EXISTENCE OF FIXED POINTS OF NONEXPANSIVE MAPPINGS IN CERTAIN BANACH LATTICES

PAOLO M. SOARDI

ABSTRACT. A fixed point theorem for nonexpansive mappings in dual Banach spaces is proved. Applications in certain Banach lattices are given.

1. Suppose K is a subset of a Banach space X and T: $K \to K$ is a nonexpansive mapping, i.e. $||T(x) - T(y)|| \le ||x - y||$, $x, y \in K$. A well-known theorem due to Kirk [1] states that, if K is convex weakly compact (weak* compact when X is a dual space) and has normal structure, then T has a fixed point in K. In particular, if $X = L^p$ ($1) Kirk's theorem applies to every bounded closed convex set K, while an analogous theorem was proved by Karlovitz [3, Corollary] in <math>l^1$. No result seems to be known in L^{∞} .

In this paper we study the existence of fixed points of nonexpansive mappings in certain (complex) AM-spaces. First we prove a general fixed point theorem for nonexpansive mappings in dual spaces and then we draw some consequences for nonexpansive mappings acting in (complex) AM-spaces which are dual to (complex) AL-spaces. These results imply, for instance, that every nonexpansive operator mapping into itself a closed ball $B \subseteq L^{\infty}$ has a fixed point in B, and every nonexpansive $T: L^{\infty} \to L^{\infty}$, which leaves invariant a weak* compact subset, has a fixed point (in L^{∞}).

2. A real Banach lattice X is called an AM-space (abstract-m-space) if $||x \lor y|| = ||x|| \lor ||y||$, for every $x, y \in X$ such that $x, y \ge 0$. Here and in the sequel \lor and \land denote the least upper bound and the greatest lower bound respectively. X is said to be order complete if each set $A \subseteq X$ with an upper bound has a least upper bound. A complex AM-space is defined as the complexification of an AM-space.

Suppose X is an order complete AM-space with unit (i.e. an element e such that the unit ball at zero is the order interval [-e, e]); then X is isometrically lattice isomorphic to the space $C_R(S)$ of all continuous real-valued functions defined on a compact Stonian space S.

For these and other facts about Banach lattices we refer to Schaefer's book [4].

0002-9939/79/0000-0005/\$02.25 © 1979 American Mathematical Society

Received by the editors March 19, 1978.

AMS (MOS) subject classifications (1970). Primary 47H10; Secondary 46B99, 46E05.

Key words and phrases. Fixed points, nonexpansive mappings, dual Banach spaces, AM-spaces, uniform relative normal structure.

The following notation will be used throughout the paper: for a Banach space X, B(x, r) denotes the closed ball centered at $x \in X$ of radius r; if $M \subseteq X$ is a nonvoid bounded subset, diam M denotes the diameter of M and $\overline{co} M$ the closed convex hull of M.

LEMMA. Suppose X is the complexification of an order complete AM-space with unit. For every nonvoid bounded closed set $M \subseteq X$ there exists a point $z_M \in X$ with the following properties:

(a) $M \subseteq B(z_M, 2^{-1/2} \operatorname{diam} M)$.

(b) If, for some $y \in X$, $M \subseteq B(y, 2^{-1/2} \text{ diam } M)$, then $||z_M - y|| \le 2^{-1/2}$ diam M.

A similar statement holds if X is an order complete AM-space with unit, with $2^{-1/2}$ replaced by 1/2.

PROOF. We shall prove the lemma in the complex case, the real one being simpler. Let C(S) denote the space of continuous complex-valued functions which represents X. Set:

$$a_1 = \bigvee_{f \in M} \operatorname{Re} f, \quad a_2 = \bigwedge_{f \in M} \operatorname{Re} f, \quad a_3 = \bigvee_{f \in M} \operatorname{Im} f, \quad a_4 = \bigwedge_{f \in M} \operatorname{Im} f.$$

By our assumption on X the a_j 's are continuous real-valued functions belonging to $C_R(S)$. Let $u = (a_1 + a_2)/2$, $v = (a_3 + a_4)/2$. We shall prove that $z_M = u + iv$ has the desired properties. Indeed, if r = diam M, it is easy to see that $||a_1 - a_2|| \le r$ and $||a_3 - a_4|| \le r$ so that, for every $s \in S$ and $f \in M$, $|\text{Re } f(s) - u(s)| \le r/2$, $|\text{Im } f(s) - v(s)| \le r/2$; hence (a) holds.

Suppose now that $M \subseteq B(y, 2^{-1/2} \text{ diam } M)$ for some $y \in X$. Let $\varepsilon > 0$ be arbitrarily small. For every $s \in S$ we can find a neighborhood of s, V(s), such that $|a_j(t_1) - a_j(t_2)| < \varepsilon$ (j = 1, 2, 3, 4) and $|y(t_1) - y(t_2)| < \varepsilon$ whenever $t_1, t_2 \in V(s)$.

