Existence of Δ_{λ} -Cycles and Δ_{λ} -Paths

H.J. Broersma

UNIVERSITY OF TWENTE FACULTY OF APPLIED MATHEMATICS 7500 AE ENSCHEDE THE NETHERLANDS

ABSTRACT

A cycle *C* of a graph *G* is called a D_{λ} -cycle if every component of G - V(C) has order less than λ . A D_{λ} -path is defined analogously. D_{λ} -cycles and D_{λ} -paths were introduced by Veldman. Here a cycle *C* of a graph *G* is called a Δ_{λ} -cycle if all vertices of *G* are at distance less than λ from a vertex of *C*. A Δ_{λ} -path is defined analogously. In particular, in a connected graph, a D_{λ} -cycle is a Δ_{λ} -cycle and a D_{λ} -path is a Δ_{λ} -path. Furthermore, a Δ_{1} -cycle is a Hamilton cycle and a Δ_{1} -path is a Hamilton path. Necessary conditions and sufficient conditions are derived for graphs to have a Δ_{λ} -cycle or Δ_{λ} -path. The results are analogues of theorems on D_{λ} -cycles and D_{λ} -paths. In particular, a result of Chvátal and Erdös on Hamilton cycles and Hamilton paths is generalized. A recent conjecture of Bondy and Fan is settled.

1. TERMINOLOGY

We use [2] for basic terminology and notation not introduced here, and consider simple graphs only. Let G be a graph. We will sometimes identify a trail in G with the subgraph induced by its edges. Hence a subgraph T of G is a trail if and only if T is connected and at most two vertices of T have odd degree in T. Let λ be an integer with $\lambda \ge 1$. If T is a trail in G, then $b_{\lambda}(T)$ denotes the number of vertices of G that are at distance less than λ from a vertex of T. Following Veldman [6], a trail T of G is defined to be a D_{λ} -trail of G if all components of G - V(T) have order less than λ . Here we define T to be a Δ_{λ} -trail of G if all vertices of G are at distance less than λ from a vertex of T. Note that, in a connected graph, a D_{λ} -trail is a Δ_{λ} -trail, whereas the converse is only true in general for $\lambda = 1$. A circuit is a nontrivial closed trail. Graphs containing a Δ_{λ} cycle (D_{λ} -cycle) will be called Δ_{λ} -cyclic (D_{λ} -cyclic); graphs containing a Δ_{λ} path (D_{λ} -path, Hamilton path) will be called Δ_{λ} -traceable (D_{λ} -traceable, traceable). If C is a cycle of G with a fixed orientation and $v \in V(C)$, then v^{-1}

Journal of Graph Theory, Vol. 12, No. 4, 499–507 (1988) © 1988 by John Wiley & Sons, Inc. CCC 0364-9024/88/040499-09\$04.00

and v^+ denote the immediate predecessor and immediate successor of v on C, respectively. If H is an oriented path or cycle of G and u and v are vertices of H, then uHv and vHu denote, respectively, the segment of H from u to v and the reverse segment from v to u. Two vertices u and v of G are λ -neighbors if $d(u, v) < \lambda$. $N_{\lambda}(v)$ denotes the set of λ -neighbors of a vertex v of G. Note that $N_1(v) = \{v\}$ and $N_2(v) = N(v) \cup \{v\}$. We let $R_{\lambda}(v) = N_{\lambda}(v) - \{v\}$. Two vertices u and v of G are λ -distant if $d(u, v) \ge \lambda$, i.e., if they are not λ -neighbors. In [6] Veldman introduced $\omega_{\lambda}(G)$, the number of components of G of order at least λ , and $\alpha_{\lambda}(G)$, the maximum number of mutually disjoint connected subgraphs of order λ of G such that no edge of G joins two vertices of different subgraphs. If S is a subset of V(G), then $\hat{\omega}_{\lambda}(G,S)$ denotes the number of components of G - S that contain a vertex that is λ -distant from all vertices of S. Note that, in a connected graph G, $\hat{\omega}_{\lambda}(G,S) \leq \omega_{\lambda}(G-S)$ and $\hat{\omega}_{1}(G,S) =$ $\omega_1(G - S) = \omega(G - S)$. By $\hat{\alpha}_{\lambda}(G)$ we denote the maximum cardinality of a set of mutually λ -distant vertices in G. Note that, in a connected graph G, $\hat{\alpha}_{2\lambda}(G) \leq \alpha_{\lambda}(G)$ and $\hat{\alpha}_{2}(G) = \alpha_{1}(G) = \alpha(G)$. If P is a nontrivial path in G with origin v_1 and terminus v_2 , then P is called a λ -bridge if all edges of P are cut edges of G and, for i = 1, 2, the component of G - E(P) containing v_i also contains a vertex u_i satisfying $d(u_i, v_{3-i}) \ge \lambda$. Note that a cut edge is a 1-bridge, and a cut edge incident with two vertices of degree at least 2 is a 2-bridge. G is λ -bridgeless if G contains no λ -bridge.

