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ABSTRACT 

A cycle C of a graph G is called a D,-cycle if every component of 
G - V(C) has order less than A .  A D,-path is defined analogously. 0,- 
cycles and D,-paths were introduced by Veldman. Here a cycle C of a 
graph G is called a A,cycle if all vertices of G are at distance less than A 
from a vertex of C. A A,-path is defined analogously. In particular, in 
a connected graph, a D+-cycle is a A,-cycle and a D,-path is a A,-path. 
Furthermore, a A,-cycle is a Hamilton cycle and a A,-path is a Hamilton 
path. Necessary conditions and sufficient conditions are derived for 
graphs to have a A,-cycle or A,-path. The results are analogues of theo- 
rems on D,-cycles and D,-paths. In particular, a result of Chvatal and 
Erdos on Hamilton cycles and Hamilton paths is generalized. A recent 
conjecture of Bondy and Fan is settled. 

1. TERMINOLOGY 

We use 121 for basic terminology and notation not introduced here, and con- 
sider simple graphs only. Let G be a graph. We will sometimes identify a trail 
in G with the subgraph induced by its edges. Hence a subgraph T of G is a trail 
if and only if T is connected and at most two vertices of T have odd degree in 
T. Let A be an integer with A 2 1. If T is a trail in G, then b,(T) denotes the 
number of vertices of G that are at distance less than A from a vertex of T. Fol- 
lowing Veldman [6], a trail T of G is defined to be a D,-trail of G if all compo- 
nents of G - V(T)  have order less than A. Here we define T to be a A,-truil of 
G if all vertices of G are at distance less than A from a vertex of T. Note that, in 
a connected graph, a &-trail is a A,-trail, whereas the converse is only true in 
general for A = 1. A circuit is a nontrivial closed trail. Graphs containing a A,- 
cycle (D,-cycle) will be called A,-cyclic (D,-cyclic); graphs containing a A,- 
path @,-path, Hamilton path) will be called A,-traceable (D,-rraceable, 
traceable). If C is a cycle of G with a fixed orientation and u E V ( C ) ,  then u- 
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and uf denote the immediate predecessor and immediate successor of u on C ,  
respective9. If H iscan oriented path or cycle of G and u and u are vertices of 
H ,  then uHu and uHu denote, respectively, the segment of H from u to u and 
the reverse segment from u to u. Two vertices u and u of G are A-neighbors if 
d(u,  u) < A. N,(u) denotes the set of A-neighbors of a vertex u of G. Note that 
N,(u) = {u} and N2(u) = N(u) U {u} .  We let R,(u) = N,(u) - {u} .  Two ver- 
tices u and u of G are A-distant if d(u ,  u) 2 A ,  i.e., if they are not A-neighbors. 
In [6] Veldman introduced w,(G), the number of components of G of order at 
least A ,  and a,(G), the maximum number of mutually disjoint connected sub- 
graphs of order A of G such that no edge of G joins two vertices of different 
subgraphs. If S is a subset of V ( G ) ,  then &,(G, S) denotes the number of com- 
ponents of G - S that contain a vertex that is A-distant from all vertices of S. 
Note that, in a connected graph G, &,(G, S) 5 w,(G - S) and &,(G, S) = 
w,(G - S) = w(G - S). By &,(G) we denote the maximum cardinality of a 
set of mutually A-distant vertices in G. Note that, in a connected graph G, 
&,(G) 5 a,(G) and b2(G) = a , ( G )  = a(G) .  If P is a nontrivial path in G 
with origin ul and terminus u2. then P is called a A-bridge if all edges of P are 
cut edges of G and, for i = 1,2, the component of G - E ( P )  containing u, also 
contains a vertex u, satisfying d(u, ,  u3 - , )  2 A. Note that a cut edge is a 1-bridge, 
and a cut edge incident with two vertices of degree at least 2 is a 2-bridge. G is 
A-bridgeless if G contains no A-bridge. 

2. INTRODUCTION 

Our concern will be the existence of A,-cycles and A,-paths in graphs. Recog- 
nizing A,-cyclic graphs is an NP-complete problem. This is easily seen, using 
the NP-completeness of the Hamilton cycle problem. In Sections 3 and 4 neces- 
sary conditions and sufficient conditions are derived for the existence of A,-cy- 
cles and A,-paths. There is a nice analogy with known results and proof 
techniques concerning the existence of D,-cycles and D,-paths. D,-cycles and 
D,-paths were studied in [4] and [6 ] ;  D,-cycles and D,-paths in 151. The condi- 
tions for A,-cyclicity (A,-traceability) are weaker than the corresponding ones 
for D,-cyclicity (D,-traceability), in accordance with the fact that every D,- 
cyclic (D,-traceable) connected graph is A,-cyclic (A,-traceable), whereas the 
converse is not true in general. 

