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EXISTENCE OF EQUILIBRIUM IN SINGLE AND DOUBLE PRIVATE
VALUE AUCTIONS!

BY MATTHEW O. JACKSON AND JEROEN M. SWINKELS?

We show existence of equilibria in distributional strategies for a wide class of private
value auctions, including the first general existence result for double auctions. The set
of equilibria is invariant to the tie-breaking rule. The model incorporates multiple unit
demands, all standard pricing rules, reserve prices, entry costs, and stochastic demand
and supply. Valuations can be correlated and asymmetrically distributed. For double
auctions, we show further that at least one equilibrium involves a positive volume of
trade. The existence proof establishes new connections among existence techniques for
discontinuous Bayesian games.
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values.

1. INTRODUCTION

AUCTIONS ARE GENERALLY modeled by allowing players to choose from con-
tinuum bidding spaces. However, players’ payoffs in auctions are discontinuous
at points of tied bids, which in the face of continuum bidding spaces makes
existence of equilibrium difficult to prove. Much of what is known about exis-
tence of equilibrium in auctions comes from exhibiting equilibrium strategies
in symmetric settings (for instance in Milgrom and Weber (1982)) or relying on
monotonicity arguments (e.g., Athey (2001) or Maskin and Riley (2000)). This
leaves open the question of existence of equilibria in many auction settings,
such as those where distributions fail to satisfy nice monotonicity properties,
and settings including the important class of double auctions.

Since the fundamental difficulty in these proofs revolves around the conti-
nuity of the bid space, one might well ask why one bothers to impose such an
assumption. After all, one could argue that all true bid spaces are in fact dis-
crete. However, continuum bid spaces are a very useful approximation as they
simplify the analysis, allowing one, for example, to use calculus to character-
ize equilibria. Thus, almost all models of auctions use continuum bid spaces
and so it is important to understand when equilibria exist in such models.
Moreover, discrete bid spaces can introduce some pathological equilibria. For
example, both Jackson (1999) and Jackson, Simon, Swinkels, and Zame (2002)

This paper supersedes the second part of Jackson and Swinkels (1999). That paper was split:
The results on existence of equilibria in Bayesian games with type-dependent sharing were com-
bined with Simon and Zame (1999) to become Jackson, Simon, Swinkels, and Zame (2002). The
results on existence of equilibria in a class of private value auctions have evolved into this paper.

2We thank Leo Simon, Bill Zame, Mark Satterthwaite, and Phil Reny for helpful conversa-
tions. We also thank Kim Border, Martin Cripps, John Nachbar, Larry Samuelson, Tianxiang Ye,
three anonymous referees, and the editor for helpful comments and suggestions. Financial sup-
port from the National Science Foundation under Grant SES-9986190 and from the Boeing
Center for Technology and Information Management is gratefully acknowledged.
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(henceforth JSSZ) show examples where the game with finite bid spaces has an
equilibrium, while the continuum game does not. In each, one positive measure
set of player types concentrates on one bid, while another concentrates on the
next available bid. This does not strike us as what we had in mind when dis-
cussing equilibrium. Existence of equilibrium with continuum bidding spaces
helps to establish the existence of a nonpathological equilibrium in the discrete
versions of these auctions.**

This paper has three main results about equilibria in auctions: existence,
invariance, and nontriviality. By existence, of course we mean that the set of
equilibria is nonempty. By invariance, we mean that the set of equilibria of
auctions in our class does not depend on the precise tie-breaking rule. Invari-
ance actually plays a key role in our existence proof. And, by nontriviality, we
mean that in the set of equilibria there is always one in which trade occurs with
positive probability.

Our existence and invariance results apply to auctions that can be single or
double sided, including settings where players are unsure at the time that they
bid whether they will be net buyers or net sellers. The pricing rule can be quite
general, including both the uniform and discriminatory cases, all pay features,
entry costs, reserve prices, and many other variations. Demands and supplies
may be for multiple units, and valuations can be asymmetrically distributed and
follow very general correlation patterns; neither independence nor any form
of affiliation is assumed. Finally, in addition to covering standard tie-breaking
rules, we also cover more general tie-breaking rules, including allowing the
auctioneer to use information in breaking ties that he is typically not assumed
to have, such as the true values of the players.

In double auctions, showing that an equilibrium exists does not close the
issue. The difficulty is that double auctions have a degenerate equilibrium in
which all buyers bid 0, and all sellers bid v, the upper bound of values.> Our
second main result establishes existence of a nondegenerate equilibrium for
each auction in our class; that is, one where trade occurs with positive proba-
bility. So, our results are not vacuous in settings where there exist degenerate

3JSSZ also argue that one should be uncomfortable with the equilibria of discrete bid auctions
if one does not know that they correspond to analogs in the continuum, because absent an exis-
tence result for the continuum case, there is no assurance that the equilibrium does not depend
on the particular discretization chosen. For example, it might be critical whether different players’
available bids overlap or are disjoint.

4The underlying existence theorems used (either JSSZ or Reny (1999)) include an upper hemi-
continuity result. Hence, the fact (which we establish) that all equilibria of the continuum game
are tie-free implies the existence of almost tie-free equilibria in games with small bid increments.

3Such no-trade equilibria are notoriously difficult to overcome in some other settings. For in-
stance, see the discussion of positive trade equilibria in market games in Dubey and Shubik (1978)
and Peck, Shell, and Spear (1992).
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no-trade equilibria. Taken together, these two results provide the first general
existence result of any form for the double auction setting.®

Our results, and the relation between invariance and existence, can be un-
derstood as follows.

First, let us discuss invariance. Let an omniscient tie-breaking rule be a map
from bids and values to distributions over allocations that respects the order of
bids. Such maps include standard tie-breaking rules where ties are broken by
some simple randomization or fixed priorities, but also include weirder rules,
such as ones where the auctioneer uses other information such as players’ types
and, for instance, breaks ties efficiently. Say that a tie-breaking rule is trade-
maximizing if ties between buyers and sellers are broken in favor of buyers.
Then, the invariance result states that if a strategy profile forms an equilibrium
for one omniscient tie-breaking rule, it remains an equilibrium for any other
trade-maximizing omniscient tie-breaking rule. Two ideas underlie this result.
First, regardless of the tie-breaking rule, given the continuous distribution over
types, players will not want to play in such a way as to be involved in ties with
positive probability (except that a buyer and a seller may be tied provided trade
occurs between them), as otherwise some player would benefit from raising
or lowering his bids contingent on some types. So, changing to some other
trade-maximizing tie-breaking rule does not change payoffs under the original
strategy profile. Second, if a player has an improving deviation relative to some
strategy profile and tie-breaking rule, then there is a slight modification of the
deviation that is still improving and also avoids ties. But then, any improving
deviation at one tie-breaking rule implies an improving deviation under any
other tie-breaking rule as well. Hence, replacing one tie-breaking rule with
another does not change the best replies of the players at the equilibrium.’

With the invariance result in hand, there are at least three ways to complete
the proof of existence. First, one can use the main result of JSSZ. They prove
existence of equilibria in Bayesian games in which tie-breaking is allowed to
be “endogenous” in the sense that it is determined as part of the equilibrium
and can depend (in an incentive compatible way) on the private information
of players. A fortiori this is an equilibrium with omniscient tie-breaking, and
hence, by the invariance result the strategies involved are also an equilibrium
for any trade-maximizing tie-breaking rule including any standard one.

The invariance result can also be used to establish existence via the theorem
of Reny (1999) (henceforth Reny). We know of two such approaches. In one
approach, one uses an auxiliary result of Reny’s (Proposition 3.2), involving

®Williams (1991) shows existence in the particular case that the price is determined by the
lowest winning buy bid. This case is easier, because (a) the sellers then have as a weakly dominant
strategy to bid their values and hence (b) the game can be thought of as a one-sided auction with
a hidden reserve price schedule, for which degenerate equilibria are not an issue.

7An important precursor to this idea of substitution of tie-breaking rules can be found in
Lebrun (1996).
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a condition called reciprocal upper semicontinuity (due to Simon (1987), who
generalizes Dasgupta and Maskin (1986)). This requires that if one player’s
payoff jumps down at a discontinuity, some other player’s payoff jumps up.
Under standard tie-breaking, this condition is not satisfied (see footnote 13 of
Reny). However, if tie-breaking is chosen to maximize the sum of player pay-
offs, then reciprocal upper semicontinuity is satisfied (as is the stronger condi-
tion of Dasgupta and Maskin). Since such tie-breaking is among the omniscient
tie-breaking rules, this (coupled with invariance) again implies the result.

We use a different approach in applying Reny’s result, working directly with
his main theorem. We think this approach illustrates an important way of ap-
plying Reny’s result more generally, and that it hints at a deeper connection
between Reny and JSSZ. Reny’s basic condition, better-reply-security, requires
checking that there are paying deviations, not just relative to payoffs actually
available at non-Nash strategy profiles, but also relative to all payoffs that can
be generated as a limit of nearby strategy profiles. The deviation must pay,
not only relative to the original strategy profile, but to small perturbations.
The first part of applying Reny thus involves the potentially daunting task of
characterizing the set of payoff profiles available from such limits at any given
point, which in particular can be quite complicated at points of discontinuity
such as ties. We show, however, that any such payoff profile can be induced
by an appropriately chosen omniscient tie-breaking rule. Then, using the first
idea underlying our invariance result, that players will play so as to avoid being
involved in ties regardless of the tie-breaking rule, establishes the desired con-
dition. We find it illuminating that all three routes to existence rely on some
form of omniscient tie-breaking.®

The last piece of the puzzle is to show that there are nondegenerate (posi-
tive trade) equilibria in settings such as the double auction. Our approach is to
“seed” the auction with a nonstrategic player who is present with small prob-
ability, and who then makes buy or sell bids uniform over the range of values.
With this extra player present, it no longer makes sense for buyers to always of-
fer 0, or sellers to always ask v, since such bids never trade, while one could bid
more generously, and sometimes profitably trade with the nonstrategic player.
What is less clear is that this implies an amount of trade that does not vanish
as the probability of the nonstrategic player being present goes to 0. The key is
to show that once the nonstrategic player is present, competition to trade with
him will push the bids of buyers with high values well above 0 and sellers with
low values well below v. Essentially then, the extra player sets off a cascade,
resulting in a positive amount of trade even as the probability that the extra
player is present vanishes.

Section 2 discusses related literature. Section 3 presents our private value
auction setting. Section 4.1 shows that the equilibria in such auctions are in-
variant to the tie-breaking rule. In Section 4.2, we show how invariance implies

8This is also true of Lebrun (1996) and Maskin and Riley (2000).
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existence of equilibria for the auctions in our class. Section 5 shows that these
equilibria can be chosen to have nondegenerate trade in auction environments
where no-trade equilibria are a possibility, such as double auctions. An Appen-
dix contains the proofs.

2. RELATED LITERATURE

The method of proof we use for our first result, demonstrating existence with
a nonstandard tie-breaking rule and then showing that the tie-breaking rule
can be changed to a standard one, is reminiscent of Maskin and Riley (2000).°
The strategy of Maskin and Riley’s proof is to consider a sequence of auctions
with finite bid spaces, in which, in the event of a tie, a Vickrey auction takes
place. For the auctions they consider, the Vickrey auction is enough to guaran-
tee that payoffs are preserved in the limit as the finite grid of bids grows fine.
They then argue that these ties would never occur in equilibrium anyway, and
so the equilibrium is in fact a standard one. So, like them, we show existence in
a game where one does something strange in the event of a tie and then work
backward to show that in many cases of interest this was irrelevant, in our case,
by applying our invariance result. Within the class of private value auctions, we
cover a substantially broader set of cases than those of Maskin and Riley, es-
sentially because our tie-breaking methods allow for potentially stranger rules.
This allows us to handle equilibrium where bidding is not monotone in type,
and thus to cover a wide variety of auction formats and information structures
not handled in the previous literature. On the other hand, Maskin and Riley’s
results hold for some nonprivate value auctions (with affiliated types) while
our result does not. It is an open question how far techniques like those in this
paper extend beyond private value auctions.

As discussed above, the idea of getting existence in games with augmented
message spaces is also related to Lebrun (1996), who looks at first price single
unit private value auctions in which bids are augmented by messages that turn
out to be irrelevant. He notes that in augmenting the game, and letting tie-
breaking depend on the message sent, he is doing something reminiscent of
what Simon and Zame (1990) do in games of complete information.!’ Thus,
in the specific setting he studies, Lebrun’s technique parallels the one we use
here.

This paper is also related to the literature on existence in games with con-
tinuum type spaces, including, for example, Dasgupta and Maskin (1986),

This technique is also used by JSSZ who argue that if valuations are private and the distrib-
ution is atomless and satisfies some other continuity conditions, then there exists an equilibrium
in a first price auction with standard tie-breaking (see their Example 3).

0The idea of using messages to restore limit continuity in a finite approximation setting should
also be credited to Manelli (1996), who uses such messages to restore equilibria in infinite signal-
ing games.
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Simon (1987), and of course Reny (1999). Reny shows that his condition ap-
plies in a multiple unit, private value, pay your bids auction, a case for which
we also prove existence (see his Example 5.2). A recent working paper by
Bresky (1999) uses a different line of attack to apply Reny’s result to private
value auctions. Neither paper covers the class of settings covered here.

Of course, none of the previous literature has anything to say about the prob-
lem of no-trade equilibria in double auctions.

Thus we move beyond the previous literature in four ways:

(i) We show a broad invariance property across tie-breaking rules for the
equilibria of private value auctions.

(i) We show that the invariance property and consideration of nonstandard
tie-breaking allows for the straightforward application of either JSSZ or Reny.
The way in which these results can be leveraged should be interesting in its
own right and potentially of wider applicability.

(iif) This provides an existence result for private value auctions that covers
substantially more ground than previous results, even in the single auction case.

(iv) Finally, we show there always exists an equilibrium in which there is a
positive probability of trade. This overcomes the problem of no-trade equilib-
ria, and provides the first existence result of any form for double auctions.!!

A number of papers approach the existence question in single unit auctions
by examining the associated set of differential equations. A strength of this ap-
proach as compared to ours is that it allows for interesting comparative static
and uniqueness results. Such an approach requires much more structure re-
garding the distributions of valuations than we require here. For some leading
examples, see Milgrom and Weber (1982), Lebrun (1999), Bajari (1996), and
Lizzeri and Persico (2000).

Athey (2001) considers conditions on games such that a monotone com-
parative statics result applies to the best bid of a player as his signal varies.
Essentially, one imposes a condition under which, if all of i’s opponents are
using an increasing strategy, then i has a best response in increasing strategies.
A strength of Athey’s result is that it does not rest on private values. It does
however, require a single-dimensional type space with something akin to the
monotone likelihood ratio property (MLRP; see Example 1). Recent work by
McAdams (2003) and Kazumori (2003) extends this to a multiple-dimensional
setting with independent types, in the former case with a discrete bid space,
while in the later, with a continuum.

