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ABSTRACT

A cycle C of a graph G is called a D,-cycle if every component of
G — VC) has order less than A. A D,-path is defined analogously. D,-
cycles and D,-paths were introduced by Veldman. Here a cycle C of a
graph G is called a A,-cycle if all vertices of G are at distance less than A
from a vertex of C. A A,-path is defined analogously. In particular, in
a connected graph, a D,-cycle is a A,-cycle and a D,-path is a A,-path.
Furthermore, a A,-cycle is a Hamilton cycle and a A;-path is a Hamilton
path. Necessary conditions and sufficient conditions are derived for
graphs to have a A,-cycle or A,-path. The results are analogues of theo-
rems on D,-cycles and D,-paths. In particular, a result of Chvéatal and
Erdés on Hamilton cycles and Hamilton paths is generalized. A recent
conjecture of Bondy and Fan is settled.

1. TERMINOLOGY

We use [2] for basic terminology and notation not introduced here, and con-
sider simple graphs only. Let G be a graph. We will sometimes identify a trail
in G with the subgraph induced by its edges. Hence a subgraph T of G is a trail
if and only if T is connected and at most two vertices of T have odd degree in
T. Let A be an integer with A = 1. If T is a trail in G, then b,(T) denotes the
number of vertices of G that are at distance less than A from a vertex of T. Fol-
lowing Veldman [6], a trail T of G is defined to be a D,-trail of G if all compo-
nents of G — V(T') have order less than \. Here we define T to be a A,-trail of
G if all vertices of G are at distance less than A from a vertex of T. Note that, in
a connected graph, a D,-trail is a A,-trail, whereas the converse is only true in
general for A = 1. A circuit is a nontrivial closed trail. Graphs containing a A,-
cycle (D,-cycle) will be called A,-cyclic (D,-cyclic); graphs containing a A,-
path (D,-path, Hamilton path) will be called A,-traceable (D,-traceable,
traceable). If C is a cycle of G with a fixed orientation and v € V(C), then v~

Journal of Graph Theory, Vol. 12, No. 4, 499-507 (1988)
© 1988 by John Wiley & Sons, Inc. CCC 0364-9024/88/040499-09%04.00



500 JOURNAL OF GRAPH THEORY

and v* denote the immediate predecessor and immediate successor of v on C,
respectively. If H is an oriented path or cycle of G and u and v are vertices of
H, then uHv and vHu denote, respectively, the segment of H from u to v and
the reverse segment from v to u. Two vertices u and v of G are A-neighbors if
d(u,v) < A. N,(v) denotes the set of A-neighbors of a vertex v of G. Note that
N,(v) = {v} and N,(v) = N(v) U {v}. We let R,(v) = N,(v) — {v}. Two ver-
tices u and v of G are A-distant if d(u,v) = A, i.e., if they are not A-neighbors.
In [6] Veldman introduced w,(G), the number of components of G of order at
least A, and a,(G), the maximum number of mutually disjoint connected sub-
graphs of order A of G such that no edge of G joins two vertices of different
subgraphs. If § is a subset of V(G), then @,(G,S) denotes the number of com-
ponents of G — § that contain a vertex that is A-distant from all vertices of S.
Note that, in a connected graph G, @,(G,S) = o, (G — §) and &(G,S) =
w(G — §) = w(G — §). By &,(G) we denote the maximum cardinality of a
set of mutually A-distant vertices in G. Note that, in a connected graph G,
&,(G) = o,(G) and &,(G) = a(G) = a(G). If P is a nontrivial path in G
with origin v, and terminus v,, then P is called a A-bridge if all edges of P are
cut edges of G and, fori = 1,2, the component of G — E(P) containing v; also
contains a vertex u; satisfying d(u;, v,_;) = X. Note that a cut edge is a 1-bridge,
and a cut edge incident with two vertices of degree at least 2 is a 2-bridge. G is
A-bridgeless if G contains no A-bridge.

