Pacific Journal of Mathematics

EXISTENCE OF FIXED POINTS OF NONEXPANSIVE MAPPINGS IN A SPACE WITHOUT NORMAL STRUCTURE

LES ANDREW KARLOVITZ

Vol. 66, No. 1 November 1976

EXISTENCE OF FIXED POINTS OF NONEXPANSIVE MAPPINGS IN A SPACE WITHOUT NORMAL STRUCTURE

L. A. KARLOVITZ

A mapping $T: C \to X$ defined on a subset C of a Banach space X, with norm $\|\cdot\|$, is said to be nonexpansive if $\|Tx - Ty\| \le \|x - y\|$ for all $x, y \in C$. If C is assumed to be convex and weakly compact and if $T: C \to C$ then one of the main open questions is whether T has a fixed point in C, i.e., whether there exists $x \in C$ so that Tx = x. If X is reflexive and uniformly convex or, more generally, if X is reflexive and has normal structure then the answer is affirmative. Our purpose is to give an example of a classical reflexive space which does not have normal structure and for which the answer is nevertheless affirmative.

Nonexpansive mappings have played an important role in recent developments of nonlinear functional analysis (e.g., Browder [1], de-Figueiredo [3]). The analysis of the uniformly convex and normal structure cases is due to Browder [2], Göhde [4] and Kirk [6].

Let X_I be the space l_2 renormed according to

$$||x|| = \max\{||x||_{\infty}, ||x||_{2}/\sqrt{2}\},\$$

where $\|\cdot\|_{\infty}$ denotes the l_{∞} norm and $\|\cdot\|_2$ the l_2 norm. This space originates with R. C. James. A space is said to have *normal structure* if for each bounded convex subset C consisting of more than one point there is a point $w \in C$ so that $\sup\{\|w-y\|: y \in C\} < \sup\{\|x-y\|: x,y \in C\}$. The set $\{x: x=x(i), x(i) \ge 0, \|x\|_2 \le 1\}$ in X_J contains no such point w.

THEOREM. Let C be a bounded closed convex subset of X_J . Let $T: C \to C$ be nonexpansive. Then T has a fixed point in C.

One of the main tools in the proof is the following general lemma which has been used in Karlovitz [5].

LEMMA. Let X be a Banach space. Let C_0 be a weakly compact convex subset of X. Let $T: C_0 \to C_0$ be nonexpansive. Suppose that C_0 is minimal in the sense that it contains no proper closed convex subset which is

invariant under T. Let $\{x_n\}$ be a sequence of approximate fixed points, i.e., $x_n \in C_0$ and $||Tx_n - x_n|| \to 0$. Then for each $x \in C_0$

(1)
$$\lim_{n} \|x - x_n\| = \text{diameter } C_0.$$

If X is reflexive then a standard argument establishes the existence of a subset $C_0 \subset C$ which is minimal in the sense of the lemma. If C_0 consists of more than one point, another standard argument yields a sequence of approximate fixed points in C_0 . It follows from (1) that X does not have normal structure. Hence if X does have normal structure then C_0 is necessarily a singleton and thus a fixed point of T. This is an alternate proof of the known result. In order to use the lemma to show that in X_J C_0 is necessarily a singleton, we need to make more explicit use of the nonexpansiveness of T and of the geometry of X_J . While some modest generalizations will become apparent, the implications for the general reflexive case are not yet clear.

Proof of the lemma. Choose $y \in C_0$ and let $s = \limsup \|y - x_n\|$. Let $D = \{x : x \in C_0, \limsup \|x - x_n\| \le s\}$, which is nonempty closed and convex. It is also invariant under T. For

$$||Tx - x_n|| \le ||Tx - Tx_n|| + ||Tx_n - x_n|| \le ||x - x_n|| + ||Tx_n - x_n||$$

and $||Tx_n - x_n|| \to 0$. By the minimality of C_0 , $D = C_0$. Extract a subsequence $\{x_{n'}\}$ so that $\lim ||y - x_{n'}|| = s'$ exists. Suppose that there exists $z \in C_0$ and a subsequence $\{x_{n'}\}$ of $\{x_n\}$ so that $\lim ||z - x_{n''}|| = t$. Let $E = \{x : x \in C_0, \limsup ||x - x_{n''}|| \le \min \{t, s'\}\}$. Repeating the argument, we find $E = C_0$. Hence $y, z \in E$, and so t = s'. Thus for each $x \in C_0$, $\lim ||x - x_{n''}||$ exists and equals s'.