Each of the auction papers mentioned above derives the existence of pure
strategy equilibria, while in general we show only the existence of equilibria

Since the first writing of this paper (1999), others have also looked at existence of equilib-
rium in double auctions. Fudenberg, Mobius, and Szeidl (2003) show existence of equilibrium in
double auctions with sufficiently many players. Perry and Reny (2003) address existence in double
auctions with a discrete bid space. These papers all work in a symmetric affiliated or condition-
ally independent setting, and derive increasing equilibria. Our setting has neither symmetry nor
affiliation, but does not rule out that the equilibria found involve mixing.
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in distributional strategies. This is partly due to the methods we employ, but
mostly due to the broadness of the class of distributions of valuations that
we admit. In particular (see Example 2) not all auctions in our setting have
such pure strategy equilibria, and so a result covering these auctions can at
most claim existence of mixed strategy equilibria. In some settings with pos-
itively related valuations, one can start from our existence result and then
independently deduce that all equilibria must be in increasing (and therefore
essentially pure) strategies. We present one such result, generalizing McAdams
(2003) and Kazumori (2003) for the case of private values.'” See Reny and
Zamir (2003) and Krishna (2003) for other interesting recent work on pure
strategy equilibria.

3. THE SETTING AND A CLASS OF AUCTIONS

We begin by presenting our model of private value auctions. The model
treats single and double auctions (as well as hybrids) in a single framework.

3.1. The Setting

Let us first describe the setting in terms of the players, objects, valuations,
and uncertainty.

PLAYERS: There are players N = {1,...,n}, along with a nonstrategic
“player” 0, who can act as the seller, for example, in a single sided auction.

OBJECTS AND ENDOWMENTS: There is £ < oo such that each player i €
N U {0} has an endowment of ¢; € {0, 1, ..., £} indivisible objects. Objects are
identical. Let e = (e, e, ..., e,,) denote the vector of endowments.

VALUATIONS: Each player i € N desires at most £ objects. Player i’s valu-
ations are represented by v; = (v;, ..., v;). The interpretation is that i has
marginal value v;;, for an Ath object.

ASSUMPTION 1 (Private Values): Player i receives value Zf:] vy, from having
H objects.

For h < e;, we say that vy, is a sell value. For h > e;, we say that v;;, is a buy
value.
Let v=(vy, ..., v,) be the vector of valuations of the players.

2With independent types, these papers can deal with interdependent values, which we do not.
We would like to be clear that while our basic existence results for equilibria in distributional
strategies (including nontrivial equilibria in double auctions) predate McAdams and Kazumori’s,
our corollary on pure strategy equilibria postdates theirs, and, indeed is partly motivated by their
work.
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TYPES: We say that 0; = (e;, v;) is the type of player i, and let 6 = (e, v)
denote the vector of types of all players. Let ©; C {0,1,..., ¢} x R® be the
space of possible types for player i."* Let @ = @ x --- x 0, be the space of
type vectors.

ASSUMPTION 2 (Compact Type Space): O is compact.
Let v be such that @ c {0, 1, ..., £} x [—v, D] D¢,

UNCERTAINTY: The vector 6 € @ is drawn according to a (Borel) probability
measure P on ©@. The marginal of P on 6, is denoted P;, i € {0, ..., n}. Without
loss of generality, take ©; to be the support of P;.

ASSUMPTION 3 (Imperfect Correlation): P is absolutely continuous with re-
spect to [, P;, with continuous Radon—Nikodym derivative f.

Assumption 3 puts no restriction on how e; and v; are related, or on the
relationship between any two values v;;, and v;;, for any given player. It simply
imposes that (e;, v;) and (e;, v;) are not too dependent. For instance, in a two-
player, one object auction, if P were uniform on the diagonal {v|v;; = vy},
then v; and v, would be perfectly correlated and P would not be absolutely
continuous with respect to P; x P, (the uniform distribution on [0, 1]?). On the
other hand, under Assumption 3 types can be “almost perfectly correlated” in
the sense that P can place probability one on some small neighborhood of the
diagonal.

ASSUMPTION 4 (Atomless Distributions): P;({vy, = x}) =0 for all i € N,
he{l,...,£},and x € [—v, V].

This assumption rules out that particular values occur with positive proba-
bility. It is stronger than just assuming that P; is atomless as it rules out, for
example, that v;; = 1 while v, is distributed uniformly on [0, 1]. It allows, how-
ever, v;, = vy, With probability one.

We emphasize that we have not imposed any sort of affiliation among differ-
ent players’ values and so the following example is within our setting. Because
this auction does not have an equilibrium in nondecreasing strategies, it is not
covered by any previous paper on existence in auctions.

EXAMPLE 1: Consider a two player, private value, first price auction. Values
are uniformly distributed over the triangle

{(U], U2)|v1 > 07 Uy = 07 1 =V + Uz}-

13We will generally ignore the valuations of the nonstrategic “0” player.
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Here, higher values of v; correspond to lower expectations of v,, and vice
versa. This auction has no nondecreasing pure strategy Nash equilibrium. To
see why not, suppose to the contrary that such an equilibrium b,(-), b,(-) ex-
ists. Let us first argue that v, > b,(v,) for all v, € [0, 1). Suppose not, so that
b, (vy) > v, for some v, € [0, 1). Then, since b, is nondecreasing, b,(v,) > v, for
all v, € (v5, by(v)). But, then, since P(v|v; < v, v, € (v, b2(v5))) > 0, it must
be that there is a positive probability that at least one of the players wins with
a bid above value,'* and so would do strictly better to lower his bid to value.
This contradicts equilibrium. Now consider a bid by bidder i when his value is
above 1 — e. He knows that the other bidder’s value is below &, and thus so
are the other bidder’s bids. Thus, i’s bids should be no more than &, and so
i’s bids for values near 1 are near 0. Therefore, the only possible equilibrium in
nondecreasing strategies is b1(v;) = b,(v,) = 0 for all (v;, v,), which is clearly
not an equilibrium.

ASSUMPTION 5 (Nonincreasing Marginal Valuations):

P({(e, v)|vip = vipi1 Vi, h}) =1.

Assumption 5 simply states that each player’s marginal valuations for objects
are nonincreasing in the number of objects. This makes our life easier in terms
of keeping track of incentives. In particular, with increasing marginal valua-
tions, a player might find himself submitting the same first and second bids,
and simultaneously wishing he could lower his first bid because he dislikes win-
ning one object, but raise his second bid because he likes winning two objects.
A related and fuller discussion follows Assumption 9. Whether equilibria still
exist in such situations is an open question.

3.2. The Class of Auctions

We consider auctions where each player submits a vector of bids, one for
each potential object that they may buy or sell. Of course, the auction mecha-
nism may ignore some of this information, but we allow for the possibility that
it is used.

Bidding and reserve prices

Foreachic{0,...,n},abid b; eRisa nonincreasing vector of £ numbers.
We assume that there exist real numbers b < b such that the set of allowable
bid vectors for i is the set of nonincreasing vectors

B; c [b, b]".

YEither player 2 wins for at least some values of v, € (v, by(v})) or else player 1 must be
outbidding 2 even when v; is lower than v,.
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Let B denote the set of admissible bid vectors, B= By x B; x --- x B,,.

The requirement that bid vectors be nonincreasing is simply a labeling state-
ment, as bids can always be reordered in this manner. It will be consistent with
how auctions process bids, in the sense that higher bids are given priority.

For most sensible auctions, the spaces B; include the compact support of
the v;’s and bids outside of that range are weakly dominated. For example, in
discriminatory as well as uniform price auctions, a bid b;, above v;;, is weakly
dominated by a bid at v;;,. In an all pay auction, a bid above v;, is weakly dom-
inated by bidding 0. In these settings, one is making no extra restriction on
bidder’s behavior in imposing the existence of b.'" In settings where there is a
highest sensible bid for a buyer, allowing sell bids above that amount is a con-
venient way to let a seller “sit out” of the auction, and similarly when there is a
lowest sensible bid for sellers.

Timing
The nonstrategic player moves first, and the remaining players then move

simultaneously. So, at time 0, b, is announced, then at time 1 each playeri € N
observes 6; and submits a bid b,.!617-18

Payments

The payment that a player makes or receives depends on the number of ob-
jects bought or sold. We require that conditional on the number of units that
i is allocated, and conditional on the endowment vector, his payment varies

BFor an example in which optimal buy bids may not be bounded from above, consider a third
price auction with three players. Suppose that player 3 happens to always bid between 0 and 1,
and that players 1 and 2 have values that are always at least 2. Then, each of player 1 and player 2
would like any bid he makes to always exceed any bid by the other player. So, optimal bids (at
least in some scenarios) are unbounded.

For an example in which optimal buy bids may not be bounded from below, consider an auction
in which players each demand two units, and in which & units are for sale. The price is a convex
combination of the k and (k + 1)th highest bids, with the weight on the kth being a strictly
increasing function of the average bid. Then, a bidder with a low second value might well find it
optimal to submit a first bid near his first value, but make his second bid arbitrarily negative.

16While treated identically to other bid vectors, b, can be thought of as s reserve price vector.
In order to have player 0 not participate in the auction at all (for instance in a double auction)
we can simply set eg = 0 and by, = b for all &, in which case all of 0’s bids are noncompetitive.

7Secret reserve prices are handled by having player 1 have the only positive endowment, so
that player 1 is the seller and his bid is the secret reserve.

8Note that we are considering the game having fixed by, and not the game in which b, is
chosen strategically. It follows from Theorem 2 of JSSZ that the set of equilibria of the game
defined by b, with omniscient tie-breaking is upper hemi-continuous in b,. By Theorem 9, every
such equilibrium is an equilibrium under standard tie-breaking. Hence, the set of Nash equilibria
of the game induced by b, is upper hemi-continuous. It follows that there is also an equilibrium
of the game in which buyer 0 chooses by according to some objective.
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continuously as a function of the vector of submitted bids. Thus, there are con-
tinuous functions #;: {0, ..., £}"*> x B — R, such that i’s payment is #;(&, e, b) in
the case where the bid profile is b, the endowment vector is e, and he receives
h objects."

Note that the assumption of continuity here is consistent with the disconti-
nuities present in an auction setting. This is because #;(4, e, b) only says what
i would pay if i were to receive & objects. A change in bids can still change how
many objects i gets, say from % to i + 1, and thus can still lead to a discontin-
uous change in payments. For example, in a first price auction, £,(1, 0, b) = b;
and #(0, 0, b) = 0, both of which are clearly continuous even though the pay-
ment as a function of bids accounting for ties and changes in the number of
objects received is not continuous.

Typically (but not always, as illustrated by Example 4), t;(k, e, b) will have
the same sign as ’s net trade, h — ¢;.%

3.2.1. Payoffs

Players evaluate the outcome of the auction via von Neumann—-Morgenstern
utility functions. This allows for risk-averse, risk-loving, or any of a variety of
other sorts of preferences.

ASSUMPTION 6 (Expected Utility): Player i € N has a von Neumann-
Morgenstern utility function U; over her net payoff. U, is continuous, strictly in-
creasing and has a first derivative that is bounded away from 0 and c.

Assumption 6 implies that there exists A < oo such that U'(x)/U’(y) < A
for all x and y.

So, a player’s utility when receiving 4 objects in the final allocation when the
bid vector is b and the endowment is e is described by

Ul((z vih’) - ti(ha e, b)))
W <h

where U, is a continuous von Neumann-Morgenstern utility function.

YThe way in which we have defined ¢ includes a specification of payments for b and & where
in fact it is not consistent for i to receive 4 objects given b. This is a notational convenience.

2 An important point about the way in which we have formulated the payment rule is that
player i’s payment can depend on his own allocation but does not further depend on other players’
allocations, such as which players other than i won. Without this assumption, an entirely new
and tricky set of discontinuities arises. For example, even though player i might happen not to
be involved in a tie, small changes in his bid might affect which of two opponents wins a tie
(remember that an omniscient tie-breaking rule allows for this possibility). If this results in a
change in the payment rule i faces, then his payoffs may change discontinuously despite the fact
that his bid is not involved in any ties.
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3.3. Examples and a Preview of Our Results on a Narrower Class of Auctions

The general development that follows is involved given the breadth of the
class of auctions handled and the attention paid to allocations and tie-breaking
rules. Thus, we offer some examples of auctions covered by our existence re-
sults and a preview of some of the results for a narrower class of auctions. This
class still includes most standard auction formats.

Although our statements here should be clear, we refer the reader to the
subsequent sections for the formal and more general statements of our results.

We emphasize that in all of the examples that follow there is no assumption
about symmetry of the distribution of the players’ endowments, valuations, or
utility functions.

(i) A Standard First Price Single Unit Auction. In terms of our defini-
tions and notation this is expressed as follows. There is one object sold by
player 0, and so £ = 1 and the distribution over endowments is such that
Pr({e = (1,0,...,0)}) = 1. The payments are such that an agent pays his bid
if he wins an object (#;(1, e, b) = b;;) and nothing otherwise (#;(0, e;, b) = 0).
The reserve price is by =0. Let C = {i € N |b;; > bj, for all j € N U {0}} (the
set of players who submitted the highest bid). Then, the allocation rule gives
the object to player i € N with probability 1/#C if i is in C and 0 otherwise. If
C is empty (so that no player other than 0 bids at least 0), then player 0 retains
the object.

Note that because the seller submits a bid at 0, a negative bid by any other
player never wins. Hence, such bids are simply a way for players to express that
they have no interest in winning.

(ii) A Standard First Price Single Unit Auction with a Known Reserve Price,
r > 0. This is the same as Example 1, except that player O sets a reserve price
b01 =r.

(iii) A Single Unit Vickrey (Second Price) Auction. This is as in (1) or (2),
except that the payment rule for a winning bidder changes to (1, e, b) = b?,
where b* is the second highest bid submitted (including the reserve price
b01 = r).

(iv) An Unfair Auction. This is the same as any of the above examples ex-
cept that some players pay only some fraction of the payments indicated above
when they win while other players’ payments are unchanged.

(v) An Auction with Entry Costs (and a Reserve Price). Let ¢ > 0 be the
entry cost incurred by a player wishing to make a bid, where the decision of
whether and how to bid is made without knowing other players’ entry decisions.
This is handled in our model as follows. The setting is as in (1), (2), or (3),
except that £,(0, e, b) = cmin{b;; + 1, 1} and #(1, e, b) = cmin{b; + 1, 1} + b
for the first price version (with (1, e, b) = cmin{b;; + 1, 1} + b*} for a second
price auction).

