|x|>a0

Q(x)2)2(
∫
u2
xφ+

∫
u2φ) ≤ 1

36
(
∫
u2
xφ+

∫
u2φ).

On the other hand, we have

u(t, x) = λ−1/2Q(λ−1(x− x(t))) + λ−1/2ε(t, λ−1(x− x(t))),

and

|ε(t)|4L∞ ≤ |ε(t)|2L2 |εx(t)|2L2 and |u(t)|4L∞ ≤
c

λ(t)2 ≤ cxt.
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Therefore,

(II) <

∫
|x−x(t)|<a0

u6(t, x)φ(x̃) < |u(t)|2L2 |u(t)|4L∞ |φ(x̃)|L∞(|x−x(t)|<a0)

< cxt|φ(x̃)|L∞(|x−x(t)|<a0)

< cxtMax|x−x(t)|<a0{e−
1
K |x−x(0)− 1

4 (x(t)−x(0))−x0|}.
Note that if x0 ≤ −a0, then |x−x(t)| < a0 implies from the fact that the function

x(t) is increasing in time that x− x(0)− 1
4 (x(t) − x(0))− x0 ≥ 3

4 (x(t)− x(0)) ≥ 0
and

(II) ≤ cxte−
3

4K (x(t)−x(0))+
x0
K .

To conclude, we have ∀t ≥ 0, I ′x0,t0(t) ≤ (II) ≤ Cxte
x0
K e−

3
4K (x(t)−x(0)). By inte-

gration between 0 and t, and by using the exponential decay in time, it follows
that

∀t ≥ 0, Ix0,t0(t)− Ix0,t0(t0) ≤ Ce
x0
K ≤ Ce

x0

32
1
2 ,

where C is a given constant and Lemma 5 is proved.

4. Blow-up results for critical GKDV

In this section, our purpose is to prove the main Theorem.

Proof of the Theorem. Let us consider u0 ∈ H1(R), and u(t) the solution of (1).
Assume that

E(u0) < 0 and α(u0) =
∫
u0

2 −
∫
Q2 < α1,

where α1 is a constant to be chosen later. We assume that α1 ≤ Mini=1,4 δi,
where δi is defined in section 3. We claim that for α1 small enough, there exists
T < +∞ or T = +∞ such that

|u(t)|H1 → +∞, as t ↑ T.
The proof is divided into several steps. We argue by contradiction. Let us assume
that there is a sequence of solutions of (1), un, with initial data un(0) such that for
each given n,

E(un(0)) < 0, αn = α(un(0))→ 0 as n →∞ , un(t) is defined for t ≥ 0 and

there is tn,m →∞ as m→∞ and cn > 0 such that |unx(tn,m)|L2 ≤ cn.
Note that the constant cn depends on n. We want to find a contradiction for n
large.

Using the asymptotic stability of solitons in the regular regime (bounded oscil-
lations in time), we obtain a contradiction if the solution satisfies such a property
(from energy arguments). The problem is to avoid solutions which have large oscil-
lations in time. For this purpose, we consider some asymptotic regime as the time
goes to infinity and, on this object, we will prove some estimates which will remove
the problem of large oscillations; then we will find a contradiction.

Step 1. Renormalisation and reduction of the problem.
We first consider the following asymptotic regime. Define ln = liminft→∞|unx(t)|L2

< ∞. Let us remark from energy arguments that ln cannot be zero. (Indeed, we
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have for all time that
∫
u6
n ≥ −6E(un) and by the Gagliardo–Nirenberg inequality

|unx(t)|L2 ≥ c, for a c > 0.)
From the definition of ln, there is a t̄n such that

|unx(t̄n)|L2 ≤ ln(1 +
1
n

) and ∀t ≥ t̄n, |unx(t)|L2 ≥ ln(1 − 1
n

).

Using the scaling invariance, we consider

ūn(t, x) = (
|Qx|L2

ln
)

1
2

un((
|Qx|L2

ln
)
3

t+ t̄n,
|Qx|L2

ln
x).