We complete the proof by showing that $s' = r = \text{diam } C_0$. From this it follows that $||y - x_{n'}|| \to r$ whenever $\{||y - x_{n'}||\}$ converges. Whence, by boundedness, $||y - x_n|| \to r$ for the entire sequence. By repeating the argument above with $\{x_{n'}\}$ replaced by the entire sequence $\{x_n\}$, we shall have proved (1).

To this end, consider $F = \{u : u \in C_0, \|u - x\| \le s' \text{ for each } x \in C_0\}$. F is nonempty because we can extract a weakly convergent subsequence, again denoted by $\{x_n\}$, with limit z. Since $\|x - x_n\| \to s'$ for each $x \in C_0$ it follows that $\|x - z\| \le s'$ for each $x \in C_0$; hence $z \in F$. Now if s' < r then $F \nsubseteq C_0$. However, this contradicts the minimality of C_0 because F is invariant under T. To see the latter, we first note that as a consequence of minimality closed convex hull $(TC_0) = C_0$. Hence if u is an arbitrary element of C_0 then for given $\epsilon > 0$ we can choose $v = \sum_{i=1}^k \lambda_i T x_i$ with $x_i \in C_0$, $\lambda_i > 0$, $\sum \lambda_i = 1$ and $\|u - v\| \le \epsilon$. Choose arbitrary w in F. Then

$$||Tw - u|| \le ||Tw - v|| + ||v - u||$$

$$\le \sum \lambda_i ||Tw - Tx_i|| + ||v - u||$$

$$\le \sum \lambda_i ||w - x_i|| + ||v - u|| \le s' + \epsilon.$$

Since $\epsilon > 0$ and $u \in C_0$ are arbitrary this shows $Tw \in F$. Thus F is invariant under T and hence s' = r. This finishes the proof.

Proof of the theorem. Given $x \in X_J$ we represent its components by x(j), $j = 1, 2, \cdots$. Since X_J is a renorming of l_2 there exists a component x(j) so that $||x||_{\infty} = |x(j)|$.

By a standard Zorn's lemma argument there exists a closed convex subset C_0 of C which is invariant under T and minimal in the sense of the lemma. We propose to show that C_0 consists of a single point. By invariance this is then a fixed point of T.

We proceed by contradiction. Suppose that C_0 consists of more than one point. We may assume without loss of generality that $0 \in C_0$, and we let diameter $C_0 = r > 0$. For each s, 0 < s < 1, we define $T_s = (1-s)T$. Clearly $T_s: C_0 \to C_0$ and it is a strict contraction. Hence by the Banach contraction principle there exists a unique $x_s \in C_0$ so that $T_s x_s = x_s$. Thus

$$Tx_s = (1-s)^{-1}x_s$$
, for $0 < s < 1$.

By the minimality of C_0 , $x_s \neq 0$. The desired contradiction results from a study of the points x_s . Several propositions are needed.

PROPOSITION 1. For each $x \in C_0$, $\lim_{s\to 0} ||x - x_s||_{\infty} = r$.

Proof. By contradiction. Suppose that for some $x \neq 0 \in C_0$ and sequence $\{x_{s_n}\}$ with $s_n \to 0$, denoted by $\{x_n\}$, $\|x - x_n\|_{\infty} \le r - \delta$, $\delta > 0$. Since $\|0 - x_n\|_{\infty} \le \text{diam } C_0 = r$ it follows that $\|x/2 - x_n\|_{\infty} \le r - \delta/2$ for all n. By the uniform convexity of $\|\cdot\|_2$, it follows from $\|x - x_n\|_2/\sqrt{2}$, $\|0 - x_n\|_2/\sqrt{2} \le \text{diam } C_0 = r$ that $\|x/2 - x_n\|_2/\sqrt{2} \le r - \tau$ for some $\tau > 0$. Hence, $\|x/2 - x_n\| \le r - \min\{\tau, \delta/2\}$ for all n, which contradicts (1) because $\|Tx_n - x_n\| = s_n(1 - s_n)^{-1}\|x_n\| \to 0$.

PROPOSITION 2. For each s, 0 < s < 1, $\lim_{t \to s} ||x_t - x_s|| = 0$.