The form of #;(0, -) is chosen so that the function is continuous and satisfies
our assumptions. Effectively, sending a bid of —1 means that the player stays
out of the auction and does not pay the cost ¢, whereas sending any bid b; > 0
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incurs the cost ¢ of participating. The remaining bids between —1 and 0 are
bids that would never be used in equilibrium since they cannot win an object
(given a reserve price of r > 0) and yet would incur some bidding cost. Thus,
the presence of the bids that lie above —1 and below 0 is just a technical device
in this example.

(vi) An All Pay Auction (and Various Implementations of the War of Attri-
tion). A first price all pay auction is the same as in (1) except that #,(0, e, b) =
t;(1,e,b) = b;. In the standard war of attrition the winner pays the second
highest bid and so #;(1, e, b) = b* as in (2), while #,(0, e, b) = b,.

(vii) A First Price Procurement Auction. Here £ = 1 and player 0 has ¢, = 0.
Thus, setting by; > 0 represents the maximum amount that 0 will pay for an
object. Each player i > 0 has e; = 1. The lowest bidder among i > 0 sells an
object to player 0 provided the bid is no more than by, (with ties among players
i > 0 broken in any way). The payment if an object is sold by i to 0 is #;(0, e, b) =
—b;;. That is, the buyer pays b;; to the winning seller. Otherwise payments
are 0. The obvious variation leads to a second price version of a procurement
auction.”!

(viii) A Multi-Unit Discriminatory (Pay Your Bid ) Auction. Take £ > 1 and
Pr({e=(¢,0,...,0)}) = 1. The top ¢ bids are declared winners, and payments
are t;(h,e,b) = Zﬁ,=1 biw.

(ix) A Multi-Unit Uniform Price Auction. As in (8), except that winning play-
ers pay the (£ 4+ 1)th highest bid for each unit they acquire, so #;(k, e, b) =
hb*+!, where b**! is the (¢ + 1)th highest bid.***

(x) A Standard Double Auction. Players 1 through n, are potential buyers
having e; = 0. Players n, + 1 through n = n;, + n, are potential sellers having
e; = 1. Ties between a buyer and a seller are broken in favor of trade, and
ties among buyers or among sellers are broken randomly. Let p = (' + ") /2,
where b’ is the n,th highest bid, and b” the (n, + 1)th. Then, #(0, e, b) = — pe;,
while #,(1,e,b) = p(1 —¢;).

(xi) A Generalized Double Auction. Players 0 through n draw a realiza-
tion of (e;, v;), and submit bid vectors. Objects are allocated to the > e;
highest players, with tie-breaking as in (9). Let t;(h, e, b) = p(h — e;), where
p is a weakly increasing and continuous function of the (3 ., e;)th and
(3", e: + 1)th highest bids. Note that players may turn out to be buyers or
sellers, even for a given realization of their own type vector, depending on how
their bid vector compares to those of other players.

2Extensions to multi-unit procurement auctions are also easily handled.

2There are many variations on ways to select the price paid, including some that ensure that
a player’s losing bid does not end up setting the price he pays for his winning bids (such as that
suggested by Vickrey (1961)). The particulars of how the price is chosen and even whether it
differs across players will not matter, as our theorem will apply in any case.

BExamples (8) and (9) cover the class of private value auctions examined in Swinkels (1999,
2001) and Jackson and Kremer (2004).
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(xii) A Double Discriminatory Auction. This is the same as (11), except for
the payments. If a player ends up as a net buyer with 4 objects, he pays
ZZ,zei 41 biw. If i ends up as a net seller, he receives > i 1 biw. The auctioneer
(player 0) pockets the difference.

THEOREM 2: Each of the auctions described above has an equilibrium in dis-
tributional strategies that have support in the closure of the set of undominated
strategies.

In one-sided auctions (or more generally, any auction where there is a
nonstrategic seller with a reserve below v), the equilibrium above will auto-
matically have trade. When there is no nonstrategic seller, this is less clear. For
example in a double auction, there may exist degenerate equilibria where all
sellers bid at the top of the support of values and buyers bid at the bottom.

Existence of equilibria with a positive probability of trade is guaranteed with
two additional assumptions. First, we require that changing one player’s type
does not alter the support of types for another. In particular, we assume that
the Radon-Nikodym derivative of P with respect to [ [, P; is always positive.
Second, we assume that there is some competition for gains from trade. It is
enough to have the support of buyer and sellers’ valuations overlap for all %
and to have either at least two buyers or at least two sellers. A weaker condition
is described in Section 5.

THEOREM 3: Under the above-mentioned assumptions, each of the auctions
described above has an equilibrium that has support in the closure of the set of
undominated strategies and has a positive probability of trade.

3.4. The General Class of Auctions: Allocations and Tie-Breaking Rules
We now return to the formal definitions of allocations and tie-breaking,
which are needed in the full statement of our results and to complete a de-
scription of the class of auctions that we consider.
Allocations
An allocation is a vector a € {0, £}"™' = A. The component a; is the number
of objects that are allocated to player i.

Consistent allocations

An allocation is consistent with vectors of endowments and bids (e, b) if

n n

S a=Ye

i=0 i=0
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and
{bjh’ > bih and a; > h} =a; > h.

The first condition is simply a balance condition, requiring that all objects be
accounted for. Note that this allows for the possible interpretation that objects
that are allocated to the 0 player might be “unsold,” for instance in the case
where player 0 is the only seller in an auction.

The second condition simply says that if i receives at least 4 > 1 objects and
J’s h'th bid exceeds i’s hth, then j must get at least 4’ objects. Thus, higher bids
are given priority over lower bids in allocating objects.*

Let C(e, b) C A denote the set of consistent allocations given endowment
and bid vectors (e, b).

Ties

Say that there is a tie given (e, b) if there exist @ and a’ in C(e, b) such that
a # a'. Say the tie is at b* if

#{i, hby, > b} <> e; and
i=0

#{i, h|b;, > b*} > Zei.

i=0

So, in the event of a tie at b*, all bids above b* are filled, but there is some
discretion in to whom to allocate objects at b*. Thus, for instance, it is not a tie
if there are two objects for sale, bidder one has the highest bid, and bidder two
has two identical bids that are the next-highest. Here bidder two has the “tied”
bids, but will always get one object in any allocation.

Tie-breaking rules

As discussed in the Introduction, we prove existence for a very wide class of
tie-breaking rules, including some fairly strange ones. In particular, we allow
for the possibility that the auctioneer uses more information than just bids and
endowments in determining allocations.

An omniscient tie-breaking rule is a (measurable) function 0: 0 x B — A(A)
such that o(e, v, b) places probability one on the set of consistent allocations

%In some auctions, some players enjoy a special status. For example, some of the PCS auctions
subsidized bids by minority owned firms (see Cramton (1995)). One way of implementing this
would be to declare the minority firm a winner if its bid is at least, say, 2/3 of the highest bid. We
instead include asymmetries by insisting on the highest bid winning, but allowing payment rules
to differ, so that, for example, the minority firm pays only 2/3 of its submitted bid.
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C(e, b). We let o(e, v, b)[a] denote the probability of allocation a under o at
(e, v, b), and o;(e, v, b)[h] denote the probability that i is allocated % objects
under o at (e, v, b).”

Given the requirement of consistency, o only has any discretion where there
are tied bids, and hence the term “tie-breaking rule” is appropriate.

Let standard tie-breaking be the particular tie-breaking rule that is defined as
follows. Consider a tie at b*. First, allocate an object to each bid that is strictly
above b*. Next, allocate an object with equal probability to each player who has
an unfilled buy bid at b*. Repeat until all objects are gone, or until there are no
unfilled buy bids at b*. At this point, iteratively allocate any remaining objects
one at a time with equal probability to those players who have an unfilled sell
bid at b*.

The two key aspects of standard tie-breaking are first that the rule is trade-
maximizing, and second that a bidder’s chance of winning an Ath object at b*
does not depend on i’s other bids. This would be false, if, for example, one
simply randomly assigned remaining objects equiprobably over all bids at b*,
as then an (4 + 1)th bid of b* would increase the chance that i receives object 4.

While we were led to consider omniscient tie-breaking rules for their use
as an intermediate step in the proof of existence, it also strikes us that there
may be situations in which tie-breaking that depends on more than just bids
might be appropriate. For example, the government may have objectives be-
yond those of revenues that would push them to favor one player over another
in the event of a tie. In this value setting, we will see that ties never occur
anyway, so any extra information available to the auctioneer turns out to be
irrelevant. It is an open question whether meaningful ties occur in other set-
tings, and whether the possibility of favoritism, etc., would have an interesting
effect in those settings.

Competitive ties and trade maximization

It should be noted that not all ties are the same. On the one hand, is a situa-
tion in which two buyers are tied at a given bid, and only one of them receives
an object. As we will show, at least one player will always have an incentive to
deviate in this situation. Consider on the other hand, a situation in which a sin-
gle buyer and a single seller make a tied bid, but the object is transferred from
buyer to seller at a price under which both are happy to trade. Here, C(e, b)
has more than one element, since it is also consistent for trade not to occur.
But, since the object is actually transferred, there is no incentive for either
player to change their bid.

BImagine the auctioneer had access to some other information, possibly correlated with player
type, but unobservable to the players at the time they bid. Allowing the auctioneer to also con-
dition on this information in breaking ties would not expand the set of equilibria beyond those
achieved with omniscient tie-breaking: from the point of view of the players, this is equivalent to
the auctioneer simply randomizing in a way that depends on the types and bids of the players.
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Let us say that (e, b) has a competitive tie if there exists a p such that the
number of buy bids that are greater than or equal to p is not the same as the
number of sell bids that are less than or equal to p.

It turns out that while equilibrium conditions will naturally rule out com-
petitive ties, noncompetitive ties may occur in equilibrium. In particular, it is
possible that a buyer and seller have a tied bid. As long as trade always occurs
in this situation, this is not inconsistent with equilibrium. This is captured in
the following condition.

A tie-breaking rule o is trade-maximizing at (v, e, b) if the rule does not spec-
ify an allocation in which one player has an unfilled buy bid at b and another
has an unaccepted sell bid at b.° A tie-breaking rule o is trade-maximizing if it
is trade-maximizing at every (v, e, b).

We will be working with distributional strategies (see Section 3.5 for de-
tails). Given a probability measure m on ® x B, say that the rule o is effectively
trade-maximizing if it is trade-maximizing on a set of (v, e, b) having measure 1
under m. So, given the way in which types are drawn and players randomize
over bids, the probability that there is a non-trade-maximizing tie is zero.

The next example illustrates the importance of the trade-maximization in
our invariance result.

EXAMPLE 4: There is a buyer with a valuation for a single unit uniformly
drawn from [3, 4], and a seller with a valuation for a single unit for sale and
value uniformly drawn from [0, 1], where values are independent across play-
ers. The price is the midpoint between the bids.

If in the event of a tie between a buy and sell bid the auction mechanism
specifies that trade should occur, then it is an equilibrium for both players to
bid 2, and for trade to always occur if both players bid 2. This rule is effectively
trade-maximizing. If instead the auction mechanism specifies that in the event
of a tie, trade occurs with a probability p < 1, then this is no longer an equi-
librium. Now a buyer would benefit by slightly raising his bid, or a seller would
benefit from slightly lowering her bid. In fact, now there is no longer any equi-
librium in which trade always occurs. To see this, suppose the contrary. Then,
almost every bid by the buyer must exceed almost every bid by the seller. But
then, a bid near the bottom of the support of buyer’s bids wins almost always,
and so does strictly better than a higher bid. Thus, the buyer must be making
the same bid bg, regardless of valuation. Similarly, the seller must be making
the same bid by, regardless of value. Suppose that by < bg. Then, a seller can
raise his bid and still almost always sell at a better price, a contradiction. Hence
bs = by = p for some p. But this is a contradiction since the supposition is that
trade occurs with probability p < 1 at a tie.

2This includes player 0. So, for example, it is only necessary to meet a reserve price, not strictly
beat it.



110 M. JACKSON AND J. SWINKELS

Payments and bids

We need to say something about how bids determine payments. First, we re-
quire that for any given allocation, a player who is a net buyer is weakly better
off to have submitted lower bids, and a player who is a net seller is weakly bet-
ter off to have submitted higher bids. Of course, this is holding the allocation
constant. Such a change in bid may well result in the loss of a profitable trade.
Second, we will require that if one is a net seller, one’s buy bids do not matter,
and vice versa.

ASSUMPTION 7 (Monotonicity): For any i, and h > e;, t;(h, e, b) is nonde-
creasing in by, for h' > e; and constant in by, for h' < e;; and if h < e;, then
t;(h, e, b) is nonincreasing in by, for h' < e;, and constant in b;, for ' > e;.

Note that the condition does not impose any requirements about how a
player’s payment depends on the bids of others.

Having buy payments be independent of sell bids, and vice versa, is useful
in our weak domination arguments (for instance Lemma 5), and also in estab-
lishing the existence of positive trade (Theorem 15).

Payments at ties

The following condition on payments is critical to our results. It says that
one’s marginal payment when one’s Ath bid is involved in a tie is a function
only of e;, i, and b,;,. One’s other bids, and the details of with how many other
players one is tied, and what their other bids were, are irrelevant.

ASSUMPT_ION 8 (Known Marginal Transfers at Ties): Forall i, h, and e;, there
IS Dine; 1 [b, b] — R such that if (h, e, b) is such that there is a tie at by, then
ti(ha e, b) - tl(h - 1’ e, b) = pihei(bih)'

This condition is generally satisfied and easy to check. For instance, for dis-
criminatory auctions, uniform price auctions, and all double auctions (where
the price is set in the range of market clearing prices for the submitted demand
and supply curves), p;,(bi,) = b;,.*"? 1t is also satisfied for an all pay auction,
where the difference in payments does not depend on whether the player gets
an object and so p;,(b;,) = 0. It is not satisfied for a third price auction for a
single unit, since then, even if the first two bids are tied, the price paid may
vary depending on the third bid.

YNote that in a double auction where a player has a single unit to sell and b; is in a tie,
t,~(0, 1, bz) = —b,‘ and t,‘(l, 1, bl) =0. SO, Pin= 0— (_bz) = bi-

This also holds for Vickrey auctions where the price is the highest bid among other play-
ers. Note that in the case of a tie, since that requires that there must be some discretion in the
awarding of objects, the highest nonwinning bid among others must also be tied.
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Our invariance results do not hold when marginal transfers might be de-
creasing in 4. This effectively induces a volume discount, which creates much
the same phenomenon as an upward sloping demand curve: at some bid vec-
tors where the player’s two bids are tied, the player will be unhappy to win a
single object, but happy to win two.