We have that ūn is also a sequence of solutions of (1) with initial data ūn(0) such
that E(ūn(0)) < 0, α(ūn(0)) = α(un(0)) → 0 as n goes to +∞, ūn(t) is defined
for t ≥ 0, ∀t > 0, |ūnx(t)|L2 ≥ (1− 1

n )|Qx|L2 and there is t̄n,m → +∞ such that
|ūnx(t̄n,m)|L2 goes to |Qx|L2 as m→ +∞. With no restriction, we can assume that

t̄n,m+1 − t̄n,m →∞ as m → +∞.
From now on, we omit the bar and we consider a sequence of solutions of (1), un,
with initial data un(0) and tn,m →∞ as m goes to infinity such that

(H1):

E(un(0)) < 0, ᾱn = α(un(0))→ 0 , |unx(0)|L2 → |Qx|L2 as n goes to +∞,
(35)

(H2):

un(t) is defined for t ≥ 0, |unx(t)|L2 ≥ (1 − 1
n

)|Qx|L2 ,(36)

(H3):

|unx(tn,m)|L2 → |Qx|L2 and tn,m+1 − tn,m →∞ as m → +∞.(37)

From assumption (H2) and Lemma 3, for α1 small and n large, we have

∀n, ∀t ≥ 0, λn(t) ≤ 1.1.

Under assumptions (H1)− (H3), we are able to define an object at infinity in time
for each n. Indeed, we can assume that for a ũn(0) ∈ H1,

un(tn,m, x+ x(tn,m)) ⇀ ũn(0) as m goes to infinity.

From Lemma 3, taking α1 small enough and n large we have that ũn(0) is different
from zero. We now consider the solution of the equation (1), ũn(t), with initial
data ũn(0).

Various properties on un(t) will give properties on ũn(t) at the limit, which will
be very restrictive for n large and we will see that such a function ũn(t) cannot
exist for n large, which will be a contradiction. In particular, we will show that
the function ũn(t) satisfies the decay property in the space of exponential type by
using the fact that the object is recurrent in time.

Step 2. First properties of the limit problem as time goes to infinity.
First, let us give some energy type and convergence properties on ũn(t).

Lemma 7 (Energy constrains on ũn(t)). We have the following properties:
i) For all n, we have E(ũn(0)) ≤ E(un(0)) < 0 and 0 < α(ũn(0)) ≤ αn.
ii) ũn(0)→ Q in H1 as n goes to infinity.
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In particular, the function ũn(t) is defined on (−t1(n), t2(n)) in H1, for some
t1(n) > 0, t2(n) > 0, from the result of [11]. Applying Lemma 2, since α(ũn(0)) <
δ2, then for all t ∈ (−t1(n), t2(n)) and for some C1 functions λ̃(t) and x̃(t) we have
that

ε̃n(t, y) = λ̃1/2
n (t)ũn(t, λ̃n(t)y + x̃n(t)) −Q(y)(38)

satisfies (Q3, ε̃n(t)) = (Qx, ε̃n(t)) = 0. We denote by s(n) the time related to t
through the change of variable (13). We will then omit the indices for λ, x, ε, s.

Proof of Lemma 7. i) If we denote vn,m = un(tn,m, x + xn(tn,m)) ⇀ ũn(0) as m
goes to infinity, then by energy and mass conservation we have

E(vn,m) = E(un(0)) < 0 and α(vn,m) = α(un(0)).

On one hand, ũn(0) ∈ H1. Let us define the function ρ such that

0 ≤ ρ ≤ 1 , ρ(x) = 1 for |x| ≤ 1, ρ(x) = 0 for |x| ≥ 2, and
√
ρ,
√

1− ρ ∈ C2,

and for k ∈ N, ρk(x) = ρ(xk ).
Then, by direct calculations and the fact that weak convergence in H1 implies

strong convergence in L∞loc, we have

E(un(0)) = E(vn,m) = E(vn,m
√
ρk) + E(vn,m

√
1− ρk) +Rm,n,k,

where Rm,n,k = − 1
8

∫
v2
m,nρ

′
k

2( 1
ρk

+ 1
1−ρk )− 1

2

∫
v6
m,nρk(1−ρk). Note that Rm,n,k →

Rn,k = − 1
8

∫
ũ2
nρ
′
k

2( 1
ρk

+ 1
1−ρk ) − 1

2

∫
ũ6
nρk(1 − ρk) as m → +∞ and Rn,k → 0 as

k → +∞. Taking α1 small enough and for n large, we have |vn,m −Q|L2 ≤ 1
2 |Q|L2

for all m using Lemma 1; there is k0 such that |vn,m
√

1− ρk|L2 ≤ |Q|L2 for n ≥ n0,
k ≥ k0, and m ≥ 0. Using Gagliardo–Nirenberg,

E(vn,m
√

1− ρk) ≥ 0 and E(un(0)) ≥ E(vn,m
√
ρk) +Rm,n,k.

