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EXISTENCE OF GLOBAL WEAK SOLUTIONS TO SOME
REGULARIZED KINETIC MODELS FOR DILUTE POLYMERS∗

JOHN W. BARRETT† AND ENDRE SÜLI‡

Abstract. We study the existence of global-in-time weak solutions to a coupled microscopic-
macroscopic bead-spring model which arises from the kinetic theory of dilute solutions of polymeric
liquids with noninteracting polymer chains. The model consists of the unsteady incompressible
Navier–Stokes equations in a bounded domain Ω ⊂ R

d, d = 2 or 3, for the velocity and the pressure
of the fluid, with an elastic extra-stress tensor as the right-hand side in the momentum equation.
The extra-stress tensor stems from the random movement of the polymer chains and is defined
through the associated probability density function which satisfies a Fokker–Planck-type parabolic
equation, a crucial feature of which is the presence of a center-of-mass diffusion term. The anisotropic
Friedrichs mollifiers, which naturally arise in the course of the derivation of the model in the Kramers
expression for the extra-stress tensor and in the drag term in the Fokker–Planck equation, are replaced
by isotropic Friedrichs mollifiers. We establish the existence of global-in-time weak solutions to the
model for a general class of spring-force-potentials including, in particular, the widely used finitely
extensible nonlinear elastic (FENE) potential. We justify also, through a rigorous limiting process,
certain classical reductions of this model appearing in the literature which exclude the center-of-mass
diffusion term from the Fokker–Planck equation on the grounds that the diffusion coefficient is small
relative to other coefficients featuring in the equation. In the case of a corotational drag term we
perform a rigorous passage to the limit as the Friedrichs mollifiers in the Kramers expression and
the drag term converge to identity operators.
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1. Introduction. This paper is concerned with the question of existence of
global weak solutions to a system of nonlinear partial differential equations which
arises from the kinetic theory of dilute polymer solutions. The solvent is an incom-
pressible, viscous, isothermal Newtonian fluid confined to a bounded open set Ω ⊂ R

d,
d = 2 or 3, with boundary ∂Ω. For the sake of simplicity of presentation, we shall
suppose that Ω has solid boundary ∂Ω; the velocity field u∼ will then satisfy the no-slip
boundary condition u∼ = 0∼ on ∂Ω. The polymer chains which are suspended in the
solvent are assumed not to interact with each other. The conservation of momentum
and mass equations for the solvent then have the form of the incompressible Navier–
Stokes equations in which the elastic extra-stress tensor τ

≈
(i.e., the polymeric part of

the Cauchy stress tensor) appears as a source term:

Find u∼ : (x∼, t) ∈ R
d+1 �→ u∼(x∼, t) ∈ R

d and p : (x∼, t) ∈ R
d+1 �→ p(x∼, t) ∈ R such
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that

∂u∼
∂t

+ (u∼ · ∇∼ x )u∼ − ν Δx u∼ + ∇∼ x p = ∇∼ x · τ
≈

in Ω × (0, T ],(1.1a)

∇∼ x · u∼ = 0 in Ω × (0, T ],(1.1b)

u∼ = 0∼ on ∂Ω × (0, T ],(1.1c)

u∼(x∼, 0) = u∼0(x∼) ∀x∼ ∈ Ω,(1.1d)

where u∼ is the velocity field, p is the pressure of the fluid, and ν ∈ R>0 is the viscosity
of the solvent. For the sake of simplicity, we shall assume that there are no body
forces present: the presence of a body force f

∼
∈ L2(R, [H−1(Ω)]d) on the right-hand

side of (1.1a) would not cause any particular technical complications. The extra-stress
tensor τ

≈
is defined as the second moment of ψ, the probability density function of the

(random) conformation vector of the polymer molecules. As will be seen below, the
Kolmogorov equation satisfied by ψ is a Fokker–Planck-type second-order parabolic
equation whose transport coefficients depend on the velocity field u∼.