2. INTRODUCTION

Our concern will be the existence of Δ_{λ} -cycles and Δ_{λ} -paths in graphs. Recognizing Δ_{λ} -cyclic graphs is an NP-complete problem. This is easily seen, using the NP-completeness of the Hamilton cycle problem. In Sections 3 and 4 necessary conditions and sufficient conditions are derived for the existence of Δ_{λ} -cycles and Δ_{λ} -paths. There is a nice analogy with known results and proof techniques concerning the existence of D_{λ} -cycles and D_{λ} -paths were studied in [4] and [6]; D_2 -cycles and D_2 -paths in [5]. The conditions for Δ_{λ} -cyclicity (Δ_{λ} -traceability) are weaker than the corresponding ones for D_{λ} -cyclicity (D_{λ} -traceability), in accordance with the fact that every D_{λ} -cyclic (D_{λ} -traceable) connected graph is Δ_{λ} -cyclic (Δ_{λ} -traceable), whereas the converse is not true in general.

3. NECESSARY CONDITIONS

The following statement is obvious:

Proposition 1. If a graph G contains a Δ_{λ} -circuit, then G is λ -bridgeless.

For $\lambda = 1$, Proposition 1 coincides with the statement that a graph containing a spanning circuit is 2-edge-connected.

Theorem 4.2 of [2] states that if a graph G is hamiltonian, then $\omega(G - S) \leq |S|$ for every nonempty proper subset S of V(G).

Veldman [6] showed that if a graph G is D_{λ} -cyclic, then $\omega_{\lambda}(G - S) \leq |S|$ for every nonempty proper subset of S of V(G).

Here we give a similar condition on Δ_{λ} -cyclic graphs.

Theorem 2. If a graph G is Δ_{λ} -cyclic, then, for every nonempty proper subset S of V(G), $\hat{\omega}_{\lambda}(G, S) \leq |S|$.

Proof. Let S be a nonempty proper subset of V(G) and C a Δ_{λ} -cycle of G. Then every vertex of G - S is at distance at most $\lambda - 1$ from a vertex of C in G. If $S \cap V(C) = \emptyset$, $\hat{\omega}_{\lambda}(G, S) \le 1 \le |S|$. Otherwise, $\hat{\omega}_{\lambda}(G, S) \le |S \cap V(C)| \le |S|$.

Analogously, one proves a cut set theorem for Δ_{λ} -traceable graphs.

Theorem 3. If a graph G is Δ_{λ} -traceable, then, for every nonempty proper subset S of V(G), $\hat{\omega}_{\lambda}(G, S) \leq |S| + 1$.

4. SUFFICIENT CONDITIONS

Chvátal and Erdös [3] showed that a graph G with independence number $\alpha(G)$ and connectivity $\kappa(G)$ is hamiltonian if $\alpha(G) \leq \kappa(G)$, while $\alpha(G) \leq \kappa(G) + 1$ implies that G is traceable. Veldman [6] proved the following generalization on D_{λ} -cyclic graphs:

Theorem 4. (Veldman [6]). Let k and λ be positive integers such that either $k \ge 2$ or k = 1 and $\lambda \le 2$. If G is a k-connected graph, other than a tree (in case k = 1), with $\alpha_{\lambda} \le k$, then G is D_{λ} -cyclic.

