Existence of Δ_{λ}-Cycles and Δ_{λ}-Paths

H. J. Broersma

UNIVERSITY OF TWENTE
FACULTY OF APPLIED MATHEMATICS 7500 AE ENSCHEDE
THE NETHERLANDS

Abstract

A cycle C of a graph G is called a D_{λ}-cycle if every component of $G-V(C)$ has order less than λ. A D_{λ}-path is defined analogously. $D_{\lambda}-$ cycles and D_{λ}-paths were introduced by Veldman. Here a cycle C of a graph G is called a Δ_{λ}-cycle if all vertices of G are at distance less than λ from a vertex of C. A Δ_{λ}-path is defined analogously. In particular, in a connected graph, a D_{λ}-cycle is a Δ_{λ}-cycle and a D_{λ}-path is a Δ_{λ}-path. Furthermore, a Δ_{1}-cycle is a Hamilton cycle and a Δ_{1}-path is a Hamilton path. Necessary conditions and sufficient conditions are derived for graphs to have a Δ_{λ}-cycle or Δ_{λ}-path. The results are analogues of theorems on D_{λ}-cycles and D_{λ}-paths. In particular, a result of Chvátal and Erdös on Hamilton cycles and Hamilton paths is generalized. A recent conjecture of Bondy and Fan is settled.

1. TERMINOLOGY

We use [2] for basic terminology and notation not introduced here, and consider simple graphs only. Let G be a graph. We will sometimes identify a trail in G with the subgraph induced by its edges. Hence a subgraph T of G is a trail if and only if T is connected and at most two vertices of T have odd degree in T. Let λ be an integer with $\lambda \geq 1$. If T is a trail in G, then $b_{\lambda}(T)$ denotes the number of vertices of G that are at distance less than λ from a vertex of T. Following Veldman [6], a trail T of G is defined to be a D_{λ}-trail of G if all components of $G-V(T)$ have order less than λ. Here we define T to be a Δ_{λ}-trail of G if all vertices of G are at distance less than λ from a vertex of T. Note that, in a connected graph, a D_{λ}-trail is a Δ_{λ}-trail, whereas the converse is only true in general for $\lambda=1$. A circuit is a nontrivial closed trail. Graphs containing a Δ_{λ} cycle (D_{λ}-cycle) will be called Δ_{λ}-cyclic (D_{λ}-cyclic); graphs containing a $\Delta_{\lambda^{-}}$path (D_{λ}-path, Hamilton path) will be called Δ_{λ}-traceable (D_{λ}-traceable, traceable). If C is a cycle of G with a fixed orientation and $v \in V(C)$, then v^{-}
and v^{+}denote the immediate predecessor and immediate successor of v on C, respectively. If H is an oriented path or cycle of G and u and v are vertices of H, then $u \vec{H} v$ and $v \stackrel{\leftarrow}{H} u$ denote, respectively, the segment of H from u to v and the reverse segment from v to u. Two vertices u and v of G are λ-neighbors if $d(u, v)<\lambda . N_{\lambda}(v)$ denotes the set of λ-neighbors of a vertex v of G. Note that $N_{1}(v)=\{v\}$ and $N_{2}(v)=N(v) \cup\{v\}$. We let $R_{\lambda}(v)=N_{\lambda}(v)-\{v\}$. Two vertices u and v of G are λ-distant if $d(u, v) \geq \lambda$, i.e., if they are not λ-neighbors. In [6] Veldman introduced $\omega_{\lambda}(G)$, the number of components of G of order at least λ, and $\alpha_{\lambda}(G)$, the maximum number of mutually disjoint connected subgraphs of order λ of G such that no edge of G joins two vertices of different subgraphs. If S is a subset of $V(G)$, then $\hat{\omega}_{\lambda}(G, S)$ denotes the number of components of $G-S$ that contain a vertex that is λ-distant from all vertices of S. Note that, in a connected graph $G, \hat{\omega}_{\lambda}(G, S) \leqq \omega_{\lambda}(G-S)$ and $\hat{\omega}_{1}(G, S)=$ $\omega_{1}(G-S)=\omega(G-S)$. By $\hat{\alpha}_{\lambda}(G)$ we denote the maximum cardinality of a set of mutually λ-distant vertices in G. Note that, in a connected graph G, $\hat{\alpha}_{2 \lambda}(G) \leq \alpha_{\lambda}(G)$ and $\hat{\alpha}_{2}(G)=\alpha_{1}(G)=\alpha(G)$. If P is a nontrivial path in G with origin v_{1} and terminus v_{2}, then P is called a λ-bridge if all edges of P are cut edges of G and, for $i=1,2$, the component of $G-E(P)$ containing v_{i} also contains a vertex u_{i} satisfying $d\left(u_{i}, v_{3-i}\right) \geq \lambda$. Note that a cut edge is a l-bridge, and a cut edge incident with two vertices of degree at least 2 is a 2-bridge. G is λ-bridgeless if G contains no λ-bridge.