3. NECESSARY CONDITIONS 

The following statement is obvious: 

Proposition 1. If a graph G contains a A,-circuit, then G is A-bridgeless. 

For A = 1, Proposition 1 coincides with the statement that a graph contain- 
ing a spanning circuit is 2-edge-connected. 
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Theorem 4.2 of [2] states that if a graph G is hamiltonian, then o(G - S)  5 

Veldman [6] showed that if a graph G is D,-cyclic, then w,(G - S) 5 IS( 

Here we give a similar condition on A,-cyclic graphs. 

IS1 for every nonempty proper subset S of V ( G ) .  

for every nonempty proper subset of S of V(G) .  

Theorem 2. 
set s of v(G), G,(G,S) 5 ISI. 

If a graph G is A,-cyclic, then, for every nonempty proper sub- 

Proof. Let S be a nonempty proper subset of V ( G )  and C a A,-cycle of G. 
Then every vertex of G - S is at distance at most A - 1 from a vertex of C in 
G. If S n V ( C )  = 0, G,(G,S)  I 1 I ISI. Otherwise, G,(G,S) I IS f l  
V(C)l 5 ISI. I 

Analogously, one proves a cut set theorem for A,-traceable graphs. 

Theorem 3. 
subset S of V ( G ) ,  G,(G, S) I (Sl + 1. 

If a graph G is A,-traceable, then, for every nonempty proper 

4. SUFFICIENT CONDITIONS 

Chvital and Erdos [3] showed that a graph G with independence number a ( G )  
and connectivity K(G)  is hamiltonian if a(G)  5 K ( G ) ,  while a(G)  5 K ( G )  + 
1 implies that G is traceable. Veldman [6] proved the following generalization 
on D,-cyclic graphs: 

Theorem 4. (Veldman [ 6 ] ) .  Let k and A be positive integers such that either 
k 2 2 or k = 1 and A 5 2 .  If G is a k-connected graph, other than a tree (in 
case k = I ) ,  with a, 5 k, then G is D,-cyclic. 

Here we prove an analogue of Theorem 4. For convenience, we deal with 
graphs of connectivity 1 separately. 

Theorem 5. 
A,-cyclic. 

Let G be a k-connected graph (k 2 2). If I k, then G is 

Proof. Let G be a non-A,-cyclic k-connected graph (k 2 2) .  We will ex- 
hibit k + 1 mutually 2A-distant vertices. Let C be a cycle of G such that 

(1)  b,(C) is maximum. 

Fix an orientation on C .  Since G is connected and C is not a A,-cycle of G ,  
there exists a vertex u E A = V ( G )  - V ( C )  such that 

(2) N , ( U )  n V ( C )  = 0. 
Suppose lV(C)l < k and let xy E E ( C ) .  By Menger’s theorem there exists a 
path Q, from u to x and a path Qy from u to y such that Q, and Q, meet only at 
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u and no other vertex of C lies on Q, or Qy.  The cycle C’  with E ( C ’ )  = 
E ( C )  U E ( Q , )  U E(Q, )  - {xy}  satisfies bh(C’)  > b,(C), contradicting ( 1 ) .  
Hence V ( C )  2 k .  Since G is k-connected and IV(C)l 2 k ,  a variation on 
Menger’s theorem asserts that u is connected to at least k distinct vertices of C 
by internally-disjoint paths. Let 9 = { P I ,  P2,  . . . , Pk} be a collection of paths 
with the following properties: 

(3) Pi has origin u and terminus ui on C (i = 1 ,2 , .  . . , k ) .  
(4) Two distinct paths of 9 have only u in common. 
(5) No internal vertex of P, is on C (i = 1 ,2 , .  . . , k). 

Furthermore, assume that C and 9 are chosen such that, subject to conditions 
( 1  1451,  

(6)  IU~A,V(Pi)I is minimum. 