Polymer solutions exhibit a range of non-Newtonian flow properties: in particu-
lar, the stress endured by a fluid element depends upon the history of deformations
experienced by that element. Thereby, rheological properties of non-Newtonian fluids
are governed by the flow-induced evolution of their internal microstructure. Follow-
ing Keunings [16], a relevant feature of the microstructure is the conformation of the
macromolecules, i.e., their orientation and the degree of stretching they experience.
From the macroscopic viewpoint it is only the statistical distribution of conformations
that matters: the macroscopic stress carried by each fluid element is governed by the
distribution of polymer conformations within that element. Motivated by this obser-
vation, kinetic theories of polymeric fluids ignore quantum mechanical and atomistic
effects and focus on “coarse-grained” models of the polymeric conformations. Depend-
ing on the level of coarse graining, one may arrive at a hierarchy of kinetic models.
For example, a dilute solution of linear polymers in a Newtonian solvent can be de-
scribed in some detail by the freely jointed bead-rod Kramers chain, which comprises
a number of beads (of the order of 100) connected by rigid linear segments. A coarser
model of the same polymer is the freely jointed bead-spring chain, a Rouse chain,
consisting of a smaller number of beads (of the order of 10) connected linearly by
entropic springs. A coarser model still is the dumbbell model which involves two
beads connected by a spring [5]. As has been emphasized by Keunings [16], such
coarse-grained models are not meant to capture the detailed structure of the poly-
mer. Rather, they are intended to describe, in more or less detail, the evolution of
polymer conformations in a macroscopic flow.

Many of the interesting properties of dilute polymer solutions can be understood
by modelling them as suspensions of simple coarse-grained objects (viz. dumbbells) in
a Newtonian fluid. This paper is devoted to the mathematical analysis of dumbbell
models which are nonlinearly coupled Navier–Stokes–Fokker–Planck systems of partial
differential equations: from the technical viewpoint these relatively simple models
already exemplify many of the analytical difficulties which are encountered in the
study of more complex models.

Since our model problem differs in slight yet crucial details from classical bead-
spring models, here we provide a brief overview of the derivation of the model. Some
of the key steps have been stimulated by the arguments put forward in Schieber [26]
and in Chapter 1 of the recent doctoral thesis of Lozinski [19]; see also Lozinski,
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r∼c(t) = 1
2 (r∼1(t) + r∼2(t))

q
∼
(t) = r∼2(t) − r∼1(t)

u∼(x∼, t)

Fig. 1.1. Noninteracting polymer chains, immersed into an incompressible Newtonian solvent
with flow velocity u∼, are modelled by using dumbbells, each dumbbell representing a polymer chain.
A dumbbell is a pair of beads, with centers of mass located, with respect to some fixed origin,
respectively, at r∼1(t) and r∼2(t) at time t ≥ 0, connected with an elastic spring. The dumbbell is

characterized by the position r∼c(t) = 1
2
(r∼1(t)+r∼2(t)) of its center of mass and its elongation vector

q
∼
(t) = r∼2(t) − r∼1(t).

Owens, and Fang [21]. For related discussion on the derivation of kinetic polymer
models we refer the reader to the books by Öttinger [22] and Bird et al. [5].

Let us denote by r∼i(t) ∈ R
d, i = 1, 2, the position vectors of the centers of mass

of the two beads in the dumbbell at time t ≥ 0 with respect to some fixed origin.
The center of mass of the dumbbell is then located at r∼c(t) := 1

2 (r∼1(t) + r∼2(t)).
We define the elongation vector (or end-to-end vector) of the molecule at time t by
q
∼
(t) = r∼2(t) − r∼1(t); see Figure 1.1. The elongation vector q

∼
(t) is assumed to be

confined to a balanced convex open set D ⊂ R
d; the term balanced means that 0∼ ∈ D,

and −q
∼
∈ D whenever q

∼
∈ D. Typically, D is an open d-dimensional ball of fixed

radius Qmax, an ellipse with fixed half-axes, or the whole of R
d.