2. INTRODUCTION

Our concern will be the existence of Δ_{λ}-cycles and Δ_{λ}-paths in graphs. Recognizing Δ_{λ}-cyclic graphs is an NP-complete problem. This is easily seen, using the NP-completeness of the Hamilton cycle problem. In Sections 3 and 4 necessary conditions and sufficient conditions are derived for the existence of Δ_{λ}-cycles and Δ_{λ}-paths. There is a nice analogy with known results and proof techniques concerning the existence of D_{λ}-cycles and D_{λ}-paths. D_{λ}-cycles and D_{λ}-paths were studied in [4] and [6]; D_{2}-cycles and D_{2}-paths in [5]. The conditions for Δ_{λ}-cyclicity (Δ_{λ}-traceability) are weaker than the corresponding ones for D_{λ}-cyclicity (D_{λ}-traceability), in accordance with the fact that every $D_{\lambda^{-}}$ cyclic (D_{λ}-traceable) connected graph is Δ_{λ}-cyclic (Δ_{λ}-traceable), whereas the converse is not true in general.

3. NECESSARY CONDITIONS

The following statement is obvious:
Proposition 1. If a graph G contains a Δ_{λ}-circuit, then G is λ-bridgeless.
For $\lambda=1$, Proposition 1 coincides with the statement that a graph containing a spanning circuit is 2 -edge-connected.

Theorem 4.2 of [2] states that if a graph G is hamiltonian, then $\omega(G-S) \leq$ $|S|$ for every nonempty proper subset S of $V(G)$.

Veldman [6] showed that if a graph G is D_{λ}-cyclic, then $\omega_{\lambda}(G-S) \leq|S|$ for every nonempty proper subset of S of $V(G)$.

Here we give a similar condition on Δ_{λ}-cyclic graphs.
Theorem 2. If a graph G is Δ_{λ}-cyclic, then, for every nonempty proper subset S of $V(G), \hat{\omega}_{\lambda}(G, S) \leq|S|$.

Proof. Let S be a nonempty proper subset of $V(G)$ and C a Δ_{λ}-cycle of G. Then every vertex of $G-S$ is at distance at most $\lambda-1$ from a vertex of C in G. If $S \cap V(C)=\varnothing, \hat{\omega}_{\lambda}(G, S) \leq 1 \leq|S|$. Otherwise, $\hat{\omega}_{\lambda}(G, S) \leq \mid S \cap$ $V(C)|\leq|S|$. \quad I

Analogously, one proves a cut set theorem for Δ_{λ}-traceable graphs.
Theorem 3. If a graph G is Δ_{λ}-traceable, then, for every nonempty proper subset S of $V(G), \hat{\omega}_{\lambda}(G, S) \leq|S|+1$.

4. SUFFICIENT CONDITIONS

Chvátal and Erdös [3] showed that a graph G with independence number $\alpha(G)$ and connectivity $\kappa(G)$ is hamiltonian if $\alpha(G) \leq \kappa(G)$, while $\alpha(G) \leq \kappa(G)+$ 1 implies that G is traceable. Veldman [6] proved the following generalization on D_{λ}-cyclic graphs:

Theorem 4. (Veldman [6]). Let k and λ be positive integers such that either $k \geq 2$ or $k=1$ and $\lambda \leq 2$. If G is a k-connected graph, other than a tree (in case $k=1$), with $\alpha_{\lambda} \leq k$, then G is D_{λ}-cyclic.

Here we prove an analogue of Theorem 4. For convenience, we deal with graphs of connectivity 1 separately.

Theorem 5. Let G be a k-connected graph ($k \geq 2$). If $\hat{\alpha}_{2 \lambda} \leq k$, then G is Δ_{λ}-cyclic.

