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A mapping T: C — X defined on a subset C of a Banach
space X, with norm | -||, is said to be nonexpansive if | Tx —
Ty||=|x —y| for all x,y € C. If C is assumed to be convex
and weakly compact and if T: C — C then one of the main open
questions is whether T has a fixed point in C, i.e., whether there
exists x € C so that Tx = x. If X is reflexive and uniformly
convex or, more generally, if X is reflexive and has normal
structure then the answer is affirmative. Our purpose is to give
an example of a classical reflexive space which does not have
normal structure and for which the answer is nevertheless
affirmative.

Nonexpansive mappings have played an important role in recent
developments of nonlinear functional analysis (e.g., Browder [1], de-
Figueiredo [3]). The analysis of the uniformly convex and normal
structure cases is due to Browder [2], G6hde [4] and Kirk [6].

Let X, be the space /, renormed according to

]l = max {1 x l-, [lx [/ V2},

where |[-|. denotes the [. norm and |-|, the [, norm. This space
originates with R. C. James. A space is said to have normal structure if
for each bounded convex subset C consisting of more than one point
there is a point we&C so that sup{|lw—-yl|:yEC}<
sup{f|x = y|: x,y € C}. The set {x: x =x(i), x(i)=0, ||x|,=1} in X,
contains no such point w.

THEOREM. Let C be a bounded closed convex subset of X,. Let
T: C— C be nonexpansive. Then T has a fixed point in C.

One of the main tools in the proof is the following general lemma
which has been used in Karlovitz [5].

LEMMA. Let X be a Banach space. Let C, be a weakly compact
convex subsetof X. Let T: C,— C, be nonexpansive. Suppose that C, is
minimal in the sense that it contains no proper closed convex subset which is
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invariant under T. Let {x,} be a sequence of approximate fixed points,
ie, x, € C, and | Tx, — x,||—0. Then for each x € C,

(1) lim ||x — x, | = diameter C,.

If X is reflexive then a standard argument establishes the existence
of a subset C,C C which is minimal in the sense of the lemma. If C,
consists of more than one point, another standard argument yields a
sequence of approximate fixed points in C,. It follows from (1) that X
does not have normal structure. Hence if X does have normal structure
then C, is necessarily a singleton and thus a fixed point of T. This is an
alternate proof of the known result. In order to use the lemma to show
that in X; G, is necessarily a singleton, we need to make more explicit use
of the nonexpansiveness of T and of the geometry of X;. While some
modest generalizations will become apparent, the implications for the
general reflexive case are not yet clear.

Proof of the lemma. Choose y€C, and let s=
limsup|y — x,|. Let D ={x:x & C,,limsup|x —x,||=s}, which is
nonempty closed and convex. It is also invariant under T. For

ITx = x. | = [ Tx = T, [ + | Tx, = x| S Ml %~ x, [+ Tx, = x|

and || Tx, — x,|—0. By the minimality of Cy,, D = C,. Extract a subse-
quence {x,} so that lim|y — x, || = s’ exists. Suppose that there exists
z € C, and a subsequence {x,} of {x,} so that lim|z —x,|=¢ Let
E ={x: x € C,,limsup||x — x,-| =min{s, s’}}. Repeating the argument,
we find E = C,. Hence y,z € E, andso t =s'. Thus for each x € C,,
lim||x — x, || exists and equals s'.

We complete the proof by showing that s’ = r = diam C,. From this
it follows that ||y — x,.||— r whenever {||y — x, ||} converges. Whence, by
boundedness, ||y — x,||— r for the entire sequence. By repeating the
argument above with {x,} replaced by the entire sequence {x,}, we shall
have proved (1).

