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Abstract: The aim of the present paper is to obtain sufficient conditions for existing

and uniqueness of the solution of the Cauchy problem with discontinuous initial conditions

for nonhomogeneous neutral linear fractional differential system with distributed delay and

Caputo type derivatives. As an application is obtained that the homogeneous system has a

continuous in [a,∞), a ∈ R fundamental matrix, which result extends the corresponding ones

even in the particular case of fractional system with one constant delay and lower terminal at

zero of the fractional derivatives.

AMS Subject Classification: 34A08, 34A12, 34A30

Key Words: fractional derivatives, neutral fractional system, fundamental matrix

1. Introduction

The fractional calculus and respectively the fractional differential equations
have a lot of applications in various fields of the science. For a good introduc-
tion on fractional calculus theory and fractional differential equations see the
monographs of Kilbas et al. [9], Kiryakova [10], Podlubny [17] and Fecan et al.
[4]. The distributed order fractional differential equations is discussed in Jiao et
al. [6] and for an application oriented exposition see Diethelm [3]. We refer the
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monograph of Stamova, Stamov [18] where impulsive fractional differential and
functional differential equations as well as several applications are considered.

As in the integer order the main advantage of the fractional differential
equations with delay is the possibility to describe evolution of the processes
which depends on the past history. Single order fractional systems of retarded
and neutral type with distributed delays are studied in [19], [20], [21], [22]
and in [2] is considered the case with Caputo type distributed order fractional
derivatives.

It is well known that the fundamental matrix is a mainstay tool for es-
tablishing a formula for the general solution for linear fractional differential
equations and/or systems (ordinary or with delay). That’s why the problem of
existence of a fundamental matrix is an important evergreen theme for research
and this explains the largest amount of papers devoted to this problem. For lin-
ear fractional ordinary differential equations and systems detailed information
concerning this theme is given in [1], [8], [9], [16], [17], [26] and the references
therein. Several results in the autonomous case using the Laplace transform
method are obtained in [13], [14], [17]. From the works concerning the problem
of establishing a formula for the general solution for fractional differential equa-
tions and/or systems with delay we point out [24], [25] and [23] for the case of
singular systems.

It is known that in the general case the existence of a fundamental ma-
trix for a homogeneous delayed (or neutral) fractional differential system is a
corollary form the solvability of an initial problem for this system with discon-
tinuous initial function. As far as we know, there are no results concerning
initial problem for delayed fractional differential equations with discontinuous
initial function except [11]. Without to solve this problem, a consideration of
the existence of fundamental matrix without proof (except in some partial au-
tonomous cases) is generally speaking incorrect. Note that almost all results
establishing a formula for the general solution of a system are obtained from
many authors, using the definition of Caputo type derivative applicable only in
the particular case when the functions are absolutely continuous. Our work is
motivated also from the fact that in the mentioned works is investigated only
the case of one constant delay and all used fractional derivatives have lower
terminal at zero.

In the present work we consider a neutral linear delayed system of incom-
mensurate type with distributed delay with derivatives in Caputo sense. For
this system we study two important problems. First of them is to clear the
problem with existence and the uniqueness of the solutions of an initial prob-
lem (IP) in the case of discontinuous initial conditions. The other one is to
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obtain as corollary that the non autonomous homogeneous system has a funda-
mental matrix G(t, s) = R

2 → R
n×n which is continuous for t ∈ [a,∞), a ∈ R.

The obtained result extends the corresponding one even in the particular case
of fractional system with one constant delay and a = 0. Moreover the proposed
conditions coincide with the conditions which guaranty the same result in the
case of integer order linear differential equations with distributed delay. In our
work we use the more general definition of Caputo type derivative without the
restrictive assumption that the functions must be absolutely continuous.

The paper is organized as follows: In Section 2, we recall some needed def-
initions of Riemann-Liouville and Caputo fractional derivatives, as well as the
needed part of their properties. In the same section the problem statement
can be found and some notations are introduced. Section 3 is devoted to the
existence and the uniqueness of the solutions of the Cauchy problem for delayed
linear incommensurate fractional differential system with distributed delays in
the case of Caputo derivatives with piecewise continuous initial function. As an
application of the results from Section 3, in Section 4 is obtained that the homo-
geneous system has a continuous in [a,∞), a ∈ R fundamental matrix, which
result extends the corresponding ones even in the particular case of fractional
system with one constant delay and lower terminal at zero of the fractional
derivatives.

2. Preliminaries and Problem Statement

For convenience and to avoid possible misunderstandings, below we recall only
the definitions of Riemann–Liouville and Caputo fractional derivatives and some
needed their properties. For details and other properties we refer to [9, 10, 17].

Let α ∈ (0, 1) be an arbitrary number and denote by Lloc
1 (R,R) the linear

space of all locally Lebesgue integrable functions f : R → R. Then for each
a ∈ R and f ∈ Lloc

1 (R,R) the left-sided fractional integral operator of order α

is defined by

(D−α
a+ f)(t) =

1

Γ(α)

t
∫

a

(t− s)α−1f(s)ds, (D0
a+f)(t) = f(t), t > a.

The corresponding left side Riemann–Liouville fractional derivative for t > a is
defined by

RLD
α
a+f(t) =

1

Γ(1− α)

d

dt





t
∫

a

(t− s)−αf(s)ds




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and the Caputo fractional left side derivative CD
α
a+ is defined by

CD
α
a+f(t)=RLD

α
a+[f(s)− f(a)](t)=RLD

α
a+f(t)−

f(a)

Γ(1− α)
(t− a)−α.