Proof. Let G be a non- Δ_{λ}-cyclic k-connected graph ($k \geq 2$). We will exhibit $k+1$ mutually 2λ-distant vertices. Let C be a cycle of G such that
(1) $b_{\lambda}(C)$ is maximum.

Fix an orientation on C. Since G is connected and C is not a Δ_{λ}-cycle of G, there exists a vertex $u \in A=V(G)-V(C)$ such that
(2) $N_{\lambda}(u) \cap V(C)=\varnothing$.

Suppose $|V(C)|<k$ and let $x y \in E(C)$. By Menger's theorem there exists a path Q_{x} from u to x and a path Q_{y} from u to y such that Q_{x} and Q_{y} meet only at
u and no other vertex of C lies on Q_{x} or Q_{y}. The cycle C^{\prime} with $E\left(C^{\prime}\right)=$ $E(C) \cup E\left(Q_{x}\right) \cup E\left(Q_{y}\right)-\{x y\}$ satisfies $b_{\lambda}\left(C^{\prime}\right)>b_{\lambda}(C)$, contradicting (1). Hence $V(C) \geq k$. Since G is k-connected and $|V(C)| \geq k$, a variation on Menger's theorem asserts that u is connected to at least k distinct vertices of C by internally-disjoint paths. Let $\mathscr{P}=\left\{P_{1}, P_{2}, \ldots, P_{k}\right\}$ be a collection of paths with the following properties:
(3) P_{i} has origin u and terminus v_{i} on $C(i=1,2, \ldots, k)$.
(4) Two distinct paths of \mathscr{P} have only u in common.
(5) No internal vertex of P_{i} is on $C(i=1,2, \ldots, k)$.

Furthermore, assume that C and \mathscr{P} are chosen such that, subject to conditions (1)-(5),
(6) $\left|\bigcup_{i=1}^{k} V\left(P_{i}\right)\right|$ is minimum.

Assume that $v_{1}, v_{2}, \ldots, v_{k}$ occur on C in the order of their indices. From the maximality of $b_{\lambda}(C)$ it follows that $v_{i} v_{i+1} \notin E(C)(i=1,2, \ldots, k$, indices $\bmod k$; otherwise the cycle C^{\prime} with $E\left(C^{\prime}\right)=E(C) \cup E\left(P_{i}\right) \cup E\left(P_{i+1}\right)-$ $\left\{v_{i} v_{i+1}\right\}$ contradicts the choice of C. Define a vertex u_{i} on C by the following requirements:
(7) for all x in $X_{i}=V\left(v_{i}^{+} \vec{C} u_{i}\right) \cup\left\{v \in A \mid v \in N_{\lambda}(w)\right.$ for some $\left.w \in V\left(v_{i}^{+} \vec{C} u_{i}\right)\right\}$ there exists a vertex $y \in V\left(u_{i} \vec{C} v_{i}\right)$ with $d(x, y)<\lambda$, and $\left|V\left(v_{i}^{+} \vec{C} u_{i}\right)\right|$ is maximum $(i=1,2, \ldots, k)$.
Since (7) is satisfied for $u_{i}=v_{i}^{+}, u_{i}$ exists ($i=1,2, \ldots, k$). Furthermore, (1) implies that $u_{i} \in V\left(v_{i}^{+} \vec{C} v_{i+1}^{-}\right)(i=1,2, \ldots, k$, indices mod k); otherwise (7) is satisfied for $u_{i}=v_{i+1}$, and the cycle C^{\prime} with $E\left(C^{\prime}\right)=E(C) \cup E\left(P_{i}\right) \cup$ $E\left(P_{i+1}\right)-E\left(v_{i} \vec{C} v_{i+1}\right)$ satisfies $b_{\lambda}\left(C^{\prime}\right)>b_{\lambda}(C)$, since all vertices of $v_{i} \vec{C} v_{i+1}$ and their λ-neighbors have λ-neighbors on C^{\prime} and u is on C^{\prime}. This contradicts (1). Now X_{i} contains at least one vertex x_{i} such that all λ-neighbors of x_{i} on C are in $X_{i}(i=1,2, \ldots, k)$; otherwise (7) is satisfied with u_{i} replaced by u_{i}^{+}, in contradiction to (8). Thus
(9) $N_{\lambda}\left(x_{i}\right) \cap V(C) \subset X_{i}(i=1,2, \ldots, k)$.