Assuming that each bead has mass m, the spring is massless, and in the absence
of external forces, Langevin’s equation from statistical mechanics states that

mdv
∼

1 + ζ v
∼

1 dt = B
∼

1 dt + F
∼

(r
∼

2 − r
∼

1) dt

and mdv
∼

2 + ζ v
∼

2 dt = B
∼

2 dt + F
∼

(r
∼

1 − r
∼

2) dt,

where ζ is a friction coefficient, k is the Boltzmann constant, μ is the absolute tem-
perature, and v∼i is the velocity of the ith bead with respect to the moving frame,
i.e.,

v∼i(t) = ṙ∼i − u∼(r∼i(t), t), i = 1, 2,

where u∼(r∼i(t), t) is the solvent velocity at the point with position vector r∼i(t) at time
t. Further, B∼ i(t) denotes the d-component Brownian force acting on bead i at time t,
defined as the d-component Gaussian white noise multiplicatively scaled by

√
2kμζ,

i.e.,

〈B∼ i〉 = 0∼, i = 1, 2, and 〈B∼ i(t) [B∼ j(t
′)]�〉 = 2k μ ζ δij δ(t− t′) I

≈
, i, j = 1, 2,
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where I
≈

is the d× d identity matrix, and the angle brackets 〈·〉 denote (in this section

of the paper only) the ensemble average over the phase space {(r∼1, r∼2, ṙ∼1, ṙ∼2) ∈ R
4d}

of possible realizations. The elastic force F∼ : D ⊆ R
d → R

d of the spring connecting
the two beads is defined by a (sufficiently smooth) potential U : R≥0 → R through

(1.2) F∼ (q
∼
) = H U ′( 1

2 |q∼|
2) q

∼
,

where H ∈ R>0 is a spring constant. It follows from the definition of F∼ that

(1.3) F∼ (q
∼
) + F∼ (−q

∼
) = 0∼ and F∼ (q

∼
) − F∼ (−q

∼
) = 2F∼ (q

∼
).

Example 1.1. Typical examples include the Hookean (linear) spring force F∼ (q
∼
)

= Hq
∼
, where q

∼
∈ D = R

d, corresponding to U(s) = s; and the finitely extensible

nonlinear elastic (FENE) spring force

F∼ (q
∼
) =

H q
∼

1 − |q
∼
|2/Q2

max

, q
∼
∈ D = {q

∼
∈ R

d : |q
∼
| < Qmax},

corresponding to U(s) = − 1
2 Q

2
max ln(1 − 2s

Q2
max

), where Qmax is the maximum length

of the spring.
Neglecting the acceleration terms in Langevin’s equation, as m is small, the equa-

tions of motion of the beads become

ζ (dr∼1(t) − u∼(r∼1(t), t) dt) = B∼ 1(t) dt + F∼ (r∼2 − r∼1) dt,(1.4a)

ζ (dr∼2(t) − u∼(r∼2(t), t) dt) = B∼ 2(t) dt + F∼ (r∼1 − r∼2) dt.(1.4b)

Let f : (r∼1, r∼2, ṙ∼1, ṙ∼2, t) �→ f(r∼1, r∼2, ṙ∼1, ṙ∼2, t) denote the phase-space probability
density function, defined as the nonnegative function f such that

∫
Af(r∼1, r∼2, ṙ∼1, ṙ∼2, t)

dr∼1dr∼2dṙ∼1dṙ∼2 is the expected number of dumbbells at time t having bead positions
and velocities in the Borel set A of the phase space R

4d. We define the velocity-space
average 〈〈A〉〉 of a function A : (r∼1, r∼2, ṙ∼1, ṙ∼2) �→ A(r∼1, r∼2, ṙ∼1, ṙ∼2) by

〈〈A〉〉(r∼1, r∼2, t) =
1

ψ12

∫
ṙ∼1

,ṙ∼2

A(r∼1, r∼2, ṙ∼1, ṙ∼2) f(r∼1, r∼2, ṙ∼1, ṙ∼2, t) dṙ∼1 dṙ∼2,

where the contracted configuration distribution function ψ12(r∼1, r∼2, t) is defined as
the marginal distribution of f , that is,

ψ12(r∼1, r∼2, t) =

∫
ṙ∼1

,ṙ∼2

f(r∼1, r∼2, ṙ∼1, ṙ∼2, t) dṙ∼1 dṙ∼2.