To this end, consider F={u:u€ Cy,|lu—-x||=s" for each
x € Cy}. F is nonempty because we can extract a weakly convergent
subsequence, again denoted by {x,}, with limit z. Since |x — x,[— s’
for each x € C, it follows that ||x — z||=s’ for each x € C,; hence
z€F. Now if s'<r then FZC,. However, this contradicts the mini-
mality of C, because F is invariant under 7. To see the latter, we first
note that as a consequence of minimality closed convex hull (TC,)=
Co. Hence if u is an arbitrary element of C, then for given € >0 we can
choose v =32/ ATx; with x, €EC,, A, >0, A, =1 and [[u—v|=
€. Choose arbitrary w in F. Then
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[Tw—u||=||Tw — ol +|v—ul
=E3IA|Tw — Tx, || +||v—ul

=N |w-—x|+llv-—ul|=s' +e

Since € >0 and u € C, are arbitrary this shows Tw € F. Thus F is
invariant under T and hence s'=r. This finishes the proof.

Proof of the theorem. Given x € X, we represent its components by
x(j),j=1,2,---. Since X; is a renorming of /, there exists a component
x(j) so that [|x[l. =[x (j)].

By a standard Zorn’s lemma argument there exists a closed convex
subset C, of C which is invariant under T and minimal in the sense of the
lemma. We propose to show that C, consists of a single point. By
invariance this is then a fixed point of T.

We proceed by contradiction. Suppose that C, consists of more
than one point. We may assume without loss of generality that 0 € C,,
and we let diameter C,=r>0. For each s, 0<s <1, we define
T,=(1-s)T. Clearly T,: C,— C, and it is a strict contraction. Hence
by the Banach contraction principle there exists a unique x, € G, so that
Tx, = x,. Thus

Tx,=(1—-s5)"'x, for 0<s<1.

By the minimality of C,, x,#0. The desired contradiction results from a
study of the points x,. Several propositions are needed.

ProprOSITION 1. For each x € C,, lim,_4||x — x,|.=r.

Proof. By contradiction. Suppose that for some x# 0€ C, and
sequence {x,} with s,—0, denoted by {x,}, ||[x —x,[.=r—8 6>
0. Since [|0— x,|l. = diam C, = r it follows that ||x/2 — x,|l.= r — 8/2 for
all n. By the uniform convexity of ||, it follows from ||x — x, |,/V2,
10— x,]l/V2=diam C,=r that |x/2—x,|l/V2=r—1r for some 7>
0. Hence, ||x/2— x,||=r—min{r, §/2} for all n, which contradicts (1)
because || Tx, — x, || = s.(1—s,)"||x. || = 0.

ProOPOSITION 2. For each s, 0<s <1, lim,_, ||x, — x,||= 0.

Proof. We denote x, by x and x, by y. Suppose that [[x —y|=
lx —yll.=|x(k)—y(k)]. By nonexpansiveness

@ |1~ s)"x (k)= A=)y (k)| =]x(k)=y(k)|.
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For s # ¢t it readily follows that sgnx(k)=sgny(k)=o0 = *1. Suppose
that 0<t<s. If ox(k)>oy(k) then

(1=s)lox(k)~ (@1 —1t)"oy(k)>1-1t)(ox(k)~oy(k)),
contradicting  (2). Hence oy(k)Zox(k). If (1-t)'oy(k)—
(1—-s)"'ox(k)=0 then, by (2), (1—-s)t(1—-t)'s'oy(k)=ox(k)=
oy(k). If (1-s)'ox(k)—(1—-1t)"'oy(k)=0 then, directly, (1—3s)
1-t)y'oy(k)=ox(k)=oy(k). If s <t <1, analogous inequalities are
derived. It follows that

_[(s=0s7a=oy),  0<r<s
®  x-y®I={ Tl seeet

Hence if ||x, — x,| =[x, — x|l and s/2 <t <(1+s)/2,
@) lx,~x.|=A|s—t|, forsome A =A(s)>0.
Now suppose that |[x —y|=|x — y|./V2. By nonexpansiveness

Ia=s)y"x ==yl =[xyl

We divide the positive integers according to:

Li={i:[1=-s)"x()—A-0)y()I=]x(@O)—-yO]

and

L={i:|(1=s)"x()=A=0)"y@)I>|x() -y}

Then

) IZ (@ =s)"x()~ A=)y —(x() - y()]= IZ (x @)=y @)y

By definition, (2) holds for kK € I,. We can deduce, as above, that (3)
holds. Whence, for s/2<t<(1+3s)/2

(6) > (x(i)—y(i)f=B(s —t}* forsome B = B(s)>0.