Let H_{i} denote the component of $G\left[X_{i}\right]$ containing x_{i}. We make two more observations. Here $i, j \in\{1,2, \ldots, k\}$.
(10) There exists no path from a vertex of H_{i} to a vertex of $V\left(P_{j}\right)-\left\{v_{j}\right\}$ that is internally disjoint from C and the paths of \mathscr{P}.

This is a consequence of (1) and (6). Suppose to the contrary that there is such a path. Without loss of generality, assume there exists a path Q from a vertex $x \in V\left(H_{i}\right) \cap V(C)$ to a vertex $y \in V\left(P_{j}\right)-\left\{v_{j}\right\}$ that is internally disjoint from C and the paths of $\mathscr{P}_{\vec{~}}$ If $i \neq j$, consider the cycle C^{\prime} with $E\left(C^{\prime}\right)=E(C) \cup$ $E(Q) \cup E\left(P_{i}\right) \cup E\left(u \vec{P}_{j} y\right)-E\left(v_{i} \vec{C} x\right)$ (possibly $y=u$); if $i=j$, consider the cycle C^{\prime} with $E\left(C^{\prime}\right)=E(C) \cup E(Q) \cup E\left(y \vec{P}_{i} v_{i}\right)-E\left(v_{i} \vec{C} x\right)$. Now $b_{\lambda}\left(C^{\prime}\right) \geq$ $b_{\lambda}(C)$, since all vertices of $v_{i} \vec{C} x$ and their λ-neighbors have λ-neighbors on C^{\prime}. If $b_{\lambda}\left(C^{\prime}\right)=b_{\lambda}(C)$, then $i=j$, and there exist paths $P_{1}^{\prime}, P_{2}, \ldots, P_{k}^{\prime}$ with prop-
erties (3), (4), and (5) with respect to u and C^{\prime}, and $\left|\bigcup_{i=1}^{k} V\left(P_{i}^{\prime}\right)\right|<\left|\bigcup_{i=1}^{k} V\left(P_{i}\right)\right|$. Hence C^{\prime} contradicts the choice of C.
(11) For $i \neq j$, there exists no path from a vertex of H_{i} to a vertex of H_{j} that is internally disjoint from C.

This is a consequence of (1) and (10). Suppose to the contrary that there is such a path. Then, by (10), this path is disjoint from the paths of \mathscr{P}. Without loss of generality, assume there exists a path Q from a vertex $x \in V\left(H_{i}\right) \cap V(C)$ to a vertex $y \in V\left(H_{j}\right) \cap V(C)$ that is internally disjoint from C and the paths of \mathscr{P} such that $\left|V\left(v_{i} \vec{C} x\right)\right|$ is minimum. The choice of x implies that all vertices in $X_{i} \cup X_{j}$ have a λ-neighbor in $V\left(x \vec{C} v_{j}\right) \cup V\left(y \vec{C} v_{i}\right)$. Now the cycle C^{\prime} with $E\left(C^{\prime}\right)=E(C) \cup E(Q) \cup E\left(P_{i}\right) \cup E\left(P_{j}\right)-\left(E\left(v_{i} \vec{C} x\right) \cup E\left(v_{i} \vec{C} y\right)\right)$ contradicts the choice of C.

We complete the proof by showing that $\left\{u, x_{1}, \ldots, x_{k}\right\}$ is a set of mutually 2λ-distant vertices. If $1 \leq i<j \leq k$, then, by (9) and (11), $d\left(x_{i}, x_{j}\right) \geq$ $(\lambda-1)+(\lambda-1)+2=2 \lambda$. For arbitrary $i \in\{1,2, \ldots, k\}$, consider a shortest path P from u to x_{i}. By (10), at least one of the internal vertices of P is on C. Let x be the first vertex on P that is on C. By (10), $x \notin X_{i}$. By (2), $d(u, x) \geq \lambda$, and by (9), $d\left(x_{i}, x\right) \geq(\lambda-1)+1$. Hence $d\left(u, x_{i}\right) \geq 2 \lambda$.

Note that $\hat{\alpha}_{2 \lambda}=1$ for a graph G if and only if the diameter of G is at most $2 \lambda-1$. Hence the following result can be viewed as the case $k=1$ of Theorem 5:

Theorem 6. Let G be a connected λ-bridgeless graph other than a tree. If the diameter of G is at most $2 \lambda-1$, then G is Δ_{λ}-cyclic.