ASSUMPTION 9 (Monotonic Marginal Payments): For each i, e;, pip,(b) is
nondecreasing in h.

This assumption is trivially satisfied where p;.,(b) = b or pi,(b) =0.

To see an example where in the absence of such a condition one might get
a rather odd equilibrium and how this might depend on the tie-breaking rule,
consider a case in which each of three players has marginal value 4 for two
objects. Half the time, one object is available, and half the time, four. Assume
that payment rules are such that, when there is a tie at a bid of b*, a player
pays 6 for a first unit and 0 for a second. Then, it is an equilibrium for all three
players to bid (b*, b*) always, as long as tie-breaking is that when there is a
tie and a single object, each player receives the object one third of the time,
while when there is a tie and four objects, each player receives two objects
with probability two thirds, and no object with probability one third. Then, by
submitting (b*, b*), a player earns

1171 2 1

Consider any deviation in which a player raises either his first bid or both bids.
By the rules of consistent allocations, this must have him always being allocated
the object when there is only one, and paying at least 6. In the most favorable
case, it always has him also win two objects whenever there are four available.
Hence, he earns at most

1 1
S@4=6)+5@8-6)=0

from this deviation. Lowering just the second bid results in sometimes winning
a first object at a loss, and never winning a second object. Lowering both bids
results in payoff 0. The problem here is that the player would effectively like to
raise his second bid and lower his first, which is infeasible.

3.5. Strategies and Equilibrium

Given the definitions from the previous subsections, an auction is a specifi-
cation of (P, o, t, by). That is, an auction consists of a probability measure, a
tie-breaking rule, a payment rule, and a reserve price vector. In what follows,
in some cases it will be clear that these are given and we omit mention of them.
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We now turn to formal definitions of the game induced by the auction in
terms of strategies and equilibrium.

We write i’s expected utility given a (possibly omniscient) tie-breaking rule o,
payment rule ¢, bid profile b, valuation vector v, and endowment profile e as

£
(1) ui(0,1,b,e,v) = oi(e,v, b)[a;1U; ((Z Uih) — ti(as, e, b)>.

a;=0 h=a;
Strategies

A (distributional) strategy for player i is a (Borel) probability measure m; on
B; x 0; that has a marginal distribution of P; on 0.

See Milgrom and Weber (1985) for discussion of distributional strategies.

Given a profile of distributional strategies m;, ..., m,, player i’s expected
payoff can be written as:

Wi(ma Pa o, t’ bO)

:/ui(o’ t’ b7 eav)dml(bllelavl) dmn(bn|enavn)dp(e’ U)'

When some of the arguments are fixed, we omit them from the notation, and
for instance write 7r(m, o) when all but the tie-breaking rule is fixed.
Equilibrium
A profile of distributional strategies my, ..., m, is an equilibrium for auction
(P, o,t, b()) if
7Ti(m7 P7 o, ta b()) > Wi(m—ia fﬁia P7 o, ta b())

for all 7 and strategies m,;.

Weak dominance

As we wish to prove existence of equilibria that satisfy a refinement that
will rule out some trivial equilibria, we establish that players use strategies in
the closure of the set of undominated strategies. The formal definitions are as
follows.

Say that bid vector b; is weakly dominated at e;, v; by b if

M,'(O, ta b—ia bia e, U) = u,'(O, ta b—ia bia e, U)7

for any e_;, v_;, b_;, with strict inequality for at least one such profile, where
o is standard tie-breaking. We say that b; is undominated at e;, v; if it is not
weakly dominated by any other bid.
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Note that we include the bid of player 0 in this definition, which is not
completely standard, as, at the time that a player submits his bid, he already
knows by. This provides for a stronger result and actually simplifies the proofs.

It is worth discussing why our definition of weak dominance is relative to
standard tie-breaking. With nonstandard tie-breaking, some pretty odd behav-
iors are undominated, especially in the multiple unit demand case. Consider
an example where two players each value two units. The auction rule is that
all objects are sold at the lowest winning bid. Most of the time, 2 objects are
available. Occasionally, there is only 1. Finally, player 2 always submits two
bids of 3. The tie-breaking rule, for whatever reason, is that if there is a tie
at 3, and player 1’s first bid is 6, then both objects go to player 1. If player 1’s
first bid is anything else, the second object is allocated at random. Then, when
player 2 has value vector (5, 4), it is undominated for him to bid (6, 3), even
though his first bid is higher than his first value. Under standard tie-breaking,
of course, one’s first bid is irrelevant to the probability that one’s second bid is
filled if one is involved in a tie, and such a bid vector is indeed weakly domi-
nated. Although this example is clearly artificial, either explicitly or implicitly,
either approach to existence, via either JSSZ or Reny, requires us to admit this
type of thing as a possibility. Thus to really have the appropriate bite on weakly
dominated strategies, we rule them out under standard tie-breaking rules.

It is well known that existence of equilibrium in games with continuous ac-
tion spaces may require the use of weakly dominated actions. An example is
equilibrium in a Bertrand game with symmetric constant marginal costs. As
such a game has analogs in the auction setting, we cannot meaningfully require
that a distributional strategy put weight 0 on weakly dominated bids. It is, how-
ever, coherent to require that the distributional strategy put probability 1 on
the closure of the set of nonweakly dominated bids.

To formalize this, let W/ C O, x B, be the set of e;, v;, b; such that b; is un-
dominated for i given e;, v;. Let W; be the closure of W),

ASSUMPTION 10 (Undominated Strategies): For each player i € N, there
is a measurable map w;:0; x B; — O; x B; such that for each (e;,v;, b;),
w;(e;, v;, b)) = (e;, v;, b)) in W; where b, = b; if (e;,v;, b;) € W, and b’ weakly
dominates b; given (e;, v;) if (e;, v, b;) ¢ W,.

Assumption 10 states that one can, in a measurable way, identify bids so that
whenever (e;, v;, b;) ¢ W;, then b; is replaced by a bid that weakly dominates it
and results in an element of W,.

Of course, for this to be satisfied, one needs to know that W, is in fact
nonempty relative to each (e;, v;). For general games with continuum action
spaces, this need not be so. Consider a game with action space [0, 1], and pay-
offs equal to action for all actions less than 1, but equal to —1 for action 1.
Then, all actions are weakly (in fact strictly) dominated. The question in the



114 M. JACKSON AND J. SWINKELS

auction setting is whether similar things might arise, especially once one con-
siders what happens to payoffs at ties (where it is easy to construct bid vectors
relative to which there is no best response).

We have not found a sensible auction-like example where Assumption 10
fails. For example, in a first price auction (or a discriminatory multiple unit
auction), any bid less than value is undominated: any higher bid may simply re-
sult in bidding more in situations where one might already have won, while any
lower bid may result in the loss of a profitable purchase. W thus includes all
bids in which one bids at or below value. Similarly, in a second price auction,
a bid equal to value is not weakly dominated. And, in either case, replacing
buy bids above value (or sell bids below value) by bids at value is clearly mea-
surable.” In an all pay auction, a bid of zero is not weakly dominated, and
replacing bids above value by 0 is again clearly measurable. Using these two
ideas, it is easy to check that Assumption 10 is satisfied for all the auctions
discussed in Section 3.3.

A useful observation is the following:

LEMMA 5: Under Assumptions 1-10, given (e;, v;), let b; be any bid vector such
that pipe,(bin) < vip for some h < e;, or pipe,(bin) > viy for some h > e;. Then
(ei,vi, b)) ¢ W,.

That such a bid vector is weakly dominated at (e;, v;), so that (e;, v;, b;) ¢ W/
can be seen as follows. If one raises a sell bid where py., (D) < vy, then the
only change can be to either sell one less object, which originally sold at a loss,
or to raise the market price as a seller, either of which benefits the player.
By Assumption 7, there can be no change if one was a net buyer before the
change in bid. A similar argument applies when one lowers a buy bid where
Dine;(bin) > vy Note that the same argument will be true for nearby (e}, v;, b;).
Hence, a neighborhood of (e;, v;, b;) is outside of W/, and so (e;, v, b;) ¢ W,.
A slightly more detailed proof appears in the Appendix.

We say that a profile of distributional strategies m is undominated* if each m;
places probability one on W.

4. INVARIANCE AND EXISTENCE

We now state our first main result.

THEOREM 6: If an auction (P, o, t, by) satisfies Assumptions 1-10 and o is
trade-maximizing, then it has at least one undominated* equilibrium. Moreover, if
m is such an equilibrium, then the probability of competitive ties under m is 0; and
m remains an equilibrium under any omniscient and effectively trade-maximizing
tie-breaking rule, including standard tie-breaking.

®In an unfair first price auction in which player 1 pays, say, 2/3 of his bid, one would replace
bids above 3v;/2 by bids of 3v,/2.
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Our route for the proof of Theorem 6 is as follows. We begin with invariance:
we show that any undominated* equilibrium must have zero probability of
any player being involved in a competitive tie and would also be an equi-
librium if we changed the method of tie-breaking to any other effectively
trade-maximizing omniscient tie-breaking rule. Using invariance, if we can es-
tablish existence of an equilibrium in nonweakly dominated strategies for some
omniscient tie-breaking rule, this implies existence of (the same) equilibrium
under any tie-breaking rule, omniscient or standard. This second step is fairly
easily established via either of two results, either JSSZ or Reny.

The discussion of invariance appears in Section 4.1. The step from invariance
to existence is in Section 4.2, with additional details in the Appendix. Those
not interested in the proof can proceed directly to Section 5 to find results
establishing the existence of equilibria with a positive probability of trade, an
important issue in auctions such as double auctions.

4.1. Invariance

The fact that ties are the critical worry for establishing existence of equi-
librium follows from the fact that ties are the only potential points of
discontinuity. So, intuitively, if we establish that players prefer to avoid ties,
then we show that the discontinuities are not important, which in turn allows
us to establish the existence of equilibrium. Let us go right to the heart of the
matter.

LEMMA 7: Consider any auction (P, o, t, by) satisfying Assumptions 1-10 and
any profile of strategies m. For each ¢ > 0 and any bidder i € N there ex-
ists m), within & of m;* such that m_;, m is tie-free for i*' and w,(m_;, m) >
mi(m_;, m;) — €.

Lemma 7 shows that for any profile of strategies, any player can find a close-
by strategy that does not involve any ties and does nearly as well as her original
strategy.*?

Note that Lemma 7 does not put any requirements on o or on m, and so it
allows for tie-breaking that is not trade-maximizing and for strategies that are
in weakly dominated strategies.

LEMMA 8: Fix an auction (P, o, t, by) satisfying Assumptions 1-10. Let m be
undominated*, and either have a positive probability of ties where o is not trade-

30Use the topology of weak convergence.

3That is, m_;, m} leads to a probability 0 of i being involved in a tie.

3]t is important to remark that this is not the same as establishing better-reply-security as
defined by Reny (1999). Better-reply-security does not hold here, as we discuss in more detail
below. We are not considering all payoffs that may be reached in the closure of the graph of the
game, only ones that directly correspond to the strategies in question.
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maximizing or a positive probability of competitive ties. Then, there exists some
bidder i € N and a strategy m’, such that m_;, m’ is tie-free for i and

Wi(m—ia m;'a Pa o, t; bO) > 7Ti(m7 P7 o, ta b())

Lemma 8 shows that for any profile of strategies placing probability one on
the closure of the set of undominated strategies, but involving a positive proba-
bility of competitive ties or noncompetitive ones that are not trade-maximizing,
some player has an improving deviation. This implies that if there exists an
undominated* equilibrium, then it must not involve any such ties.

The proofs of Lemmas 7 and 8 appear in the Appendix. The idea behind
Lemma 7 is fairly straightforward. Essentially, one bumps bids b;, for which
Vin > PDine;(bin) up slightly and bids for which v;, < py., (b) down slightly in
such a way as to avoid bids made by other players with positive probability. Any
change in trade this brings about is at most slightly unprofitable. For example,
if a buy bid is bumped up, and wins an extra object, then the payment for
the object is approximately p., (b;;). Since the change in bids is small, the
profit of the player when his allocation does not change is also little affected.
The detailed proof is slightly more involved, because (a) it has to be checked
that one can always perform this perturbation consistently across different 4,
(b) one needs to perform this perturbation in a measurable fashion across bids
and types so that the composition of the original distributional strategy and the
perturbation remains a valid distributional strategy, and (c) the possibility that
odd tie-breaking might result in a small change in a nonmarginal bid affecting
whether or not a marginal bid wins must be considered.

To see Lemma 8, assume that there is a positive probability of a compet-
itive tie or a noncompetitive but non-trade-maximizing tie at b*. Since m is
undominated*, by Lemma 5, a player will not submit a buy bid b;, = b* where
Vin < Pine;(biy) or a sell bid where vy, > pise. (byy,). Since the distribution of val-
ues is atomless, there is zero probability that v;, = py., (b*). Hence, almost all
the buyers at that tie would strictly prefer to buy, and almost all sellers would
prefer to sell. But, no matter what the omniscient tie-breaking rule, if there is
a positive probability of a competitive tie or a noncompetitive and non-trade-
maximizing tie at some b*, then at least one player who would benefit from
trade is sometimes “losing” the tie, and so strictly benefits by the deviation
described above.

When we put Lemmas 7 and 8 together, we end up with the following impli-
cation.

THEOREM 9 (Invariance): If an auction (P,o,t,by) satisfies Assump-
tions 1-10, and an undominated* profile of distributional strategies m is an
equilibrium, then under m there is zero probability of a competitive tie or non-
competitive ties where o is not trade-maximizing, and m remains an equilibrium
for (P, 0, t, by) for any trade-maximizing tie-breaking rule o’.
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Note that the conclusion that we can switch from o to o’ and still have m be
an equilibrium, is not a direct implication of Lemma 8. It may be that m is an
equilibrium under o, but o’ would induce some player to deviate to establish
a new tie. This possibility is ruled out using Lemma 7, as the following short
proof shows.

PROOF OF THEOREM 9: The fact that m must be free of competitive ties
and noncompetitive ties where o is not trade-maximizing follows directly from
Lemma 8. Let us argue that m is also an equilibrium for (P, 0/, t, by). Given
that any ties occurring with positive probability under m must be noncom-
petitive and where o is trade-maximizing, m must lead to the same payoff
vector u under both o and o’. Now suppose to the contrary of the theorem
that m is not an equilibrium under o'. Then there exists i and m, such that
m(m_;, m;, P, 0, t,by) > u;. By Lemma 7 we can find m/ which is tie-free for i
and such that m;(m_;, m}, P, 0', t, by) > u,. Since m_;, m! is tie-free for i it fol-
lows that m;(m_;, m!, P, 0,t, by) = m(m_;,m!, P, 0, t, by) > u;, contradicting
the fact that m is an equilibrium at o. Q.E.D.