2. INTRODUCTION

Our concern will be the existence of A,-cycles and A,-paths in graphs. Recog-
nizing A,-cyclic graphs is an NP-complete problem. This is easily seen, using
the NP-completeness of the Hamilton cycle problem. In Sections 3 and 4 neces-
sary conditions and sufficient conditions are derived for the existence of A,-cy-
cles and A,-paths. There is a nice analogy with known results and proof
techniques concerning the existence of D,-cycles and D,-paths. D,-cycles and
D,-paths were studied in [4] and [6]; D,-cycles and D,-paths in [5]. The condi-
tions for A,-cyclicity (A,-traceability) are weaker than the corresponding ones
for D,-cyclicity (D,-traceability), in accordance with the fact that every D,-
cyclic (D,-traceable) connected graph is A,-cyclic (A,-traceable), whereas the
converse is not true in general.

3. NECESSARY CONDITIONS
The following statement is obvious:
Proposition 1. If a graph G contains a A,-circuit, then G is A-bridgeless.

For A = 1, Proposition 1 coincides with the statement that a graph contain-
ing a spanning circuit is 2-edge-connected.
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Theorem 4.2 of [2] states that if a graph G is hamiltonian, then (G — §) =
|S| for every nonempty proper subset S of V(G).

Veldman [6] showed that if a graph G is D,-cyclic, then w,(G — §) < |S|
for every nonempty proper subset of S of V(G).

Here we give a similar condition on A,-cyclic graphs.

Theorem 2. If a graph G is A,-cyclic, then, for every nonempty proper sub-
set § of V(G), &,(G,S) = [S].

Proof. Let S be a nonempty proper subset of V(G) and C a A,-cycle of G.
Then every vertex of G — S is at distance at most A — 1 from a vertex of C in
G.If S NV(C) =, &,(G,S) =1 < |§|. Otherwise, @,(G,S) = [§ N
Vo) < Is]. 1

Analogously, one proves a cut set theorem for A,-traceable graphs.

Theorem 3. If a graph G is A,-traceable, then, for every nonempty proper
subset S of V(G), &,(G,S) < |S| + 1.

4. SUFFICIENT CONDITIONS

Chvital and Erdés [3] showed that a graph G with independence number a(G)
and connectivity k(G) is hamiltonian if &(G) = k(G), while a(G) = x(G) +
1 implies that G is traceable. Veldman [6] proved the following generalization
on D,-cyclic graphs:

Theorem 4. (Veldman [6]). Let k and A be positive integers such that either
k=2o0rk =1and A = 2. If G is a k-connected graph, other than a tree (in
case k = 1), with o, = k, then G is D,-cyclic.

Here we prove an analogue of Theorem 4. For convenience, we deal with
graphs of connectivity 1 separately.

Theorem 5. Let G be a k-connected graph (k = 2). If &,, =< k, then G is
A,-cyclic.

Proof. Let G be a non-A,-cyclic k-connected graph (k = 2). We will ex-
hibit & + 1 mutually 2A-distant vertices. Let C be a cycle of G such that
(1) b,(C) is maximum.

Fix an orientation on C. Since G is connected and C is not a A,-cycle of G,
there exists a vertex u € A = V(G) — V(C) such that

) N,(w) N V() = D.

Suppose |V(C)| < k and let xy € E(C). By Menger’s theorem there exists a
path Q, from u to x and a path Q, from u to y such that O, and Q, meet only at
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u and no other vertex of C lies on Q. or Q,. The cycle C’ with E(C') =
E(C) U E(Q,) U E(Q,) — {xy} satisfies b,(C') > b,(C), contradicting (1).
Hence V(C) = k. Since G is k-connected and |V(C)| = &, a variation on
Menger’s theorem asserts that u is connected to at least k distinct vertices of C
by internally-disjoint paths. Let P = {P,,P,,...,P,} be a collection of paths
with the following properties:

(3) P, has origin u and terminus v, on C (i = 1,2,...,k).
(4) Two distinct paths of P have only « in common.
(5) No internal vertex of P.ison C (i = 1,2,...,k).

Furthermore, assume that C and & are chosen such that, subject to conditions

(D)-(5),
(6) |UL V(P)| is minimum.

