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Abstract 

The core-localized toroidicity-induced Alfv6n eigenmode (TAE) is shown t o  

exist at finite plasma pressure due t o  finite aspect ratio effects in tokamak 

plasma. The new critical beta for the existence of the TAE mode is given by 

a NN 3r + 2s2, where E = T / R  is the inverse aspect ratio, s is the magnetic 

shear and a = -Rq2d,8/dr is the normalized pressure gradient. In contrast, 

previous critical a is given by a M s2. In the limit of s << m, the new 

critical a is greatly enhanced by the finite aspect ratio effects. 
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The toroidicity-induced Alfvdn eigenmode [1,2] (TAE) exists in a tokamak plasma due 

to toroidal mode coupling and finite magnetic shear. The mode frequency is located inside 

a continuum gap induced by toroidicity. Recently, it has been shown [3-51 that there is a 

critical pressure gradient above which the TAE mode no longer exists. In the limit of small 

shear, the critical value is given by a = a, = s2/(1 + s), where s = rdq/qdr is the magnetic 

t 

shear, a = -Rq2d,B/dr represents the product of magnetic field curvature and plasma pres- 

sure gradient with R being the major radius, r being the plasma radius, q being the safety 

factor and ,B being the plasma toroidal beta. This result implies that the TAE mode should 

not exist in the core of tokamak plasma where the values of CY and s are comparable and 

small for typical parameters. In particular, a / s  >> 1 asymptotically when r goes to zero. 

However, recent numerical results [6] indicate that a TAE mode, which is localized at a sin- 

gle gap, does exist in the core of the tokamak plasma, where e = r / R  - 0.1 and s - CY - e. 

We call this type of TAE mode the core-localized TAE mode. These core-localized modes 

are particularly susceptible to destabilization by fusion alpha particles in a tokamak plasma 

since the density profile of the alpha particles is sharply peaked at the center of plasma [6]. 

In this work, we will show that the effects of finite aspect ratio change the critical a 

qualitatively using the high-n ballooning mode equation. The previous results [3,4], based 

on the standard s - CY model ballooning mode equation [7], is only valid in the limit of 

6 << s2. We will show that our new critical a reduces to a, = 36 in the limit of s << 4 << 1. 

In the following, we will derive an analytic expression for critical CY by taking into account 

the effects of finite aspect ratio. 

We start with th2 following ballooning mode equation: 
% 

2 8)h2(8)]  (1 + 4~ cos 6)@ 
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a + 2c - 2(1 - .)A!, A’ = ~ ( 1 / 4  + P p )  is the radial derivative of the Shafranov shift, and R 

is the mode frequency normalized to the Alfvkn frequency. The poloidal beta is defined as 

p p  = 87r(< p > -p)/B; where <> denotes a volume average. 

Equation 1 is derived for a large aspect ratio, low-beta tokamak plasma by using the 

Shafranov shifted circle flux coordinates [8]. We note that the previous work [3,4] neglects 

the E term in Gl(8) and G2(8) and assumes a >> c. In this limit, the Eq. (1) reduces to the 

standard s - a model ballooning equation [7]: 

+ a [cos 8 + h(8) sin 01 @ = 0. (2) 

Comparing Eqs. (1) and (2), the new terms in Eq. (l), of order O(c) ,  come from the intrinsic 

toroidicity and pressure-induced Shafranov shift. We will show below that these E terms in 

GI and G2 can not be neglected when 6 is comparable or larger than s2. 