Since S is extremally disconnected, we have:

$$a_1(s) = \inf_{U(s)} \sup_{t \in U(s)} \sup_{f \in M} \operatorname{Re} f(t)$$

where U(s) runs through a neighborhood base of s (see [4, p. 107]). Hence there is a point $s_1 \in V(s)$ and a function $f_{1,s} \in M$ such that: $|\text{Re } f_{1,s}(s_1) - a_1(s)| < \varepsilon$. Therefore

$$|a_1(s) + i \operatorname{Im} f_{1,s}(s_1) - y(s)| < 2\varepsilon + 2^{-1/2}r.$$

Analogously, we can find points $s_j \in V(s)$ and functions $f_{j,s} \in M$ such that $|g_i(s) - y(s)| < 2\varepsilon + 2^{-1/2}r$, where

$$g_j(s) = a_j(s) + i \operatorname{Im} f_{j,s}(s_j) \quad \text{if } j = 1, 2,$$

$$g_j(s) = \operatorname{Re} f_{j,s}(s_j) + i a_j(s) \quad \text{if } j = 3, 4.$$

Since the oscillation of the a_j 's on V(s) is less than ε , an elementary geometric argument shows that there is a number in the convex hull of the $g_j(s)$'s whose distance from $z_M(s)$ is less than ε . Therefore $|z_M(s) - y(s)| < 3\varepsilon + 2^{-1/2} r$ for all $s \in S$, whence (b).

REMARK. It follows from the above construction that if B is a closed ball containing M, then $z_M \in B$. Analogously, if M is contained in some order interval $I = \{x \in X : a \le x \le b\}$, then $z_M \in I$ (in the case X is an AM-space). Therefore we are led to the following definition.

DEFINITION. A closed subset K of a Banach space X has uniform relative normal structure if there exists c < 1 such that, for every nonvoid bounded closed subset $M \subseteq K$, there exists $z_M \in K$ with the following properties:

(a') $M \subseteq B(z_M, c \text{ diam } M)$.

(b') If, for some $y \in K$, $M \subseteq B(y, c \text{ diam } M)$, then $||z_M - y|| \leq c \text{ diam } M$.

This definition should be compared with the analogous definition in [2].

THEOREM. Suppose X is a dual Banach space and $K \subseteq X$ a weak* closed set with uniform relative normal structure. Let T: $K \to K$ be a nonexpansive mapping which leaves invariant a weak* compact subset $M \subseteq K$ (i.e. $T(M) \subseteq$ M). Then there exists $u \in K$ such that u = T(u).

PROOF. Let $A_0 \subseteq M$ be minimal among weak* compact invariant subsets of M. Then, if cl* denotes the weak* closure,

$$T(\operatorname{cl}^* T(A_0)) \subseteq T(A_0) \subseteq \operatorname{cl}^* T(A_0)$$

so that $A_0 = cl^*T(A_0)$. Suppose r is the diameter of A_0 . Then the set $A = \{z \in K: A_0 \subseteq B(z, cr)\}$ is nonvoid, since $z_{A_0} \in A$. Moreover A is weak* compact, as an intersection of closed balls with K. Fix $\varepsilon > 0$ arbitrarily. For every $z \in A$ and $x \in A_0$ there exists $y \in A_0$ such that:

$$||T(z) - x|| - \varepsilon \leq ||T(z) - T(y)|| \leq ||z - y|| \leq cr.$$

Since ε is arbitrary, $||T(z) - x|| \leq cr$ and $T(A) \subseteq A$.

Define a set H by $H = \{z \in A: A \subseteq B(z, cr)\}$. H is nonvoid since $z_{A_0} \in H$. Let A_1 denote the intersection of all w^* compact invariant subsets of A containing H. An argument due essentially to Kirk [1] shows that diam $A_1 \leq cr$. Namely, let F denote the set $\{z \in A_1: A_1 \subseteq B(z, cr)\}$. F contains H and is weak* compact (as an intersection of closed balls with A_1). Assume, by way of contradiction, that $T(z) \notin F$ for some $z \in F$; then the set $G = B(T(z), cr) \cap A_1$ is weak* compact and contains H. Moreover, for every $x \in G$: $||T(z) - T(x)|| \leq ||z - x|| \leq cr$, since $z \in F$. Hence $T(G) \subseteq G$ and, by the definition of $A_1, A_1 = G$. But $T(z) \notin F$, so that ||T(z) - x|| > cr for some $x \in A_1$, a contradiction. Consequently $T(F) \subseteq F$, and by the definition of A_1 again, $F = A_1$. Hence diam $A_1 = \text{diam } F \leq cr$. Moreover $A_0 \subseteq B(x, cr)$ for every $x \in A_1$. Repeating this construction, we define inductively a sequence of weak* compact subsets $A_n \subseteq K$ with the properties:

- (i) diam $A_n \leq rc^n$,
- (ii) $T(A_n) \subseteq A_n$,
- (iii) $||x y|| \le rc^n$, whenever $x \in A_n, y \in A_{n-1}$.