Assume that v,,v,, ..., v, occur on C in the order of their indices. From the
maximality of b,(C) it follows that v,v;,, ¢ E(C) (i = 1,2,...,k, indices
mod k); otherwise the cycle C’ with E(C') = E(C) U E(P,) U E(P,,,) —
{viv;,,} contradicts the choice of C. Define a vertex u; on C by the following
requirements:

(7) for all x in X, = V(v/ Cu;) U {v € Alv € N,(w) for some w E V(v; Cu,)}
there exxsts avertex y € V(y Cv) with d(x,y) < A, and
8) |V(v+Cu )| is maximum (i = 1,2,...,k).

Since (7) is satisfied for u, =v', u exlsts (i = 1,2,...,k). Furthermore, (1)
implies that u, € V(v; Cv,H) G = , k, indices mod k); otherwise (7) is
satisfied for U = v, and the cycle C' with E(C’) = E(C) U EP) U

E(P..)) — E(v;Cv,,,) satisfies b,(C") > b,(C), since all vertices of v;Cv,,, and
their A-neighbors have A-neighbors on C' and u is on C’. This contradicts (1).
Now X; contains at least one vertex x; such that all A-neighbors of x; on C are in
X;(i = 1,2,...,k); otherwise (7) is satisfied with u, replaced by «;, in contra-
diction to (8). Thus

Q) Nx) NVCO)CX, (i =1,2,...,k).

Let H; denote the component of G[X;] containing x;. We make two more obser-
vations. Here i,j € {1,2,...,k}.

(10) There exists no path from a vertex of H, to a vertex of V(P,) — {v,} that
is internally disjoint from C and the paths of %.

This is a consequence of (1) and (6). Suppose to the contrary that there is such
a path. Without loss of generality, assume there exists a path Q from a vertex
x € V(H)) N V(C) to a vertex y € V(P;) — {v,} that is internally disjoint from
C and the paths of 9’ Ifi #j, con51der the cycle C’ with E(C") = E(C) U
EQ) UEWP)U E(uP,y) E(v, Cx) (possnbly y = u); 1f1 = j, consider the
cycle C' with E(C') = E(C) U EWQ) U E(va) E(v, Cx) Now b,(C") =

b,(C), since all vertices of v; Cx and their A- -neighbors have A-neighbors on C'.
If b,(C") = b\(C), then i = j, and there exist paths P|, P;, . .. , P/ with prop-
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erties (3), (4), and (5) with respect to u and C’, and |UL V(P))| < UL, vp)|.
Hence C’ contradicts the choice of C.

(11) Fori # j, there exists no path from a vertex of H, to a vertex of H, that
is internally disjoint from C.

This is a consequence of (1) and (10). Suppose to the contrary that there is such
a path. Then, by (10), this path is disjoint from the paths of . Without loss of
generality, assume there exists a path Q from a vertex x € V(H;) N V(C) to a
vertex y € V(H;) N V(C) that is internally disjoint from C and the paths of %
such that [V(v, Cx)| is minimum. The choice of x implies that all vertices in
X; U X, have a A-neighbor in V(va) U V(yCv_) Now the cycle C' with
E(C’) = E(C) U E(Q) U E(P;)) U E(P;) = (E(v;Cx) U E(v;Cy)) contradicts
the choice of C.

We complete the proof by showing that {u,x,,...,x} is a set of mutually
2A-distant vertices. If | =i < j =< k, then, by (9) and (11), d(x;,x x) =
(A—=1)+ (A — 1)+ 2 =2\, For arbitrary i € {1,2,...,k}, consider a
shortest path P from u to x;. By (10), at least one of the intemal vertices of P is
on C. Let x be the first vertex on P that is on C. By (10), x &€ X;. By (2),
d(u,x) = X, and by (9), d(x;,x) = (A — 1) + 1. Hence d(u,x;) = 2x. 1§

Note that &,, = 1 for a graph G if and only if the diameter of G is at
most 2\ — 1. Hence the following result can be viewed as the case k = 1 of
Theorem 5:

Theorem 6. Let G be a connected A-bridgeless graph other than a tree. If the
diameter of G is at most 2A — |, then G is A,-cyclic.