The conclusions of Theorem 9 can fail if one ventures beyond private values.
This can be seen in Example 1 of JSSZ, where there exists an equilibrium for
a nonstandard tie-breaking rule, but none exists for standard tie-breaking.

Theorem 9 establishes that any undominated* equilibrium can only involve
trade-maximizing noncompetitive ties, and will remain an equilibrium for any
trade-maximizing tie-breaking rule. Thus, to prove Theorem 6 we need only
prove that there exists an undominated* equilibrium for some tie-breaking rule.

We think that it is instructive to offer proofs via both JSSZ and Reny, as
at this point they are both fairly straightforward. Moreover, this clarifies the
relationship between these two methodologies, which may be useful in further
applications and in understanding existence issues more broadly.

4.2. Two Proofs of Theorem 3

We first construct an auxiliary game where dominated strategies are pe-
nalized according to their distance from the set of undominated strategies.
Equilibria in this game must involve undominated strategies. It is also easy
to see that these remain equilibria when the penalty of domination is removed
(being careful with some details regarding the tie-breaking rule). This is stated
in the following lemma.

Consider the game G(P, o, t, by) in which when any player i uses b; with type
e;, v;, he pays a penalty c;(e;, v;, b;) in additional to the payoff he receives from
(P, 0, t, by), where ¢; is the distance of a point from the set W;.*

¥Take the distance of a point from the (closed) set W; to be the minimum of the distances
from that point to points in the set.
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LEMMA 10: Consider an auction (P, o, t, by) and the auxiliary G(P, o, t, by)
that penalizes weakly dominated strategies. Let m be an equilibrium of G(P, o,

t, by). Then, m is undominated* and is an equilibrium of the original auction
(Pa o, ta bO)

If G(P, o, t, by) has an equilibrium m for some o, then by Lemma 10, so does
the original auction. Then by Theorem 9, m remains an equilibrium for any
other trade-maximizing o. This would then complete the proof of Theorem 6.

Proving Theorem 6 using JSSZ’s endogenous tie-breaking rules

Theorem 1 in JSSZ implies that there exists an equilibrium m in an aug-
mented form of G(P, o, ¢, by) where players also (truthfully) announce their
types and tie-breaking depends on those announcements. Those strategies
remain an equilibrium when we ignore type announcements, and change the
tie-breaking rule to directly depend on types rather than announced types.
Thus, there exists an equilibrium of G(P, o, ¢, by) and hence the original auc-
tion for some omniscient tie-breaking rule o, and we are done.

The only detail to check is that G(P, o, t, b,) falls into the class of games
identified by JSSZ. This follows from checking two things. First, it is clear
that the correspondence taking bid vectors into distributions over consistent
allocations (outcomes in JSSZ) is upper hemi-continuous, nonempty, and
convex-valued. Second, JSSZ write payoffs as an inner product of a finite set
of functions u, that are continuous in actions and types, and an outcome func-
tion that depends on actions and leads to probabilities over the u,’s. Here,
the u,’s are simply the utilities that a player gets conditional on getting a fixed
number of objects, and the outcome function is the tie-breaking rule (see (1)).
These are continuous, given the continuity both of the payment rules #, and of
the penalty to weakly dominated strategies.

Proving Theorem 6 using Reny’s better-reply-security

Again, we consider G(P, o, t, by). In fact, here the penalties are necessary
not only for establishing existence of an equilibrium in non-weakly dominated
strategies, but because the game without these penalties can fail to satisfy the
conditions of Reny. We return to illustrate this with an example below.

The following definitions and conditions from Reny are the critical ones.

A player i can secure a payoff of a at m_; if there is a strategy m; such that
m(m’_,, m;) > o for all m" , in some neighborhood of m_;.*

A game is better reply secure if for any m*, u* in the closure of the graph of
the vector payoff function, if m* is not an equilibrium, then there exists { who
can secure a payoff strictly above u} at m*,.

3 Again, use the topology of weak convergence of measures on the distributional strategies
(which leads to a compact set of strategies).
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It follows from Theorem 3.1 in Reny (1999) that if G(P, o, ¢, by) is better re-
ply secure, then G(P, o, ¢, by) has an equilibrium, and we will have once again
concluded the proof of Theorem 6.%

So, it remains to verify that the (penalized) auction satisfies better-reply-
security. It is tempting to read better-reply-security as saying “whenever a
player has a better reply, he has a secure better reply” and downplay the im-
portance of taking the closure of the graph of the payoff function of the game
rather than just considering the graph itself. The following example shows the
key role played by the closure operation.

EXAMPLE 11: Consider a first price auction (with standard tie-breaking)
with two players and one object for sale. Player 1’s value is always 1 and
player 2’s value is always 2. This game violates better-reply-security. In particu-
lar, consider m*, u* where both players bid 1 and u* = (0, 1) (because player 2
always wins the object). This is the limit, for instance, of a sequence of bids
where player 1 always bids 1 and 2’s bids approach 1 from above.?® It is easy
to see that m* is not an equilibrium of the auction and yet neither player can
secure (or even obtain) a payoff above u* via a deviation. Hence better-reply-
security fails. If one just considers m, u’s in the graph of the game, then it is
easy to check that for any better reply there exists a secure better reply. So, the
failure of better-reply-security comes at a point in the closure of the graph of
the game, but not in the graph of the game.

Fascinatingly, despite the fact that this game fails better-reply-security, not
only does it have Nash equilibria, but m*, u* is in fact the limit of such equi-
libria! Let player 1 randomize uniformly over a small interval (1 — ¢, 1), and
player 2 always bid 1.7 Player 1 does not want to bid more, since the object is
only worth 1 to him. And, for small enough &, player 2 does not want to bid
anything less than 1. As ¢ — 0, the limit distributional strategies and payoffs
are m*, u*. This provides a sharp example that shows that better-reply-security
is sufficient but not necessary for existence.

It is also useful to point out that if one breaks all ties in favor of player 2,
then m*, u* is Nash. This illustrates that our invariance result (Theorem 9) can
fail when there are atoms in the distribution of types.

The example makes it clear that to verify better-reply-security we need to
have some handle on the possible m*, u* that are in the closure of the graph

3Reny’s Theorem 3.1 requires a quasi-concavity of payoffs and a compactness of strategies.
Compactness has already been established. Even though the U;’s we have considered here are
not necessarily quasi-concave, note that payoffs are in fact linear in m, as these are distributional
strategies and preferences are von Neumann-Morgenstern.

%]t is useful to point out that endogenous tie-breaking would actually prescribe the tie-
breaking rule that gives the object to player 2 at a tied bid of 1, and would lead to an equilibrium
under this alternative tie-breaking rule.

¥This type of equilibrium was identified in the context of asymmetric Bertrand games by
Blume (2003).
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of the auction in question. Generally, doing this directly will be complicated.
For instance, consider a bid vector with three tied players 1, 2, 3; one could
approach this vector from a sequence that has player 3 always winning, or with
1 and 2 tied and always winning, or any of a continuum of other possibilities.
Once we are in auctions with many objects and allow for the mixing possible
under distributional strategies, the potential limit points are quite complex.®

The key to verifying better-reply-security comes back to the use of omni-
scient tie-breaking rules! This is captured in the following lemma.

LEMMA 12: Consider an auction (P, o, t, by). For each m*, u* in the closure of
the graph G (P, o, t, by), there exists an omniscient tie-breaking rule o* such that
u* is the payoff vector induced under G(P, o*, t, by) by m*.

PROOF OF LEMMA 12: Consider a sequence (m*, u*) in the graph G(P, o,
t, by) converging to m*, u*. Then each m* along with o induces a measure M*
on O x B x A, which leads to the utilities u*. Taking a subsequence if neces-
sary, the sequence of M*’s converges weakly to a measure M* on @ x B x A.
Given that utility functions are continuous on @ x B x A4 (A is finite), the cor-
responding utilities induced under M* are u*. Note that M* can be induced by
an omniscient tie-breaking rule o* coupled with m* (see, for instance, Lemma 2
in Simon and Zame (1990)). Q.E.D.

Now let us use Lemma 12 to verify better-reply-security to complete the
proof of Theorem 6.

Consider any m*, u* in the closure of the graph of G(P,o,t, b,) which
is not an equilibrium of G(P, o, t, by). By Lemma 12 there exists an omni-
scient tie-breaking rule o* such that u* is the payoff vector induced under
G(P, 0%, t, by) by m*. By Lemma 10 we can deduce that m* is not an equilib-
rium of G(P, 0*, t, by). To see this, suppose otherwise. Then by Lemma 10 m* is
an equilibrium of (P, o*, ¢, by) and is undominated*. Then by Theorem 9 it
would be an equilibrium of (P, o, ¢, by) and since m* is undominated*, it would

3Recall from the Introduction that another way to apply Reny’s result is via reciprocal up-
per semicontinuity, and tie-breaking that maximizes the sum of the player surpluses. Under this
technique, one can a priori restrict agents to the closure of the nonweakly dominated strategies,
side-stepping the penalty functions we use. Reciprocal upper semicontinuity is intuitively obvi-
ous, since any ties that exist along a sequence of bid profiles also exist in the limit, and hence the
auctioneer has at least as much discretion in the limit as he did late in the sequence. Because we
are working in the space of distributional strategies, this pointwise argument needs to be applied
with some care. One also has to be careful about the difference between efficient tie-breaking
and that which maximizes the sum of payoffs to players other than 0. Reciprocal upper semicon-
tinuity can fail under efficient tie-breaking (for instance, it is easy to generate examples where
along a sequence, allocations are inefficient, but result in low payments to the auctioneer, while
the limiting efficient allocation raises these payments by enough so that players are worse off in
aggregate). We chose the direct application of Reny’s better-reply-security because of the insight
it provides into the relationship between better-reply-security and endogenous tie-breaking rules.
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also be an equilibrium of G(P, o, t, b,), which would be a contradiction. Thus
there exists an improving deviation m; relative to the game G (P, o*, ¢, by). By
Lemma 7, this improving deviation m; can be taken to be tie-free.*® Then m; re-
mains tie-free for all strategies in a neighborhood of m*,, and so player i’s
payoff is continuous in m_; in this neighborhood and the payoff is independent
of the tie-breaking rule. Thus, m; secures a payoff above u} at m*, relative to
G(P, o, t, by), as required by better-reply-security.

Finally, let us return to the issue of why penalizing weakly dominated strate-
gies is important to verifying better-reply-security.

EXAMPLE 13: Consider a two player and one object first price auction, with
standard tie-breaking. Player 1 has v; uniformly distributed on [0, 1], and
player 2 has v, uniformly distributed on [2, 3]. This auction satisfies all of our
assumptions, and indeed has an equilibrium. Nevertheless, (P, o*, t, b,) fails
to satisfy better-reply-security; only G(P, o*, t, b,) satisfies it. To see this, con-
sider m*, u* such that under m* both players always bid 1.5 and u* = (0, 1).
This is in the closure of the graph, by considering a sequence where player 1
always bids 1.5 and player 2 bids 1.5 + (1/ k) (regardless of valuation). Rela-
tive to u*, neither player has an improving deviation, even though m* is not an
equilibrium of the auction with the usual tie-breaking rule, and so better-reply-
security fails.

4.3. Comments on Endogenous Sharing and Better-Reply-Security

It is interesting that the tricky part of the proof using better-reply-security is
to get a handle on the u*’s in the closure of the game. The fact that they are
those generated by omniscient tie-breaking suggests a deeper connection be-
tween the machinery of Reny and that of JSSZ. That is, a proof of existence via
“apply JSSZ and check that some equilibria correspond to nice tie-breaking”
and “check better-reply-security” are closely related. Because of the require-
ment that better-reply-security apply relative to all points in the closure of the
graph, rather than just the graph, one has to understand exactly what might be
in that closure; and the points in the closure are precisely the points that come
from omniscient choices at points of discontinuity. On the other hand, in apply-
ing JSSZ, one has to understand the equilibria that might be generated under
omniscient choices at points of discontinuity. In the auction setting, these two
tasks are closely related. How these approaches turn out to be related and
which might be more efficient in other settings is an open question.

¥To be careful, Lemma 7 would apply to G(P, o*, t, by) rather than (P, 0%, t, by). It is a direct
extension that it holds for G(P, o*, t, by) as well.
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4.4. A Corollary on Monotone Pure Strategy Equilibria

As mentioned in the Introduction, while Theorem 6 establishes existence of
equilibrium in distributional strategies, in some contexts one can use additional
structure to argue for the existence of monotone pure strategy equilibria.*’ Let
us present one such result.

Consider a situation where the distribution over types is independent across
players and players are risk-neutral.

In order to establish this result for this general class of auctions, we need
to impose some restrictions on the interaction of a player’s bids for different
objects. We strengthen (Assumption 8) as follows.

For any (e, b) and i such that i is not involved in any competitive ties (so that
i’s allocation is unique), let T;(e, b) be the total payment made by i.

ASSUMPTION 8': Assumption 8 holds. In addition, consider any (e, b) and
(e, b_;, b}) such that i is not involved in any competitive ties, and h such that
bi.n, b}, and b; _,, b, are both valid bid vectors. Then,

T(ea b—h bt) - T(ea b—ia bi,—ha b/h)

1

= T(e, b,l‘, b;',—h’ bih) — T(e, b,l‘, b;)

Assumption 8 states that, holding the overall endowment and the bids of the
other players constant, the effect of a change in i’s 4th bid on his payments is a
function only of what the change in that Ath bid is, irrespective of i’s other bids
as long as this change is feasible.* This condition is satisfied by all the standard
auction formats. In (multi-unit) discriminatory and all pay auctions a change
in i’s Ath bid only affects the payment attributed to the 4th object (in the all pay
auction this is whether or not the object is won), and so the change in payment
is unaffected by the rest of i’s bid vector. In a Vickrey auction, the change in
i’s hth bid can only affect whether i gets an Ath object, and if it does, then the
price for that additional object depends on the bids of the other agents, and is
independent of the rest of i’s bid vector. In a multi-unit uniform price auction,
an additional feature arises in that the Ath bid might be setting the price for i’s
other objects. However, for any feasible bid vector where i’s Ath bid is setting
the price, i must be getting 4 — 1 objects, and so the change in payments is then

“OTn terms of distributional strategies, a pure strategy is any strategy that puts probability one
on the graph of a function from types to bids, f: ® — B, where f = (fi,..., f,) and f;:0; — B;.
A strategy is monotone if the f is such that higher valuation vectors lead to (weakly) higher bid
vectors-holding the endowment constant. That is, for any i, if v, > v;, for each &, then f; (v}, e;) >
fv;, e).

