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Abstract
Westudy the existence of harmonicmaps andDirac-harmonicmaps fromdegenerating
surfaces to a nonpositive curved manifold via the scheme of Sacks and Uhlenbeck.
By choosing a suitable sequence of α-(Dirac-)harmonic maps from a sequence of
suitable closed surfaces degenerating to a hyperbolic surface, we get the convergence
and a cleaner energy identity under the uniformly bounded energy assumption. In this
energy identity, there is no energy loss near the punctures. As an application, we obtain
an existence result about (Dirac-)harmonic maps from degenerating (spin) surfaces. If
the energies of the map parts also stay away from zero, which is a necessary condition,
both the limiting harmonic map and Dirac-harmonic map are nontrivial.
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1 Introduction

The fundamental paper [15] by Sacks and Uhlenbeck approached the theory of har-
monic maps from a Riemann surface M into a Riemannian manifold N , that is critical
points u : M → N of the energy functional

E(u) =
∫
M

|du|2dvolg, (1.1)
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11166 J. Jost, Jingyong Zhu

by perturbing the energy functional E to the functional

Eα(u) =
∫
M

(1 + |du|2)αdvolg, (1.2)

for α > 1 whose critical points are called α-harmonic maps. In contrast to (1.1), (1.2)
satisfies a Palais-Smale condition so that standard methods apply. The difficult part
then consists in controlling the limit α → 1. By studying this limit behavior of a
sequence of α-harmonic maps as α ↘ 1, they obtained the existence of harmonic
maps and insight into the formation of bubbles.

Motivatedby the supersymmetric nonlinear sigmamodel fromquantumfield theory,
see [7], Dirac-harmonic maps from spin Riemann surfaces into Riemannian manifolds
were introduced in [4]. They are generalizations of the classical harmonic maps and
harmonic spinors. From the variational point of view, they are critical points of a
conformal invariant action functional whose Euler–Lagrange equation is a coupled
elliptic system consisting of a second-order equation and a Dirac equation. Being
generalizations of harmonic maps, it looks natural to extend the scheme of (1.2) to
them. However, new difficulties arise.

In fact, it turns out that the existence of Dirac-harmonic maps from closed surfaces
is a very difficult problem because the kernel of the Dirac operator is a linear space.
Moreover, different from the Dirichlet problem, even if there is no bubble, the non-
triviality of the limit is also an issue. Here, a solution is considered trivial if the spinor
part ψ vanishes identically. So far, there are only a few results in this direction. See
[1] and [5] for uncoupled Dirac-harmonic maps (here uncoupled means that the map
part is harmonic) based on index theory and the Riemann-Roch theorem, respectively.
The problem has also been approached by linking theory, see [10]. Recently, we are
succeed in get an existence result by the heat flow method [11]. Precisely, we use
α-Dirac-harmonic map flow starting from an initial map with nontrivial α-genus to
get nontrivial α-Dirac-harmonic maps. Then a nontrivial Dirac-harmonic map comes
from a sequence of nontrivial α-Dirac-harmonic maps by blow-up analysis. This pro-
cedure can be viewed as an extension of Sacks–Uhlenbeck scheme to Dirac-harmonic
maps.

Given these existence results about (Dirac-)harmonic maps on closed surfaces,
it is natural to consider the compactness. When the domain surfaces are fixed, the
compactness problem is well understood, see [15] for harmonic maps and [3,16] for
Dirac-harmonic maps. When the domain surfaces vary, it is necessary to consider the
degeneration of conformal structures on a Riemann surface. Topologically, the limit
surface is obtained by collapsing finitely many simple closed geodesics. There are two
types of collapsing curves: one is homotopically trivial, which corresponds to the bub-
bling near isolated singularities, and the other one is homotopically nontrivial, which
corresponds to the degeneration of complex structure. By the bubbling procedure in
[17,18], two generalized energy identities were proved. These identities tell us that
energy may get lost from the formation of some necks that fail to converge to points.
Therefore, given a sequence of harmonic maps with bounded energy, we cannot assure
the nontriviality of the limit harmonic maps from degenerating surfaces even if the
energy uniformly stays away from zero. For the limit Dirac-harmonic map, the situa-
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tion is worse. We cannot give a geometric condition to assure the nontriviality of the
spinor because, so far, there is no condition to get rid of nontrivial Dirac-harmonic
spheres.

In this paper, motivated by the existence of nontrivial α-(Dirac-)harmonic maps
from closed (spin) surfaces, we consider the (Dirac-)harmonic maps on degenerating
surfaces. We first study the compactness of a sequence of α-Dirac-harmonic maps
from closed hyperbolic surfaces degenerating to a hyperbolic Riemann surface and
get a nice energy identity. In this new energy identity, there is no energy loss on the
degenerating cylinder, which turns out to be very important in proving the nontriviality
of limit (Dirac-)harmonic maps.

Theorem 1.1 (Compactness and energy identity) Let (Mn, hn, cn,Sn) be a sequence
of closed hyperbolic surfaces of genus g > 1 degenerating to a hyperbolic Rie-
mann surface (M, h, c,S) by collapsing finitely many pairwise disjoint simple closed
geodesics {γ j

n , j ∈ J }. Denote by l jn the length of γ
j
n and ln := max

j∈J
{l jn }. We choose

a sequence of constants, {αn ∈ (1, 2)}, such that

lim
n→∞

(
2ln√
sinh ln

2

)αn−1

= 0. (1.3)

For each n, suppose that (un, ψn) is anαn-Dirac-harmonicmap from (Mn, hn, cn,Sn)

into a fixed compact manifold N with nonpositive curvature and that it satisfies

Eαn (un) + E(ψn) ≤ �, (1.4)

for some positive constant �, where E(ψn) := E(ψn, hn, Mn) = ∫
Mn

|ψ |4dvolhn .
Moreover, we assume that the first positive eigenvalue λ1(hn) of the usual Dirac
operator /∂hn stays away from zero, i.e.,

λ1(hn) ≥ c0 (1.5)

for some positive constant c0 > 0. Then there exists a Dirac-harmonic map (u, ψ) :
(M, h, c,S) → N such that, after a selection of a subsequence,

(un, ψn) → (u, ψ) in C∞
loc(M) × C∞

loc(M) (1.6)

and

lim
n→∞ E(un, hn, Mn) = E(u, h, M), (1.7)

lim
n→∞ E(ψn, hn, Mn) = E(ψ, h, M). (1.8)

In the special case of harmonic maps, the result becomes
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Theorem 1.2 Let (�n, hn, cn) be a sequence of closed hyperbolic surfaces of genus
g > 1 degenerating to a hyperbolic Riemann surface (�, h, c) by collapsing finitely
many pairwise disjoint simple closed geodesics {γ j

n , j ∈ J }. Denote by l jn the length
of γ j

n and ln := max
j∈J

{l jn }. We choose a sequence of constants, {αn ∈ (1, 2)}, such that

lim
n→∞

(
2ln√
sinh ln

2

)αn−1

= 0.. (1.9)

For each n, suppose that un is an αn-harmonic map from (�n, hn, cn) into a fixed
manifold N with nonpositive curvature which satisfies

Eαn (un) ≤ �, (1.10)

for some positive constant �. Then there exists a harmonic map u : (�, h, c) → N
such that, after a selection of a subsequence,

un → u in C∞
loc(�) (1.11)

and

lim
n→∞ E(un, hn, �n) = E(u, h, �). (1.12)

Actually, such compactness and energy identities are also true for α(> 1)-(Dirac-
)harmonic maps, see Theorems 4.4 and 4.3 .