Proof. We denote x_s by x and x_t by y. Suppose that $||x - y|| = ||x - y||_{\infty} = |x(k) - y(k)|$. By nonexpansiveness

$$(2) |(1-s)^{-1}x(k)-(1-t)^{-1}y(k)| \leq |x(k)-y(k)|.$$

For $s \neq t$ it readily follows that $\operatorname{sgn} x(k) = \operatorname{sgn} y(k) = \sigma = \pm 1$. Suppose that 0 < t < s. If $\sigma x(k) > \sigma y(k)$ then

$$(1-s)^{-1}\sigma x(k) - (1-t)^{-1}\sigma y(k) > (1-t)^{-1}(\sigma x(k) - \sigma y(k)),$$

contradicting (2). Hence $\sigma y(k) \ge \sigma x(k)$. If $(1-t)^{-1}\sigma y(k) - (1-s)^{-1}\sigma x(k) \ge 0$ then, by (2), $(1-s)t(1-t)^{-1}s^{-1}\sigma y(k) \le \sigma x(k) \le \sigma y(k)$. If $(1-s)^{-1}\sigma x(k) - (1-t)^{-1}\sigma y(k) \ge 0$ then, directly, $(1-s)(1-t)^{-1}\sigma y(k) \le \sigma x(k) \le \sigma y(k)$. If s < t < 1, analogous inequalities are derived. It follows that

(3)
$$|x(k) - y(k)| \le \begin{cases} (s - t)s^{-1}(1 - t)^{-1}|y(k)|, & 0 < t < s, \\ (t - s)t^{-1}(1 - s)^{-1}|x(k)|, & s < t < 1. \end{cases}$$

Hence if $||x_t - x_s|| = ||x_s - x_t||_{\infty}$ and s/2 < t < (1 + s)/2,

(4)
$$||x_s - x_t|| \le A |s - t|$$
, for some $A = A(s) > 0$.

Now suppose that $||x - y|| = ||x - y||_2 / \sqrt{2}$. By nonexpansiveness

$$||(1-s)^{-1}x-(1-t)^{-1}y||_2 \le ||x-y||_2.$$

We divide the positive integers according to:

$$I_1 = \{i: |(1-s)^{-1}x(i) - (1-t)^{-1}y(i)| \le |x(i) - y(i)|\}$$

and

$$I_2 = \{i: |(1-s)^{-1}x(i) - (1-t)^{-1}y(i)| > |x(i) - y(i)|\}.$$

Then

(5)
$$\sum_{l_2} \left[((1-s)^{-1}x(i) - (1-t)^{-1}y(i))^2 - (x(i)-y(i))^2 \right] \leq \sum_{l_1} (x(i)-y(i))^2.$$

By definition, (2) holds for $k \in I_1$. We can deduce, as above, that (3) holds. Whence, for s/2 < t < (1+s)/2

(6)
$$\sum_{i} (x(i) - y(i))^2 \le B(s - t)^2 \text{ for some } B = B(s) > 0.$$

We note the identity.

$$(1-t)^{-1}y(i)-(1-s)^{-1}x(i)=(1-s)^{-1}(y(i)-x(i)-\gamma(s,t)y(i)),$$

where $\gamma(s, t) = (s - t) (1 - t)^{-1}$. Substitution into (5) yields

$$\sum_{l_2} \left[(1-s)^{-2} ((y(i)-x(i))-\gamma(s,t)y(i))^2 - (x(i)-y(i))^2 \right]$$

$$\leq \sum_{l} (x(i)-y(i))^2.$$

By the Schwarz inequality and some simple manipulation

$$\sum_{l_2} (x(i) - y(i))^2 \le s^{-1} (1 - s)^2 \sum_{l_1} (x(i) - y(i))^2 + 2s^{-1} \gamma(s, t) \|y\|_2 \|x - y\|_2.$$

Combining this with (6) we find that if $||x_s - x_t|| = ||x_s - x_t||_2 / \sqrt{2}$ and s/2 < t < (1+s)/2 then

(7)
$$||x_s - x_t|| \le K(s - t)^{1/2}$$
 for some $K = K(s) > 0$.

The proposition now follows from (4) and (7).

For each positive integer i and $\epsilon > 0$ we introduce the notation:

$$A^{\epsilon}(i) = \{s : 0 < s < 1, |x_s(i)| \ge r - \epsilon\} \text{ and } \alpha^{\epsilon}(i) = \inf A^{\epsilon}(i).$$

PROPOSITION 3. For each positive integer i and ϵ , $0 < \epsilon \le r/4$, there exists s_1 , $0 < s_1 < 1$, with the property that for each s, $0 < s \le s_1$, there exists a positive integer k(s) such that $k(s) \ne i$ and $|x_s(k(s))| \ge r - \epsilon$.