Proof. Let G be a connected non- Δ_{λ}-cyclic λ-bridgeless graph other than a tree. Let C be a cycle of G such that $b_{\lambda}(C)$ is maximum. Fix an orientation on C. Since C is not a Δ_{λ}-cycle of G and since G is connected, there exists a vertex $u \in V(G)-V(C)$ such that $N_{\lambda}(u) \cap V(C)=\varnothing$ and $d\left(u, v_{1}\right)=\lambda$ for some $v_{1} \in V(C)$. Define u_{1} and x_{1} as in the proof of Theorem 5. If $u_{1} \neq v_{1}$, then, like in the proof of Theorem 5 , one can show that $d\left(u, x_{1}\right) \geq 2 \lambda$. Now suppose $u_{1}=v_{1}$. Then all vertices of C and their λ-neighbors are λ-neighbors of v_{1}. Let P be a shortest $\left(u, v_{1}\right)$-path and let z_{1} denote the immediate predecessor of v_{1} on P. Now $v_{1} z_{1}$ is a cut edge of G; otherwise there is a cycle C^{\prime} of G containing v_{1} and z_{1}. Since $d\left(u, z_{1}\right)=\lambda-1, b_{\lambda}\left(C^{\prime}\right)>b_{\lambda}(C)$, a contradiction.

Since $v_{1} z_{1}$ is not a λ-bridge of $G, N_{\lambda}\left(v_{1}\right) \subset N_{\lambda}\left(z_{1}\right)$. Let z be the vertex on P such that all edges of $z \vec{P} v_{1}$ are cut edges of G and $\left|V\left(z \vec{P} v_{1}\right)\right|$ is maximum. Since G is λ-bridgeless, $z \neq u$, implying the existence of a cycle C^{\prime} containing z. Furthermore, since G is λ-bridgeless, $N_{\lambda}\left(v_{1}\right) \subset N_{\lambda}(z)$. This implies that $b_{\lambda}\left(C^{\prime}\right)>b_{\lambda}(C)$, a contradiction.

Theorem 5 and Theorem 6 generalize the mentioned result of Chvátal and Erdös, and are best possible in the sense that, for any positive integers k and λ, there exist infinitely many k-connected non- Δ_{λ}-cyclic graphs with
$\hat{\alpha}_{2 \lambda}=k+1$ (which are λ-bridgeless and not trees). Consider, e.g., the graphs $G\left(k, n_{1,1}, \ldots, n_{1, k+1}, n_{2,1}, \ldots, n_{2, k+1}, \ldots, n_{\lambda, 1}, \ldots, n_{\lambda, k+1}\right)$ that are sketched in Figure 1.

They consist of the following mutually disjoint subgraphs: a subgraph $H \cong$ $K_{k}, \lambda(k+1)$ subgraphs $H_{i, j} \cong K_{n_{i, j}}$, where $1 \leq i \leq \lambda$ and $1 \leq j \leq k+1$, and the following additional edges:
$\left\{x y \mid x \in V(H) ; y \in \bigcup_{j=1}^{k+1} V\left(H_{1, j}\right)\right\}$
$\cup\left\{x y \mid x \in V\left(H_{i, j}\right) ; y \in V\left(H_{i+1, j}\right) ; 1 \leq i<\lambda ; 1 \leq j \leq k+1\right\}$.
If $n_{i, j} \geq k$, for $1 \leq i<\lambda$ and $1 \leq j \leq k+1$, and $n_{\lambda, j} \geq 1$, for $1 \leq j \leq k+$ 1 , then $G\left(k, n_{1,1}, \ldots, n_{\lambda, k+1}\right)$ obviously is k-connected. It is not Δ_{λ}-cyclic by Theorem 2 (with $S=V(H)$). Obviously, $d(u, v) \geq 2 \lambda$ if and only if there exist integers i and j with $1 \leq i<j \leq k+1$ such that $u \in V\left(H_{\lambda, i}\right)$ and $v \in$ $V\left(H_{\lambda, j}\right)$. Hence $\hat{\alpha}_{2 \lambda}=k+1$ (for $k=1$ we take $n_{1,1} \geq n_{1,2} \geq 2$ to obtain λ bridgeless graphs other than trees).

FIGURE 1

Theorem 5 and Theorem 6 have some interesting corollaries. The following one, in terms of the connectivity and independence number, is another generalization of the mentioned result of Chvátal and Erdös.