Moreover, combining these results with the existence of α-(Dirac-)harmonic maps
in [1,15], we get an existence result about (Dirac-)harmonic maps from degenerating
(spin) surfaces. Moreover, if the energy of the map parts also stays away from zero,
both the limiting harmonic map and Dirac-harmonic map are nontrivial.

Theorem 1.3 (Existence of Dirac-harmonic maps from degenerating surfaces) Let
(Mn, hn, cn,Sn) be a sequence of closed hyperbolic surfaces of genus g > 1 degen-
erating to a hyperbolic Riemann surface (M, h, c,S) by collapsing finitely many
pairwise disjoint simple closed geodesics {γ j

n , j ∈ J }. Denote by l jn the length of γ j
n

and ln := max
j∈J

{l jn }. For each n, suppose that un is a map from Mn into a fixed manifold

N with nonpositive curvature which satisfies

Eαn (un) ≤ �, (1.13)

indu∗
nT N (Mn) 	= 0, (1.14)

where � is a positive constant, and {αn ∈ (1, 2)} satisfies

lim
n→∞

(
2ln√
sinh ln

2

)αn−1

= 0. (1.15)
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Moreover, we assume that the first positive eigenvalue λ1(hn) of the usual Dirac
operator /∂hn stays away from zero, i.e.,

λ1(hn) ≥ c0 (1.16)

for some positive constant c0 > 0. Then there exists a Dirac-harmonic map (u, ψ) :
(M, h, c,S) → N such that

ψ 	= 0. (1.17)

In addition, let the minimizing harmonic map umin
n in [un] satisfy

lim
n→∞ E(umin

n ) > 0. (1.18)

Then u is not a constant.

Theorem 1.4 Let (�n, hn, cn) be a sequence of closed hyperbolic surfaces of genus
g > 1 degenerating to a hyperbolic Riemann surfaces (�, h, c) by collapsing finitely
many pairwise disjoint simple closed geodesics {γ j

n , j ∈ J }. Denote by l jn the length
of γ

j
n and ln := max

j∈J
{l jn }. For each n, suppose that un is a map from �n into a fixed

manifold N with nonpositive curvature and satisfies

Eαn (un) ≤ �, (1.19)

where � is a positive constant, and {αn ∈ (1, 2)} satisfies

lim
n→∞

(
2ln√
sinh ln

2

)αn−1

= 0. (1.20)

Then there exists a harmonic map u0 : (�, h, c) → N, which can be extended to a
smooth harmonic map on (�̄, c̄).

In addition, let the minimizing harmonic map umin
n in [un] satisfy

lim
n→∞ E(umin

n ) > 0. (1.21)

Then u0 is not a constant.

Here is a remark on Theorem 1.3 above. First, unlike [17], we do not make an
assumption on the type of the punctures of M . Therefore, our result gives an exis-
tence result for Dirac-harmonic map on those Riemann surfaces with Ramond type
punctures. Even in the Neveu-Schwarz case, in which the Dirac-harmonic map (u, ψ)

can be extended to a smooth Dirac-harmonic map (ū, ψ̄) on (M̄, c̄, S̄), the existence
of a Dirac-harmonic map on (M̄, c̄, S̄) does not directly follow from the result in
[1] because we do not know whether indū∗T N (M̄, S̄) 	= 0. Second, the uniformly
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bounded energy assumption (1.13) is possible. One can take a simple example where
un is constant in a fixed neighborhood of the degenerating curves. Third, the index
assumption (1.14) is used to assure the nontriviality of the spinor, i.e., (1.17). In [1], the
authors discussed some situations to realize the assumption (1.14). See for example
Corollary 10.3 and Theorem 10.6 in [1]. Last, if the limit surface M has a discrete
Dirac spectrum, then Pfäffle [14] proved that the usual Dirac operators /∂hn are (ϒ, ε)-
spectral close to /∂h . In this case, if we also assume that the dimension of the kernel of
/∂hn converges to the that of /∂h , then the assumption (1.16) follows. This leads to the
question when the limit surface M has a discrete spectrum. An answer was provided
by Bär in [2].

Theorem 1.5 [2] Let M be a hyperbolic manifold of finite volume equipped with a
spin structure. If the spin structure is nontrivial along all cusps, i.e., all the punctures
of M are of Neveu-Schwarz type, then the spectrum is discrete. In particular, if M is
a 2- or 3-manifold and has only one cusp, then the spectrum is always discrete.

Here the cusps of M are approximated by degenerating tubes around short closed
geodesics in Mn of length l

j
n , j ∈ J , where |J | is the number of cusps.

The finite volume assumption follows from the assumption (1.13) (see the proof of
Theorem 4.1). Combining all these facts, we have the following corollary.

Corollary 1.6 Let (Mn, hn, cn,Sn) be a sequence of closed hyperbolic surfaces of
genus g > 1 degenerating to a hyperbolic Riemann surface (M, h, c,S) with only
Neveu-Schwarz type punctures by collapsing finitely many pairwisely disjoint simple
closed geodesics {γ j

n , j ∈ J }. Denote by l jn the length of γ
j
n and ln := max

j∈J
{l jn }. We

assume
(i) the dimension of the kernel of /∂hn converges to that of /∂h,
(ii) {un} is a sequence of maps from Mn into a closed even-dimensional orientable

nonpositive curved manifold N with nontrivial pull-back bundle u∗
nT N → Mn and

uniformly bounded αn-energy for αn satisfying (1.15).
Then there exists a smoothDirac-harmonicmap (u, ψ) : (M, h, c,S) → N,which

can be extended to a smooth Dirac-harmonic map (ū, ψ̄) on (M̄, c̄, S̄), such that

ψ̄, ψ 	= 0. (1.22)

In addition, let the minimizing harmonic map umin
n in [un] satisfy

lim
n→∞ E(umin

n ) > 0. (1.23)

Then both ū and u are nontrivial.

Remark 1.7 When the target manifold N is odd-dimensional, one can choose spin
structuresSn on Mn andS on M such that the conclusion in the corollary above still
holds.

The rest of paper is organized as follows: In Sect. 2, we collect some well-known
facts about the hyperbolic Riemann surface theory and some lemmas about α-Dirac-
harmonic maps. In Sect. 3, we show the generalized energy identity for a sequence of
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α-Dirac-harmonic maps from nondegenerating spin surfaces. In Sect. 4, we will prove
all the compactness and existence results stated in this introduction.

2 Preliminaries

In order to study the (Dirac-)harmonic maps from degenerating (spin) surfaces, we
recall some basic knowledge about degenerating surfaces and refer to [17,18] for more
details.