We note the identity-

A=)y ()~ (1=5)"x(@()= 1= s)(y() = x()— v(s, )y (),
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where y(s,t)=(s—t) (1— ). Substitution into (5) yields
122 (A=) ((y ()= x (D)= v(s, )y (D)) — (x(i)) = y ()]

=3 (=)= y ().

By the Schwarz inequality and some simple manipulation
Z (x@)-y@y=s"1- S)?Z @) =y@Or+2s7y(s Ollylkllx =yl

Combining this with (6) we find that if ||x, — x| =] x. — x.|./V2 and
§/2<t<(1+s)/2 then

7 x,— x,||= K(s —t)” forsome K =K(s)>0.

The proposition now follows from (4) and (7).
For each positive integer i and € >0 we introduce the notation:

A<(i)={s:0<s<1,|x(i)J=zr—€} and ac“(i)=inf A<(i).

PRrOPOSITION 3.  For each positive integer i and €, 0 < e =r/4, there
exists s,, 0 < s, <1, with the property that for each s, 0 < s = s, there exists
a positive integer k (s) such that k(s)# i and |x,(k(s))|=r-e

Proof. If Ac<(i)=( this follows from Proposition 1 with x =
0. Otherwise choose s,E A<(i). Let € = min{sy(1— o) (r —€), €/2,
rso/2, so(1—s,)"'€/2}. By Proposition 1 choose s; so that || x,— x,|l.=
r—e for all 0<s=s,. By virtue of Tx,=(1-5)"'x, E C, we have
[ Xoll-=r(1—s5). Choose s, -0<s=s, Suppose that sgnx.(i)=
sgnx, (i) or x,(i)=0. Then from 3r/4 =|x,(i)|=r(1—s,) we deduce
| xo(i)— x,(I)|[ S r—rs,, r/4<r—e€. If sgnx,(i)= —sgnx,(i) then

rz|| Tx,— Tx, | Z | (1 — s0) " x(i) = (1 = 8) "%, (0) ] > | xa(i) — x. (D)
+ 5o(1 = 50) " | %) | Z | 2 (0) — X, (i) |
+ 5o(1 = s) '(r — €)= | x,(i) — x, (i) | + €4,

and hence |x,(i)— x,(i)|<r—e€,. Thus there exists a positive integer
j# i so that [[x,— x, |. = [x.()) — x.(j)| = r —€,. We assert that k(s)=j
satisfies the proposition. If sgnx,(j)=sgnx,(j) then r—e=
| xo(7) — x,()| < max {| x,(j)|, [ x.j)[}. Since |x,()|=r(1—-s)<r—e, it
follows that |x,(j)|>r—e€,>r—¢€, as desired. If sgnx,(j) # sgnx,(j),
then
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rz || Tx,— T, [ 2 [(1 = s0) "% () = (A = 8) "%, () = (1= 50) " [ %))
+ (1= )" [x )] 2 [xa() ]+ [ xG) [+ 561 = 507" | %)
= [x() = X ()] + 501 = 50) | %) Z 7 = €+ s0(1 = 50) " | %8/ -

Hence |x,(j)| = s5'(1— so)€;. So |x.(j)— x,(j)|=r — €, implies |x,(j)| =
r—e—s;'(1-s)e,=r—e€,—€/2=r—¢€, as desired. Since s =s, was
arbitrarily chosen this finishes the proof.