Assume that u , ,  u2, . . . , vt occur on C in the order of their indices. From the 
maximality of b,(C) it follows that u i u , + ,  E ( C )  ( i  = 1 , 2 , .  . . , k ,  indices 
mod k ) ;  otherwise the cycle C’  with E ( C ’ )  = E ( C )  U E ( P , )  U E ( P , , , )  - 
{uiui+,} contradicts the choice of C. Define a vertex u, on C by the following 
requirements: 

(7) for all x in xi = ~ ( u ~ + C u , )  u { u s  A I ~   EN,(^) for some w E v ( u : Z u i ) }  

(8) IV(ul+Cui)l is maximum (i = 1 , 2 , .  . . , k ) .  
there zxists a vertex y E V ( u , C u , )  with d ( x , y )  < A ,  and 

Since (7) is satisfied fos ui = u t ,  u, exists (i = 1 ,2 , .  . . , k ) .  Furthermore, ( 1 )  
implies that u, E V(v,+Cu,~+,)  (i = 1,2, . . . , k, indices mod k);  otherwise (7) is 
satisfied for ui = u 1 + , ,  and the cycle C’  with E ( C ’ )  = E ( C )  U J ( P i )  U 
E(P,+, )  - E(u, Cu,, ,) satisfies b,(C’) > b,(C), since all vertices of uiCul,, and 
their h-neighbors have h-neighbors on C‘ and u is on C‘. This contradicts ( 1 ) .  
Now X i  contains at least one vertex xi  such that all h-neighbors of x i  on C are in 
X i  ( i  = 1,2, . . . , k) ;  otherwise (7) is satisfied with ui replaced by u,+, in contra- 
diction to (8). Thus 

(9) iv,(xi)  n v(c) c x, (i = i , 2 ,  . . . , k )  

Let Hi denote the component of G[Xi] containing x i .  We make two more obser- 
vations. Here i, j E { 1,2, . . . , k } .  

(10) There exists no path from a vertex of HI to a vertex of V(P,) - {u,} that 

This is a consequence of (1) and (6) .  Suppose to the contrary that there is such 
a path. Without loss of generality, assume there exists a path Q from a vertex 
x E V ( H i )  n V(C)  to a vertex y E V(P,)  - {u,} that is internally disjoint from 
C and the paths of 9; If i # j ,  5onsider the cycle C‘ with E(C’)  = E(C) U 
E(Q)  U E(Pi)  U E(uP,y) - E(u, Cx) (possiblx y = u ) ;  if i = j ,  consider the 
cycle C‘ with E(C‘) = E(C)+U E(Q)  U E ( y P i u i )  - E(u,Cx).  NOW b,(C’)  2 

b,(C), since all vertices of uiCx and their h-neighbors have h-neighbors on C’. 
If b,(C’) = b,(C), then i = j ,  and there exist paths P;, P;, . . . , P; with prop- 

is internally disjoint from C and the paths of 9. 
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erties (3), (4), and (5) with respect to u and C' ,  and IU:=lV(P,')l < Iuf=IV(P,)I. 
Hence C'  contradicts the choice of C. 

(1 1) For i # j ,  there exists no path from a vertex of HI to a vertex of H, that 

This is a consequence of (1) and (10). Suppose to the contrary that there is such 
a path. Then, by (lo), this path is disjoint from the paths of 9. Without loss of 
generality, assume there exists a path Q from a vertex x E V(H,)  n V(C) to a 
vertex y E V(HJ fl V(C) that is internally disjoint from C and the paths of 9 
such that IV(u,Cx)l is minimum. The choice oLx implies that all vertices in 
X ,  U X ,  have a A-neighbor in V(xCu,) U V(yCuJ.  Now the+cycle C '  with 
E ( C ' )  = E(C) U E(Q)  U E(P,) U E(P,)  - (E(u,Cx) U E(u,Cy)) contradicts 
the choice of C. 

We complete the proof by showing that { u , x , ,  . . . , x A }  is a set of mutually 
2A-distant vertices. If 1 5 i < j I k, then, by (9) and ( I  I ) ,  d(x ,  , x , )  5: 
( A  - 1)  + (A - 1) + 2 = 2A. For arbitrary i E {1,2,. . . , k}, consider a 
shortest path P from u to x, . By (lo), at least one of the internal vertices of P is 
on C .  Let x be the first vertex on P that is on C. By (lo), x $Z X , .  By ( 2 ) .  
d(u,x)  2 A ,  and by (9), d ( x , , x )  2 (A - 1) + 1 .  Hence d ( u , x , )  z- 2A. 

is internally disjoint from C .  

I 

Note that 6,, = I for a graph G if and only if the diameter of G is at 
most 2A - 1. Hence the following result can be viewed as the case k = 1 of 
Theorem 5 :  

Theorem 6. 
diameter of G is at most 2A - 1, then G is A,-cyclic. 