With these definitions, 〈〈1〉〉 = 1. By virtue of Liouville’s theorem from statistical
mechanics, ψ12 satisfies the following continuity equation:

(1.5)
∂ψ12

∂t
+ ∇∼ r1 ·

(
〈〈ṙ∼1〉〉ψ

12
)

+ ∇∼ r2 ·
(
〈〈ṙ∼2〉〉ψ

12
)

= 0.

Applying the velocity-space average 〈〈·〉〉 to (1.4a,b), we obtain

ζ
(
〈〈ṙ∼1(t)〉〉 − u∼(r∼1(t), t)

)
= 〈〈B∼ 1(t)〉〉 + F∼ (r∼2 − r∼1),(1.6a)

ζ
(
〈〈ṙ∼2(t)〉〉 − u∼(r∼2(t), t)

)
= 〈〈B∼ 2(t)〉〉 + F∼ (r∼1 − r∼2).(1.6b)
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Now, by adopting the Curtiss–Bird–Hassager hypothesis of equilibration in momentum
space [7], the velocity-averaged Brownian force 〈〈B∼ i〉〉, i = 1, 2, satisfies

〈〈B∼ i(t)〉〉 = −k μ∇∼ ri lnψ12.

We note in passing that Schieber and Öttinger highlight in [27] that equilibration in
momentum space and neglecting the acceleration term in Langevin’s equation are a
consequence of a single hypothesis—that one can formally let the bead mass m → 0+.

Thus, (1.6a,b) yield

〈〈ṙ∼1〉〉ψ
12 = −k μ

ζ
∇∼ r1ψ

12 + u∼(r∼1, t)ψ
12 +

1

ζ
F∼ (r∼2 − r∼1)ψ

12,

〈〈ṙ∼2〉〉ψ
12 = −k μ

ζ
∇∼ r2ψ

12 + u∼(r∼2, t)ψ
12 +

1

ζ
F∼ (r∼1 − r∼2)ψ

12.

Substituting these into (1.5), we obtain the following Fokker–Planck equation for ψ12:

∂ψ12

∂t
+ ∇

∼
r1 ·

[
u
∼
(r
∼

1, t)ψ
12 +

1

ζ
F
∼

(r
∼

2 − r
∼

1)ψ
12

]
(1.7)

+ ∇
∼

r2 ·
[
u
∼
(r
∼

2, t)ψ
12 +

1

ζ
F
∼

(r
∼

1 − r
∼

2)ψ
12

]
=

k μ

ζ
Δr1ψ

12 +
k μ

ζ
Δr2ψ

12.

Recalling (1.3) and defining

ψ(x∼, q∼, t) = ψ12(x∼ − 1
2q∼, x∼ + 1

2q∼, t),

based on changing to center-of-mass coordinates, r∼c(t) = 1
2 (r∼1(t) + r∼2(t)), we deduce

from (1.7) that

(1.8)

∂ψ

∂t
+∇∼ x ·

(
u∼(x∼ − 1

2q∼, t) + u∼(x∼ + 1
2q∼, t)

2
ψ

)

+∇∼ q ·
([

u∼

(
x∼ +

1

2
q
∼
, t

)
− u∼

(
x∼ − 1

2
q
∼
, t

)]
ψ − 2

ζ
F∼ (q

∼
)ψ

)
=

k μ

2ζ
Δxψ +

2k μ

ζ
Δqψ.

In order to ensure that the definition of ψ(x∼, q∼, t) is meaningful for all x∼ ∈ Ω, we shall

suppose that q
∼
∈ D(x∼), where

D(x∼) = {q
∼
∈ D : x∼ ± s q

∼
∈ Ω ∀ s ∈ [− 1

2 ,
1
2 ]}.

Hence, the set D(x∼) of admissible end-to-end vectors depends on the choice of x∼ ∈ Ω.
Since D has been assumed to be balanced, the same is true of D(x∼). Note, in par-
ticular, that since the macroscopic domain Ω is, by hypothesis, bounded, necessarily
|q
∼
| ≤ diam(Ω) for any q

∼
∈ D(x).