Proof. If $A^{\epsilon}(i) = \emptyset$ this follows from Proposition 1 with x = 0. Otherwise choose $s_0 \in A^{\epsilon}(i)$. Let $\epsilon_1 = \min\{s_0(1-s_0)^{-1}(r-\epsilon), \epsilon/2, rs_0/2, s_0(1-s_0)^{-1}\epsilon/2\}$. By Proposition 1 choose s_1 so that $\|x_{s_0} - x_s\|_{\infty} \ge r - \epsilon_1$ for all $0 < s \le s_1$. By virtue of $Tx_{s_0} = (1-s_0)^{-1}x_{s_0} \in C_0$ we have $\|x_{s_0}\|_{\infty} \le r(1-s_0)$. Choose $s_1 < 0 < s \le s_1$. Suppose that $\operatorname{sgn} x_{s_0}(i) = \operatorname{sgn} x_s(i)$ or $x_s(i) = 0$. Then from $3r/4 \le |x_{s_0}(i)| \le r(1-s_0)$ we deduce $|x_{s_0}(i) - x_s(i)| \le r - rs_0$, $r/4 < r - \epsilon_1$. If $\operatorname{sgn} x_{s_0}(i) = -\operatorname{sgn} x_s(i)$ then

$$r \ge ||Tx_{s_0} - Tx_s|| \ge |(1 - s_0)^{-1}x_{s_0}(i) - (1 - s)^{-1}x_s(i)| > |x_{s_0}(i) - x_s(i)| + s_0(1 - s_0)^{-1}|x_{s_0}(i)| \ge |x_{s_0}(i) - x_s(i)| + s_0(1 - s_0)^{-1}(r - \epsilon) \ge |x_{s_0}(i) - x_s(i)| + \epsilon_1,$$

and hence $|x_{so}(i) - x_s(i)| < r - \epsilon_1$. Thus there exists a positive integer $j \neq i$ so that $||x_{so} - x_s||_{\infty} = |x_{so}(j) - x_s(j)| \ge r - \epsilon_1$. We assert that k(s) = j satisfies the proposition. If $\operatorname{sgn} x_{so}(j) = \operatorname{sgn} x_s(j)$ then $r - \epsilon_1 \le |x_{so}(j) - x_s(j)| < \max\{|x_{so}(j)|, |x_s(j)|\}$. Since $|x_{so}(j)| \le r(1 - s_0) < r - \epsilon_1$ it follows that $|x_s(j)| > r - \epsilon_1 > r - \epsilon$, as desired. If $\operatorname{sgn} x_{so}(j) \ne \operatorname{sgn} x_s(j)$, then

$$r \ge ||Tx_{s_0} - Tx_s|| \ge |(1 - s_0)^{-1}x_{s_0}(j) - (1 - s)^{-1}x_s(j)| = (1 - s_0)^{-1}|x_{s_0}(j)| + (1 - s)^{-1}|x_s(j)| \ge |x_{s_0}(j)| + |x_s(j)| + s_0(1 - s_0)^{-1}|x_{s_0}(j)| = |x_{s_0}(j) - x_s(j)| + s_0(1 - s_0)^{-1}|x_{s_0}(j)| \ge r - \epsilon_1 + s_0(1 - s_0)^{-1}|x_{s_0}(j)|.$$

Hence $|x_{s_0}(j)| \le s_0^{-1}(1-s_0)\epsilon_1$. So $|x_{s_0}(j)-x_{s_0}(j)| \ge r-\epsilon_1$ implies $|x_{s_0}(j)| \ge r-\epsilon_1-s_0^{-1}(1-s_0)\epsilon_1 \ge r-\epsilon_1-\epsilon/2 \ge r-\epsilon$, as desired. Since $s \le s_1$ was arbitrarily chosen this finishes the proof.

PROPOSITION 4. Suppose $\alpha^{\epsilon}(i) = \alpha^{\delta}(j) = 0$ for some ϵ , δ with $0 < \epsilon$, $\delta \le r/64$. Then i = j.