Here we prove an analogue of Theorem 4. For convenience, we deal with graphs of connectivity 1 separately.

Theorem 5. Let G be a k-connected graph $(k \ge 2)$. If $\hat{\alpha}_{2\lambda} \le k$, then G is Δ_{λ} -cyclic.

Proof. Let G be a non- Δ_{λ} -cyclic k-connected graph $(k \ge 2)$. We will exhibit k + 1 mutually 2λ -distant vertices. Let C be a cycle of G such that

(1) $b_{\lambda}(C)$ is maximum.

Fix an orientation on C. Since G is connected and C is not a Δ_{λ} -cycle of G, there exists a vertex $u \in A = V(G) - V(C)$ such that

(2) $N_{\lambda}(u) \cap V(C) = \emptyset$.

Suppose |V(C)| < k and let $xy \in E(C)$. By Menger's theorem there exists a path Q_x from u to x and a path Q_y from u to y such that Q_x and Q_y meet only at

u and no other vertex of *C* lies on Q_x or Q_y . The cycle *C'* with $E(C') = E(C) \cup E(Q_x) \cup E(Q_y) - \{xy\}$ satisfies $b_{\lambda}(C') > b_{\lambda}(C)$, contradicting (1). Hence $V(C) \ge k$. Since *G* is *k*-connected and $|V(C)| \ge k$, a variation on Menger's theorem asserts that *u* is connected to at least *k* distinct vertices of *C* by internally-disjoint paths. Let $\mathcal{P} = \{P_1, P_2, \ldots, P_k\}$ be a collection of paths with the following properties:

- (3) P_i has origin u and terminus v_i on C (i = 1, 2, ..., k).
- (4) Two distinct paths of \mathcal{P} have only u in common.
- (5) No internal vertex of P_i is on C (i = 1, 2, ..., k).

Furthermore, assume that C and \mathcal{P} are chosen such that, subject to conditions (1)-(5),

(6) $\left|\bigcup_{i=1}^{k} V(P_i)\right|$ is minimum.

Assume that v_1, v_2, \ldots, v_k occur on C in the order of their indices. From the maximality of $b_{\lambda}(C)$ it follows that $v_i v_{i+1} \notin E(C)$ $(i = 1, 2, \ldots, k,$ indices mod k); otherwise the cycle C' with $E(C') = E(C) \cup E(P_i) \cup E(P_{i+1}) - \{v_i v_{i+1}\}$ contradicts the choice of C. Define a vertex u_i on C by the following requirements:

- (7) for all x in $X_i = V(v_i^{\dagger} \vec{C} u_i) \cup \{v \in A | v \in N_{\lambda}(w) \text{ for some } w \in V(v_i^{\dagger} \vec{C} u_i)\}$ there exists a vertex $y \in V(u_i \vec{C} v_i)$ with $d(x, y) < \lambda$, and
- (8) $|V(v_i^+ C u_i)|$ is maximum (i = 1, 2, ..., k).

Since (7) is satisfied for $u_i = v_i^+$, u_i exists (i = 1, 2, ..., k). Furthermore, (1) implies that $u_i \in V(v_i^+ \vec{C} v_{i+1}^-)$ (i = 1, 2, ..., k), indices mod k); otherwise (7) is satisfied for $u_i = v_{i+1}$, and the cycle C' with $E(C') = E(C) \cup E(P_i) \cup E(P_{i+1}) - E(v_i \vec{C} v_{i+1})$ satisfies $b_{\lambda}(C') > b_{\lambda}(C)$, since all vertices of $v_i \vec{C} v_{i+1}$ and their λ -neighbors have λ -neighbors on C' and u is on C'. This contradicts (1). Now X_i contains at least one vertex x_i such that all λ -neighbors of x_i on C are in X_i (i = 1, 2, ..., k); otherwise (7) is satisfied with u_i replaced by u_i^+ , in contradiction to (8). Thus

(9)
$$N_{\lambda}(x_i) \cap V(C) \subset X_i \ (i = 1, 2, ..., k).$$

Let H_i denote the component of $G[X_i]$ containing x_i . We make two more observations. Here $i, j \in \{1, 2, ..., k\}$.