We will use the following relations (see Kilbas et al. [9]):

(a) D−α
a+C

Dα
a+f(t) = f(t)− f(a); (b) CD

α
a+D

−α
a+ f(t) = f(t).

Consider the nonhomogeneous and homogeneous linear delayed systems of
incommensurate type with distributed delay in the following general form:

Dα
a+(X(t) −

r
∑

l=1

0
∫

−τ

[dθV
l(t, θ) ]X(t+ θ))

=

m
∑

i=0

0
∫

−σ

[dθU
i(t, θ) ]X(t+ θ) + F (t),

(1)

Dα
a+(X(t) −

r
∑

l=1

0
∫

−τ

[dθV
l(t, θ) ]X(t+ θ))

=
m
∑

i=0

0
∫

−σ

[dθU
i(t, θ) ]X(t+ θ).

(2)

where r,m ∈ N, k ∈ 〈n〉 = {1, 2, ..., n}, τ, σ > 0, α = (α1, ..., αn), αk ∈ (0, 1),
X,F : Ja → R

n, U i, V l : Ja × R → R
n×n, Ja = [a,∞), a ∈ R, X(t) =

(x1(t), ..., xn(t))
T , F (t) = (f1(t), ..., fn(t))

T , V l(t, θ) = {vlkj(t, θ)}
n
k,j=1, l ∈ 〈r〉,

U i(t, θ) = {uikj(t, θ)}
n
k,j=1, i ∈ 〈m〉0 = 〈m〉

⋃

{0},

Dα
a+X(t) = (Dα1

a+x1(t), ...,D
αn
a+xn(t))

T ,

and D
αk
a+ denotes the left side Caputo fractional derivative CD

αk
a+.

The system (1) described with more details has the form

D
αk
a+(xk(t)−

r
∑

l=1

(

n
∑

j=1

0
∫

−τ

xj(t+ θ)dθv
l
kj(t, θ)))

=

m
∑

i=0

(

n
∑

j=1

0
∫

−σ

xj(t+ θ)dθu
i
kj(t, θ) ) + fk(t)
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In addition we will use also the following notations: R+ = (0,∞), R̄+ =
[0,∞), h = max(τ, σ), J∗ = [a− h,∞), Ja+M = [a− h, a+M ], M ∈ R+.

Let Y : Ja ×R → R
n×n, a ∈ R, Y (t, θ) = {yk,j(t, θ)}

n
k,j=1. Then |Y (t, θ)| =

n
∑

k,j=1

|yk,j(t, θ)| and BV [−h, 0] denotes the linear space of matrix valued func-

tions Y (t, θ) with bounded variation in θ on [−h, 0] for every t ∈ Ja and

V ar[−h,0]Y (t, ·) =
n
∑

k,j=1

V ar[−h,0]yk,j(t, ·). Everywhere below for Y (t) = (y1(t),

..., yn(t))
T : Ja → R

n β = (β1, ..., βn), βk ∈ [−1, 1], k ∈ 〈n〉 we will use the no-

tation Iβ(Y (t)) = diag(yβ1
1 (t), ..., y

βn
n (t)) and I ∈ R

n×n be the identity matrix.

As usual a vector function Φ = (φ1, ..., φn)
T : [a − h, a] → R

n is called
piecewise continuous on [a−h, a] (it will be noted Φ ∈ PC([a−h, a],Rn)) if the
interval [a − h, a] can be broken into a finite number of subintervals on which
the function is continuous on each open subinterval and has a finite limit at
the end points of each subinterval. We will denote the set of all jumps point of
Φ ∈ PC([a− h, a],Rn) with SΦ.

With C∗
a ⊂ PC([a − h, a],Rn) ∩ BV ([a − h, a],Rn),a ∈ R we denote the

Banach space of all right continuous vector functions with bounded variation

Φ ∈ C∗
a with norm ||Φ|| = sup

t∈[a−h,a]
|Φ(t)| = sup

t∈[a−h,a]

n
∑

k=1

|φk(t)| < ∞ and by

Ca ⊂ Ca
∗ the subspace of all continuous functions in Ca

∗.

In view of the applications and for simplicity, in our exposition in Section 3
we will assume that every initial vector function Φ ∈ C∗

a has at most one jump
point tΦ ∈ [a− h, a], i.e. SΦ = {tΦ}.

Consider the following initial conditions for the system (1):

X(t) = Φ(t)(xk(t) = φk(t), k ∈ 〈n〉), t ∈ [a− h, a], Φ ∈ C∗
a (3)

We say that for the kernels U i, V l : R̄+ × R → R
n×n, i ∈ 〈m〉0, l ∈ 〈r〉 the

conditions (S) are fulfilled if the following conditions hold (see [12],[5]):

(S1) The functions (t, θ) → U i(t, θ),(t, θ) → V l(t, θ) are measurable in
(t, θ) ∈ Ja × R and normalized so that U i(t, θ) = 0,V l(t, θ) = 0 for θ ≥ 0 and
U i(t, θ) = U i(t,−σ) for θ ≤ −σ, V l(t, θ) = V l(t,−τ) for θ ≤ −τ , t ∈ Ja.

(S2) For each t ∈ Ja the kernels U i(t, θ) and V l(t, θ) are continuous from
the left in θ on (−σ, 0) and (−τ, 0) respectively and U i(t, ·), V l(t, ·) ∈ BV [−h, 0].