Proof. For i and ϵ we choose s_1 according to Proposition 3. Thus if $s \in A^{\epsilon}(i)$ and $s \leq s_1$ then $|x_s(m)| \geq r - \epsilon$ for m = i, k(s). Since $i \neq k(s)$ and $||x_s||_2^2 \leq 2r^2$ we readily find that $|x_s(m)| \leq r/4$ for $m \neq i, k(s)$. By Proposition 1 we choose $s_2, s_3 \in A^{\epsilon}(i), s_2, s_3 < s_1$, so that $||x_{s_p} - x_{s_q}||_{\infty} \ge r - \epsilon$ for $p \ne q$ and p, q = 1, 2, 3. Now suppose that $k(s_1) = 1$ Then $|x_{s_1}(m) - x_{s_2}(m)| \le |x_{s_1}(m)| + |x_{s_2}(m)| \le r/2 < r - \epsilon$ $m \neq i, k(s_1)$. Moreover, $\operatorname{sgn} x_{s_1}(i) = \operatorname{sgn} x_{s_2}(i)$; otherwise $||x_{s_1} - x_{s_2}||_{\infty} \ge 1$ $|x_{s_1}(i)| + |x_{s_2}(i)| \ge 2r - 2\epsilon > r$. Thus $|x_{s_1}(i) - x_{s_2}(i)| \le r - (r - \epsilon) = \epsilon$. By the same argument $|x_{s_1}(k(s_1)) - x_{s_2}(k(s_1))| \le \epsilon$. Thus $|x_{s_1}(i) - x_{s_2}(i)| < r - \epsilon$ for positive integers i, which is a contradiction. Hence all $k(s_1) \neq k(s_2)$. Similarly $k(s_3) \neq k(s_1)$, $k(s_2)$. Now if $i \neq j$ we repeat the argument and find $t_1, t_2, t_3 \in A^{\delta}(j)$ so that $|x_{t_p}(j)|, |x_{t_p}(k(t_p))| \ge r - \delta$, p = 1, 2, 3 and so that $j, k(t_1), k(t_2)$ and $k(t_3)$ are disjoint. Thus we can find s_a and t_p so that $\{i, k(s_a)\} \cap \{j, k(t_p)\} = \emptyset$. Then from $|x_{s_a}(i)|$, $|x_{s_q}(k(s_q))| \ge r - \epsilon$, $|x_{t_p}(j)|$, $|x_{t_p}(k(t_p))| \ge r - \delta$ and $||x_{t_p}||_2$, $||x_{s_q}||_2 \le \sqrt{2}r$ it follows that $||x_{s_0} - x_{t_0}||_2 / \sqrt{2} > r$ which contradicts $x_{s_0}, x_{t_0} \in C_0$. Hence i = j.

Completion of the proof of the theorem. Let $\epsilon = r/128$. If there exists a positive integer i so that $\alpha^{\epsilon}(i) = 0$, let $i_0 = i$. Otherwise $\alpha^{\epsilon}(i) > 0$ for each i and we let $i_0 = 1$. Apply Proposition 3 to find $s_1 = s_1(i_0, \epsilon)$. In the sequel the positive integers $k(\cdot)$ will be those given by the proposition for this s_1 . Denote $k(s_1)$ by k_1 . Let $s_2 = \alpha^{\epsilon}(k_1)$. If $\alpha^{\epsilon}(i_0) = 0$ it follows from $i_0 \neq k_1$ and Proposition 4 that $s_2 > 0$; otherwise $s_2 > 0$ by hypothesis. By Proposition 2 $\|x_{s_2-\mu} - x_{s_2}\| \to 0$ as $\mu \to 0$. Hence we can choose $\mu > 0$ so that $r - 2\epsilon \leq |x_{s_2-\mu}(k_1)|$. Since $s_2 - \mu < s_2 < s_1$, $k(s_2 - \mu)$ is well defined. Since $s_2 - \mu < \alpha^{\epsilon}(k_1)$, $|x_{s_2-\mu}(k_1)| < r - \epsilon$; and hence $k(s_2 - \mu) \neq k_1$. Denote $x_{s_2-\mu}$ by p and p and p and p by p and p

 $r-\epsilon$. Moreover, $s_3-\eta<\alpha^\epsilon(k_1)$, $\alpha^\epsilon(k_2)$, hence $k_4\neq k_1, k_2$. Thus k_1 , k_2 , k_3 and k_4 are disjoint. Hence from $\|y\|$, $\|z\| \leq r$ and $|y(k_1)|$, $|y(k_2)|$, $|z(k_3)|$, $|z(k_4)| \geq r-2\epsilon$ we readily calculate $\|y-z\|_2/\sqrt{2} > r$ which contradicts $y, z \in C_0$. This contradiction proves that C_0 cannot consist of more than one point and finishes the proof of the theorem.