Corollary 7. Let G be a k-connected λ-bridgeless graph other than a tree ($k \geq 1$). If λ is odd and $\alpha \leq \frac{1}{2}(\lambda k+\lambda+k-1)$, or λ is even and $\alpha \leq$ $\frac{1}{2}(\lambda k+\lambda)$, then G is Δ_{λ}-cyclic.

Proof. Let G be a non- Δ_{λ}-cyclic k-connected λ-bridgeless graph other than a tree $(k \geq 1)$. By Theorem 5 and Theorem 6 there exist $k+1$ vertices $v_{0}, v_{1}, \ldots, v_{k}$ that are mutually 2λ-distant. Now, for $0 \leq i \leq k$, let $x_{i, j}$ be a vertex at distance $2 j$ of v_{i}, with $0 \leq j \leq \lambda / 2$. Since, for $0 \leq i<j \leq k$, $d\left(v_{i}, v_{j}\right) \geq 2 \lambda$, the following observations are obvious:
(I) If λ is odd, then $\left\{x_{i, j} \mid 0 \leq i \leq k ; 0 \leq j \leq(\lambda-1) / 2\right\}$ is a set of mutually independent vertices.
(II) If λ is even, then $\left\{x_{i, j} \mid 0 \leq i \leq k ; 0 \leq j \leq(\lambda-2) / 2\right\} \cup\left\{x_{0, \lambda / 2}\right\}$ is a set of mutually independent vertices.
Hence, if λ is odd, $\alpha \geq((\lambda+1) / 2)(k+1)=\frac{1}{2}(\lambda k+\lambda+k+1)$, and, if λ is even, $\alpha \geq(\lambda / 2)(k+1)+1=\frac{1}{2}(\lambda k+\lambda)+1$.

The graphs showing that Theorem 5 and Theorem 6 are best possible also show that Corollary 7 is best possible. Before we state two other corollaries of Theorem 5 and Theorem 6, we prove the following lemma:

Lemma 8. Let G be a k-connected graph ($k \geq 1$) and let $\lambda \geq 2$.
If $\left\{v_{0}, v_{1}, \ldots, v_{k}\right\}$ is a set of mutually 2λ-distant vertices, then

$$
\sum_{i=0}^{k} d\left(v_{i}\right)<\nu-2 k-(\lambda-2) k(k+1) \quad \text { and } \quad \sum_{i=0}^{k}\left|R_{\lambda}\left(v_{i}\right)\right|<\nu-2 k
$$

Proof. Let G be a k-connected graph ($k \geq 1$) and let $\lambda \geq 2$.
Let $\left\{v_{0}, v_{1}, \ldots, v_{k}\right\}$ be a set of mutually 2λ-distant vertices.
Define $V_{i, t}=\left\{v \in V(G) \mid d\left(v_{i}, v\right)=t\right\}(0 \leq i \leq k ; 1 \leq t \leq \lambda)$. Since G is k-connected, $\left|V_{i, t}\right| \geq k(0 \leq i \leq k ; 1 \leq t \leq \lambda)$. Since, for $0 \leq i<j \leq k$, $d\left(v_{i}, v_{j}\right) \geq 2 \lambda$, the sets in the collection $\mathscr{R}=\left\{V_{i, t} \mid 0 \leq i \leq k ; 2 \leq t \leq \lambda-\right.$ $1\} \cup\left\{V_{0, \lambda}\right\}$ are mutually disjoint.

Furthermore, no vertex in the union of the sets in \mathscr{R} is adjacent to any of the vertices $v_{0}, v_{1}, \ldots, v_{k}$. Hence

$$
\begin{aligned}
& \sum_{i=0}^{k} d\left(v_{i}\right) \leq \nu-(k+1)- \\
& \quad(k+1)(\lambda-2) k-k=\nu-2 k-(\lambda-2) k(k+1)-1 .
\end{aligned}
$$

Finally, since $R_{\lambda}\left(v_{i}\right)=\bigcup_{i=1}^{\lambda-1} V_{i, i}$ and $R_{\lambda}\left(v_{i}\right) \cap R_{\lambda}\left(v_{j}\right)=\varnothing$, we get $\sum_{i=0}^{k}\left|R_{\lambda}\left(v_{i}\right)\right| \leq \nu-2 k-1$.