(S3) The Lebesgue decompositions of the kernels U i(t, θ) and V l(t, θ) for
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t ∈ Ja and θ ∈ [−h, 0] have the form:

U i(t, θ) = ℵi(t, θ) +

∫ θ

−σ

B(t, s)ds+Υ(t, θ),

V l(t, θ) = ℵ̄l(t, θ) +

∫ θ

−τ

B̄(t, s)ds+ Ῡ(t, θ)

where Υ(t, θ) = {gk,j(t, θ)}
n
k,j=1, Ῡ(t, θ) = {ḡk,j(t, θ)}

n
k,j=1 ∈ C(Ja × R,Rn×n),

ℵi(t, θ) = {aikj(t)H(θ + σi(t))}
n
k,j=1, ℵ̄

l(t, θ) = {ālkj(t)H(θ + τl(t))}
n
k,j=1, H(t)

is the Heaviside function, Ai(t) = {aikj(t)}
n
k,j=1, B(t, θ) = {bjk(t, θ)}

n
k,j=1 ∈

Lloc
1 (Ja × R,Rn×n) are locally bounded, Āl(t) = {ālkj(t)}

n
k,j=1 ∈ C(Ja,R

n×n),

B̄(t, θ) = {b̄jk(t, θ)}
n
k,j=1 ∈ C(Ja,R

n×n), σi(t), τl(t) ∈ C(Ja, R̄+), σ0(t) ≡ 0,
min

i∈〈m〉0

( min
t∈[a,a+σ]

(t− σi(t))) = a− σ, min
l∈〈r〉

( min
t∈[a,a+τ ]

(t− τl(t))) = a− τ .

(S4) There exist locally bounded functions ziu, z
l
v ∈ Lloc

1 (Ja,R+) such that
Var[−σ,0]U

i(t, ·) ≤ ziu(t) and Var[−τ,0]V
l(t, ·) ≤ zlv(t) for each t ∈ Ja.

(S5) For each t∗ ∈ Ja the following relations hold:
∫ 0
−σ

|U i(t, θ)− U i(t∗, θ)|dθ → 0,
∫ 0
−τ

|V l(t, θ)− V l(t∗, θ)|dθ → 0 when t → t∗.

(S6) The sets Si
Φ = {t ∈ Ja| t− σi(t) ∈ SΦ}, Sl

Φ = {t ∈ Ja| t− τl(t) ∈ SΦ}
for every i ∈ 〈m〉 and l ∈ 〈r〉 do not have limit points.

(S7) The kernel V l(t, θ) is uniformly nonatomic at zero (see [12]), i.e. for
every ε > 0, there exists δ(ε) > 0 such that
V ar[−δ,0]V

l(t, ·) < ε.

Remark 1. Note that the Condition (S6) is ultimately fulfilled in the
case when all delays are strictly monotonic functions (or in the particular case
of constant delays).

Definition 2. The vector function X(t) is a solution of the IP (1), (3)
in Ja+M (J∗) if X|[a,a+M ] ∈ C([a, a + M ], R

n) (X|Ja ∈ C(Ja,R
n)) satisfies

the system (1) for all t ∈ (a,M ] (t ∈ (a,∞)) and the initial condition (3) for
t ∈ [a− h, a].
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Consider the following auxiliary system

X(t) = Φ(a)−

r
∑

l=1

0
∫

−τ

[dθV
l(a, θ) ]Φ(a+ θ)

+
r

∑

l=1

0
∫

−τ

[dθV
l(t, θ) ]X(t+ θ)

+ I−1(Γ(α))

t
∫

a

Iα−1(t− η)F (η)dη

+ I−1(Γ(α))

t
∫

a

Iα−1(t− η)[

m
∑

i=0

0
∫

−σ

[dθU
i(η, θ) ]X(η + θ)]dη

(4)

or in more detailed form for k ∈ 〈n〉

xk(t) = φk(a)−

r
∑

l=1

(

n
∑

j=1

0
∫

−τ

φj(a+ θ)dθv
l
kj(a, θ))

+
r

∑

l=1

(
n
∑

j=1

0
∫

−τ

xj(t+ θ)dθv
l
kj(t, θ))

+
1

Γ(αk)

t
∫

a

(t− η)αk−1fk(η)dη

+
1

Γ(αk)

t
∫

a

(t− η)αk−1[

m
∑

i=0

(

n
∑

j=1

0
∫

−σ

xj(η + θ)dθu
i
kj(η, θ))] dη

(5)

with the initial condition (3).

Definition 3. The vector function X(t) is a solution of the IP (4), (3)
in Ja+M (J∗) if X|[a,a+M ] ∈ C([a, a + M ], R

n) (X|Ja ∈ C(Ja,R
n)) satisfies

the system (4) for all t ∈ (a,M ] (t ∈ (a,∞)) and the initial condition (3) for
t ∈ [a− h, a].
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3. Main results

Lemma 4. Let the following conditions be fulfilled:

1. The conditions (S) hold.

2. The function F ∈ Lloc
1 (Ja,R

n) is locally bounded.

Then every solution X(t) of IP (1), (3) is a solution of the IP (4), (3) and vice
versa.