2.1 Degenerating (Spin) Surfaces

ARiemann surface is an orientable surfacewith a complex structure. A hyperbolic sur-
face is an orientable surface with a complete Riemannian metric of constant curvature
−1 having finite area. The topological type of a surface is determined by its signature
(g, k), where k is the number of punctures and g is the genus of the surface obtained
by adding a point at each puncture. The type (g, k) is called general if 2g+k > 2. Two
surfaces of type (g, k) are called equivalent if there exists a conformal diffeomorphism
between them preserving the punctures (if there are any). The space of equivalence
classes is called the moduli space Mg,k of Riemann surfaces of type (g, k).

Now we consider closed Riemann surfaces of genus g > 1. Any such surface
is of general type and it acquires a complete hyperbolic metric. Therefore, they all
stay in Mg . This moduli space is noncompact because the conformal structure can
degenerate. The only process by which the conformal structure can degenerate is the
shrinking of simple closed geodesics. Hence, when we vary these in Mg , they can
degenerate into a surface with punctures. Generally, a sequence of surfaces of the same
type can degenerate into another surface of different type. This inspires us to study the
existence of (Dirac-)harmonic maps from degenerating surfaces based on the known
existence results on closed surfaces.

The natural way to compactify Mg is to allow the lengths of the geodesics to
become zero and thus admit surfaces with nodes as singularities. Topologically, one
cuts a given surface along a collection of finitely many homotopically independent
pairwise disjoint simple closed curves and pinches the cut curves to points. More
precisely, let �0 be a topological model surface and � J = {γ j , j ∈ J } a possibly
empty collection of finitely many pairwise disjoint, homotopically nontrivial, simple
closed curves on�0. Let �̃ be the surface obtained from�0 by pinching all curves γ j

to points P j . Next, we remove all P j from �̃ and place a complete hyperbolic metric
h on the resulting surface � = �̃ \ ∪ j∈JP j . For j ∈ J , we denote by (P j,1,P j,2) a
pair of punctures on (�, h) corresponding to P j . Denote by �̄ the surface obtained
by adding a point at each puncture of �. Then the complex structure c on � that is
compatible with the hyperbolicmetric h extends to a complex structure c̄ on �̄.We call
(�̃, h, c̄) a nodal surface. (�̄, c̄) is called the normalization of (�̃, h, c̄) or (�, h, c).
�̄ is of lower topological type.

Let (�n, hn, cn) be a sequence of closed hyperbolic Riemann surfaces of genus g >

1. We say that (�n, hn, cn) converges to a nodal surface (�̃, h, c̄) or (�, h, c) if there
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exist possibly empty collections � J
n = {γ j

n , j ∈ J } of finitely many pairwise disjoint
simple closed geodesics on each (�n, hn, cn) and continuous maps τn : �n → �̃

with τn(γ
j
n ) = P j for j ∈ J and each n, such that

(1) For any j ∈ J , the length l(γ j
n ) = l jn → 0 as n → ∞,

(2) τn : �n \ ∪ j∈Jγ
j
n → � is a diffeomorphism for each n,

(3) h̄n := (τn)∗hn → h in C∞
loc on �,

(4) c̄n := (τn)∗cn → c in C∞
loc on �.

If |J | > 0, we say that (�n, hn, cn) degenerates to a nodal surface (�̃, h, c̄) or
(�, h, c). Thus, the analysis of the degeneration of hyperbolic surfaces is reduced to
the local behavior of pinched geodesics. The following collar lemma is a fundamental
tool to analyze this localization.

Lemma 2.1 [18] Let γ be a simple closed geodesic of length l(γ ) = l in a closed
Riemann surface � of genus g > 1. Then there is a collar of area 2l

sinh(l/2) around γ

which is isometric to

Z =
{
reiw ∈ H : 1 ≤ r ≤ el , arctan

(
sinh

(
l

2

))
< w < π − arctan

(
sinh

(
l

2

))}
,

(2.1)

where γ corresponds to {reiπ/2 ∈ H : 1 ≤ r ≤ el}, and the lines {r = 1}, {r = el}
are identified via z → el z.

Topologically, this collar neighborhood is a cylinder. Under the conformal transfor-
mation

reiw → (t, θ) =
(
2π

l
w,

2π

l
log r

)
, (2.2)

the collar Z is isometric to following cylinder

P =
{
(t, θ) :2π

l
arctan

(
sinh

(
l

2

))
< t <

2π

l

(
π − arctan

(
sinh

(
l

2

)))
,

0 ≤ θ ≤ 2π

} (2.3)

with metric

ds2 =
(

l

2π sin lt
2π

)2

(dt2 + dθ2), (2.4)

where γ ⊂ Z corresponds to {t = π2/l} ⊂ P , and the lines {θ = 0}, {θ = 2π} are
identified. In these coordinates, we have

sinh(inj(t, θ)) sin

(
lt

2π

)
= sinh

(
l

2

)
, (2.5)
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where inj(t, θ) is the injectivity radius at the point (t, θ) ∈ P . Sometimes, we also
denote by inj(x; h) the injectivity radius at the point at x with respect to the metric h.

To better understand the degeneration near the punctures, we recall the thick-thin
decomposition (see [6]). Let (�, h) be a hyperbolic surface of type (g, k). For 0 < δ <

arcsinh 1, define the δ-thin part of (�, h) as the set of points at which the injectivity
radius is less than δ, and the δ-thick part as its complement. The following results
show what the components of δ-thin part of (�, h) look like.

Lemma 2.2 Let � be a hyperbolic surface of type (g, k). Then the simple closed
geodesics in � of length smaller then 2 arcsinh 1 are pairwise disjoint and there are
at most 3g − 3 + k of them.

Proposition 2.3 Let (�, h) be a hyperbolic surface of type (g, k) and U ⊂ � a
component of {z ∈ �|inj(z; h) < arcsinh 1}. Then either

(1) U contains a simple closed geodesic γ of length l = l(γ ) < 2 arcsinh 1 and is
isometric to

{
reiw ∈ H : 1 ≤ r ≤ el , arcsin

(
sinh

(
l

2

))
< w < π − arcsin

(
sinh

(
l

2

))}
,

where γ corresponds to {reiπ/2 ∈ H : 1 ≤ r ≤ el}, and the lines {r = 1}, {r = el}
are identified via z → el z.

or
(2) the closure of U in � is a standard puncture and hence isometric to

{
z = x + iy ∈ H : 0 ≤ x ≤ 1, y ≥ 1

2

}
,

where the lines {x = 0}, {x = 1} are identified via z → z + 1.