Proof. Let G be a connected non-A,-cyclic A-bridgeless graph other than a
tree. Let C be a cycle of G such that b,(C) is maximum. Fix an orientation on
C. Since C is not a A,-cycle of G and since G is connected, there exists a ver-
tex u € V(G) — V(C) such that N,(u) N V(C) = J and d(u,v,) = A for some
v, € V(C). Define u, and x, as in the proof of Theorem 5. If u, # v, then,
like in the proof of Theorem 5, one can show that d(u,x,) = 2X\. Now suppose
u, = v,. Then all vertices of C and their A-neighbors are A-neighbors of v,. Let
P be a shortest (u, v,)-path and let z; denote the immediate predecessor of v, on
P. Now vz, is a cut edge of G; otherwise there is a cycle C’ of G containing v,
and z,. Since d(u,z,) = A — 1, b,(C") > b,(C), a contradiction.

Since v,z, is not a A- bndge of G, N\(v)) C Ny(z). Let z be the vertex on P
such that all edges of szl are cut edges of G and |V(sz )| is maximum.
Since G is A-bridgeless, z # u, implying the existence of a cycle C' containing
z. Furthermore, since G is A-bridgeless, N,(v,) C N,(z). This implies that
b,(C") > b(C), a contradiction. 1

Theorem 5 and Theorem 6 generalize the mentioned result of Chvétal and
Erdés, and are best possible in the sense that, for any positive integers k&
and A, there exist infinitely many k-connected non-A,-cyclic graphs with
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&, = k + | (which are A-bridgeless and not trees). Consider, e.g., the graphs
Gk, ny yy oo My ge1s My s oo o s Ragats - - -5 My 15+ o - My i) that are sketched in
Figure 1.

They consist of the following mutually disjoint subgraphs: a subgraph H =
K,, Mk + 1) subgraphs H, ; = K, , where 1 =i = Aand 1 =j =k + 1,
and the following additional edges:

k+1

{xylx € V(H);y € LJ] V(Hl,j)}
Ulylx EVIH,)y EVH, 1 =i<Ml=j=sk+1}.

Ifn, =k forl =i<Aandl=j=k+l,andn;=1forl =j=k+
1, then G(k,n, y,...,n, ;) obviously is k-connected. It is not A,-cyclic by
Theorem 2 (with S = V(H)). Obviously, d(u, v) = 2X if and only if there exist
integers i and j with 1 =i <j =k + 1 such that u € V(H, ;) and v €
V(H, ;). Hence &, =k + 1 (for k = 1 we take n, | = n, , = 2 to obtain A-
bridgeless graphs other than trees).

FIGURE 1
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Theorem 5 and Theorem 6 have some interesting corollaries. The following
one, in terms of the connectivity and independence number, is another general-
ization of the mentioned result of Chvatal and Erdés.

Corollary 7. Let G be a k-connected A-bridgeless graph other than a tree
(k =1). If \is odd and @« =< 3(Ak + A + k — 1), or A is even and & <
%()\k + A), then G is A,-cyclic.

Proof. Let G be a non-A,-cyclic k-connected A-bridgeless graph other than
a tree (k = 1). By Theorem 5 and Theorem 6 there exist k + 1 vertices
Yo, V), . . . , U, that are mutually 2\-distant. Now, for 0 =i < k, let x;; be a
vertex at distance 2j of v, with 0 =< j < A/2. Since, for 0 =i <j =k,
d(v;,v;) = 2A, the following observations are obvious:

() If A is odd, then {x; ; [0=<i=<k;0=j=(\— 1)/2}is a set of mutu-
ally independent vertices.

(ID If Nis even, then {x, ;|0 = i = k;0=j = (A —2)/2} U {xoo} is a
set of mutually independent vertices.