Proof. The proof is standard and partially based of the proof of the Lemma
1 in [21] for the case of continuous initial functions. For every solution in Ja of
the IP (1), (3) X(t) we apply the operator D−α

a+ to the both sides of (1) and in
virtue of (a) we obtain that (4) holds. Thus we prove that X(t) is a solution
of the IP (4), (3). Analogically let X(t) be a solution of the IP (4), (3). Then
applying the operator Dα

a+ to both sides of (4) and in virtue of (b) it follows
that X(t) is a solution of the IP (1), (3).

Let for every Φ ∈ C∗
a consider the corresponding linear space

EΦ = {G : J∗ → R
n| G|Ja ∈ C(Ja,R

n) ∩BV ([a, a+ τ ],Rn),

G(t) = Φ(t), t ∈ [a− h, a]}

Then for each M ∈ R+ and Φ ∈ C∗
a define the set

EΦ
M = {GM : Ja+M → R

n| GM = G|[a,a+M ], G ∈ EΦ}

with a metric function dΦM : EΦ
M × EΦ

M → R̄+,

dΦM (GM , G∗
M ) =

n
∑

k=1

sup
t∈Ja+M

|gk(t)− g∗k(t)|

for each GM , G∗
M ∈ EΦ

M . Obviously the set EΦ
M is a complete metric space

concerning this metric.

Using (5) for eachM ∈ R+, t ∈ (a, a+M) and for everyGM = (g1, ..., gn)
T ∈
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EΦ
M define for k ∈ 〈n〉 the operator ℜkgk(t) by

ℜkgk(t) = φk(a)−

r
∑

l=1

(

n
∑

j=1

0
∫

−τ

φj(a+ θ)dθv
l
kj(a, θ))

+

r
∑

l=1

(

n
∑

j=1

0
∫

−τ

gj(t+ θ)dθv
l
kj(t, θ))

+
1

Γ(αk)

t
∫

a

(t− η)αk−1fk(η)dη

+
1

Γ(αk)

t
∫

a

(t− η)αk−1[
m
∑

i=0

(
n
∑

j=1

0
∫

−σ

gj(η + θ)dθu
i
kj(η, θ))] dη

(6)

with additional conditions

ℜkgk(t) = φk(t), t ∈ [a− h, a]

ℜkgk(a+M) = lim
t→(a+M)−0

ℜkgk(t)
(7)

Theorem 5. Let the following conditions be fulfilled:

1. The conditions of Lemma 4 hold.

2. The initial vector function Φ ∈ C∗
a has at most one jump point tΦ ∈

[a− h, a].

Then there exists M0 ∈ R+ such that the operator

(ℜGM0)(t) = (ℜ1g1(t), ...,ℜngn(t))
T

has a unique fixed point in the complete metric space EΦ
M0 , i.e. the IP (4), (3)

has a unique local solution with interval of existence Ja+M0

Proof. Let Φ ∈ C∗
a be arbitrary and tl = min

t∈[a,a+τ ]
(t− τl(t)), l ∈ 〈r〉. Then

without loss of generality we can assume that a−τ = tr ≤ ... ≤ t1 ≤ t0 = a and
since Φ ∈ C∗

a is right continuous at tΦ, then we can conclude that tΦ ∈ (a−h, a].
Then either tΦ ∈ (a− h, a− τ ] or tΦ ∈ (a− τ, a].

Introduce the operator ℜ with (6) and (7) for each M ∈ R+, t ∈ (a, a+M).
(i) Let consider first the case when tΦ ∈ (a − h, a − τ ] and then obviously

we have that τ < h. In this case the third addend in the right side of (6) is a
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continuous function for t ∈ [a, a+M ], M ≤ τ and in virtue of Lemma 1 in [15]
the fourth and fifth addends are continuous functions for t ∈ [a, a + M ] too.
From (7) it follows that ℜkgk(a + M) = lim

t→(a+M)−0
ℜkgk(t), ℜkgk(a) = φk(a)

and hence ℜkgk(t) = φk(t) for t ∈ [a−h, a]. Taking into account the conditions
(S) we can conclude that for each GM ∈ EΦ

M we have ℜGM ∈ EΦ
M .

Let GM , G∗
M ∈ EΦ

M be arbitrary and let

CU = max
i∈〈m〉0

( sup
s∈Ja+M

V arθ∈[−σ,0]U
i(s, θ)).

Then for every M ≤ τ from (6) it follows that the estimation

|ℜkgk(t)−ℜkg
∗
k(t)| ≤

r
∑

l=1

(

n
∑

j=1

|

0
∫

−τ

(gj(t+ θ)− g∗j (t+ θ))dθv
l
kj(t, θ)|)

+
1

Γ(αk)

t
∫

a

(t− s)αk−1
m
∑

i=0

(

n
∑

j=1

|

0
∫

−σ

(gj(s+ θ)− g∗j (s + θ))duikl(s, θ)| ds)

≤
(t− a)αkCU

Γ(1 + αk)

n
∑

l=1

sup
t∈Ja+M

|(gl(t)− g∗l (t)|

(8)

holds for each t ∈ [a, a+M ] and k ∈ 〈n〉.

Let M0 = min ((Γ(1+αk)
2nCU )

1
αk , τ). Then for each t ∈ [a, a+M0], from (8) and

conditions (S) it follows that the inequality

(t− a)αkCU

Γ(1 + αk)
≤

1

2n
(9)

holds for every k ∈ 〈n〉. Hence from (8) and (9) it follows that

dM0(ℜGM0 ,ℜG∗
M0) ≤

1

2
dM0(GM0 , G∗

M0),

i.e. the operator ℜ is contractive in EΦ
M0 .