(10) There exists no path from a vertex of H_i to a vertex of $V(P_j) - \{v_j\}$ that is internally disjoint from C and the paths of \mathcal{P} .

This is a consequence of (1) and (6). Suppose to the contrary that there is such a path. Without loss of generality, assume there exists a path Q from a vertex $x \in V(H_i) \cap V(C)$ to a vertex $y \in V(P_i) - \{v_j\}$ that is internally disjoint from C and the paths of \mathcal{P} . If $i \neq j$, consider the cycle C' with $E(C') = E(C) \cup E(Q) \cup E(P_i) \cup E(u\vec{P}_jy) - E(v_i\vec{C}x)$ (possibly y = u); if i = j, consider the cycle C' with $E(C') = E(C) \cup E(Q) \cup E(Q) \cup E(Q) \cup E(Q) \cup E(v_i\vec{C}x)$. Now $b_\lambda(C') \geq b_\lambda(C)$, since all vertices of $v_i\vec{C}x$ and their λ -neighbors have λ -neighbors on C'. If $b_\lambda(C') = b_\lambda(C)$, then i = j, and there exist paths P_1', P_2, \ldots, P_k' with prop-

erties (3), (4), and (5) with respect to u and C', and $|\bigcup_{i=1}^{k} V(P_i)| < |\bigcup_{i=1}^{k} V(P_i)|$. Hence C' contradicts the choice of C.

(11) For $i \neq j$, there exists no path from a vertex of H_i to a vertex of H_j that is internally disjoint from C.

This is a consequence of (1) and (10). Suppose to the contrary that there is such a path. Then, by (10), this path is disjoint from the paths of \mathcal{P} . Without loss of generality, assume there exists a path Q from a vertex $x \in V(H_i) \cap V(C)$ to a vertex $y \in V(H_i) \cap V(C)$ that is internally disjoint from C and the paths of \mathcal{P} such that $|V(v_i C x)|$ is minimum. The choice of x implies that all vertices in $X_i \cup X_j$ have a λ -neighbor in $V(xCv_j) \cup V(yCv_i)$. Now the cycle C' with $E(C') = E(C) \cup E(Q) \cup E(P_i) \cup E(P_j) - (E(v_i C x) \cup E(v_j C y))$ contradicts the choice of C.

We complete the proof by showing that $\{u, x_1, \ldots, x_k\}$ is a set of mutually 2λ -distant vertices. If $1 \le i < j \le k$, then, by (9) and (11), $d(x_i, x_j) \ge (\lambda - 1) + (\lambda - 1) + 2 = 2\lambda$. For arbitrary $i \in \{1, 2, \ldots, k\}$, consider a shortest path P from u to x_i . By (10), at least one of the internal vertices of P is on C. Let x be the first vertex on P that is on C. By (10), $x \notin X_i$. By (2), $d(u, x) \ge \lambda$, and by (9), $d(x_i, x) \ge (\lambda - 1) + 1$. Hence $d(u, x_i) \ge 2\lambda$.

Note that $\hat{\alpha}_{2\lambda} = 1$ for a graph G if and only if the diameter of G is at most $2\lambda - 1$. Hence the following result can be viewed as the case k = 1 of Theorem 5:

Theorem 6. Let G be a connected λ -bridgeless graph other than a tree. If the diameter of G is at most $2\lambda - 1$, then G is Δ_{λ} -cyclic.