For the degeneration of spin surfaces,we also need to consider the spin structure. Let
(Mn, hn, cn,Sn) be a sequence of closed hyperbolic Riemann surfaces of genus g > 1
with spin structures Sn . We assume that (Mn, hn, cn) degenerates to a hyperbolic
Riemann surface (M, h, c) by collapsing |J | (1 ≤ |J | ≤ 3g − 3) pairwise disjoint
simple closed geodesics onMn . Let (M̄, c̄) be the normalization of (M, h, c). For each
n, the diffeomorphism τn and the spin structureSn together determine a pull-forward
spin structure on M . Since there are finitely many spin structures on a surface with
punctures (c.f. [17]), by taking a subsequence, we can assume that the pull-forward
of Sn is a fixed spin structure on M . Let us denote it by S. For each j ∈ J , the unit
tangent vector field of γ

j
n together with the corresponding unit normal vector field

forms a section of the oriented orthonormal frame bundle PSO(2) of Mn . The spin

structureSn is called trivial along γ
j
n if this section lifts to a closed curve in Pspin(2);

otherwise, it is nontrivial along γ
j
n . Therefore,S is nontrivial or trivial along the pair

of punctures (P j,1,P j,2) if and only ifSn is nontrivial or trivial along the geodesics
γ

j
n for all n. If the spin structureS is nontrivial along all punctures on M , we say that

all the punctures on (M,S) are of Neveu-Schwarz type. In this case, the spin structure
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S on M extends to some spin structure S̄ on M̄ . Furthermore, by the removable
singularity theorem (c.f. [17]), any smooth Dirac-harmonic map from (M,S) to N
with finite energy extends to a smooth Dirac-harmonic map from (M̄, S̄) to N .

In the rest of this section, we recall the definition of Dirac-harmonic maps and
collect some lemmas about α-Dirac-harmonic maps which will be used later.

2.2 Dirac-harmonic Maps

Let (M, g) be a compact surface with a fixed spin structure. On the spinor bundle
�M , we denote the Hermitian inner product by 〈·, ·〉�M . For any X ∈ �(T M) and
ξ ∈ �(�M), the Clifford multiplication is skew-adjoint in the sense that

〈X · ξ, η〉�M = −〈ξ, X · η〉�M . (2.6)

Let∇ be the Levi-Civita connection on (M, g). There is a connection (also denoted by
∇) on �M compatible with 〈·, ·〉�M . Choosing a local orthonormal basis {eβ}β=1,2
on M , the usual Dirac operator is defined as /∂ := eβ · ∇β , where β = 1, 2. Here and
in the sequel, we use the Einstein summation convention. One can find more about
spin geometry in [12].

Let u be a smooth map from M to another compact Riemannian manifold (N , h)

of dimension n ≥ 2. Let u∗T N be the pull-back bundle of T N by u and consider
the twisted bundle �M ⊗ u∗T N . On this bundle, there is a metric 〈·, ·〉�M⊗u∗T N

induced from the metric on �M and u∗T N . Also, we have a connection ∇̃ on this
twisted bundle naturally induced from those on �M and u∗T N . In local coordinates
{yi }i=1,...,n , the section ψ of �M ⊗ u∗T N is written as

ψ = ψi ⊗ ∂yi (u),

where each ψ i is a usual spinor on M . We also have the following local expression of
∇̃

∇̃ψ = ∇ψ i ⊗ ∂yi (u) + �i
jk(u)∇u jψk ⊗ ∂yi (u),

where �i
jk are the Christoffel symbols of the Levi-Civita connection of N . The Dirac

operator along the map u is defined as

/D := eα · ∇̃eαψ = /∂ψ i ⊗ ∂yi (u) + �i
jk(u)∇eαu

j (eα · ψk) ⊗ ∂yi (u), (2.7)

which is self-adjoint [8]. Sometimes, we use /Du to distinguish the Dirac operators
defined on different maps. In [4], the authors introduced the functional

L(u, ψ) := 1

2

∫
M

(|du|2 + 〈ψ, /Dψ〉�M⊗u∗T N )

= 1

2

∫
M
hi j (u)gαβ ∂ui

∂xα

∂u j

∂xβ
+ hi j (u)〈ψ i , /Dψ j 〉�M .

(2.8)
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They computed the Euler–Lagrange equations of L:

τm(u) − 1

2
Rm
li j 〈ψ i ,∇ul · ψ j 〉�M = 0, (2.9)

/Dψ i = /∂ψ i + �i
jk(u)∇eαu

j (eα · ψk) = 0, (2.10)

where τm(u) is the m-th component of the tension field [8] of the map u with respect
to the coordinates on N ,∇ul ·ψ j denotes the Clifford multiplication of the vector field
∇ul with the spinor ψ j , and Rm

li j stands for the component of the Riemann curvature
tensor of the target manifold N . Denote

R(u, ψ) := 1

2
Rm
li j 〈ψ i ,∇ul · ψ j 〉�M∂ym .

We can write (2.9) and (2.10) in the following global form:

{
τ(u) = R(u, ψ), (2.11)
/Dψ = 0, (2.12)

and call the solutions (u, ψ) Dirac-harmonic maps from M to N .
By [13], we can isometrically embed N into R

q . Then (2.11)-(2.12) is equivalent
to the system

{
�gu = I I (du, du) + Re(P(S(du(eβ), eβ · ψ);ψ)), (2.13)

/∂ψ = S(du(eβ), eβ · ψ), (2.14)

where I I is the second fundamental form of N in Rq , and

S(du(eβ), eβ · ψ) := (∇uA · ψ B) ⊗ I I (∂zA , ∂zB ), (2.15)

Re(P(S(du(eβ), eβ · ψ);ψ)) := P(S(∂zC , ∂zB ); ∂zA )Re(〈ψ A, duC · ψ B〉). (2.16)

Here A, B,C = 1, . . . , q, P(ξ ; ·)denotes the shapeoperator, definedby 〈P(ξ ; X),Y 〉 =
〈A(X ,Y ), ξ 〉 for X ,Y ∈ �(T N ) and Re(z) denotes the real part of z ∈ C.

The existence of nontrivial Dirac-harmonic maps is a natural and interesting prob-
lem. The following is known. When the surface M has boundary, the nontriviality
directly follows from that of the boundary values. In [9], the authors used the heat flow
for α-Dirac-harmonic maps to get the existence of α-Dirac-harmonic maps which are
the critical points of the functional

Lα(u, ψ) = 1

2

∫
M

(1 + |du|2)α + 1

2

∫
M

〈ψ, /Du
ψ〉�M⊗u∗T N (2.17)

with a fixed boundary value. To get the existence of Dirac-harmonic maps, Jost–Liu–
Zhu considered the limit behavior of a sequence of α-Dirac-harmonic maps. In the
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context of harmonic maps, this was the method of Sacks–Uhlenbeck in [15]. It is well
known that bubbles generally arise as α ↘ 1. We also know that bubbles come from
the rescaling. Therefore, it is necessary to know how the α-Dirac-harmonic equations
change under rescaling. Precisely, in isothermal coordinates around a point x0 ∈ M ,
suppose the metric is given by

h = eϕ0(x)((dx1)2 + (dx2)2) (2.18)

with ϕ0(x0) = 0; we define

(ũα(x), ṽα(x)) := (uα(x0 + λαx),
√

λαψα(x0 + λαx)) (2.19)

for a small number λα > 0. Then (ũα, ṽα) satisfies

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

�hα ũα = −(α − 1)
∇hα |∇hα ũα|2∇hα ũα

σα + |∇hα ũα|2 + I I (dũα, dũα)

+ Re(P(S(dũα(eβ), eβ · ṽα); ṽα))

α(1 + σ−1
α |∇hα ũα|2)α−1

,

(2.20)

/∂hα ṽα = S(dũα(eβ), eβ · ṽα), (2.21)

where hα = eϕ0(x0+λx)((dx1)2 + (dx2)2) and σα = λ2α > 0. In order to get a useful
bubbling equation, it is convenient to add another factor λα−1

α in the rescaling, i.e.,

(uα(x), vα(x)) := (uα(x0 + λαx), λ
α−1
α

√
λαψα(x0 + λαx)). (2.22)

Then one can check that (uα(x), vα(x)) satisfies the system

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

�hαuα = −(α − 1)
∇hα |∇hαuα|2∇hαuα

σα + |∇hαuα|2 + I I (duα, duα)

+ Re(P(S(duα(eβ), eβ · vα); vα))

α(σα + |∇hαuα|2)α−1 ,

(2.23)

/∂hα vα = S(duα(eβ), eβ · vα). (2.24)

Once having these equations, it is natural to consider the small energy regularity
lemma, an important ingredient in the Sacks–Uhlenbeck scheme. In the case of Dirac-
harmonic maps, we need a small energy regularity lemma for both systems above.