(ii) Let consider the case when tΦ ∈ (a−τ, a]. From conditions (S) it follows
that

r
∑

l=1

(

n
∑

j=1

0
∫

−τ

gj(t+ θ)dθv
l
kj(t, θ)) =

r
∑

l=1

(

n
∑

j=1

ālkj(t)gj(t− τl(t))

+

r
∑

l=1

(

n
∑

j=1

0
∫

−τ

gj(t+ θ)dθṽ
l
kj(t, θ))

(10)
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where ṽlkj(t, θ) denotes the sum of the absolutely continuous and singular parts

in the Lebesgue decomposition of the function vlkj(t, θ). Then there exists a
maximal number l∗ ∈ 〈r− 1〉0 , such that tΦ ∈ (tl∗+1, tl∗ ] and hence tl∗+1 < tΦ.
Hence there exists a point M∗ ∈ (a, a+ τ ] such that for l∗ ≥ 1 the inequalities
max

l∗+1≤l≤r
( sup
t∈[a,a+M∗]

(t − τl(t))) < tΦ and min
1≤l≤l∗

( min
t∈[a,a+M∗]

(t − τl(t))) ≥ tl∗ ≥ tΦ

hold and when l∗ = 0 (tΦ = a and t1 < a ) only the first one. Therefore
we can conclude that the first addend in the right side of (10) is a continuous
function for t ∈ [a, a + M∗]. For the second addend for each j ∈ 〈n〉 and
t ∈ [a, a + τ ] we have that t + θ ≤ t and hence V arθ∈[−τ,0]gj(t + θ) < ∞

and lim
t→t∗

0
∫

−τ

|gj(t
∗ + θ) − gj(t + θ)|dθ = 0 for t∗ ∈ [a, a + τ ]. Then for each

l ∈ 〈r〉, j ∈ 〈n〉, k ∈ 〈n〉 we have

0
∫

−τ

gj(t+ θ)dθṽ
l
kj(t, θ) = gj(t+ θ)ṽlkj(t, θ)|

θ=0
θ=−τ

−

0
∫

−τ

ṽlkj(t, θ)dθgj(t+ θ).

(11)

It is well known that (11) holds if at least one of the integrals in the equation
(11) exists. Since ṽlkj(t, θ) is a continuous function for t ∈ Ja and θ ∈ [−τ, 0],
then the integral in the left side of (11) exists and hence the other one in the
right side exists too. Taking into account that V arθ∈[−τ,0]gj(t + θ) < ∞ in
virtue of Lemma 1 in [15] we can conclude that the integral in the right side of
(11) is a continuous function for t ∈ [a, a+M∗]. Since the right side of (10) is a
continuous function for t ∈ [a, a+M∗] then the left side of (10) is a continuous
function for t ∈ [a, a +M∗] too and hence for each M ≤ M∗ we can conclude
that for each GM ∈ EΦ

M we have that ℜGM ∈ EΦ
M . Then as in case (i) we

can obtain that there exists M0 ≤ M∗ such that the operator ℜ is contractive
inEΦ

M0 .

Theorem 6. Let the conditions of Theorem 5 hold.
Then the IP (4), (3) has a unique solution in J∗.

Proof. We will use mathematical induction to proof the statement of the
theorem. According Theorem 5 there exists M0 > 0 such that the IP (4), (3)
has a unique solution in Ja+M0 . Denote by Xmax(t) = (xmax

1 (t), ..., xmax
n (t)) the

maximal solution of the IP (4), (3) with intervals of existence Jmax, i.e. X
max(t)

is a continuation of every other solution of the IP (4), (3).
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Let assume that Jmax = [a − h, a + Mmax) and consider the case when
Mmax ≥ τ . Then obviously the right side of (4) can be prolonged as continuous
function at t = a + Mmax and hence (4) holds for t = a + Mmax too. In
the case when Mmax < τ as in the proof of Theorem 5 point (ii) we can
prove that the right side of (4) can be prolonged as continuous function also
at t = a +Mmax and therefore (4) holds for t = a +Mmax too. Therefore we
obtain a solution which is a prolongation of Xmax(t) since it has as interval of
existence [a− h, a+Mmax], which contradicts of our assumption that Xmax(t)
is a maximal solution of the IP (4), (3). Thus we proved that the interval of
existence for Xmax(t) is Jmax = [a− h, a+Mmax] = Ja+Mmax .

Let assume that the the interval of existence for Xmax(t) is Ja+Mmax and
consider the case whenMmax < τ . Denote byMε = Mmax+ε , where ε ∈ (0, τ−
Mmax) is arbitrary number. Then we can consider a new IP for the system (4)
in the interval [a+Mmax, a+Mε], with initial interval [a+Mmax−h, a+Mmax].
As initial function ΦXmax

(t) = (φXmax

1 (t), ..., φXmax

n (t)) in this interval we use
the function Xmax(t), i.e. ΦXmax

(t) = Xmax(t) for t ∈ [a+Mmax−h, a+Mmax].

As above introduce the complete metric space

EΦ
Mε

= {GMε : Ja+Mε → R
n| GMε = G|[a,a+Mε], G ∈ EΦ}

with metric function

dΦMε
(GMε

, G∗
Mε

) =

n
∑

k=1

sup
t∈Ja+Mε

|gk(t)− g∗k(t)|.