Now, we can express

u∼(x∼ + 1
2q∼, t) − u∼(x∼ − 1

2q∼, t) = (∇
≈ x J∼

x
1,qu∼(x∼, t)) q∼, q

∼
∈ D(x∼),
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where J
∼

x
α,q : w∼ �→ J

∼
x
α,qw∼ is the directional Friedrichs mollifier with respect to x∼, over

an interval of length α |q
∼
|, in the direction q

∼
, defined by

(J
∼

x
α,qw∼ )(x∼) =

1

α

∫ α
2

−α
2

w∼ (x∼ + θ q
∼
) dθ, q

∼
∈ D(x∼), x∼ ∈ Ω.

Thus, for q
∼
∈ D(x∼) and x∼ ∈ Ω,

∂ψ

∂t
+ ∇∼ x ·

(
u∼(x∼ − 1

2q∼, t) + u∼(x∼ + 1
2q∼, t)

2
ψ

)

+ ∇∼ q ·
(

(∇
≈ x J∼

x
1,qu∼) q

∼
ψ − 2

ζ
F∼ (q

∼
)ψ

)
=

k μ

2ζ
Δxψ +

2k μ

ζ
Δqψ .

The fraction appearing in the second term on the left-hand side of this equation
can be written as follows:

u∼(x∼ − 1
2q∼, t) + u∼(x∼ + 1

2q∼, t)

2
= u∼(x∼, t) +

1

2
Δ2

1
2q∼

u∼(x∼, t), q
∼
∈ D(x∼), x∼ ∈ Ω,

where

Δ2
1
2q∼

u∼(x∼, t) = u∼(x∼ + 1
2q∼, t) − 2u∼(x∼, t) + u∼(x∼ − 1

2q∼, t)

is the second difference of u∼. Now, assuming that u∼(·, t) belongs to the Zygmund class
C∼1

loc (cf. [29], for example), we have that

|Δ2
1
2q∼

u∼(x∼, t)| ≤
1

2
|q
∼
| |u∼(·, t)|C1(B(x∼, 12 |q∼|)), q

∼
∈ D(x∼), x∼ ∈ Ω,

and hence∣∣∣∣∣u∼(x∼ − 1
2q∼, t) + u∼(x∼ + 1

2q∼, t)

2
− u∼(x∼, t)

∣∣∣∣∣≤ 1

4
|q
∼
| |u∼(·, t)|C1(B(x∼, 12 |q∼|)), q

∼
∈ D(x∼), x∼ ∈ Ω.

The requirement u∼ ∈ C∼1
loc is a very weak hypothesis on the regularity of u∼; in partic-

ular, u∼ ∈ C∼1
loc may be nowhere differentiable on Ω.

We proceed by adopting the local homogeneity assumption, 
0 |u∼(·, t)|C1(B(x∼, 12 �0))

≈ 0, where 
0 � diam(Ω) is the characteristic microscopic length scale (of the char-
acteristic dumbbell size). The validity of this assumption rests on the premise that,
while the velocity field may exhibit wide variation with respect to x∼ over distances
comparable to the size of an ensemble of dumbbells, its variation over the length scale
|q
∼
| ≈ 
0 of a single dumbbell is small. Under this hypothesis, the arithmetic mean

1
2 (u∼(x∼ − 1

2q∼, t) + u∼(x∼ + 1
2q∼, t)) is simply replaced by u∼(x∼, t). Hence, we arrive at the

Fokker–Planck equation

∂ψ

∂t
+ ∇∼ x · (u∼(x∼, t)ψ) + ∇∼ q ·

(
(∇
≈ x J∼

x
1,qu∼) q

∼
ψ − 2

ζ
F∼ (q

∼
)ψ

)
=

k μ

2ζ
Δxψ +

2k μ

ζ
Δqψ

for x∼ ∈ Ω, q
∼

∈ D(x∼), |q
∼
| = O(
0), and t > 0. The equation is supplemented by

an initial condition ψ(x∼, q∼, 0) = ψ0(x∼, q∼) ≥ 0 and boundary conditions which will be
specified later.
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Next we define the extra-stress tensor τ
≈

in terms of ψ. Taking an arbitrary surface
in the dumbbell solution, we consider the contribution to τ