“Given Assumption 8, a sufficient condition for Assumption 8 is that 37;(e, b)/db,;, be well
defined when no other bidder has a bid equal to b;,, and this partial derivative depends only on
(h, e), by, and the rank of b;, among all bids.



PRIVATE VALUE AUCTIONS 123

also irrespective of the level of i’s other bids subject to this change of the Ath
bid being feasible.

This rules out settings where, for example, the price to players other than
some player j in a multiple unit auction is a smoothly changing convex com-
bination of the Vickrey and highest rejected bid rule, depending on the bid of
player j. It also rules out a multiple unit variant of the third price auction in
which the price is set by the second highest rejected bid. In this setting, knowl-
edge that one’s second bid has rank ) e; + 2 does not tie down the effect of a
change in bid on payments, since one’s highest bid may or may not be among
the first ) _e;.

COROLLARY 14: Consider any auction satisfying Assumptions 1-10 and
Assumption 8, where types are independent across players, the marginal distri-
bution of each player’s vector of values is absolutely continuous with respect to
L-dimensional Lebesgue measure, and each player i > 1 is risk-neutral. There ex-
ists a monotone pure strategy equilibrium in undominated* strategies with a zero
probability of competitive ties, which is an equilibrium under any omniscient and
effectively trade-maximizing tie-breaking rule, including standard tie-breaking.

The proof of Corollary 14 appears in the Appendix. The basic ideas are
fairly straightforward, although the details are slightly more involved. Under
Assumption 8, risk-neutrality, and independence, a change in a bid for the
hth object by i can be considered essentially independently of bids for other
objects. So, a change in one bid does not change the effect on payments of a
change in another. And, independence also implies that the change of a bid
affects payments and the probability of winning a given object in a way that is
independent of a player’s valuation. Thus, given private values, if raising a bid
is weakly beneficial at one valuation, it is strictly beneficial at any higher valu-
ation. This implies monotonicity and pure strategies to the extent that changes
in bids matter. To complete the picture, we use a modification of the auction
that is similar to the seeding argument we use to prove positive trade in the next
section, and is also in the spirit of a technique subsequently used by Kazumori
(2003) to argue for existence of monotone pure strategy equilibria. In partic-
ular, with a small probability one introduces extra bidders who randomly bid
at all levels for all objects and vary the available supply to take on any pos-
sible value. This implies that any change in bids matters, and then bids must
be monotone and hence pure (almost) everywhere. Taking careful limits as the
noise goes to 0, one can use results of JSSZ and the invariance results (Theo-
rem 9) to deduce a monotone pure strategy equilibrium of the original auction.

It is also worth noting that even without the perturbation arguments, bids
must be increasing over ranges where they matter. What is possible is that
some equilibria might involve players mixing or bidding nonmonotonically over
a range of bids all of which, for example, never win. In the single unit case, one
can effectively purify such equilibria. Doing so in the multiple unit case seems
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more daunting, and so it is open whether the auctions described might have
other equilibria meaningfully different from the monotone equilibria we have
shown to exist.

5. EQUILIBRIA WITH A POSITIVE PROBABILITY OF TRADE

For some auction settings, a major potential weakness in the existence result
(Theorem 6) as currently stated is that there may be a zero probability of trade.
Consider, for example, a simple double auction (as in Example 9). There is an
equilibrium that puts probability one on the closure of the set of undominated
strategies in this auction where sellers always bid v, and buyers always bid 0.
Buyers know that sellers are never making serious bids and sellers know that
buyers are never making serious bids, and thus their own nonserious bids are
best responses, and yet undominated strategies are used.** So, it could be that
Theorem 6 has only “proven” that this degenerate equilibrium exists.

In this section we establish the existence of an equilibrium with a positive
probability of trade for the auctions in our class.

First, we note that in some cases it is straightforward to see that each equi-
librium identified in Theorem 6 must involve a positive probability of trade. In
particular, consider the case where the nonstrategic player 0 is active in the
sense that Py({e, > 0}) > 0 and that when ¢, > 0, player 0 sets a reserve price
for at least one of his units so that there is a positive probability that some
buyer has a value for a first unit that would lead to a positive utility if they were
to be allocated it at a bid of the reserve price (for simple pricing rules, this
reduces simply to a reserve below the highest possible buy value). Then, there
is clearly trade in equilibrium.

So, the issue of establishing existence of equilibria with a positive probability
of trade involves settings where player 0 is not active, as in a double auction.
We use three additional assumptions. The first two are critical, the third a con-
venience.

The first assumption rules out too much dependence in the distribution of
values. Essentially, it requires only that changing one player’s type does not
alter the support of possible types for another, and is consistent with any finite
likelihood ratio on the distribution of values within that support. As such, it is
quite weak.

ASSUMPTION 11 (Full Support Prior): f(0) > 0 for all 6 € O, where f is the
Radon—Nikodym derivative of P with respect to [ [, P;.

Given that f is a continuous function (Assumption 3) and @ is compact (As-
sumption 2), f(6) > 0 implies that there exists co > M > M’ > 0 such that

“2In fact, the equilibrium satisfies a trembling hand perfection requirement, as discussed in
Jackson and Swinkels (1999).
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M > f(8) > M’ for all 6 € @. The new content of Assumption 11 over that of
Assumptions 2 and 3, is of course, the existence of M’

We use Assumption 11 to show that the fact that types are not perfectly
correlated translates into the same feature for bids (see Lemma 17 in the Ap-
pendix).

Our second assumption ensures that there is some possibility of serious com-
petition for the gains to trade. This guarantees that some players (e.g., buyers)
will be forced to make bids that are attractive enough to induce other players
(e.g., sellers) to be active.

ASSUMPTION 12 (Competition for Gains from Trade): Let w be the max of
the support of the distribution over all buy values, and w the min of the support

of the distribution over sell values. Let [w,w] C [b, b] and at least one of the
following hold:

(i) For each player who ever has a buy value above w, there is a positive prob-
ability that the remaining players have at least £ 4 1 sell values below w, or

(ii) for each player who ever has a sell value below w, there is a positive proba-
bility that the remaining players have at least ¢ 4+ 1 buy values above w.

For some insight into Assumption 12, consider a standard double auction.
Then, as long as there are two or more sellers who sometimes have values
below w or two or more buyers who sometimes have values above w, Assump-
tion 12 is satisfied. Within the standard double auction, we are ruling out only
the case of one buyer and one seller.* The condition involving ¢ + 1 extends
this to multiple unit demands. It rules out, for example, a setting in which there
is a single buyer demanding three units, and two sellers, each with one unit to
sell. Here, there is no real competition among the sellers. This assumption of
having competition is used in our proof of Theorem 15 in showing that seeding
trade then leads to positive amounts of trade, but this condition is clearly not
always necessary for getting positive trade in equilibrium.

When players can be either buyers or sellers a priori, the condition is slightly
more intricate. In particular, consider a case where there are three players.
Player 1 always has endowment 0, and value uniform on [.5, .6]. Player 2 always
has endowment 1, and value uniform on [.4, .5]. Finally, player 3 half the time
has endowment 0 and value uniform on [.9, 1], and half the time endowment 1
and value uniform on [0, .1]. Then, the condition fails, because the only time
that player 3 has a high buy value, there is only one seller, and the only time
player 3 has a low sell value, there is only one buyer. Hence, there is really no
competition for the gains to trade generated by the existence of player 3.

“It should be noted that the amount of trade guaranteed by the proof of Theorem 15 depends
on M’, and that when M’ is small, so is the amount of trade that is guaranteed to occur. See
Cripps and Swinkels (2003) for a demonstration that under mild conditions, as the number of
players grows, trade in any such nontrivial equilibria converges to the Walrasian level.

#See Kadan (2004) for a proof of existence in the bilateral case.
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Finally, in establishing existence, we did not need a direct tie between the
level of bids and the prices paid, other than some continuity and monotonicity
conditions. In order to use a “seeding trade” argument, it is convenient to have
a tighter feel for how payments vary with bids. The following assumption does
this.

ASSUMPTION 13 (Marginal Transfers Equal Bids): For any i, h, and e,
ti(ha e, b) - tl(h - 1’ e, b) = bih'

Assumption 13 states that when a player is involved in a tie, he pays his bid.
This is true for any sensible double auction rule, as when there is a tie at b*,
then b* is the only price which clears the market for the submitted demand and
supply curves.

We can now state our second main result.

THEOREM 15: Each auction (P, o, t, by) satisfying Assumptions 1-13 has an
undominated* equilibrium that has a positive probability of trade.

Given Theorem 15, and recalling our discussion of auctions in which player 0
is active, we obtain the following corollary.

COROLLARY 16: Let (P, o, t, by) satisfy Assumptions 1-10. If either player 0 is
active® (as in a one-sided auction), or Assumptions 11-13 are satisfied, then there
exists an undominated* equilibrium that has a positive probability of trade.

The idea of the proof of Theorem 15 can be seen in a simplified setting.
Think about the case of two buyers, each desiring one object, and two sellers,
each with one object to sell, where the marginal of P onto each player’s value
has support [w, w], and where values are not too dependent, so that Assump-
tion 11 is satisfied. Since buyers and sellers are distinct, Assumption 12 is also
satisfied.

We “seed” trade in the following manner. Consider a sequence of modified
auctions indexed by x, in which we add a fifth player who 1/x of the time has
es = 1 and makes a sell offer which is uniform on [w, w], 1/x of the time has
es = 0 and makes a buy offer which is uniform on [w, w], and the remainder
of the time has es = 0 and makes no bids, where all of this is independent
of (e, v). Clearly, any equilibrium in auction x must have some trade, as other-
wise someone should behave in a way to trade with player 5 when he is active.

Now let us argue that trade is in fact bounded away from zero as x — oo.
Suppose to the contrary that as x — oo, the amount of trade heads to zero.
The only way this can happen is that the probability that buyers offer above

“This requires that player 0 set a reserve price for selling at least one of the objects below W
(or above w in a procurement auction).
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w vanishes as does the probability that sellers ask less than w. To see this,
assume for example, that there is probability y of a sell bid below w — . Then
this sell bid must go unfilled with a probability going to one as otherwise there
would be a nondegenerate amount of trade. So, consider the strategy for buyers
where they bid w — y whenever they have a value of at least w — y/2. Under
Assumption 11 this would win with a probability bounded away from 0. Hence,
there is a strategy available to buyers that earns an amount bounded away
from zero. But then, equilibrium profits must also be bounded away from zero,
which is inconsistent with the expected amount of trade going to zero.

So, we have argued that in order for trade to vanish, it must be that with
probability approaching one both sellers are asking almost w, and both buyers
are offering nearly w. However, this cannot be part of an equilibrium by the
following argument. Because of Assumption 12, there is a positive probability
that simultaneously, both sellers (or both buyers) would be willing to buy the
object at the value of one of the buyers. So, think about deviating to a slightly
lower bid as a seller. If there was no high buy bid, this is costless. So, we can
condition payoffs on the event that there is at least one high buy bid, whether
by player 5 or by one of the buyers. Because of player 5, this is a positive prob-
ability event. But, for each of player 5 and the two buyers, the probability of a
high buy bid is very small. So, since values (and hence bids) are somewhat in-
dependent, conditional on there being any high buy bid, there is almost surely
only one high buy bid. But then, since there is a positive probability of both
sellers simultaneously being interested, they will have an incentive to compete
against each other to be the one who trades in this event. This rules out that
sell bids are very high almost always, giving a contradiction.

Essentially then, the presence of the extra player pushes the equilibrium
away from the pure no-trade one. But, once there is some trade, Assumption 12
implies that there will be competition by sellers (or buyers) to be the one who
trades in the rare event that it occurs. This competition pushes bids away from
the boundary in a way that implies a minimum positive level of trade that is
independent of x. In the limit, as x — oo this generates a positive trade equi-
librium of the original game.
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APPENDIX

PROOF OF LEMMA 5: Assume b is such that pj,, (b)) < vy for some h < e;. Let
i’ be the lowest index for which this is true. Now, by definition, b;;—; > b;;. And, since
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Piw—1,e;(Biw_1) = Viw_1 = Vi > Diwe (biw), it follows that b; _; > b,y (recall from Assump-
tion 9 that p; jy_1,.,(¥) < piw.e, (%), s0 it cannot be the case that b; ,,_; = b; ;). Raise b;;y by & > 0,
where & < b; jy_1 — b; v, and where v,y > p; ., (b);,) for all b, € [by, byy + €]. Since p; e, ()
is continuous (by the continuity of the #’s), such an ¢ exists.

Now, for any given b_;, e_;, let b* be the >_e; — &’ highest bid submitted by players other
than i. Consider raising i’s /#’th bid continuously from b, to b;, + &. As long as the allocation
is unchanging (i.e., except at b*, if b* should happen to be in [by, by + €]), this is irrelevant if
i is currently a net buyer (is receiving e; or more objects), and either irrelevant or helpful if 7 is
currently a net seller (receiving strictly less than e; objects), in each case using Assumption 7.
So, consider what happens as one goes from just below b* to b*, or from b* to just above b*.
In each case, either the allocation is unchanged (if tie-breaking at b* happens to be fortuitous),
or i’s allocation goes up by one unit (that is, he sells one less object). But, vy > p; .., (b*) by
choice of ¢. Hence, such a change will strictly improve i’s payoff. And, for b* € (b, by + €) such
a change in allocation must occur. It follows that the original bid vector b is weakly dominated
by b’ defined in this way.

But, notice that if one chooses any (e}, v}, b’) sufficiently close to (e;, v;, b;), it will remain the
case that py,. (b)) < v}, andso (e;, v;, b;) ¢ W, (note that e; must equal ¢; for close by (e;, v}, b})).
Hence, there is a ball around (e;, v;, b;) with empty intersection with W/, and (e;, v;, b;) ¢ W;. The
proof for h > e¢; is the same. Q.E.D.

The following lemmas are useful in the proofs of Lemmas 7 and 8 and Theorem 15.

Fix a profile of strategies (m, ..., m,) (equilibrium or otherwise). Given these strategies, let
B be the induced measure over B x 0. Let B; be the marginal of B on B; x 0, for i € N and let
By be simply Py, the marginal of P onto e.

Our next lemma shows that an implication of the absolute continuity of P with respect to
[T P: (Assumption 3) is that B is absolutely continuous with respect to [, B;. So, events
involving the set of submitted bids and realized values that are zero probability assuming players
draw values and bid independently are also zero probability under the actual distribution over
realized values and submitted bids. If, in addition, [];_, P; is absolutely continuous with respect
to P (Assumption 11), then the reverse implication will be true as well, so that positive probability
events under [[;_, B; are positive probability under B.