To make analytic progress, we make the following transformation @ t (l /f i)@ with 

F = Gl(8) + G2(8)h2(6) , the Eq. (1) then becomes 

F” 

2 F  4F2 

(F’)2 + a(cos(8) + h(8) sin 6 )  

F 
R2(1+4€COS8)--+- (3) 

where the prime denotes the derivative with respect to 8. Assuming E << 1 and s - CY - O(c), 

we expand Eq. (3) to the second order of c. The resulting equation is given by 

where the functions HI and HZ are defined as 

HI (8) = (CY - 6) cos 8 - 2aA’ cos2 8 + (26A’ + CY& - 6’) sin2 8 

H2(8) = (s - 6 cos 

( 5 )  

(6) + 2S(6 - a)  cos2 8 - (S2 + 2G2 - 2a6)  sin2 8 

with i x E + A’ and S = E + 2A‘. 
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Following Fu and Cheng [3], a dispersion relation for the TAE mode frequency can be 

derived by solving Eq. ( 4 )  asymptotically. The result is given by 
? 

8 

where 0- and R+ are the lower bound and the upper bound of the Alfv&n continuum gap 

respectively. The critical a for the existence of TAE mode, a,, is given by 

(1 + E ) ( €  + 2Al) + s2 - 2(E - Al)s 
a, = 

1 + E + S  

In the limit of E --+ 0 and A‘ --+ 0, the critical value given in Eq. (8) reduces to the 

previous results [3-51. It should be noted that A’ is dependent on the poloidal beta which 

is proportional to a. This implicit dependence can be made explicit in the core of plasma 

where we can expand the plasma pressure near r = 0. Thus, we have following relations 

near the center of plasma for typical pressure profile of form p 0; (1 - r2 )b  with b being a 

constant: a = 4 4  and ii = S = 3c/2 + a / 2 .  The critical CY then reduces to 

3 ~ ( 1  + E )  + 2s’ - ~ E S  

1 + E + S  

CY,  = (9) 

It is instructive to note that in the limit of zero shear, the critical alpha is simply given 

by a, = 3~ which corresponds to pPc = 3/4. Thus, the finite aspect ratio effects greatly 

enhance the critical beta for small shear. It is also interesting to note that in the limit of 

E --+ 0, the critical a is a factor two larger than the previous results [3-51. This factor of two 

comes from the pressure-induced Shafranov shift. 

The critical a, given by Eq. (9), has been confirmed by solving Eq.(l)  numerically. Fig- 

ure 1 shows that the analytic results for the critical a (solid line) agree very well with the 

numerical results (solid dots). For comparison, we have shown in Fig. 2 both the previ- 

ous results (solid line marked with r / R  = 0) and our new results (solid line marked with 

r / R  = 0.1). As a reference, the ballooning mode first stability boundary is also shown 

(dotted line). We observe that the effects of finite aspect ratio makes the critical cy much 

I 
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closer to the first stability boundary for small value of shear. ( It was shown previously [3] 

that the critical a for TAE mode approaches the first stability boundary asymptotically for 

large values of shear). Although our results are based on shifted-circle model equilibria, we 

conjecture that the critical a for TAE mode is also close to the ballooning first stability limit 

in general equilibria, and that the TAE can generally exist as long as the tokamak plasma 

is ballooning stable. 

Finally, the analytic critical CY in the limit of s2 << E ,  a, = 3r, has been confirmed in 

both magnitude and scaling by numerical calculations using a global stability code NOVA 

161 * 

In conclusion, we have shown that the core-localized TAE mode exists at finite plasma 

pressure in tokamaks due to finite aspect ratio effects. The critical beta for the existence of 

TAE mode in the core region of plasma is given by Pp = 3/4 in the limit of s << << 1. 

The author gratefully acknowledges stimulating discussion with Drs. H. L. Berk, C. Z. 

Cheng and J. W. Van Dam. This work is supported by the U.S. Department of Energy 

under Contract No. DEAC02-76-CHO-3073. 
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FIGURES 

FIG. 1. The critical (Y value, aC, as a function of shear s obtained with c = 0.1 near the center 

of plasma. 

FIG. 2. The critical a for the TAE as a function of shear s from both the previous results (solid 

line marked with T / R  = 0) and the new results (solid line marked with T / R  = 0.1). The ballooning 

first stability boundary is also shown (dotted line). 
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