Let G be a connected A-bridgeless graph other than a tree. If the 

Proof. Let G be a connected non-A,-cyclic A-bridgeless graph other than a 
tree. Let C be a cycle of G such that b,(C) is maximum. Fix an orientation on 
C. Since C is not a A,-cycle of G and since G is connected, there exists a ver- 
tex u E V(G) - V(C) such that N,(u) fl V(C) = 0 and d(u, uI)  = A for some 
u,  E V(C). Define u, and x ,  as in the proof of Theorem 5 .  If u ,  # u , ,  then, 
like in the proof of Theorem 5 ,  one can show that d ( u , x , )  2 2A. Now suppose 
u, = u,.  Then all vertices of C and their A-neighbors are A-neighbors of u, .  Let 
P be a shortest (u, u,)-path and let z ,  denote the immediate predecessor of uI on 
P. Now u l z ,  is a cut edge of G ;  otherwise there is a cycle C '  of G containing u ,  
and z I .  Since d(u,z , )  = A - 1, b,(C') > b,(C), a contradiction. 

Since ulzl is not a A-bGdge of G,  N,(u,) C N,(z,). Let z,be the vertex on P 
such that all edges of ZPU, are cut edges of G and IV(zPul)l is maximum. 
Since G is A-bridgeless, z # u, implying the existence of a cycle C '  containing 
z .  Furthermore, since G is A-bridgeless, N , ( u , )  C N,(z). This implies that 
b,(C') > b,(C), a contradiction. I 

Theorem 5 and Theorem 6 generalize the mentioned result of Chvital and 
Erdos, and are best possible in the sense that, for any positive integers k 
and A ,  there exist infinitely many k-connected non-A,-cyclic graphs with 
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= k + I (which are A-bridgeless and not trees). Consider, e.g., the graphs 
G ( k n l , , , .  . . , ~ ~ I , k t ~ , n ~ , , ,  . . . ,n,,k+,, . . . ,n,,,,. . . ,nA.kt , )  that are sketched in 
Figure 1. 

They consist of the following mutually disjoint subgraphs: a subgraph H 
K , ,  A(k + 1) subgraphs HI,] = K ",,,, where 1 5  i 5 A and 1 s j  5 k + 1, 
and the following additional edges: 

l f n , , , 2 k , f o r l s i < A a n d l I j ~ k +  1 , a n d n A , , 2 1 , f o r 1 5 j s k +  
1, then G(k, n,,,, . . . ,n,.,,,) obviously is k-connected. It is not AA-cyclic by 
Theorem 2 (with S = V ( H ) ) .  Obviously, d(u, u) 2 2A if and only if there exist 
integers i a n d j  with 1 5 i < j 5 k + 1 such that u E V(H,, , )  and u E 
V(H,~] ) .  Hence h2* = k + 1 (for k = 1 we take n l . ,  2 n l . 2  2 2 to obtain A- 
bridgeless graphs other than trees). 

FIGURE 1 
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Theorem 5 and Theorem 6 have some interesting corollaries. The following 
one, in terms of the connectivity and independence number, is another general- 
ization of the mentioned result of Chvatal and Erdos. 

Corollary 7. Let G be a k-connected A-bridgeless graph other than a tree 
( k  2 1). If A is odd and a I i(Ak + A + k - l ) ,  or A is even and a 5 
~ ( h k  + A), then G is A,-cyclic. I 

Proof. Let G be a non-A,-cyclic k-connected A-bridgeless graph other than 
a tree ( k  2 1). By Theorem 5 and Theorem 6 there exist k + 1 vertices 
uo,uI,  . , . , uk that are mutually 2A-distant. Now, for 0 5 i 5 k ,  let x,., be a 
vertex at distance 2 j  of u , ,  with 0 5 j 5 A/2. Since, for 0 I i < j 5 k ,  
d(u,, LJ,) 2 2A, the following observations are obvious: 

(I) If A is odd, then {xi , ,  10 5 i 5 k ;  0 5 j 5 (A - 1)/2} is a set of mutu- 
ally independent vertices. 

(11) If A is even, then {x,,, 10 I i 5 k ;  0 5 j 5 (A  - 2)/2} U {x~.,,~} is a 
set of mutually independent vertices. 

Hence, if A is odd, a 2 ((A + 1)/2)(k + 1) = t(Ak + A + k + l) ,  and, if A 
is even, a 2 (h/2)(k + 1)  + 1 = i(Ak + A) + 1. 