LEMMA 17: (i) Under Assumptions 2-4, for each strategy profile m’, B is absolutely continuous
with respect to [, B;. (ii) If Assumption 11 is also satisfied, then [;_, B; is absolutely continuous
with respect to B;.

PROOF: In what follows, think of player 0 as having a singleton strategy space (fixed at by), so
that dmq(by, 6y) = dPy(60). Consider any Borel E C B x 0O,

B(E) = / []‘[dmxbiei)} dP(9)
E

i=0

i=0

- / f(@)[]‘[dmi(biwi)dﬂwn}
E

— [ r@[Tamw. o)
i=0

= / 1(0)dm.
E
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Given that f(0) < M (Assumptions 2 and 3), it follows that B(E) < Mm(E). Since m; = B;,* we
have established B(E) < M []; B;(E) and hence part (i). Assume further that 0 < M’ < f(6) (un-
der Assumption 11) so that B(E) > M'm(E). This implies that B(E) > M'[]; B;(E) establishing
part (ii). Q.E.D.

A useful implication of Lemma 17 is that information about the bids or values of some of the
players only changes the probabilities of events involving other players by a factor of between
M and M'.

LEMMA 18: Under Assumptions 2-4 and 11, if J and J' are disjoint subsets of players, and E; is
a positive probability event involving only the bids or values of players in J, and similarly for E;., then

MPr(E;) = Pr(E;|E;) = M' Pr(E;).

PROOF: To see the second inequality (the first is analogous), note that

Pr(Ej n EJ')
Pr(Ey)

- ,Pr(E;) Pr(E;)

- Pr(E;)

= M'Pr(E)),

Pr(Es|Ep) =

where the inequality follows from the proof of Lemma 17. Q.E.D.

Say that b € [b, b], is a bid-atom for B; if B;({b;, = b for some h}) > 0. For each i, let §, be the
set of bid-atoms of B;.

Recall that our definition of a tie was constructed to rule out irrelevant cases in which a small
change in bid does not affect the allocation. Say that b;, and b, are in a pre-tie if b;, = bj),. Let
Yi=U,; #(1’9\,). By avoiding b; € Y;, i avoids pre-ties with any given j # i, and so the probability
that he is involved in a pre-tie (and hence a tie) is 0. This is stated in the following lemma.

LEMMA 19: Under Assumptions 2-4, Pr({b;, = bjw} N {by, ¢ Y;}) = 0. That is, there is zero prob-
ability of a pre-tie involving i when i does not use bids in Y;.

PROOF: This is obvious if the B; are independent. The result follows by absolute continuity
of B with respect to [];_, B; (Lemma 17, part (i)). Q.E.D.

PROOF OF LEMMA 7: Choose a sequence X = {xy, X, ...} thatis dense on [b, b] but avoids Y;.
Since Y; is countable, this can be done. For any € > 0, define the mapping ¢/¢:0; x B; - 0, x B;
as follows.

If vy, > pine, (bin), let ¥ (e;, vi, by) = (e;, v;, b)), where b, is the lowest indexed element of X
such that by, < b/, <b;;, + &, and such that b/, is below the next discretely higher bid than b;;,.*" If

B is defined by dB(b, 0) =[], dm;(b;10;) dP(6). The careful reader can verify that the mar-
ginal of B on i, B;, has the same form as one would obtain by directly taking the marginal
of P onto P;, which leads to dm;(b;|6;) dP;(6;) (which for a distributional strategy is the same
as dm,'(bi, 91')).

4TIt is useful to note here that raising a buy bid indicates a greater desire to buy, while raising
a sell bid indicates a lower willingness to sell. In each case, since v;, > pise, (Dine, ), this is the
direction of the player’s incentives if he is on the margin between being allocated or not allocated
an object A.
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Vin < Pine; (bin), let ¥f(e;, vy, by) = (e;, v;, b)), where b, is the lowest indexed element of X such
that by, > b, > b;, — &, and such that b}, is above the next discretely lower bid than b;,. Since
X is dense, such elements exist (and by Zorn’s lemma b, is unique).

So, ¢ slightly raises bids where value is above the marginal transfer, and slightly lowers bids
where value is at or below the marginal transfer in such a way as to miss elements of Y;.

Note that the resulting bid vector is still an element of B;. To see this, note that for any /4’ > h,
if by, > by then by construction by, > b),. If by, = by, then, since pj, (x) is nondecreasing
in A, and since vy, is nonincreasing, it cannot simultaneously be the case that vy, < pi, (bi) and
Vi > Piwe; (bin). Hence, the algorithm will never specify lowering b;;, but raising b;,. And, if it
specifies the same direction of movement, it will also specify the same outcome, so that again
there will be no nonmonotonicity of the resultant bid vector.

Next, let us check that ¢ is measurable. To see this, fix i and 4, and for each j € {1, 2,3,.. .},
let R; be the set of (e;, v;, b) such that either vy, > pjj., (bi), bir < x; < by, + &, and x; is below
the next discretely different bid than by, or vy, < pine, (bin), bin = xj > b;;, — €, and x; is above the
next discretely different bid than b;,. R; is the finite union of the finite intersection of measurable
sets, and so is measurable.

But, in fact, ¢ ~!(x N =R\U > R;, and so is itself measurable. As X is countable, and as the
image of ¢ is contained in X, the result follows.*

Hence, m; o ¢ is a well defined distributional strategy. By construction, under m; o ¢, player i
is involved in pre-ties with probability zero, and m; o i{ can be made arbitrarily close to m;.

The proof is completed by noting that when m; o ¢¢ buys or sells additional objects compared
to m;, it does so at prices that are at worst a little unfavorable. More formally, consider any
(ei, vj, by, e_;, b_;) and the b’ generated by ¢. Let a; be the allocation i received with b (given
whatever randomizations the auctioneer performed), and a; be the allocation under b'. Note that
with probability one, (e;, v;, b}, e_;, b_;) is such that i is not involved in any ties given ¥’, so here
randomizations are irrelevant. Now, if a’ = a, then i’s payoffs have changed by at most ze, where
z is the maximum slope of ¢; for any given endowment and allocation. Assume a’ > a. Then, for
each h e (a+1,...,4a'), it must be that v; > py,, (b;). This is actually not completely obvious,
as one way in which the player might have picked up an extra object is that one of his other bids
was relevant to whatever odd tie-breaking rule the auctioneer might have been using. But, in the
event that v; < pj, (biy), b, is strictly lower than by,. So, since i was not allocated an object A
before (implying that b;;, was at best in a tie), then he certainly will not be allocated an object &
now. Note next that it must have been the case that each b;,, h € (a+1, ..., a’), was within & of
being involved in a tie (since it was consistent not to allocate these objects to i before, but it is
consistent now). Hence, the increase in i’s payment, given moving from allocation a to a’, is at
most

D (Pine(bin) +228) <2zbe+ Y pine,(bin)

he(a+1,...,a") he(a+1,...,a")
<2zle + Z Vip.
he(a+1,...,a")

Hence, the difference between the increase in payments and the value of the extra objects allo-
cated is at most 2z{e. Q.E.D.

PROOF OF LEMMA 8: Fix an arbitrary player i. Let

4
0i(e, b, v)[h]=)_0'(e, b, v)la]

aj=h

*Note that we have only sorted out those (e;, v;, b;) such that b has hth element x. It is of
course trivial to sort out which (e;, v;, b;) get mapped into any given ¢ vector from X.
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be the probability that i ends up with /4 or more objects given (e, b, v). Let T; be the event that
i is involved in a tie given equilibrium play. Let Tl.l;"y be the subset of 7; such that b;, is a buy
offer involved in a tie and 0;(e, v, b)[1] < 1. So, Tl.l;,"y is the set of events where i’s Ath bid is
involved in a tie and i does not get an Ath object for sure, given at least one of b;;, > 0, vy, > 0.
Suppose that Pr(Tilzl"y) > 0 under m'. By Lemma 19, Pr(b;, € KlTil;"y) =1. By Lemma 5, Pr(v;;, <
pihei(bih)lﬂl;"y) = 0. By atomlessness (Assumption 4), Pr(vi;, € pine, (Y,-)\T;“y) = 0. It follows that
Pr(vin > pine, (i) T ) = 1.

Similarly, let 7" be the subset of T such that i’s Ath bid is a sell offer involved in a tie and
0;(e, b, v)[h] > 0. Recalling that in our set up, a sale occurs when one’s bid is not accepted, this
is the set of events where i’s Ath bid is involved in a tie, and i does not sell object % for sure.
By an argument analogous to that establishing that Pr(vy, > pie, (b,—h)lTil;,“y) =1, it follows that
Pr(viy, < Pine, (bi)I T = 1.

Define

w= Y PTE"ME(Bi(e, b, IR Pine, (bin) — vin) | T3")

{hI Pr(T3E>0)

+ ) P(TME( = Bie, b, v)IAD Wi — Pine, ) T”).-

(h|Pr(T2Y

i )>0)

So, the first term sums the probabilities of not making a sale on unit /2, multiplied by the minimum
expected profit on that sale (under Assumption 7), and the second sum does the same thing for
purchases. If Pr(T;e") or Pr(T") is positive for any i, k, then  is positive.

Suppose w > 0. Consider changing m; to mo s}, for € small. It gains at least w by transforming
0:(e, b, v)[h] to 0 (which, recall, means that i sells his /th object for sure) when a sell bid b;;, would
have been involved in a tie, and 0;(e, b, v)[4] to 1 when a buy bid b;;, would have been involved
in a tie. And, as argued above, it does almost as well as m; in terms of the trading price on objects
that would have traded anyway, and on any new trades created beyond those from converting
what were originally ties. So, this deviation is strictly profitable for ¢ sufficiently small. ~ Q.E.D.

The proof of Lemma 10 uses the following lemma.
Let ¢;(e;, v;, b;) be the distance between (e;, v;, b;) and W,. Of course, ¢; is continuous. Define
C:(my;) as the expectation of ¢;(-) given m;.

LEMMA 20: Let o and m be arbitrary. For each i, and for each & > 0, there is a strategy m;} such
that C(m}) < & and such that w(m}, m_;, 0) > w(m, 0) — ¢.

PROOF: First replace m; by m) as given by Lemma 7 such that m; is tie-free for i, and
such that m;(m}, m_;, 0) > m;(m;, m_;, 0) — /2. Consider w; o m; as given in Assumption 10.
Under os (standard tie-breaking) this does weakly better, so that m(w; o m}, m_;, 05) >
i(m}, m_;, 0s). And, of course, C;(m;) = 0. Now, conceivably, w,;(m}) is not tie-free. Once
again using Lemma 7, let m} be a tie-free strategy for i close enough to w;(m}), such that
7T,‘(m?, m_;, 05) > 77,-(w,-(m;-), m_;, Os) — 8/2, and such that Cl(mj‘) <e. Then,

mi(m;, m_;, 0) = m(m;, m_;, 0s)

%

Wi(wi(m;), m_j, Os) — 8/2

A%

i (m;, m_;, 0s) — /2

m(mj, m_,0) — /2

mi(m;, m_;, 0) — &. Q.E.D.

A%
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PROOF: First, let us argue that m must have support in W; for all i. Suppose not, so that for
some bidder i, m; puts positive weight outside W;. But, using Lemma 20, there is ] such that
C(m}) < C(m;)/3 and such that w(mf, m_;, 0) > w(m, 0) — C(m;)/3, and so m; does strictly
better in G than m;.

Second, let us argue that m is in fact an equilibrium of the original game. Assume not,
so that for some i, there is m} such that m;(m}, m_;, 0) > &, for some & > 0. Then, applying
Lemma 20 once again, note that there is m] such that C(m}) < &/3 and such that w(m}, m_;, 0) >
(m, o) — £/3. But then, m; also does strictly better in G than m;, a contradiction. Q.E.D.

PROOF OF COROLLARY 14: First, let us argue that there exists a monotone pure strategy equi-
librium for a modified version of the auction. Modify our auction as follows. Add a small probabil-
ity that the seller’s (player 0’s) endowment takes on any value between 0 and n¢, that he sets a zero
reserve price, and that there is an additional bidder who enters the auction and randomly makes
2n¢ bids with an atomless full support on admissible bids. Trivial extensions of Theorems 6 and 9
admit this modification. Thus, there exists an undominated* equilibrium of the modified game
that does not involve any competitive ties and remains an equilibrium under any omniscient and
effectively trade-maximizing tie-breaking rule.

Consider an arbitrary agent i, and let us argue that agent i’s strategy must be monotone and
pure.

We start with the following claim.

CLAIM 21: Let v; and v; be such that v}, > vy, for all &, and b; be a best response for v, and
b; be a best response for v;. Then b; > b;.

PROOF: Suppose to the contrary that b}, < by, for at least one /. We will argue that this leads
to a contradiction.

By Theorem 9, we know that the equilibrium is still an equilibrium if we choose a tie-breaking
rule such that i loses any competitive ties. So, let us assume that this is the tie-breaking rule.

Next, due to the added uncertainty of the aggregate endowment and the presence of the extra
bidder, we know that any change of b,, leads to a change in the probability of winning an Ath
object. Under the tie-breaking rule where i loses all competitive ties, a change in b;;, leaving i’s
other bids unchanged, does not change the probability that i wins at least # — 1 objects, or at least
h + 1 objects. Thus, under (Assumption 8'), we can write i’s expected payoff given (e;, v;, b;) in
the following way:*

(Z vu,Pihwm)) — E[T;(e, b)le, by,
h

where P;;,(b;;,) is the probability of winning at least / objects given i’s /th bid.