27

If we pick a sequence of points $u_n \in A_n$ we have:

$$||u_n - u_m|| \le r \sum_{n=1}^{m} c^j$$
 $(n < m)$ and $||u_n - T(u_n)|| \le r c^n$.

Therefore u_n converges in the norm topology to a point $u \in K$ such that u = T(u).

We recall that an *AL*-space is a real Banach lattice such that ||x + y|| = ||x|| + ||y|| whenever x, $y \ge 0$. A complex *AL*-space is defined to be the complexification of a real *AL*-space. It is known [4] that the dual of a (complex) *AL*-space is a (complex) *AM*-space which satisfies the assumptions of the above lemma. Henceforth we have the following consequences.

COROLLARY 1. Suppose X is the dual of a (complex) AL-space. Then, if $B \subseteq X$ is a closed ball and T: $B \rightarrow B$ is a nonexpansive mapping, T has a fixed point in B.

COROLLARY 2. Suppose X is the dual of an AL-space. If $I \subseteq X$ is a closed order interval and T: $I \rightarrow I$ is a nonexpansive mapping, T has a fixed point in I.

COROLLARY 3. Suppose X is the dual of a (complex) AL-space. If $T: X \to X$ is a nonexpansive mapping which leaves invariant a weak* compact subset of X, T has a fixed point (in X).

REMARK. Suppose (Y, Σ, μ) is a σ -finite measure space; the dual of the (complex) *AL*-space $L^{1}(Y, \Sigma, \mu)$ is identified with $L^{\infty}(Y, \Sigma, \mu)$, so that the above corollaries hold with $L^{\infty}(Y, \Sigma, \mu)$ in place of *X*.

3. In this section we give an example of uniform relative normal structure in spaces which are not AM-spaces.

Suppose X is a uniformly convex Banach space; denote by X^* its dual space and by $\|\cdot\|$ and $\|\cdot\|^*$ the norms in X and X^* respectively. Let Z denote the space of all sequences $z = (z_1, z_2, \ldots, z_n, \ldots), z_n \in X$, such that $\sup_n \|z_n\| = \|z\|_{\infty} < \infty$. Z is not an AM-space unless X itself is an AM-space. Moreover Z is the dual of the space of all sequences $t = (t_1, t_2, \ldots, t_n, \ldots), t_n \in X^*$, such that $\sum_n \|t_n\|^* < \infty$.

PROPOSITION. Z and every closed ball $B \subseteq Z$ have uniform relative normal structure.

PROOF. The proof is achieved by generalizing the argument used in the lemma of §2. Suppose $C \subseteq Z$ is a closed nonvoid bounded set. Let $z = (z_1, z_2, \ldots, z_n, \ldots)$ belong to C and denote by C_n the subset of X described by z_n as z describes C. Since X is uniformly convex, there exists c < 1, independent from C and n, such that there exist points $z_{C,n} \in \overline{\text{co}} C_n$ with the property $||z_{C,n} - z_n|| \le cr$ for every $z_n \in C_n$, $n = 0, 1, 2, \ldots$, (here we made r = diam C). Thus the point $z_C = (z_{C,1}, \ldots, z_{C,n}, \ldots)$ has the property (a'). On the other hand suppose that the point $y = (y_1, y_2, \ldots, y_n, \ldots)$ is such that $C \subseteq B(y, cr)$. It follows that $C_n \subseteq B(y_n, cr)$ for every n. By the

definition of $z_{C,n}$, we have $z_{C,n} \in B(y_n, cr)$ too, so that $||z_C - y||_{\infty} \leq cr$. It is also clear that $z_C \in B$ if C is contained in the closed ball B.

From this proposition it is possible to deduce the analogues of Corollaries 1 and 3.

References

1. W. A. Kirk, A fixed point theorem for mappings which do not increase distance, Amer. Math. Monthly 76 (1965), 1004-1006.

2. ____, Nonexpansive mappings and the weak closure of sequences of iterates, Duke Math. J. 36 (1969), 639-645.

3. L. A. Karlovitz, On nonexpansive mappings, Proc. Amer. Math. Soc. 59 (1976), 321-325.

4. H. H. Schaefer, Banach lattices and positive operators, Springer-Verlag, Berlin and New York, 1974.

Istituto Matematico dell'Università, via Saldini 50, 20133 Milano, Italy