We pass to the limit as m → +∞. From the fact that vn,m
√
ρk converges to

ũn(0)
√
ρk in L6, we have for n ≥ n0, k ≥ k0,

E(un(0)) ≥ E(ũn(0)
√
ρk) +Rn,k.

Letting k go to infinity, we then obtain

E(un(0)) ≥ E(ũn(0)).

On the other hand, let us remark that the Gagliardo–Nirenberg inequality and
E(ũn(0)) < 0 imply that α(ũn(0)) > 0. In addition, from convexity properties

α(ũn(0)) ≤ liminfm→∞α(vn,m) = α(un(0)).

ii) From assumption (H1), the fact that by definition |unx(0)|L2 → |Qx|L2 as
n → ∞, Lemma 1 and property (17) (which pass to the weak limit), we have
ũn(0)→ Q in H1 as n goes to infinity. This conclude the proof of Lemma 7.

Let us recall some stability properties of the weak convergence for solutions of
the equation (at least in the region in H1 where we consider the flow).

Lemma 8 (Stability of the weak convergence). For all n and, as m goes to infin-
ity, for all t ∈ (−t1(n), t2(n)) and −t1(n) < −t1 < t2 < t2(n), we have

un(tn,m + t, xn(tn,m) + ·) ⇀ ũn(t, ·) in H1(R),(39)

un(tn,m + t, xn(tn,m) + ·)→ ũn(t, ·) in C([−t1, t2], L2
loc(R)).(40)
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Proof of Lemma 8. See Appendix D of [16]. Key to the proof are the fact that the
Cauchy problem for equation (1) is well posed in L2 which contains H1 and a local
virial identity of the type (33) (Lemma 4).

More precisely, for [−t1, t2] ⊂ (−t1(n), t2(n)), let us consider M such that
|ũn(t)|H1 ≤ M ∀t ∈ [−t1, t2]. It is sufficient to prove (39) and (40) on an in-
terval [−t0, t0], with t0 = t0(M) > 0; then Lemma 8 is obtained by iteration in
time. The norms and the estimates introduced in [11] to solve the local Cauchy
problem in H1(R) for equation (1) are in some sense locally in space control by
virial type information.

Corollary 2 (Convergence of the geometric parameters). We have as m goes to
infinity, for all n and −t1(n) < −t1 < t2 < t2(n),

λn(tn,m + t)→ λ̃n(t) and xn(tn,m + t)→ x̃n(t) in C([−t1, t2],R).(41)

Proof of Corollary 2. The proof follows directly from Lemma 8, Lemma 3, parts
i)-ii), and straightforward calculations (see Appendix D of [16] for more details).

In particular, for all n, ∀t ∈ (−t1(n), t2(n)), λ̃n(t) ≤ 1.1.

Step 3. Exponential decay properties of the limit problem.
Now from this convergence result and properties related to the almost monotonicity
of the local mass of un(t), we have the two important exponential decay properties
on ũn(t, x) for x > x̃n(t) and for x < x̃n(t). Here, the strategy of the proof will
differ from the one of [16]. We derived these estimates as a consequence of the
almost monotonicity property of quantity of the type

Ix0,t0(t) =
∫
u2
n(t, x)ψ(x − xn(t0)− x0 −

1
4

(xn(t)− xn(t0)))dx.

From this property and the fact that ũn(t, x) is a recurrent object in time, we obtain
an exponential decay property in L2 uniformly in time (but without smallness). A
pointwise exponential decay with smallness is then obtained on ε̃n by interpolation
using the Gagliardo–Nirenberg inequality. Note that the method used in [16] gives
the optimal decay rate. But it was based on a dichotomy technique for the solu-
tion around the soliton between a purely nonlinear part and an interacting one.
Exponential decay properties of the linear semigroup give at the limit the desired
estimates directly in L∞. In the situation where the parameter λ(t) is not bounded
from below (which is our situation), the strategy of the proof in [16] seems to break
down. (The approach was too linear.) However, using this other technique where
the space L2 plays an important role, exponential decay can be proved (even if it
is not optimal) and is enough to conclude.