Using (6) for every GMε = (g1, ..., gn)
T ∈ EΦ

Mε
define for each ε ∈ (0, τ−Mmax),

t ∈ (a + Mmax, a + Mε) and k ∈ 〈n〉 the operators ℜkgk(t) with equality (6)
and the additional conditions

ℜkgk(t) = φXmax

k (t), t ∈ [a+Mmax − h, a+Mmax]

ℜkgk(a+Mε) = lim
t→(a+Mε)−0

ℜkgk(t)
(12)

Let denote by tl = min
t∈[a+Mmax,a+τ ]

(t− τl(t)), l ∈ 〈r〉. Then without loss of

generality we can assume that a +Mmax − τ ≤ tr ≤ ... ≤ t1 ≤ t0 = a+Mmax

Then either tr ≥ a or there exists a maximal number l∗ ∈ 〈r − 1〉0, such that
tl∗ ≥ a and tl∗+1 < a. Then we have that either tr < a or tr ≥ a (note that
tr > a+Mmax − τ). Hence either tΦ ≤ tr or tΦ ∈ (tr, a].

(i) Consider the case when tΦ ≤ tr Then is simply to see that for each ε ∈
(0, τ−Mmax) the right side of (6) is a continuous function in [a+Mmax, a+Mε]
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and hence the operator ℜ defined with (6) and satisfying (12) maps EΦ
Mε

into

EΦ
Mε

.
(ii) Let assume that tΦ ∈ (tr, a]. Then obviously a ∈ (tl∗+1, tl∗ ] and there

exists a number l̃, l∗ ≤ l̃ ≤ r − 1, such that tΦ ∈ (t
l̃+1, tl̃]. Then according

condition (S3) there exists ε∗ ∈ (0, τ −Mmax) such that the right side of (6) is
a continuous function for t ∈ [a+Mmax, a+Mε∗].

Hence in both considered cases (i) and (ii) we proved that the right side
of (6) is a continuous function for t ∈ [a + Mmax, a + Mε∗ ] and therefore the
operator ℜ defined with (6) and satisfying (12) maps EΦ

Mε
into EΦ

Mε
for every

ε ∈ (0, ε∗].
Let ε ∈ (0, ε∗] be an arbitrary number. Then for every GMε , G

∗
Mε

∈ EΦ
Mε

and each t ∈ [a+Mmax, a+Mε∗ ] from (6) we obtain that

|ℜkgk(t)−ℜkg
∗
k(t)| ≤

r
∑

l=1

(

n
∑

j=1

|

0
∫

−τ

(gj(t+ θ)− g∗j (t+ θ))dθv
l
kj(t, θ)|)

+
1

Γ(αk)

t
∫

a

(t− s)αk−1
m
∑

i=0

(
n
∑

j=1

|

0
∫

−σ

(gj(s + θ)− g∗j (s+ θ))duikl(s, θ)| ds)

≤
1

Γ(αk)

t
∫

a+Mmax

(t− s)αk−1
m
∑

i=0

(

n
∑

j=1

|

0
∫

−σ

(gj(s+ θ)− g∗j (s+ θ))duikl(s, θ)| ds)

≤
(t− (a+Mmax))αkCU

Γ(1 + αk)

n
∑

l=1

sup
t∈Ja+Mε∗

|(gl(t)− g∗l (t)|

(13)

where CU = max
i∈〈m〉0

( sup
s∈Ja+Mε∗

V arθ∈[−σ,0]U
i(s, θ)).

If ε0 = min((Γ(1+αk)
2nCU )

1
αk , ε∗) we have that

ε
αk
0 CU

Γ(1+αk)
= 1

2n and from (13) it

follows that the operator ℜ is contractive in EΦ
Mε0

.

Hence we prove that the solution Xmax(t) has a continuation which contra-
dicts with our assumption concerning Xmax(t). Thus we proved that Mmax = τ

and then the interval of existence of Xmax(t) is Ja+Mmax = Ja+τ .

Since Ja =
∞
⋃

j=1
[a+ (j − 1)τ, a + jτ ] then according the principle of the

mathematical induction we assume that that there exists a unique solution

Xj(t) = (xj1(t), ..., x
j
n(t))

T
of IP (4), (3) with interval of existence Ja+jτ , j ∈

N (Note that the existence of X1(t) = Xmax(t) is proved above). Then we
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can consider an auxiliary IP for the system (4) in the interval J((j + 1)τ) =
[a + jτ, a + (j + 1)τ ] with initial interval [a + jτ − h, a + jτ ], i.e. Xj+1(t)
satisfies the system (4) for t ∈ (a+ jτ, a+ (j +1)τ ] and Xj+1(t) = Xj(t) when
t ∈ [a+ jτ − h, a+ jτ ]. As in the case j = 1 introduce the metric space

EΦ
(j+1)τ = {G(j+1)τ : Ja+(j+1)τ → R

n| G(j+1)τ = G|[a,a+(j+1)τ ], G ∈ EΦ}

with metric function

dΦa+(j+1)τ (G(j+1)τ , G
∗
(j+1)τ ) =

n
∑

k=1

sup
t∈Ja+(j+1)τ

|gk(t)− g∗k(t)|.