The graphs showing that Theorem 5 and Theorem 6 are best possible also 
show that Corollary 7 is best possible. Before we state two other corollaries of 
Theorem 5 and Theorem 6, we prove the following lemma: 

Lemma 8. Let G be a k-connected graph ( k  2 1) and let A 2 2. 
If {uo, u , ,  . . . , &} is a set of mutually 2A-distant vertices, then 

k k 

2 d(ui) < v - 2k - (A - 2)k(k + 1) and 2 ~ R , ( u , ) ~  < v - 2k 
I =o  i=O 

Proof. 
Let {uo, ulr  . . . , uk}  be a set of mutually 2A-distant vertices. 
Define Vl,r  = {u  E V(G)Id(u,,u) = t }  (0 5 i d k ;  1 I t 5 A). Since G 

is k-connected, ~ V l , r ~  2 k (0 5 i 5 k ;  1 5 t 5 A). Since, for 0 5 i < j 5 k ,  
d(u,,u,) 2 2A, the sets in the collection 9'i = {V l , r  10 5 i 5 k ;  2 5 t 5 A - 
1) U {V0,,}  are mutually disjoint. 

Furthermore, no vertex in the union of the sets in 9 is adjacent to any of the 
vertices uo, ul ,  . . . , u p .  Hence 

Let G be a k-connected graph ( k  2 1) and let A 2 2. 

k 

C d ( U i )  5 u - ( k  + 1) - 
,=O 

(k  + I)(A - 2)k - k = v - 2k - (A - 2)k(k + 1) - 1 .  

Finally, since R , ( u , )  = uArl: V I . (  and R , ( u , )  f l  R, (u , )  = 0, we get 
Z ~ = o ~ R h ( ~ l ) ~  5 v - 2k - 1. I 
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The next two corollaries are easily obtained by combining Lemma 8 with 
Theorem 5 and Theorem 6. 

Corollary 9. Let G be a k-connected A-bridgeless graph other than a tree 
( k  2 1; A 2 2). If the degree-sum of any k + 1 mutually (2A - 1)-distant 
vertices is at least v - 2k - (A - 2)k(k + l ) ,  then G is A,-cyclic. 

Corollary 10. Let G be a k-connected A-bridgeless graph other than a tree 
( k  2 1; A 2 2 ) .  If any k + 1 mutually (2A - 1)-distant vertices uo,u,,  . . . ,uk 
satisfy the inequality Z~=o[R,(u,)j 2 v - 2k,  then G is A,-cyclic. 

The graphs G ( k , n , , , ,  . . . ,n,,,,,), with n,,, = k ,  for 1 5 i < A and 1 5 j 5 
k + 1, and n,,, 2 1, for 1 5 j 5 k + I ,  show that Corollaries 9 and 10 are 
best possible for k 2 2 .  Corollaries 9 and 10 are more general than the follow- 
ing result of Fraisse [4]: 

Corollary 11. 
(v - 2k - l)/(k + l) ,  then G is A?-cyclic. 

(Fraisse [4]). Let G be a k-connected graph ( k  2 2). If 6(G)  > 

The case k 2 2 of Corollary 10 was recently conjectured by Bondy and Fan 

Without proof we mention the following analogue of Theorems 5 and 6 on 
[ I ]  and proved for A = 2. 

A,-traceable graphs: 

Theorem 12. 
is &-traceable. 

Let G be a k-connected graph ( k  2 1). If b2, 5 k + 1, then G 

As analogues of Corollaries 7, 9, and 10 we find, respectively, the following: 

Corollary 13. Let G be a k-connected graph ( k  2 1 ) .  I f  A is odd 
and a I i ( A k  + 2A + k ) ,  or A is even and cr 5 i ( A k  + 2A),  then G is A,- 
traceable. 

Corollary 14. Let G be a k-connected graph ( k  2 1) and let A 2 2. If the 
degree-sum of any k + 2 mutually (2A - 1)-distant vertices is at least 
v - 2k - 1 - (A - 2)k(k + 2 ) ,  then G is A,-traceable. 

Corollary 15. Let G be a k-connected graph ( k  2 1) and let A 2 2. If any 
k + 2 mutually (2A - 1)-distant vertices uo, u l ,  . . . , util satisfy the inequality 
C,”=’d (R,(ui)( 2 Y - 2k - 1, then G is A,-traceable. 

The proofs of the above results on A,-traceable graphs are similar to the 
proofs of the corresponding results on A,-cyclic graphs. Both Theorem 12 and 
Corollaries 13-15 can be shown to be best possible by considering the graphs 
sketched in Figure 1 and replacing “k + 1” by “k + 2.” 
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