Proof. Let G be a connected non- Δ_{λ} -cyclic λ -bridgeless graph other than a tree. Let C be a cycle of G such that $b_{\lambda}(C)$ is maximum. Fix an orientation on C. Since C is not a Δ_{λ} -cycle of G and since G is connected, there exists a vertex $u \in V(G) - V(C)$ such that $N_{\lambda}(u) \cap V(C) = \emptyset$ and $d(u, v_1) = \lambda$ for some $v_1 \in V(C)$. Define u_1 and x_1 as in the proof of Theorem 5. If $u_1 \neq v_1$, then, like in the proof of Theorem 5, one can show that $d(u, x_1) \geq 2\lambda$. Now suppose $u_1 = v_1$. Then all vertices of C and their λ -neighbors are λ -neighbors of v_1 . Let P be a shortest (u, v_1) -path and let z_1 denote the immediate predecessor of v_1 on P. Now v_1z_1 is a cut edge of G; otherwise there is a cycle C' of G containing v_1 and z_1 . Since $d(u, z_1) = \lambda - 1$, $b_{\lambda}(C') > b_{\lambda}(C)$, a contradiction.

Since v_1z_1 is not a λ -bridge of G, $N_{\lambda}(v_1) \subset N_{\lambda}(z_1)$. Let z be the vertex on P such that all edges of $z\vec{P}v_1$ are cut edges of G and $|V(z\vec{P}v_1)|$ is maximum. Since G is λ -bridgeless, $z \neq u$, implying the existence of a cycle C' containing z. Furthermore, since G is λ -bridgeless, $N_{\lambda}(v_1) \subset N_{\lambda}(z)$. This implies that $b_{\lambda}(C') > b_{\lambda}(C)$, a contradiction.

Theorem 5 and Theorem 6 generalize the mentioned result of Chvátal and Erdös, and are best possible in the sense that, for any positive integers k and λ , there exist infinitely many k-connected non- Δ_{λ} -cyclic graphs with

 $\hat{\alpha}_{2\lambda} = k + 1$ (which are λ -bridgeless and not trees). Consider, e.g., the graphs $G(k, n_{1,1}, \ldots, n_{1,k+1}, n_{2,1}, \ldots, n_{2,k+1}, \ldots, n_{\lambda,1}, \ldots, n_{\lambda,k+1})$ that are sketched in Figure 1.

They consist of the following mutually disjoint subgraphs: a subgraph $H \cong K_k$, $\lambda(k + 1)$ subgraphs $H_{i,j} \cong K_{n_{i,j}}$, where $1 \le i \le \lambda$ and $1 \le j \le k + 1$, and the following additional edges:

$$\begin{aligned} \{xy \mid x \in V(H); \ y \in \bigcup_{j=1}^{k+1} V(H_{1,j})\} \\ & \cup \{xy \mid x \in V(H_{i,j}); \ y \in V(H_{i+1,j}); \ 1 \le i < \lambda; \ 1 \le j \le k + 1\}. \end{aligned}$$

If $n_{i,j} \ge k$, for $1 \le i < \lambda$ and $1 \le j \le k + 1$, and $n_{\lambda,j} \ge 1$, for $1 \le j \le k + 1$, then $G(k, n_{1,1}, \ldots, n_{\lambda,k+1})$ obviously is k-connected. It is not Δ_{λ} -cyclic by Theorem 2 (with S = V(H)). Obviously, $d(u, v) \ge 2\lambda$ if and only if there exist integers i and j with $1 \le i < j \le k + 1$ such that $u \in V(H_{\lambda,i})$ and $v \in V(H_{\lambda,j})$. Hence $\hat{\alpha}_{2\lambda} = k + 1$ (for k = 1 we take $n_{1,1} \ge n_{1,2} \ge 2$ to obtain λ -bridgeless graphs other than trees).

FIGURE 1

Theorem 5 and Theorem 6 have some interesting corollaries. The following one, in terms of the connectivity and independence number, is another generalization of the mentioned result of Chvátal and Erdös.