For t ∈ (a+ jτ, a+(j+1)τ) define the operators ℜkgk(t), k ∈ 〈n〉 with (6) and
the additional conditions

ℜkgk(t) = x
j
k(t), t ∈ [a+ jτ − h, a+ jτ ]

ℜkgk(a+ (j + 1)τ) = lim
t→(a+(j+1)τ)−0

ℜkgk(t)
(14)

Then for each t ∈ [a+ jτ, a+(j+1)τ ] we have that t− τl(t) ≥ a, l ∈ 〈r〉 and for
arbitrary G(j+1)τ ∈ EΦ

(j+1)τ we have that the right side of (6) is a continuous

function and hence the operator ℜ defined with (6) and satisfying (14) maps
EΦ

(j+1)τ into EΦ
(j+1)τ . According Theorem 5 there exists a unique local solution

Xj+1
M0

(t), such that Xj+1
M0

(t) = Xj(t) for t ∈ [a+ jτ −h, a+ jτ ] and with interval

of existence [a+ jτ, a+ jτ +M0],M0 ∈ (a+ jτ, a+ (j + 1)τ ].
Then analogical way as in the proof of point (ii2) above, we obtain that

M0 = τ . Thus we proved that the IP (4), (3) has a unique solution in J∗.

4. Applications

Let s ∈ Ja be arbitrary fixed number, Js = [s,∞) and consider the following
matrix IP

Dα
a+(G(t, s)−

r
∑

l=1

∫ 0

−τ

[dθV
l(t, θ) ]G(t+ θ, s))

=

m
∑

i=0

∫ 0

−σ

[dθU
i(t, θ) ]G(t+ θ, s), t ∈ (s,∞),

(15)

C(t, s) =

{

I, t = s

0, −∞ < t < s
(16)
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Definition 7. For each s ∈ Ja the matrix valued function t → G(t, s) =
{γkj(t, s)}

n
k,j=1 is called a solution of the IP (15), (16) for t ∈ Js, if G(·, s) :

Js → R
n×n is continuous in t on Js and satisfies the matrix equation (15) for

t ∈ (s,∞), as well as the initial condition (16) too.

Corollary 8. Let the conditions (S) hold.

Then for every s ∈ Ja the IP (15), (16) has a unique solution in Js.

Proof. Let s ∈ Ja be an arbitrary fixed number and for j ∈ 〈n〉 consider
the IP (2), (3) in Js with initial condition Xj(t, s) = Ij , t = s;Xj(t, s) =
0, s − h < t < s and Ij denotes the j-th column of the identity matrix I.
Since the system (2) is homogeneous and for each j ∈ 〈n〉 the correspond-
ing initial function is Ij for t = s and zero for t < s, then we can conclude
that all conditions of Theorem 6 are fulfilled. Then for each j ∈ 〈n〉 denote by
Xj(t, s) = (γ1j(t, s), ..., γnj(t, s))

T the unique solution of the IP (2), (3) in Js ex-
isting according Theorem 6. Then the matrix G(t, s) = (X1(t, s), ...,Xn(t, s)),
G(·, s) : [s,∞) → R

n×m is a unique solution of the IP (15), (16) in Js.

Remark 9. Note that since for each s ∈ Ja every column Xj(t, a)is a
unique solution of (2) with initial condition Xj(t, s) = Ij , t = s;Xj(t, s) =
0, s − h < t < s; j ∈ 〈n〉 we can define Xj(t, s) = 0, j ∈ 〈n〉 for t ∈ (−∞, s− h)
and then for each s ∈ Ja the matrix G(t, s) is prolonged as continuous in t on
(−∞, s).

The matrix G(t, s) will be called fundamental (or Cauchy) matrix for the
system (2) for t ∈ Ja.

Let for a fixed s ∈ [a − h, a] introduce the matrix valued function (t →
Q(t, s)) : Ja → R

n×n satisfying the system (15) for t ∈ (a,∞) and the initial
condition

Q(t, s) =

{

I, s ≤ t ≤ a

0, t ∈ (−∞, s)
(17)

Note that G(t, a) = Q(t, a) for t ∈ Ja.

For arbitrary initial function Φ ∈ C∗
a introduce the vector function

XΦ(t) =

a
∫

a−h

Q(t, s)dsΦh(s), t ∈ J∗ (18)

where Φh(t) ≡ Φ(t) for t ∈ (a− h, a] and Φh(a− h) = 0.

Theorem 10. Let the following conditions are fulfilled:
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1. The conditions of Corollary 8 hold.

2. The kernels V l(t, θ) ≡ V l(θ) for each l ∈ 〈n〉.

Then the vector function XΦ(t) defined by equality (18) is a unique solution
of the IP (2), (3) for t ∈ Ja.

Proof. It is simply to see that for arbitrary t ∈ [a− h, a] we have that

XΦ(t) =

a
∫

a−h

Q(t, s)dsΦh(s) =

a
∫

a−h

I dsΦh(s)

= Φh(t)− Φh(a− h) = Φ(t),

i.e. XΦ(t) satisfies the initial condition (3).
Lemma 1 in [15] implies that the vector function XΦ(t) defined by equality

(18) is a continuous function for t ∈ Ja. Substituting in the left side of (2) the
vector function XΦ(t) we obtain

CD
α
a+XΦ(t) =C Dα

a+

a
∫

a−h

Q(t, s)dsΦh(s)

=RL Dα
a+[

a
∫

a−h

Q(t, s)dsΦh(s)−

a
∫

a−h

Q(a, s)dsΦh(s)]

=RL Dα
a+

a
∫

a−h

[Q(t, s)−Q(a, s)]dsΦh(s)

(19)

Then from (19) using the Fubini theorem we have that

CD
α
a+XΦ(t)