Lemma 2.4 [9] Let D1 = D1(0) ⊂ R
2 be the unit disk with a family of metrics as

follows:

gα = eϕα(x)((dx1)2 + (dx2)2), (2.25)
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where ϕα ∈ C∞(D1), ϕα(0) = 0 and ϕα → ϕ0, gα → g0 in C∞(D1) as α ↘ 1.
Suppose that (uα, ψα) : (D1, gα) → N satisfies the system (2.20)–(2.21) or (2.23)–
(2.24) with

0 < β0 < lim inf
α↘1

σα−1
α ≤ 1 (2.26)

for some β0 > 0. For any 1 < p < ∞, there exist two positive constants ε0 and
α0 > 1 depending only on g0 ,N , such that if Eα(uα) + E(ψα) ≤ � and

E(uα) ≤ ε0, 1 < α ≤ α0, (2.27)

then there hold

‖∇uα‖W 1,p(D1/2)
≤ C(p, g0,�, N )‖∇uα‖L2(D1)

, (2.28)

‖ψα‖W 1,p(D1/2)
≤ C(p, g0,�, N )‖ψα‖L4(D1)

. (2.29)

3 ˛-Dirac-harmonic Maps fromNondegenerating Spin Surfaces

In this section, we will show the generalized energy identity for a sequence of α-
Dirac-harmonic maps from nondegenerating spin surfaces. This will be used later at
the blow-up points away from the punctures of the degenerating surfaces.

For a sequence ofα-Dirac-harmonicmaps fromafixed closed surface, the following
generalized energy identity was proved in [9].

Theorem 3.1 [9] Let (uα, ψα) be a sequence of smooth α-Dirac-harmonic maps from
a fixed closed spin surface (M, h,S) to a compact manifold N. If (uα, ψα) satisfies
the uniformly bounded energy condition

Eα(uα) + E(ψα) ≤ �, (3.1)

then there exist a finite set S = {x1, . . . , xI }, finitely many Dirac-harmonic spheres
(σ i,l , ξ i,l) : S2 → N, i = 1, . . . , I , l = 1, . . . , Li and a Dirac-harmonic map
(u, ψ) : (M, h,S) → N such that, after selection of a subsequence,

(uα, ψα) → (u, ψ) in C∞
loc(M \ S) × C∞

loc(M \ S) (3.2)

and

lim
α↘1

Eα(uα) = E(u) + |M | +
I∑

i=1

Li∑
l=1

μ2
il E(σ i,l), (3.3)

lim
α↘1

E(ψα) = E(ψ) +
I∑

i=1

Li∑
l=1

μ2
il E(ξ i,l), (3.4)
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where μil ∈ [1, �
ε1

] and ε1 > 0 is the constant such that, if (σ, ξ) is a smooth Dirac-

harmonic sphere satisfying
∫
S2 |dσ |2 < ε1, then both σ and ξ are trivial.

In addition, if ‖ψα‖Lq is also uniformly bounded for some q > 4, then bubbles are
just harmonic spheres.

Theorem 3.1 directly follows from Lemma 2.4 and the following local model case
of a single interior blow-up point.

Lemma 3.2 Let D1 = D1(0) ⊂ R
2 be the unit diskwith a family ofmetrics as follows:

gα = eϕα(x)((dx1)2 + (dx2)2), (3.5)

where ϕα ∈ C∞(D1), ϕα(0) = 0 and ϕα → ϕ0, gα → g0 in C∞(D1) as α ↘ 1.
Suppose that a sequence of solutions (uα, ψα) ∈ C∞(D1, N ) to the system (2.20)–
(2.21) satisfies:

sup
α

(Eα,σα (uα) + E(ψα)) ≤ �, (3.6)

0 < β0 < lim inf
α↘1

σα−1
α ≤ 1 (3.7)

and

(uα, ψα) → (u, ψ) in C∞
loc(D1 \ {0}) as α ↘ 1. (3.8)

Then there exist a subsequence of (uα, ψα) (still denoted by (uα, ψα)) and a nonneg-
ative integer L1 such that for any i = 1, . . . , L1, there exist sequences of positive
numbers λiα and nontrivial Dirac-harmonic spheres (σ i , ξ i ) such that

lim
δ→0

lim
α↘1

Eα,σα (uα, Dδ) =
L1∑
i=1

μ2
i E(σ i ), (3.9)

lim
δ→0

lim
α↘1

E(ψα, Dδ) =
L1∑
i=1

μ2
i E(ξ i ), (3.10)

where μi = lim
α↘1

(λiα)2−2α .

It is then natural to ask what happens when the domain of α-Dirac-harmonic maps
(uα, ψα) varies. In this section, we consider the simplest case where (Mn, hn, cn)
converges to a closed hyperbolic Riemann surface (M, h, c). By the pull-forward
discussed in the previous section, we view (un, ψn) := (uαn , ψαn ) as a sequence of
αn-Dirac-harmonic maps defined on (M, h̄n, c̄n,S) with respect to (c̄n,∇n), where
∇n is the connection on the spinor bundle �M coming from h̄n and αn ↘ 1. Then we
have the following energy identity:
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Theorem 3.3 With the notations above, we assume that (un, ψn) satisfies the uniformly
bounded energy assumption

Eαn (un, h̄n) + E(ψn, h̄n) ≤ �. (3.11)

Then there exist a finite set S = {x1, . . . , xI }, finitely many Dirac-harmonic spheres
(σ i,l , ξ i,l) : S2 → N, i = 1, . . . , I , l = 1, . . . , Li and a Dirac-harmonic map
(u, ψ) : (M, h,S) → N such that, after selection of a subsequence,

(un, ψn) → (u, ψ) in C∞
loc(M \ S) × C∞

loc(M \ S) (3.12)

and

lim
n→∞ Eαn (un, h̄n) = E(u, h) + |M |h +

I∑
i=1

Li∑
l=1

μ2
il E(σ i,l), (3.13)

lim
n→∞ E(ψn, h̄n) = E(ψ, h) +

I∑
i=1

Li∑
l=1

μ2
il E(ξ i,l), (3.14)

where μil ∈ [1, �
ε1

] and ε1 > 0 is the constant such that, if (σ, ξ) is a smooth Dirac-

harmonic sphere satisfying
∫
S2 |dσ |2 < ε1, then both σ and ξ are trivial.