Added in proof. Additional applications of the lemma as well as some of its points of contact with work of M. Edelstein will be discussed elsewhere. P. M. Fitzpatrick has informed us that he independently developed the lemma.

REFERENCES

- 1. F. E. Browder, Nonlinear mappings of nonexpansive and accretive type in Banach spaces, Bull. Amer. Math. Soc., 73 (1967), 875-881.
- 2. ——, Nonexpansive nonlinear operators in a Banach space, Proc. Nat. Acad. Sci. U.S.A., 54 (1965), 1041-1044.
- 3. D. G. deFigueiredo, Topics in nonlinear functional analysis, Lecture Notes, University of Maryland, 1967.
- 4. D. Göhde, Zum Prinzip der kontraktiven Abbildungen, Math. Nachr., 30 (1966), 251-258.
- 5. L. A. Karlovitz, Some fixed point results for nonexpansive mappings, Proceedings of a Seminar on Fixed Points, Dalhousie University 1975, to appear.
- 6. W. A. Kirk, A fixed point theorem of mappings which do not increase distance, Amer. Math. Monthly, 76 (1965), 1004-1006.

Received June 4, 1976. Research supported in part by the National Science Foundation under Grant GP-20555.

University of Maryland

Pacific Journal of Mathematics

Vol. 66, No. 1

November, 1976

Helen Elizabeth. Adams, <i>Factorization-prime ideals in integral do</i> Patrick Robert Ahern and Robert Bruce Schneider, <i>The boundary</i> in the country of the co	behavior of Henkin's	I
kernel Daniel D. Anderson, Jacob R. Matijevic and Warren Douglas Nich intersection theorem. II.	ols, <i>The Krull</i>	15
Efraim Pacillas Armendariz, On semiprime P.Ialgebras over com	mutative regular	
rings Robert H. Bird and Charles John Parry, Integral bases for bicyclic over quadratic subfields	biquadratic fields	23 29
Tae Ho Choe and Young Hee Hong, Extensions of completely regu		
spaces	• • • • • • • • • • • • • • • • • • • •	37
John Dauns, Generalized monoform and quasi injective modules.		49
F. S. De Blasi, <i>On the differentiability of multifunctions</i>		67
essentially continuous		83
Larry Quin Eifler, Open mapping theorems for probability measure		0.5
spaces		89
Garret J. Etgen and James Pawlowski, Oscillation criteria for seco	ond order self adjoint	
differential systems		99
Ronald Fintushel, <i>Local S</i> ¹ actions on 3-manifolds		111
Kenneth R. Goodearl, <i>Choquet simplexes and</i> σ -convex faces		119
John R. Graef, Some nonoscillation criteria for higher order nonli		105
equations	Founian ganiage an	125
example		131
Les Andrew Karlovitz, Existence of fixed points of nonexpansive n		131
without normal structure		153
Gangaram S. Ladde, Systems of functional differential inequalities differential systems	and functional	161
Joseph Michael Lambert, Conditions for simultaneous approximat		
with norm preservation in $C[a,b]$		173
Ernest Paul Lane, Insertion of a continuous function		181
Robert F. Lax, Weierstrass points of products of Riemann surfaces		191
Dan McCord, An estimate of the Nielsen number and an example of		195
Lefschetz fixed point theorem Paul Milnes and John Sydney Pym, Counterexample in the theory		193
functions on topological groups		205
Peter Johanna I. M. De Paepe, <i>Homomorphism spaces of algebras</i>		200
functions		211
Judith Ann Palagallo, A representation of additive functionals on I	L ^p -spaces,	
0		221
S. M. Patel, On generalized numerical ranges		235
Thomas Thornton Read, A limit-point criterion for expressions win coefficients		243
Elemer E. Rosinger, <i>Division of distributions</i>		257
Peter S. Shoenfeld, <i>Highly proximal and generalized almost finite</i>		
minimal sets		265
R. Sirois-Dumais and Stephen Willard, Quotient-universal sequen	tial spaces	281
Robert Charles Thompson, Convex and concave functions of singu	•	
sums		285
Edward D. Tymchatyn, Some n-arc theorems		291
Jang-Mei Gloria Wu, Variation of Green's potential		295