Corollary 7. Let G be a k-connected λ -bridgeless graph other than a tree $(k \ge 1)$. If λ is odd and $\alpha \le \frac{1}{2}(\lambda k + \lambda + k - 1)$, or λ is even and $\alpha \le \frac{1}{2}(\lambda k + \lambda)$, then G is Δ_{λ} -cyclic.

Proof. Let G be a non- Δ_{λ} -cyclic k-connected λ -bridgeless graph other than a tree $(k \ge 1)$. By Theorem 5 and Theorem 6 there exist k + 1 vertices v_0, v_1, \ldots, v_k that are mutually 2λ -distant. Now, for $0 \le i \le k$, let $x_{i,j}$ be a vertex at distance 2j of v_i , with $0 \le j \le \lambda/2$. Since, for $0 \le i < j \le k$, $d(v_i, v_j) \ge 2\lambda$, the following observations are obvious:

- (I) If λ is odd, then $\{x_{i,j} | 0 \le i \le k; 0 \le j \le (\lambda 1)/2\}$ is a set of mutually independent vertices.
- (II) If λ is even, then $\{x_{i,j} | 0 \le i \le k; 0 \le j \le (\lambda 2)/2\} \cup \{x_{0,\lambda/2}\}$ is a set of mutually independent vertices.

Hence, if λ is odd, $\alpha \ge ((\lambda + 1)/2)(k + 1) = \frac{1}{2}(\lambda k + \lambda + k + 1)$, and, if λ is even, $\alpha \ge (\lambda/2)(k + 1) + 1 = \frac{1}{2}(\lambda k + \lambda) + 1$.

The graphs showing that Theorem 5 and Theorem 6 are best possible also show that Corollary 7 is best possible. Before we state two other corollaries of Theorem 5 and Theorem 6, we prove the following lemma:

Lemma 8. Let G be a k-connected graph $(k \ge 1)$ and let $\lambda \ge 2$. If $\{v_0, v_1, \ldots, v_k\}$ is a set of mutually 2λ -distant vertices, then

$$\sum_{i=0}^{k} d(v_i) < \nu - 2k - (\lambda - 2)k(k + 1) \text{ and } \sum_{i=0}^{k} |R_{\lambda}(v_i)| < \nu - 2k.$$

Proof. Let G be a k-connected graph $(k \ge 1)$ and let $\lambda \ge 2$. Let $\{v_0, v_1, \dots, v_k\}$ be a set of mutually 2λ -distant vertices.

Define $V_{i,t} = \{v \in V(G) | d(v_i, v) = t\}$ $(0 \le i \le k; 1 \le t \le \lambda)$. Since G is k-connected, $|V_{i,t}| \ge k$ $(0 \le i \le k; 1 \le t \le \lambda)$. Since, for $0 \le i < j \le k$, $d(v_i, v_j) \ge 2\lambda$, the sets in the collection $\Re = \{V_{i,t} | 0 \le i \le k; 2 \le t \le \lambda - 1\} \cup \{V_{0,\lambda}\}$ are mutually disjoint.

Furthermore, no vertex in the union of the sets in \Re is adjacent to any of the vertices v_0, v_1, \ldots, v_k . Hence

$$\sum_{i=0}^{k} d(v_i) \le \nu - (k+1) - (k+1)(\lambda - 2)k - k = \nu - 2k - (\lambda - 2)k(k+1) - 1.$$

Finally, since $R_{\lambda}(v_i) = \bigcup_{i=1}^{\lambda-1} V_{i,i}$ and $R_{\lambda}(v_i) \cap R_{\lambda}(v_j) = \emptyset$, we get $\sum_{i=0}^{k} |R_{\lambda}(v_i)| \le \nu - 2k - 1$.

The next two corollaries are easily obtained by combining Lemma 8 with Theorem 5 and Theorem 6.

Corollary 9. Let G be a k-connected λ -bridgeless graph other than a tree $(k \ge 1; \lambda \ge 2)$. If the degree-sum of any k + 1 mutually $(2\lambda - 1)$ -distant vertices is at least $\nu - 2k - (\lambda - 2)k(k + 1)$, then G is Δ_{λ} -cyclic.