Hence, if N is odd, @ = (A + 1)/2)(k + 1) =3(Ak + A + k + 1), and, if A
iseven,a = (\/2k + D+ 1 =30k +N + 1. &

The graphs showing that Theorem 5 and Theorem 6 are best possible also
show that Corollary 7 is best possible. Before we state two other corollaries of
Theorem S and Theorem 6, we prove the following lemma:

Lemma 8. Let G be a k-connected graph (k = 1) and let A = 2.
If {v,,v,,...,v} is a set of mutually 2A-distant vertices, then

id(v,-) <v—2k—-(—-2k(k +1) and > |R()| <v — 2k.

i=0 i=0

Proof. Let G be a k-connected graph (k = 1) and let A = 2.

Let {v,,v,,...,v,} be a set of mutually 2\-distant vertices.

Define V,, = {v € V(G)|d(v;,v) =t} 0 <i < k; 1 <t =< \). Since G
is k-connected, |V,,| = k(0 <i <k;1 =t =\). Since, for0 =i <j =k,
d(v;,v;) = 2\, the sets in the collection R ={V, [0 <i=k: 2=t =X -
1} U {V, ,} are mutually disjoint.

Furthermore, no vertex in the union of the sets in R is adjacent to any of the
vertices v,, vy, ..., v,. Hence

Ydv)=v-(k+1) -

=0

k+1DMAN-2%k —k=v—2k—(N—-2k(k +1)-1.

Finally, since R,(v;) = UAZ1 V., and R (v,) N R, (v;) = J, we get
SR =v—2%—-1. 1
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The next two corollaries are easily obtained by combining Lemma & with
Theorem 5 and Theorem 6.

Corollary 9. Let G be a k-connected A-bridgeless graph other than a tree
(k = 1; A = 2). If the degree-sum of any & + 1 mutually (2A — 1)-distant
vertices is at least v — 2k — (A — 2)k(k + 1), then G is A,-cyclic.

Corollary 10. Let G be a k-connected A-bridgeless graph other than a tree
(k = 1; A = 2). If any k + 1 mutually (2x — I)-distant vertices v, v, ...,
satisfy the inequality 3¢, [R,(v;)] = v — 2k, then G is A,-cyclic.

The graphs G(k,n; ,..., 0 ), withn,, =k, forl =i <Aand 1 =j =
k + 1, and n; =1, for 1 =j =k + 1, show that Corollaries 9 and 10 are
best possible for k = 2. Corollaries 9 and 10 are more general than the follow-
ing result of Fraisse [4]:

Corollary 11. (Fraisse [4]). Let G be a k-connected graph (k = 2). If 8(G) >
v — 2k — 1)/(k + 1), then G is A,-cyclic.

The case k = 2 of Corollary 10 was recently conjectured by Bondy and Fan
[1] and proved for A = 2.

Without proof we mention the following analogue of Theorems 5 and 6 on
A,-traceable graphs:

Theorem 12, Let G be a k-connected graph (k = 1). If a,, < k + 1, then G
is A,-traceable.

As analogues of Corollaries 7, 9, and 10 we find, respectively, the following:

Corollary 13. Let G be a k-connected graph (k = 1). If X is odd
and @ < 3(Ak + 2\ + k), or A is even and @ < 3(Ak + 2)A), then G is A,-
traceable.

Corollary 14. Let G be a k-connected graph (k = 1) and let A = 2. If the
degree-sum of any k + 2 mutually (2A — 1)-distant vertices is at least
v—2k—1-—(N— 2k(k + 2), then G is A,-traceable.

Corollary 15. Let G be a k-connected graph (k = 1) and let A = 2. If any
k + 2 mutually (2A — 1)-distant vertices vy, v,, . . ., V., satisfy the inequality
3 IR\)| = v — 2k — 1, then G is A,-traceable.

The proofs of the above results on A,-traceable graphs are similar to the
proofs of the corresponding results on A,-cyclic graphs. Both Theorem 12 and
Corollaries 13—15 can be shown to be best possible by considering the graphs
sketched in Figure 1 and replacing “k + 1” by “k + 2.7
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