PROPOSITION 4. Suppose a“(i) = a’(j) =0 for some €, 8 with 0 <,
d=r/64. Theni=|.

Proof. For i and € we choose s, according to Proposition 3. Thus
if sEA<(i) and s=s, then |x,(m)|=r—¢€ for m =i k(s).. Since
i#k(s) and |x[5=2r* we readily find that |[x,(m)|=r/4 for
m# i, k(s). By Proposition 1 we choose s,, s; € A*(i), 53, 53<'sy, so that
x, ~x,|-=r—eforp#qandp,q=1,2,3. Now suppose that k(s,) =
k(s;). Then |x,(m)—x,(m)|=|x,(m)|+]|x,(m)|=rl2<r—e€ for
m# i, k(s)). Moreover, sgnx,(i)=sgnx,(i); otherwise [x,— x,[.=
|x,(0)| + | x,(i)| = 2r — 2€ > r. Thus | x,(i) — x,(i)| = r — (r — €) = €. By the
same argument | x,(k (s;)) — x,(k (5,))| = €. Thus | x,,(i) — x,(i)| < r — € for
all positive integers i, which is a contradiction. Hence
k(s,) # k(s,). Similarly k(s;) # k(s,), k(s,). Now if i# j we repeat the
argument and find t,, 6, 6, € A%(j) so that |x, ()|, |x, (k)| =r—38,
p =1, 2, 3 and so that j, k(t,), k(t,) and k (¢, are disjoint. Thus we can
find s, and t, so that {i k(s,)}N{j, k(t,)}=. Then from |x,(i)],
'xsq(k(sq))l =r- €, lxlp(j) ) 'xtp(k(tp))’ =r-4 and ”xtp ”2’ ”xk "2§ \?ér it
follows that || x,, — x, |./V2 > r which contradicts x,, x,, € C,. Hence i = j.

Completion of the proof of the theorem. Let € =r/128. If there
exists a positive integer i so that a“(i)=0, let i,=i Otherwise
a*(i)>0 for each i and we let iy,=1. Apply Proposition 3 to find
s, = 5,(ip, €). In the sequel the positive integers k(- ) will be those given
by the proposition for this s;. Denote k(s,) by k,. Lets,=a*(k,). If
a“(iy) = 0 it follows from i, # k, and Proposition 4 that s, > 0; otherwise
5,>0 by hypothesis. By Proposition 2 |[x,, —x,]]—0 as
pu —0. Hence we can choose u >0 so that r —2€ =|x,,(k,)|. Since
S~ <s5,<s, k(s;—pn) is well defined. Since s,—pu <a‘(k)),
|x,-.(k\)|<r—e€; and hence k(s,—pu)# k,. Denote x,, by y and
k(s;—u) by k. Thus |y(k,)|, |y(k))|=r—2e Since ki, k,# iy,
reasoning as above, a‘(k;), a‘(k;)>0. Hence we can choose s;,
0<s;<ac(k), a*(k,). Then |x,(k)l|, |x.(k2)|<r—¢ and hence k;=
k(s;) # ky, k,. Repeating the argument we find z = x,_,, 7 >0, and
ki=k(ss—n)#k; so that |z(ks)]=r—2e¢ and |z(ks)|=
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r—e. Moreover, s;—n <ac“(k,), a*(k,), hence k,# ki, k,. Thus k,,
k,, ks and k, are disjoint. Hence from ||y |, ||[z||=r and |y (k,)|, | y (kJ)|,
|z(ks)|, | z(ks)| = r — 2€ we readily calculate ||y — z |l,/V2 > r which con-
tradicts y, z € C,. This contradiction proves that C, cannot consist of
more than one point and finishes the proot of the theorem.

Added in proof. Additional applications of the lemma as well as
some of its points of contact with work of M. Edelstein will be discussed
elsewhere. P. M. Fitzpatrick has informed us that he independently
developed the lemma.
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