Proof Since (c̄n,∇n) → (h, c) inC∞(M) as n → ∞, all the geometric data converges
in C∞(M). In particular, ∇n −∇ → 0 in C∞(M), where ∇ is the connection on �M
coming from h. Therefore, by the uniformly bounded energy assumption, we can
assume (un, ψn) weakly converges to some (u, ψ) in W 1,2(M, N ) × L4(�M ⊗R

K )

with respect to (c,∇), where we have isometrically embedded N intoRK . Note that all
the constants in the small energy regularity lemma (Lemma 2.4) and the local version
of generalized energy identity (Lemma 3.2) are uniform with respect to h̄n and c̄n .
Hence, we have the generalized energy identity. ��

Moreover, it follows from the following lemma that ‖ψα‖Lq is also uniformly
bounded for some q > 4. Therefore, the bubbles are just harmonic spheres.

Lemma 3.4 Let M be a compact spin Riemann surface with boundary ∂M, N be
a compact Riemann manifold. Let u ∈ W 1,2α(M, N ) for some α > 1 and ψ ∈
W 1,p(M, �M ⊗ u∗T N ) for 1 < p < 2, then there exists a positive constant C =
C(p, M, N , ‖∇u‖L2α ) such that

‖ψ‖W 1,p(M) ≤ C(‖ /Dψ‖L p(M) + ‖ψ‖L p(M)). (3.15)

Proof Applying the following lemma to ηψ for some cut-off η, we complete the proof.
��

Lemma 3.5 [9] Let M be a compact spin Riemann surface with boundary ∂M, N
be a compact Riemann manifold. Let u ∈ W 1,2α(M, N ) for some α > 1 and ψ ∈
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W 1,p(M, �M ⊗ u∗T N ) for 1 < p < 2, then there exists a positive constant C =
C(p, M, N , ‖∇u‖L2α ) such that

‖ψ‖W 1,p(M) ≤ C(‖ /Dψ‖L p(M) + ‖Bψ‖W 1−1/p,p(∂M)), (3.16)

where B is the Chiral boundary operator for spinors along a map.

4 Dirac-harmonic Maps fromDegenerating Spin Surfaces

We divide this section into two parts. In the first part, we discuss the compactness
of a sequence of α-(Dirac-)harmonic maps from closed Riemann (spin) surfaces
degenerating to a hyperbolic Riemann (spin) surface. In the second part, based on
the compactness result in the first part, we prove an existence result about (Dirac-
)harmonic maps from degenerating surfaces.

4.1 Compactness and Energy Identity

The following theorem is the main result of this subsection.

Theorem 4.1 Let (Mn, hn, cn,Sn) be a sequence of closed hyperbolic surfaces of
genus g > 1 degenerating to a hyperbolic Riemann surface (M, h, c,S) by collapsing
finitely many pairwise disjoint simple closed geodesics {γ j

n , j ∈ J }. Denote by l jn the
length of γ

j
n and ln := max

j∈J
{l jn }. We choose a sequence of constants, {αn ∈ (1, 2)},

such that

lim
n→∞

(
2ln√
sinh ln

2

)αn−1

= 0. (4.1)

For each n, suppose that (un, ψn) is an αn-Dirac-harmonic map from (Mn, hn, cn,S)

into a fixed compact manifold N with nonpositive curvature which satisfies

Eαn (un) + E(ψn) ≤ �, (4.2)

for some positive constant �. Moreover, we assume that the first positive eigenvalue
λ1(hn) of the usual Dirac operator /∂hn stays away from zero, i.e.,

λ1(hn) ≥ c0 (4.3)

for some positive constant c0 > 0. Then there exists a Dirac-harmonic map (u, ψ) :
(M, h, c,S) → N such that, after selection of a subsequence,

(un, ψn) → (u, ψ) in C∞
loc(M) × C∞

loc(M) (4.4)
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and

lim
n→∞ E(un, hn, Mn) = E(u, h, M), (4.5)

lim
n→∞ E(ψn, hn, Mn) = E(ψ, h, M). (4.6)

Proof We first consider the case |J | = 1. For 0 < δ < arcsinh 1, let

Mδ = {x ∈ M, inj(z; h) ≥ δ} (4.7)

be the δ-thick part of the hyperbolic surface (M, h). As explained in Sect. 2, there
are diffeomorphisms τn : Mn \ γn → M such that ((τn)∗hn, (τn)∗cn) → (h, c) in
C∞
loc(M). We set

ūn := (τn)∗un, v̄n := (τn)∗ψn, h̄n := (τn)∗hn, c̄n := (τn)∗cn (4.8)

and consider the following sequence of αn-Dirac-harmonic maps

(ūn, v̄n) : (�, h̄n, c̄n,S) → N . (4.9)

Then, for each fixed δ > 0, we have

(h̄n, c̄n) → (h, c) in C∞(Mδ). (4.10)

We choose a sequence δn ↘ 0 such that Mδn exhaust M . By Theorem 3.3 and a
standard diagonal argument, there exists a Dirac-harmonic map (u, ψ) : (M, h, c) →
N such that the following hold

lim
n→∞ Eαn (ūn, h̄n, M

δn ) = E(u, h, M) + |M |h +
I∑

i=1

Li∑
l=1

μ2
il E(σ i,l), (4.11)

lim
n→∞ E(v̄n, h̄n, M

δn ) = E(ψ, h, M) +
I∑

i=1

Li∑
l=1

μ2
il E(ξ i,l). (4.12)

Moreover, by Lemma 3.4 and our assumption on the target manifold N , we get (4.4)
and

lim
n→∞ E(un, hn, τ

−1
n (Mδn )) = lim

n→∞ E(ūn, h̄n, M
δn ) = E(u, h, M), (4.13)

lim
n→∞ E(ψn, hn, τ

−1
n (Mδn )) = lim

n→∞ E(v̄n, h̄n, M
δn ) = E(ψ, h, M). (4.14)

To recover the energy concentration at the punctures (P1,P2), we need to study
(ūn, v̄n) on M \ Mδn , or equivalently (un, ψn) on Mn \ τ−1

n (Mδn ). For each n, δ,
Mn \ τ−1

n (Mδ) is not the δ-thin part of (Mn, hn). However, for fixed δ > 0 and
sufficiently large n, Mn \ τ−1

n (Mδ) is almost the δ-thin part of (Mn, hn).
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To see this, fix δ > 0 small and let x ∈ M be a point with inj(x; h) = δ. Since
h̄n → h in C∞

loc on M , for any δ1, δ2 > 0 such that δ1 < δ < δ2, we have

δ1 < inj(x; h̄n) < δ2 for large n. (4.15)

Recall that for 0 < δ < arcsinh 1, the δ-thin part of a hyperbolic surface is either an
annulus or a cusp. For n ≥ 1 and δ ∈ [ ln2 , arcsinh 1], let us see what the δ-thin part of
(Mn, hn) looks like. Recall that Pn is the cylinder collar about γn . Now, we define the
following δ-subcollar of Pn