Corollary 10. Let G be a k-connected λ -bridgeless graph other than a tree $(k \ge 1; \lambda \ge 2)$. If any k + 1 mutually $(2\lambda - 1)$ -distant vertices v_0, v_1, \ldots, v_k satisfy the inequality $\sum_{i=0}^{k} |R_{\lambda}(v_i)| \ge \nu - 2k$, then G is Δ_{λ} -cyclic.

The graphs $G(k, n_{1,1}, \ldots, n_{\lambda,k+1})$, with $n_{i,j} = k$, for $1 \le i < \lambda$ and $1 \le j \le k + 1$, and $n_{\lambda,j} \ge 1$, for $1 \le j \le k + 1$, show that Corollaries 9 and 10 are best possible for $k \ge 2$. Corollaries 9 and 10 are more general than the following result of Fraisse [4]:

Corollary 11. (Fraisse [4]). Let G be a k-connected graph $(k \ge 2)$. If $\delta(G) > (\nu - 2k - 1)/(k + 1)$, then G is Δ_2 -cyclic.

The case $k \ge 2$ of Corollary 10 was recently conjectured by Bondy and Fan [1] and proved for $\lambda = 2$.

Without proof we mention the following analogue of Theorems 5 and 6 on Δ_{λ} -traceable graphs:

Theorem 12. Let G be a k-connected graph $(k \ge 1)$. If $\hat{\alpha}_{2\lambda} \le k + 1$, then G is Δ_{λ} -traceable.

As analogues of Corollaries 7, 9, and 10 we find, respectively, the following:

Corollary 13. Let G be a k-connected graph $(k \ge 1)$. If λ is odd and $\alpha \le \frac{1}{2}(\lambda k + 2\lambda + k)$, or λ is even and $\alpha \le \frac{1}{2}(\lambda k + 2\lambda)$, then G is Δ_{λ} -traceable.

Corollary 14. Let G be a k-connected graph $(k \ge 1)$ and let $\lambda \ge 2$. If the degree-sum of any k + 2 mutually $(2\lambda - 1)$ -distant vertices is at least $\nu - 2k - 1 - (\lambda - 2)k(k + 2)$, then G is Δ_{λ} -traceable.

Corollary 15. Let G be a k-connected graph $(k \ge 1)$ and let $\lambda \ge 2$. If any k + 2 mutually $(2\lambda - 1)$ -distant vertices $v_0, v_1, \ldots, v_{k+1}$ satisfy the inequality $\sum_{i=0}^{k+1} |R_{\lambda}(v_i)| \ge \nu - 2k - 1$, then G is Δ_{λ} -traceable.

The proofs of the above results on Δ_{λ} -traceable graphs are similar to the proofs of the corresponding results on Δ_{λ} -cyclic graphs. Both Theorem 12 and Corollaries 13–15 can be shown to be best possible by considering the graphs sketched in Figure 1 and replacing "k + 1" by "k + 2."

ACKNOWLEDGMENT

I thank H. J. Veldman for his help in the preparation of this paper and for suggesting some substantial improvements.

References

- [1] J. A. Bondy and G.-H. Fan, A sufficient condition for dominating cycles. *Discrete Math.* 67 (1987) 205-208.
- [2] J.A. Bondy and U.S.R. Murty, *Graph Theory with Applications*. MacMillan, London, and Elsevier, New York (1976).
- [3] V. Chvátal and P. Erdös, A note on hamiltonian circuits. *Discrete Math.* 2 (1972) 111-113.
- [4] P. Fraisse, D_{λ} -cycles and their applications for hamiltonian graphs. Preprint (1986).
- [5] H. J. Veldman, Existence of dominating cycles and paths. Discrete Math.
 43 (1983) 281-296.
- [6] H. J. Veldman, Existence of D_{λ} -cycles and D_{λ} -paths. Discrete Math. 44 (1983) 309-316.