Let a0, K = 23
1
2 , δ4, and c1 = C be the constants defined in Lemma 5. We

consider α(u0) ≤ δ4 so that Lemma 5 applies. In addition, we can assume from
Corollary 1 and Lemma 3 that

∀t ∈ (−t1(n), t2(n)),
9

10λ2
< xt(t) =

xs
λ3

<
11

10λ2
.(42)

We first claim

Lemma 9 (L2 exponential decay at the right of the soliton). For x0 ≥ 10a0, ∀t ∈
(−t1(n), t2(n)), ∀n, we have

|ũn(t, x̃n(t) + x)|2L2(x≥x0) ≤ 10c1e−
x0
6 .(43)
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Remark that from the proof, for x0 ≥ 10a0, there is m(x0) such that ∀t ∈
(−t1(n), t2(n)), ∀m ≥ m(x0),

|un(tn,m + t0, xn(tn,m + t0) + ·)|L2(x≥x0) ≤ 10c1e−
x0
6 .

Proof of Lemma 9. Assume by contradiction that there exist t0 ∈ (−t1(n), t2(n))
and x0 ≥ 10a0, such that |ũn(t0, x̃n(t0) + x)|2L2(x≥x0) ≥ 10c1e−

x0
6 . From Lemma 8

and Corollary 2, we have

un(tn,m + t0, xn(tn,m + t0) + ·)→ ũn(t0, ·) in L2
loc(R),

λn(tn,m + t0)→ λ̃n(t0), xn(tn,m + t0)→ x̃n(t0).

In particular for m ≥ m(x0) we have |un(tn,m + t0, x(tn,m + t0) + ·)|2L2(x≥x0) ≥
5c1e−

x0
6 . We now claim that by solving the equation backwards from tn,m + t0

where m is large to t = 0 and using this almost monotonicity property of the mass
we see a contradiction for m large. From the fact that equation (1) invariant under
the transformation u(t, x) gives u(−t,−x), we have that for t̄ ∈ (0, tn,m + t0),

ūn,m(t̄, x) = un(tn,m + t0 − t̄,−x+ x(tn,m + t0))

is a solution of equation (1). Let us define

Īx0,m(t̄) =
∫
ū2
n,m(t̄, x)ψ(x + x0 +

1
4

(xn(tn,m + t0 − t̄)− xn(tn,m + t0)))dx,

where the function ψ is defined in the previous section.
On one hand, for m ≥ m(x0), from the properties of the function ψ, the conser-

vation of the L2 norm and a change of variable, we have

Īx0,m(0) ≤
∫
ū2
n,m(0)− 1

2

∫
x≤−x0

ū2
n,m(0),

Īx0,m(0) ≤
∫
u2
n(0)− 1

2
|un(tn,m + t0, xn(tn,m + t0) + ·)|2L2(x≥x0)

≤
∫
u2
n(0)− 2c1e−

x0
6 .

On the other hand, we are able to apply Lemma 5 from (42), and for m ≥ m(x0),
we obtain

Īx0,m(tn,m + t0) ≤ Ix0,m(0) + c1e
−x0

6

≤
∫
u2
n(0) + c1e

−x0
6 − 2c1e−

x0
6 ≤

∫
u2
n(0)− c1e−

x0
6 .

Since Īx0,m(tn,m+ t0) =
∫
u2
n(0,−θ+xn(0))ψ(θ+x1 + 3

4xn(tn,m+ t0))→
∫
u2
n(0, x)

as m → ∞, after a change of variable θ = x − xn(tn,m + t0) + xn(0), where x1 is
fixed, we have at the limit∫

u2
n(0, x) ≤

∫
u2
n(0, x)− c1e−

x0
6 ,

and a contradiction follows. This concludes the proof of Lemma 9.

Again, strongly using the monotonicity properties of un(t) and the previous
lemma (the L2 norm is controlled at the right of the soliton), we obtain
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Lemma 10 (L2 exponential decay at the left of the soliton). For x0 ≥ 10a0, ∀t ∈
(−t1(n), t2(n)), ∀n, we have

|ũn(t, x̃n(t) + x)|2L2(x≤−x0) ≤ 40c1e−
x0
6 .(44)

Proof of Lemma 10. Again by contradiction, assume that there exist x0 ≥ 10a0

and t0 ∈ (−t1(n), t2(n)) such that

|ũn(t, x̃n(t0) + x)|2L2(x≤−x0) ≥ 40c1e−
x0
6 .