Pδ
n := [T 1,δ

n , T 2,δ
n ] × S1 ⊂ Pn, (4.16)

where

T 1,δ
n = 2π

ln
arcsin

(
sinh( ln2 )

sinh δ

)
, T 2,δ

n = 2π2

ln
− 2π

ln
arcsin

(
sinh( ln2 )

sinh δ

)
. (4.17)

By (2.5), Pδ
n is exactly the δ-thin part of (Mn, hn), namely

Pδ
n = {x ∈ Mn : inj(x; hn) ≤ δ}. (4.18)

Thus, it follows from (4.15) and (4.18) that

Pδ1
n ⊂ Mn \ τ−1

n (Mδ) ⊂ Pδ2
n for all n large enough. (4.19)

If we choose δ1, δ2 in (4.19) sufficiently close to δ, then for n large enough, Mn \
τ−1
n (Mδ) is almost the δ-thin part Pδ

n of (Mn, hn).
Now, for δ > 0 small and n large enough, we define

�δ
n := {(Mn \ τ−1

n (Mδ)) \ Pδ
n } ∪ {Pδ

n \ (Mn \ τ−1
n (Mδ))}. (4.20)

Then the image of�δ
n under τn is uniformly away from the punctures ofM and actually

converges to ∂Mδ . Therefore, we have

lim
n→∞ E(un,�

δ
n) = 0, (4.21)

lim
n→∞ E(ψn,�

δ
n) = 0. (4.22)

Thus, after passing to a subsequence, we conclude that

lim
n→∞ E(un, (Mn \ τ−1

n (Mδn )) = lim
n→∞ E(un, P

δn
n ), (4.23)

lim
n→∞ E(ψn, (Mn \ τ−1

n (Mδn )) = lim
n→∞ E(ψn, P

δn
n ). (4.24)
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For the right-hand side of (4.23)–(4.24), by the Hölder inequality, we get

lim
n→∞ E(un, P

δn
n ) = lim

n→∞

∫
Pδn
n

|dun|2

≤ lim
n→∞(

∫
Pδn
n

|dun|2)
1

αn (Area(Pδn
n ))

1− 1
αn

≤ � lim
n→∞(Area(Pδn

n ))
1− 1

αn

(4.25)

and

lim
n→∞ E(ψn, P

δn
n ) = lim

n→∞

∫
Pδn
n

|ψn|4 ≤ lim
n→∞ ‖ψn‖4Lq (Mn)

(Area(Pδn
n ))

1− 4
q (4.26)

for some q > 4. By Lemma 3.4, we have

‖ψn‖Lq (Mn) ≤ C(q, Mn, N ,�). (4.27)

Note that when (Mn, hn) varies, the constant above actually depends on the lower
bound of λ1(hn). Therefore, by our assumption (4.3) on the first eigenvalue of /∂hn ,
we have a uniform bound for ‖ψn‖Lq (Mn), and (4.26) becomes

lim
n→∞ E(ψn, P

δn
n ) ≤ C0 lim

n→∞(Area(Pδn
n ))

1− 4
q (4.28)

for some C0 > 0.

It remains to consider lim
n→∞(Area(Pδn

n ))
1− 1

αn . By the definition of Pδn
n , the area of

Pδn
n can be computed as

Area(Pδn
n ) =

∫ T 2,δn
n

T 1,δn
n

∫ 2π

0

(
ln

2π sin( ln t2π )

)2

dtdθ

= 2π
∫ T 2,δn

n

T 1,δn
n

l2n
4π2

1

sin2( ln t2π )
dt

= 2π
∫ ln

2π T 2,δn
n

ln
2π T 1,δn

n

l2n
4π2

1

sin2 s

2π

ln
ds

= ln

∫ ln
2π T 2,δn

n

ln
2π T 1,δn

n

1

sin2 s
ds

= −ln(cot(π − arcsin ϕ) − cot(arcsin ϕ))

= 2ln

√
sinh δn

sinh ln
2

− 1
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≤ 2ln√
sinh ln

2

, (4.29)

where s = ln t
2π and ϕ = sinh ln

2
sinh δn

. Thus,

lim
n→∞(Area(Pδn

n ))
1− 4

q = ( lim
n→∞Area(Pδn

n ))
1− 4

q

≤ ( lim
n→∞

2ln√
sinh ln

2

)
1− 4

q

= ( lim
n→∞ 8

√
sinh

ln
2

)
1− 4

q = 0

(4.30)

and

lim
n→∞(Area(Pδn

n ))
1− 1

αn = lim
n→∞(Area(Pδn

n ))αn−1

≤ lim
n→∞(

2ln√
sinh ln

2

)αn−1

= 0,

(4.31)

where we have used the assumption (4.1) in the last equality. Plugging (4.30) and
(4.31) into (4.28) and (4.25), we get

lim
n→∞ E(un, P

δn
n ) = 0 (4.32)

and

lim
n→∞ E(ψn, P

δn
n ) = 0. (4.33)

Last, by combining (4.13)–(4.14), (4.23)–(4.24) and (4.32)–(4.33), we have (4.5)–
(4.6) in the case of |J | = 1. By the thick-thin decomposition of hyperbolic surfaces
in Sect. 2, both the short simple closed geodesics of lengths less than 2 arcsinh 1 and
the corresponding (arcsinh 1)-thin parts of the collars around them are pairwisely
disjoint, Hence we can deal with the corresponding subcollars separately, and the case
just studied applies. This completes the proof.

��
The preceding proof directly yields a similar theorem for harmonic maps.

Theorem 4.2 Let (�n, hn, cn) be a sequence of closed hyperbolic surfaces of genus
g > 1 degenerating to a hyperbolic Riemann surface (�, h, c) by collapsing finitely
many pairwise disjoint simple closed geodesics {γ j

n , j ∈ J }. Denote by l jn the length

123



Existence of (Dirac-)harmonic Maps from Degenerating (Spin) Surfaces 11185

of γ j
n and ln := max

j∈J
{l jn }. We choose a sequence of constants, {αn ∈ (1, 2)}, such that

lim
n→∞

(
2ln√
sinh ln

2

)αn−1

= 0. (4.34)

For each n, suppose that un is an αn-harmonic map from (�n, hn, cn) into a fixed
compact manifold N with nonpositive curvature which satisfies

Eαn (un) ≤ �, (4.35)

for some positive constant �. Then there exists a harmonic map u : (�, h, c) → N
such that, after selection of a subsequence,

un → u in C∞
loc(�) (4.36)

and

lim
n→∞ E(un, hn, �n) = E(u, h, �). (4.37)

We conclude this subsection with a remark on the two theorems above. First, dif-
ferent from [17], we do not need to restrict the type of degeneration in Theorem 4.1.
Second, it follows from our cleaner energy identity that the limit map u (or u) is non-
trivial under the necessary condition lim

n→∞ E(un) 	= 0 (or lim
n→∞ E(un) 	= 0). Last, for

fixed α > 1, a sequence of α-Dirac-harmonic maps always has a convergent subse-
quence with no bubbles (see [10]), and one can similarly prove the following theorems
for α-(Dirac-)harmonic maps from degenerating surfaces into an arbitrary compact
target manifold N .