The next two corollaries are easily obtained by combining Lemma 8 with Theorem 5 and Theorem 6.

Corollary 9. Let G be a k-connected λ-bridgeless graph other than a tree ($k \geq 1 ; \lambda \geq 2$). If the degree-sum of any $k+1$ mutually ($2 \lambda-1$)-distant vertices is at least $\nu-2 k-(\lambda-2) k(k+1)$, then G is Δ_{λ}-cyclic.

Corollary 10. Let G be a k-connected λ-bridgeless graph other than a tree ($k \geq 1 ; \lambda \geq 2$). If any $k+1$ mutually ($2 \lambda-1$)-distant vertices $v_{0}, v_{1}, \ldots, v_{k}$ satisfy the inequality $\sum_{i=0}^{k}\left|R_{\lambda}\left(v_{i}\right)\right| \geq \nu-2 k$, then G is Δ_{λ}-cyclic.

The graphs $G\left(k, n_{1,1}, \ldots, n_{\lambda, k+1}\right)$, with $n_{i, j}=k$, for $1 \leq i<\lambda$ and $1 \leq j \leq$ $k+1$, and $n_{\lambda, j} \geq 1$, for $1 \leq j \leq k+1$, show that Corollaries 9 and 10 are best possible for $k \geq 2$. Corollaries 9 and 10 are more general than the following result of Fraisse [4]:

Corollary 11. (Fraisse [4]). Let G be a k-connected graph ($k \geq 2$). If $\delta(G)>$ $(\nu-2 k-1) /(k+1)$, then G is Δ_{2}-cyclic.

The case $k \geq 2$ of Corollary 10 was recently conjectured by Bondy and Fan [1] and proved for $\lambda=2$.

Without proof we mention the following analogue of Theorems 5 and 6 on Δ_{λ}-traceable graphs:

Theorem 12. Let G be a k-connected graph $(k \geq 1)$. If $\hat{\alpha}_{2 \lambda} \leq k+1$, then G is Δ_{λ}-traceable.

As analogues of Corollaries 7, 9, and 10 we find, respectively, the following:
Corollary 13. Let G be a k-connected graph ($k \geq 1$). If λ is odd and $\alpha \leq \frac{1}{2}(\lambda k+2 \lambda+k)$, or λ is even and $\alpha \leq \frac{1}{2}(\lambda k+2 \lambda)$, then G is $\Delta_{\lambda^{-}}$ traceable.

Corollary 14. Let G be a k-connected graph ($k \geq 1$) and let $\lambda \geq 2$. If the degree-sum of any $k+2$ mutually ($2 \lambda-1$)-distant vertices is at least $\nu-2 k-1-(\lambda-2) k(k+2)$, then G is Δ_{λ}-traceable.

Corollary 15. Let G be a k-connected graph ($k \geq 1$) and let $\lambda \geq 2$. If any $k+2$ mutually $(2 \lambda-1)$-distant vertices $v_{0}, v_{1}, \ldots, v_{k+1}$ satisfy the inequality $\sum_{i=0}^{k+1}\left|R_{\lambda}\left(v_{i}\right)\right| \geq \nu-2 k-1$, then G is Δ_{λ}-traceable.

The proofs of the above results on Δ_{λ}-traceable graphs are similar to the proofs of the corresponding results on Δ_{λ}-cyclic graphs. Both Theorem 12 and Corollaries 13-15 can be shown to be best possible by considering the graphs sketched in Figure 1 and replacing " $k+1$ " by " $k+2$."

ACKNOWLEDGMENT

I thank H. J. Veldman for his help in the preparation of this paper and for suggesting some substantial improvements.

References

[1] J. A. Bondy and G.-H. Fan, A sufficient condition for dominating cycles. Discrete Math. 67 (1987) 205-208.
[2] J.A. Bondy and U.S. R. Murty, Graph Theory with Applications. MacMillan, London, and Elsevier, New York (1976).
[3] V. Chvátal and P. Erdös, A note on hamiltonian circuits. Discrete Math. 2 (1972) 111-113.
[4] P. Fraisse, D_{λ}-cycles and their applications for hamiltonian graphs. Preprint (1986).
[5] H. J. Veldman, Existence of dominating cycles and paths. Discrete Math. 43 (1983) 281-296.
[6] H. J. Veldman, Existence of D_{λ}-cycles and D_{λ}-paths. Discrete Math. 44 (1983) 309-316.