As before, un(tn,m + t0, xn(tn,m + t0) + ·) → ũn(t0, ·) in L2
loc(R) as m → ∞, and

from the proof of Lemma 9 (see the remark above), we have

|un(tn,m + t0, xn(tn,m + t0) + ·)|L2(x≥x0) ≤ 10c1e−
x0
6 .

Therefore, there exists m ≥ m(x0) such that we have

|un(tn,m + t0, xn(tn,m + t0) + ·)|2L2(x≥−x0) ≤ |ũn(t, x)|2L2 − 5c1e−
x0
6 .

We now claim that by solving equation (1) from tn,m(x0) + t0 to tn,m where m is
very large, we find a contradiction with the fact that un(tn,m, xn(tn,m)+ .) ⇀ ũn(0)
as m→∞. Define Īx0(t) by∫

u2
n(tn,m(x0) + t0 + t, x)ψ(x − xn(tn,m(x0) + t0) + x0

− 1
4

(xn(tn,m(x0) + t0 + t)− xn(tn,m(x0) + t0)))dx.

As before, we have that Īx0,m(x0)(0) ≤
∫
ũ2
n(0) − 2c1e−

x0
6 , and from Lemma 5

for all m ≥ m(x0), Īx0(tn,m − tn,m(x0) − t0) ≤ Īx0(0) + c1e
− x0

6 ≤
∫
ũ2
n(0)− c1e−

x0
6 .

Since Īx0(tn,m − tn,m(x0) − t0) is equal to (for x1 constant), it follows that∫
u2
n(tn,m, x)ψ(x + x1 −

1
4
x(tn,m)) =

∫
u2
n(tn,m, x+ x(tn,m))ψ(x+ x1 +

3
4
x(tn,m)).

Then, at the limit as m→∞, we have x(tn,m)→∞ and∫
ũ2
n(0, x) ≤

∫
ũ2
n(0, x)− c1e−

x0
6 ,

and a contradiction follows. This concludes the proof of Lemma 10.

As a corollary of these two exponential estimates and the smallness of ε̃n in H1,
we have

Corollary 3 (L∞ control on ε̃n). For x0 ≥ x0(a0, c1), ∀t ∈ (−t1(n), t2(n)), ∀x ∈
R, ∀n, we have

i) |ũn(t, x)|2L2(|x|≥x0) ≤ 50c1e−
x0
6 ,

ii) |ε̃n(t, x)| ≤ Cα(un(0))
1
4 e−

λ̃n(t)|x|
24 .

Proof of Corollary 3. i) follows from Lemmas 9 and 10. For part ii), we have

1

λ̃n(t)
1
2
ε̃n(t,

x

λ̃n(t)
) = ũn(t, x̃n(t) + x)− 1

λ̃n(t)
1
2
Q(

x

λ̃n(t)
)
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and 1

λ̃n(t)
1
2
Q( x

λ̃n(t)
) ≤ C

λ̃n(t)
1
2
e
− 1

2λ̃n(t) e−
|x|
2 ≤ Ce−

|x|
2 , which imply that for x0 ≥

x0(a0, c1),

∀t ∈ (−t1(n), t2(n)), ∀n, | 1

λ̃n(t)
1
2
ε̃n(t,

x

λ̃n(t)
)|2L2(|x|≥x0) ≤ Ce−

x0
6 ,

and by the scaling invariance of the L2 norm, the fact that λ̃n(t) ≤ 1.1, we have

|ε̃n(t, x)|2L2(|x|≥y0) ≤ Ce−
λ̃n(t)y0

12 for y0 ≥ 2
x0(a0, c1)
λ̃n(t)

.

On one hand, from Gagliardo–Nirenberg, estimates on εn and Lemma 3, we have

|ε̃n(t, x)|2L∞ ≤ |ε̃nx(t, x)|L2 |ε̃n(t, x)|L2 ≤ Cα(un(0))
1
4 ,

and the desired estimates hold for |x1| ≤ 2x0(a0,c1)

λ̃n(t)
.