Theorem 4.3 Let (�n, hn, cn) be a sequence of closed hyperbolic surfaces of genus
g > 1 degenerating to a hyperbolic Riemann surface (�, h, c) by collapsing finitely
many pairwise disjoint simple closed geodesics {γ j

n , j ∈ J }. Denote by l jn the length
of γ j

n and ln := max
j∈J

{l jn }. For each n, suppose that un is a α(> 1)-harmonic map from

(�n, hn, cn) into a fixed compact manifold N which satisfies

Eα(un) ≤ �, (4.38)

for some positive constant�. Then there exists an α-harmonic map u : (�, h, c) → N
such that, after selection of a subsequence,

un → u in C∞
loc(�) (4.39)

and

lim
n→∞ E(un, hn, �n) = E(u, h, �). (4.40)
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Theorem 4.4 Let (Mn, hn, cn,Sn) be a sequence of closed hyperbolic surfaces of
genus g > 1 degenerating to a hyperbolic Riemann surface (M, h, c,S) by collapsing
finitely many pairwise disjoint simple closed geodesics {γ j

n , j ∈ J }. Denote by l jn the
length of γ

j
n and ln := max

j∈J
{l jn }. For each n, suppose that (un, ψn) is a α(> 1)-

Dirac-harmonic map from (Mn, hn, cn,Sn) into a fixed compact manifold N which
satisfies

Eα(un) + E(ψn) ≤ �, (4.41)

for some positive constant �. Then there exists an α-Dirac-harmonic map (u, ψ) :
(M, h, c,S) → N such that, after selection of a subsequence,

(un, ψn) → (u, ψ) in C∞
loc(M) × C∞

loc(M) (4.42)

and

lim
n→∞ E(un, hnMn) = E(u, h, M), (4.43)

lim
n→∞ E(ψn, hn, Mn) = E(ψ, h, M). (4.44)

4.2 Existence

Theorems 4.1 and 4.2 yield an existence result for (Dirac-)harmonicmaps from degen-
erating surfaces if the corresponding assumptions are satisfied. In this subsection, we
will realize those assumptions based on the existence results in [1] and [15].

For α-Dirac-harmonic maps from a closed surface, we have the following existence
result:

Theorem 4.5 Let M be a closed spin surface and N a compact manifold. Suppose
there exists a map u0 ∈ C2+μ(M, N ) for some μ ∈ (0, 1) such that

indu∗
0T N (M) = [dimHker /Du0 ]Z2 	= 0. (4.45)

Then for any α ≥ 1 and any α-harmonic map uα in the homotopy class [u0], there
exists a nontrivial smooth α-Dirac-harmonic map (uα, ψα) such that ‖ψα‖L2 = 1.

The proof is similar to the one in [1] for Dirac-harmonic maps, see also [11].

Proof If /Duα has minimal kernel, that is, dimHker /Du0 = 1, then for anyψ ∈ ker /Duα ,
(uα, ψ) is an α-Dirac-harmonic map by Proposition 8.2 in [1] (see also [11] for a
proof by the heat flow). If /Duα has nonminimal kernel, we use the decomposition of
the twisted spinor bundle through the Z2-grading G ⊗ id (see [1]). More precisely,
for any smooth variation (us)s∈(−ε,ε) of u0, we split the bundle �M ⊗ u∗

s T N into
�M⊗u∗

s T N = �+M⊗u∗
s T N⊕�−M⊗u∗

s T N , which is orthogonal in the complex
sense and parallel. Consequently, for any ψ0 ∈ ker /Du0 , we have

( /Du0ψ+
0 , ψ+

0 )L2 = ( /Du0ψ−
0 , ψ−

0 )L2 = 0 (4.46)
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for ψ0 = ψ+
0 + ψ−

0 , where ψ±
0 = ψ± ⊗ u∗

0T N and ψ± ∈ �±. Therefore, ψ±
s :=

ψ± ⊗ u∗
s T N are smooth variations of ψ±

0 , respectively, such that

d

dt

∣∣∣∣
t=0

( /Dusψ±
s , ψ±

s )L2 = 0. (4.47)

By taking u0 = uα and ψ0 = ψα ∈ ker /Duα , the first variation formula of Lα implies
that (uα, ψ±

α ) are α-Dirac-harmonic maps (see Corollary 5.2 in [1]). In particular, we
can choose ψα such that ‖ψ+

α ‖L2 = 1 or ‖ψ−
α ‖ = 1. ��

Note that indu∗
0T N (M) is independent of the choice of the Riemannian metrics on

M and N . It is also invariant in the homotopy class [u0]. Combining these facts and
the results in the previous subsection, we directly get the following existence results.

Theorem 4.6 Let (Mn, hn, cn,Sn) be a sequence of closed hyperbolic surfaces of
genus g > 1 degenerating to a hyperbolic Riemann surface (M, h, c,S) by collapsing
finitely many pairwise disjoint simple closed geodesics {γ j

n , j ∈ J }. Denote by l jn the
length of γ j

n and ln := max
j∈J

{l jn }. For each n, suppose that un is a map from Mn into a

fixed compact manifold N with nonpositive curvature and satisfies

Eαn (un) ≤ �, (4.48)

indu∗
nT N (Mn) 	= 0, (4.49)

where � is a positive constant, and {αn ∈ (1, 2)} satisfies

lim
n→∞

(
2ln√
sinh ln

2

)αn−1

= 0. (4.50)

Moreover, we assume that the first positive eigenvalue λ1(hn) of the usual Dirac
operator /∂hn stays away from zero, i.e.,

λ1(hn) ≥ c0 (4.51)

for some positive constant c0 > 0. Then there exists a Dirac-harmonic map (u, ψ) :
(M, h, c,S) → N such that

ψ 	= 0. (4.52)

In addition, let the minimizing harmonic map umin
n in [un] satisfy

lim
n→∞ E(umin

n ) > 0. (4.53)

Then u is not a constant.
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Proof By our assumptions, we get a sequence α-Dirac-harmonic maps satisfying the
assumption in Theorem 4.1. Therefore, there exists a Dirac-harmonic map (u, ψ)

from M to N . Combining the energy identity (4.5)–(4.6) and Theorem 4.5, we have
the nontriviality of u and ψ . ��

Similarly, based on the existence of α-harmonic maps in [15], we obtain an analo-
gous theorem for harmonic maps.

Theorem 4.7 Let (�n, hn, cn) be a sequence of closed hyperbolic surfaces of genus
g > 1 degenerating to a hyperbolic Riemann surface (�, h, c) by collapsing finitely
many pairwise disjoint simple closed geodesics {γ j

n , j ∈ J }. Denote by l jn the length
of γ

j
n and ln := max

j∈J
{l jn }. For each n, suppose that un is a map from �n into a fixed

compact manifold N with nonpositive curvature which satisfies

Eαn (un) ≤ �, (4.54)

where � is a positive constant, and {αn ∈ (1, 2)} satisfies

lim
n→∞

(
2ln√
sinh ln

2

)αn−1

= 0. (4.55)

Then there exists a harmonic map u0 : (�, h, c) → N, which can be extended to a
smooth harmonic map on (�̄, c̄).

In addition, let umin
n be the minimizing harmonic map in [un] and let it satisfy

lim
n→∞ E(umin

n ) > 0. (4.56)

Then u0 is not a constant.
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