=
1

Γ(1− α)

d

dt

t
∫

a

(t− η)−α(

a
∫

a−h

[Q(η, s)−Q(a, s)]dsΦh(s))dη

=

a
∫

a−h

(
1

Γ(1 − α)

d

dt

t
∫

a

(t− η)−α[Q(η, s)−Q(a, s)]dη)dsΦh(s)

=

a
∫

a−h

RLD
α
a+[Q(t, s)−Q(a, s)]dsΦh(s)
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=

a
∫

a−h

CD
α
a+Q(t, s)dsΦh(s). (20)

For each l ∈ 〈r〉 applying the unsymmetric Fubini theorem (see [7]) we have
that

Dα
a+

0
∫

−τ

[dθV
l(θ)]XΦ(t+ θ)

=RL Dα
a+

0
∫

−τ

[dθV
l(θ)](XΦ(t+ θ)−XΦ(a+ θ))

=RL Dα
a+

0
∫

−τ

[dθV
l(θ)](

a
∫

a−h

[Q(t+ θ, s)−Q(a+ θ, s)]dsΦh(s))

=RL Dα
a+

a
∫

a−h

(

0
∫

−τ

[dθV
l(θ)](Q(t+ θ, s)−Q(a+ θ, s)))dsΦh(s)

=
1

Γ(1− α)

d

dt

t
∫

a

(t− η)−α(

a
∫

a−h

(

0
∫

−τ

[dθV
l(θ)](Q(η + θ, s)−Q(a+ θ, s)))dsΦh(s))dη

=

a
∫

a−h

(
1

Γ(1− α)

d

dt

t
∫

a

(t− η)−α(

0
∫

−τ

[dθV
l(θ)](Q(η + θ, s)−Q(a+ θ, s)))dη)dsΦh(s)

=

a
∫

a−h

RLD
α
a+(

0
∫

−τ

[dθV
l(θ)](Q(t+ θ, s)−Q(a+ θ, s)))dsΦh(s)

=

a
∫

a−h

CD
α
a+(

0
∫

−τ

[dθV
l(θ)]Q(t+ θ, s))dsΦh(s).

(21)
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Then from (20) and (21) it follows that

CD
α
a+(XΦ(t)−

r
∑

l=1

0
∫

−τ

[dθV
l(θ)]XΦ(t+ θ))

=

a
∫

a−h

CD
α
a+(Q(t, s)−

r
∑

l=1

0
∫

−τ

[dθV
l(θ)]Q(t+ θ, s))dsΦh(s).

(22)

In the right side of (2) for each i ∈ 〈m〉 applying the unsymmetric Fubini
theorem (see [7]) we obtain

0
∫

−σ

[dθU
i(t, θ) ]XΦ(t+ θ) =

0
∫

−σ

[dθU
i(t, θ)]

a
∫

a−h

Q(t+ θ, s)dsΦh(s) =

=

a
∫

a−h

(

0
∫

−σ

[dθU
i(t, θ)]G(t+ θ, s))dsΦh(s)

(23)

From (22) and (23) it follows that

a
∫

a−h

[CD
α
a+(Q(t, s)−

r
∑

l=1

0
∫

−τ

[dθV
l(t, θ) ]Q(t+ θ, s))

−

m
∑

i=0

0
∫

−σ

[dθU
i(t, θ)]Q(t+ θ, s)]dsΦh(s) = 0

and hence XΦ(t) satisfies (2) for t > a.

Remark 11. Note that the matrix valued function (t → Q(t, s)) : Ja →
R
n×n satisfying the system (15) for t ∈ (a,∞) and the initial condition (17) is

not depending from the function Φ ∈ C∗
a used in IP (2), (3) as initial function.

Thus we can conclude that the initial function Φ ∈ C∗
a used in (18) can have

arbitrary finite number of jumps.

Corollary 12. Let the following conditions are fulfilled:

1. The conditions of Theorem 10 hold.

2. The Lebesgue decomposition of the function Φ ∈ C∗
a does not include a

singular term.
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Then the vector function XΦ(t) defined by equality (18) has the represen-
tation

XΦ(t) = Q(t, a)(Φh(a+)− Φh(a−))

+
∑

sq∈SΦh\{a}

Q(t, sq)(Φh(sq+)− Φh(sq−))

+

a
∫

a−h

Q(t, s)Φ̃h
′
(s)ds

(24)

where the summation is over all discontinuity points sq ∈ SΦh \ {a} of the
function Φh(t) and with Φ̃h is denoted the absolutely continuous term in its
Lebesgue decomposition.

Proof. Since Φh ∈ C∗
a then (24) immediately follows from the Lebesgue

decomposition of Φh(t) and (18).

Remark 13. Our result improves the corresponding results even in the
case of one constant delay which is considered in Theorem 5.3 in [25]. Actually
their result is proved only for absolute continuous solutions, since he authors
used the definition of Caputo derivative useful only in the case for absolute con-
tinuous functions. Moreover the fact that the solutions are absolute continuous
is essentially used in the proofs in the whole their work and hence the definition
cannot be simply replaced with the other one. In addition we point out that
in [25] as a space of initial functions in the partial case of one constant delay
τ and initial point a = 0 is used the space C1([−τ, 0],Rn) for which obviously
the inclusions C1([−τ, 0],Rn) ⊂ C∗

0 ⊂ PC([−τ, 0],Rn) ∩BV ([−τ, 0],Rn) hold.
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