On the other hand, for |x1| ≥ 2x0(a0,c1)

λ̃n(t)
, we have from the proof of Gagliardo–

Nirenberg that

|ε̃n(t, x1)| ≤ |ε̃n(t, x)|
1
2
L2(|x|≥x1)|ε̃nx(t, x)|

1
2
L2(|x|≥x1) ≤ Cα(un(0))

1
4 e−

λn(t)x1
24 .

Step 4. Conclusion of the proof from rigidity properties.
We are now able to find a contradiction for n large on ũn (that is, on the asymptotic
regime). For n large, the exponential estimates on ũn will give rigidity on the
variation of the norm of the solution ũn(t) (and λ̃n(t)) in time through the last
invariant of the equation (1) not yet used: the space average of the solution. We
then conclude using rigidity of the regular regime ([16])

i) Rigidity on the norm of ũn.
For n large, we claim that

t1(n) = t2(n) = +∞ and ∀t ∈ R,
1
2
≤ λ̃n(t) ≤ 2.

Indeed, from Corollary 3, we have that for all n, t ∈ (−t1(n), t2(n)), ũn(t) ∈ L1.
Now, we consider the other invariant of the equation not defined in the energy space
(and therefore in general of no use). We have

∀t ∈ (−t1(n), t2(n)),
∫

R

ũn(t, x)dx =
∫

R

ũn(0, x)dx.(45)

This conservation quantity and the smallness of the exponential estimates on ε̃n
allow us to control λ̃n(t). From the fact that ũn(0) → Q in H1 as n goes to
infinity, we have that λ̃n(0) → 1 by continuity arguments. From the invariance in
time of the average and the exponential estimates Corollary 3, (45), (12), and the
equality

∫
(ε̃n(t, y) +Q(y))dy =

∫
λ̃

1/2
n (t)ũn(t, λ̃n(t)y + x̃n(t))dy imply that for a θ

independent of n,

|
∫
Q− λ̃−1/2

n (t)
∫
ũn(t)| ≤ θα(un(0))

1
4

λ̃n(t)
.

Moreover, since λ̃n(0) → 1,
∫
ũn(t) =

∫
ũn(0) →

∫
Q as n → +∞. Therefore, we

have for n large enough,

|λ̃1/2
n (t)− 1| ≤ cα(un(0))

1
4

λ̃
1/2
n (t)

+
1
10
≤ 1

20λ̃1/2
n (t)

+
1
10
.
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Using the continuity with respect to time of λ̃n(t) and that 9
10 ≤ λ̃n(0) ≤ 11

10 for
n large yield by apriori estimates that

∀t ∈ (−t1(n), t2(n)),
1
2
≤ λ̃n(t) ≤ 2.

From the fact that the H1 norm of εn(s) is uniformly small (see Lemma 3), and for
n large and constants c1, c2 such that 0 < c1 ≤ c′1, we have λ̃−1

n (t) ≤ |ũnx(t)|L2 ≤
c′2λ̃
−1
n (t) ≤ c2, which implies in particular from the local wellposedness in H1 of

the Cauchy problem for equation (1) that t1(n) = t2(n) = +∞, and the desired
estimate follows.

ii) Rigidity on ũn.
Now a contradiction follows from the Theorem of Liouville of Martel and Merle
in [16] which classifies regular regimes close to the function Q up to invariance.
Indeed, on one hand for n large, there is c1, c2 (independant of n) such that for all
time t ∈ R,

c1 ≤ |ũn(t)|H1 ≤ c2.(46)

Corollary 3 implies in particular that

∀ε0, ∃R0 > 0, ∀t ∈ R,
∫
|x−x̃n(t)|>R0

ũ2
n(t, x)dx ≤ ε0.

Since ũn(0)→ Q, for n large, we will have that |ũn(0) −Q|H1 ≤ α0(c1, c2), where
α0(c1, c2) is defined in the Liouville property close to Q∗c1,c2 (see the introduction).
From this result, for n large the function ũn is a soliton: there are λ̂n, x̂n such that

ũn(t, x) = λ̂1/2
n Q(λ̂n(x− x̂n)− λ̂3

nt)

and

E(ũn(0)) = λ̂2
nE(Q) = 0.

On the other hand, from Lemma 7, we have E(ũn(0)) < 0, which is a contradiction.
This concludes the proof of the Theorem.
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