Choose a contiguous set of indexes H = {h;, ..., hy} such that b}, < b;, for h € H, while
b, = b, for h € {h;, —1, hy; +1} the two bids immediately to either side of H (except if H contains
either 0 or £). Then, note that d;, defined by starting from b} and raising bids in H to b;, is a valid
bid vector, because bj, | > by, 1. Similarly, d;, defined by starting from b; and lowering bids
in H to bj, is a valid bid vector, because bj,, ;| > bipy; 11-

Since b; is a best response at v;,

> viPiu(bu) — E(Ti(e, b_i, b)) = Y vinPu(din) — E(Ti(e, b_i, d)).
h

h

“Note that T; may not be defined in situations where i is involved in a competitive tie. How-
ever, given the tie-breaking rule such that i always loses competitive ties and the continuity of
the #,’s, we can easily extend 7; to be defined at the (measure 0) set of points where i is involved
in a competitive tie by approximating with bids from “below.”
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And, since only bids in H have changed, and since the tie-breaking rule has i always lose compet-
itive ties, it follows that

> " vin(Pin(bin) = Pin(din)) = E(Ti(e, b_i, by) — Ti(e, b_i, dy))
heH

and so, since d;;, = b}, on H,

() > vin(Pin(bin) = Pin(by)) = E(Tie, b_i, by) — Ti(e, b_;, dy)).
heH

Similarly, since b is a best response at v},

> v Puby) — E(Ti(e, b_i, b)) = Y vinPu(dy,) — E(Tie, b_i, d}))
h h

and so
> v (Pu(bly) — Pun(dyy)) = E(Tile, by, b}) — Ti(e, by, d})),
heH

from which

©) > V(P (b)) — Pin(bin)) = E(Tie, b_i, b)) — Tile, by, d)).
heH

Adding (3) to (2), one obtains

(4) > (i =}, (Pin(bin) — P (b},))

heH

> E(Ti(e, b_i, b)) —Ti(e, b, di)) - E(T,-(e, b_j,d) —Ti(e,b_;, b; )

Now, since v;, < v;, for all &, and since b;, > b}, for all h € H, and since, given the perturba-
tion, any change in bid sometimes matters, the left-hand side of this expression is strictly negative.
However, by Assumption 8', the right-hand side of this expression is 0.°° This is a contradiction,

and so our supposition was incorrect. Q.E.D.

Now let us complete the proof of the corollary. By Claim 21, along any line in agent i’s valu-
ation space that passes through one valuation vector and another vector that is strictly higher in
each dimension, the best response correspondence is increasing in the strong sense that the small-
est best response at v' > v is at least as large as the largest best response at v. Thus, along any such
line, there are at most a countable number of points at which the best response correspondence
is multi-valued. This implies that the set of valuation vectors where the best response correspon-
dence is multi-valued is of ¢-dimensional Lebesgue measure 0. To see this, denote the set of such
valuation vectors by A. By Fubini’s Theorem, write the ¢-dimensional Lebesgue measure of A4 as

/"'/IA(UH,UQ,~~~,Uie)dvi1 - dvy,

'Note that while Assumption 8 only applies to a change in a single bid at a time, we can write
the right-hand side of (2) as a sum of changes of a single bid at a time iterating over the bids in H
(here from highest indexed to lowest), and similarly we can write the right-hand side of (3) as a
sum of changes that involve only a single bid in H at a time (here from lowest indexed to highest).
Each hth bid where & € H, changes exactly once in the corresponding sum in both cases, and so
we can then apply Assumption §'.
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where 14 is the indicator function. Without loss of generality for assessing the measure of A,
we can assume that it is any line where we vary only v;; that intersects 4 in at most a countable
number of points.! This implies that

/IA(Ui17 Vizs -, Vi) dvip =0

for all (-, v, ..., ;). It follows that

/“'/IA(Uil,Uiz,~~~,Uie)dvi1 oo dvy =0.

Since the distribution of types is absolutely continuous with respect to ¢-dimensional Lebesgue
measure, this implies that the measure of types for which i’s best response is multi-valued is 0.
Hence, by Claim 21, it follows that the equilibrium must be in monotone pure strategies.>
Finally, let us now take the limit as the extra noise vanishes (along a subsequence if neces-
sary). By Theorem 2 in JSSZ, we obtain a monotone pure strategy undominated* equilibrium
of the limit game; but possibly with a strange tie-breaking rule.”> However, from Theorem 9
we know that the equilibrium must not involve any competitive ties and remains an equilibrium
under any omniscient and effectively trade-maximizing tie-breaking rule, including standard tie-
breaking. Q.E.D.

PROOF OF THEOREM 15: Fix an auction A = (P, o, t, by) satisfying Assumptions 1-13. For x €
{3,4, ...}, consider an auction .A* modified from A as follows: With probability 1/x a nonstrategic
player n + 1 has e,;; = 1 and submits a sell offer which is uniform on [w, w]. With probability
1/x, e,+1 = 0 and n + 1 submits a buy offer which is uniform on [w, w]. With residual probability,
player n + 1 is not involved. These events are independent of the events under P.

It is a trivial extension of Theorem 6 that each A* has an undominated* equilibrium m*. We
show that there is p > 0 independent of x such that Pr({ trade under m*}) > p for all x. By JSSZ
Theorem 2 (which shows upper hemi-continuity of augmented equilibrium strategies and alloca-
tions as the parameters of the game change), any accumulation point of {m*} is an (augmented)
equilibrium of A that puts probability one on the closure of the set of undominated strategies for
which the probability of trade is at least p. By Theorem 6, this is a standard equilibrium, and so
we are done. (A proof of this step via Reny is also possible.)

So, assume that there is no such p. Then, there exists a subsequence of x such that the prob-
ability of trade under the corresponding m* goes to 0 along the subsequence. With a renaming,
we can assume that trade goes to 0 along the original sequence.

For notational convenience, let Pr, (E) be the probability of event E happening in auction x
under m*. When the probability of an event does not depend on x, we write simply Pr(E).

Consider the case that condition (i) of Assumption 12 is satisfied. (The argument for condi-
tion (ii) is analogous.) Let H be the set of buyers for whom the max of the support over buy
values is w. Then, by atomlessness, there is w > 0 such that for each i € H, there is a probability

S1For the purpose of determining whether A has positive Lebesgue measure, we can simply
rotate the set itself—so that lines that passed through it at “45 degrees” are now vertical in the
v;; dimension. We omit a change of notation where A is replaced by its rotation A’. Alternatively,
one can do a change of variables, and reach the same conclusion.

32Given that we are dealing with distributional strategies, this is up to sets of measure 0, which
is in accordance with our definition of monotone pure strategies. One can change the strategies
on the sets of measure 0, if one likes.

3 Note that the set of pure monotone strategies is compact, and that when one takes limits of
strategies and outcomes, the limit tie-breaking rule may differ from those on the sequence, but
will be an omniscient one.
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of at least w that there are at least £ + 1 sell values below w — w among N \i, and such that for
each i ¢ H, i never has a buy value above w — w.

Consider an arbitrary k € {3,4,...}, and let 6 < w/k. For i=1,...,n+ 1, let O, be the
number of buy bids above w — 26 that i makes. So,

{Op > 0} ={e; <€, bj 01 >wW— 28}
For each x, let

uy = maxPr {QF, > 0}
ieH

be the maximum probability that any player (other than »n + 1) makes a buy bid above w — 26
in A* (by Assumption 13, the fact that m* is undominated*, and choice of w, Pr,(QF, > 0) =0
for each player in N\H). Let i* be an associated maximizer of u,.

Let Q% = Y 0%, be the random variable giving the number of buy bids above W — 28 un-
der m* by any player (including player n + 1). Let Qf be the number of sell bids at or below
w — 26 by anyone other than i* (but including player n + 1).

Let us first argue that Pr,(Q} > 0) — 0 must hold. To see this, suppose to the contrary that
everywhere along a subsequence, Pr,(Qj > 0) > v, for some y > 0. Let j, j/ be any two players
who sometimes have a sell value below w — w (two such players exist, since there are sometimes
at least £ + 1 sell values below w — w). Then, along a subsequence, at least one of the players, say
player j, assesses probability at least y/2 that one of his opponents makes a buy bid above w — 26
for each x. By Lemma 18, j thus assigns probability at least M’y/2 of such a bid conditional on
j having a sell value below w — w. Consider the strategy for j that whenever he has a sell value
below w — w, he bids w — 28 on that unit, and that he sets all other bids equal to value (thus
guaranteeing a nonnegative profit on those units). Let 7; be the probability of such a value for j.

Consider first the case where j wins at least half the time when he bids w — 26 and one of his
opponents makes a buy bid above w — 28. Then, by A13, his utility from this strategy is at least

%U(w —28)M'y)2.

But, as the utility of selling is bounded by U(w) — U (w) (since w is the most one will ever receive,
and the value of the unit sold is at least w), this implies that in equilibrium, j is selling with
probability bounded away from zero, contradicting that trade goes to zero along the sequence.

Consider next the case where j wins less than half the time when he bids w — 28 and one of
his opponents makes a buy bid above w — 28. This can only happen if at least half the time that
this occurs, there is another player making a sell bid below w — 26. But in this event, even under
j’s equilibrium strategy, at least one unit will have been transferred. Hence, trade is occurring at
least

TM'y/2

of the time, which again contradicts the fact that the probability of trade is going to zero.

So, we have established that Pr,(Q} > 0) — 0. Pr,(Q§ > 0) — 0 must also hold. Assume
not, so that Pr,(Qf > 0) > y > 0 along a subsequence. Choose a subsequence along which i* is
constant. Let Y;x be the event that i* has a buy value above w — §. Since i* € H, Pr(Yix) > 0.
Now, since QF depends only on players other than i*, Pr,(Q§ > 0|Yix) > M’y (once again using
Lemma 18). So, consider the deviation for i* in which he bids w — 26 whenever Y« holds, and
bids his value otherwise (which under Assumption 13 can never result in a loss). Then, we can
argue as before: either i* wins at least half the time that Of > 0 and Y}« are true, in which case
his surplus (and hence equilibrium probability of winning) are bounded away from 0, or i* wins
less than half the time, in which case the equilibrium amount of trade is bounded positive. Either
is a contradiction.
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Let

N ( 1 26 )
My =Mmax| py, ———— >0

xXw—w

be the maximum over probabilities that any player (including player n 4+ 1) makes a buy offer
greater than w — 26.
Note that Pr, (Q} > 0) > fi, and hence i, must go to 0. Note also that

n+l1

Q) Pr,(Q} > 0) < > Pr(Q}; > 0) < njk,,

i=1

since the second expression errs only in that it overcounts situations where Pr, (Q5,; > 0) for more
than one i.

The probability that g > 2 players bid at or above w—28 is less than (n!/(q!(n—q)")) M7 ({1, )9,
where the factor M?~! takes account of the fact that once one knows that one (or more) players
have bid at or above w — 28, the likelihood of further such players may increase to M u,. It follows
that

Prx{Qg > E} < ¢((/lx)2 + (/:Lx)3 R (/:Lx)”),

where ¢ < oo accounts for both the combinatorial terms and a factor of M"~!. Since Pr,{Q% >
0} > 1, and since f, — 0, it follows from the above inequality that

(6) Pr,(Q} <€|Q% > 0) — 1.

Choose a subsequence along which i* is constant. Let ¢ be the probability that i* has a buy
value above w — 2. Since i* € H, { > 0. Consider the deviation d; for any given j # i* that
whenever j has a sell value v;;, below w — w, and the equilibrium specifies a bid b, above w — 25,
j submits b, =w — 26 instead. We show that this is improving for at least one j # i*.

Consider the following set of events, measured relative to the equilibrium strategies. The
E’s should be indexed by x, but we omit the notation.

Ei: Qpi > 0.

E: Q.1 >0, i* has a buy value above w — 23.

E,: Qg =0.

Ej;;: Player j has an unsold unit with value below w — w, even though player j sells strictly less

than Qj objects.

Ey: Q)é <.

Es: There are at least £ + 1 sell values below w — w among N\i*.

If 4, is maximized by iy, let £y = E|. If i, is maximized by n + 1, let E; = EY. Then, in
the first case, Pr,(E;) = fi,, while in the second, Pr,(E;) = Pr(Qp 11 > 0) Pr(i* has a buy value
above w — 28) > {a,, since player n + 1 is independent of the rest of the system. In either case,
Prx(El) = ;/:Lx

Note that under either Ej or EY, i* has a buy value above w — 28, and hence, since marginal
utility is decreasing and m* is undominated*, Assumption 13 implies that i* has no sell bids at or
below w — 8. Under E,, no player other than i* has a sell bid at or below w — 26 either. Thus,
under E; N E,, there is no sell bid of w — 26 or lower. So, under E; N E, N E3;, j sells at least one
extra object by d;. E, and Es are not necessary for j to sell an extra object. Their role will become
clear momentarily.

We claim that Pr,(E,|E;) — 1. To see this in the case of E; = E, recall that we have argued
that Pr,(E,) — 1, and hence Pr,(—E,) — 0. But Pr,(=E,|E;) < M Pr,(—E,) since E, involves
only players other than i*, while E| only involves player i*. Hence Pr,(—E;|E;) — 0, and so
Pr.(E,|E;) — 1. In the case of E7, there is also the information that player n + 1 bid at or above
w — 268. This implies that n 4+ 1 did not make any sell bid. Since n + 1 is independent of the rest
of the players, the claim again follows.
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Next, note that Pr,(Es|E;) > M'w, since Pr,(Es) > w, and since E; involves only players i*
and n + 1, while Es involves neither of these players.
Finally, Pr,(E4|E;) — 1 by (6). Combining these, it follows that

’

M

Pr.(E,NEsNEs|E)) >

for x sufficiently large (draw a Venn diagram), and hence

’

Mo |
3 Ly

Pr(El ﬂEzﬂE;; ﬂEs) >

Thus, d; earns at least w — 26 with probability at least

Prx(E] mEzﬂE_gj) > Prx(El ﬂEan3jﬂE4 ﬂE5)

M w

> Pr, (E3j|E, ﬂEzﬂE4ﬂE5)T§ﬁx.

On the other hand, lowering the sell bid on object 4 to w — 28 can only result in a worse
outcome for j than the equilibrium strategy when j would already have sold object %, which
occurs with probability bounded by Pr,(Q} > 0). From 5, Pr,(Qj > 0) < nji,. And, since w was
the upper bound on buy values for players, and hence on their bids, these objects would have
sold for at most w, while under d;, they sell for at least w — 28. So, the cost of d; in this event
is at most £28. Since the utility function has a bounded derivative, there exists A < oo such that
U'(x)/U'(y) < A for all x and y. So, for the deviation not to be profitable, it must be that

Mw

2

PIAX(E_gj‘E] NE,NE;NEs) {,&t(w—ZS) §nﬁ,l£28/1

Dividing both sides by &, 6 (which is valid, because fi, is positive thanks to player n + 1), and
summing across players other than i*,

Mo (o

5 5(5 - 2) ZPrx(Eg,-lE] NE,NE/NEs) < (n—1)ne2A.
J#E

But, in any realization where £, N E, N E; N Es holds, E5; must hold for at least one j # i*, since

there are £ + 1 sell values below w — 28, since no sell bid is at or below w — 26, and since there

are at most ¢ buy offers above w — 28 (it is for this purpose that £, and E5 were maintained).
Integrating across realizations,

> Pru(Ey|[E\NE;NE,NEs) > 1,
#E

and so

Mo (o
5 {(E —2) <(n—1)n2tdA.

Recall that k € {3, 4, ...} is arbitrary and that 6 was chosen so that w/k > §. It follows that

M o
2

(k—2)<(n— 1)n2£%/1.

This equation is clearly false for k sufficiently large, and we have a contradiction. Q.E.D.
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