≈
at a point P with position

vector x∼ due to (a) the spring tension in the dumbbells straddling the surface at P ;
and (b) changes in momentum brought about by beads passing through the surface
at P . Following Biller and Petruccione [4] and Petruccione and Biller [24], we then
have that

τ
≈
(x∼, t) = −2k μ ρ+(x∼, t) I≈ +

∫
D(x∼)

∫ 1
2

− 1
2

q
∼

[F∼ (q
∼
)]� ψ(x∼ + θ q

∼
, q
∼
, t) dθ dq

∼
(1.9)

= −2k μ ρ+(x∼, t) I≈ +

∫
D(x∼)

q
∼

[F∼ (q
∼
)]�J x

1,qψ(x∼, q∼, t) dq
∼
,

where J x
α,q is the scalar version of the operator J

∼
x
α,q, and

(1.10) ρ+(x∼, t) =

∫
D(x∼)

ψ(x∼ + 1
2q∼, q∼, t) dq

∼
, q

∼
∈ D(x∼), |q

∼
| = O(
0), x∼ ∈ Ω.

We nondimensionalize q
∼

by performing the change of variables q̂
∼

= q
∼
/
0. Noting

that

(J
∼

x
1,qw∼ )(x∼) = (J

∼
x
�0,q̂

w∼ )(x∼) =
1


0

∫ �0
2

− �0
2

w∼ (x∼ + θ q̂
∼
) dθ, q

∼
= 
0 q̂∼ ∈ D(x∼), x∼ ∈ Ω,

the Fokker–Planck equation (1.9) becomes

∂ψ̂

∂t
+ ∇∼ x ·

(
u∼ ψ̂

)
+ ∇∼ q̂ ·

(
(∇
≈ x J∼

x
�0,q̂

u∼) q̂
∼
ψ̂ − 1

2λ
F̂∼ (q̂

∼
) ψ̂

)
=


20
8λ

Δxψ̂ +
1

2λ
Δq̂ ψ̂,

where ψ̂(x∼, q̂∼, t) = 
d0 ψ(x∼, q∼, t), q∼ = 
0 q̂∼, 
0 =
√
k μ/H, λ = ζ/4H, and

F̂∼ (q̂
∼
) = Û ′

(
1
2 |q̂∼|

2
)
q̂
∼

with Û (s) = 
−2
0 U(
20 s).

We define D̂ = 
−1
0 D and D̂(x∼) = 
−1

0 D(x∼).

Example 1.2. For the Hookean spring force, F̂∼ (q̂
∼
) = q̂

∼
with q̂

∼
∈ D̂ = R

d,

corresponding to Û(s) = s. For the FENE spring force,

F̂∼ (q̂
∼
) =

1

1 − |q̂
∼
|2/b q̂∼, q

∼
∈ D̂ = {q

∼
∈ R

d : |q̂
∼
|2 < b},

where b = Q2
max/


2
0, corresponding to Û(s) = − b

2 ln
(
1 − 2s

b

)
, |s| < b

2 .
Changing variables in the expression for ρ+, we deduce that

ρ+(x∼, t) =

∫
D̂(x∼)

ψ̂(x∼ + �0
2 q̂∼, q̂∼, t) dq̂

∼
.

By an identical argument, noting that H
20 = k μ,

τ
≈
(x∼, t) = −2k μ ρ+(x∼, t) I≈ + H
20

∫
D̂(x∼)

q̂
∼
q̂
∼

� Û ′
(

1
2 |q̂∼|

2
)
J x
�0,q̂

ψ̂(x∼, q̂∼, t) dq̂
∼

= p0(x∼, t) I≈ + k μ

(∫
D̂(x∼)

q̂
∼
q̂
∼

� Û ′
(

1
2 |q̂∼|

2
)
J x
�0,q̂

ψ̂(x∼, q̂∼, t) dq̂
∼
− ρ(x∼, t) I≈

)
,
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where

p0(x∼, t) = k μ
(
ρ(x∼, t) − 2ρ+(x∼, t)

)
and ρ(x∼, t) =

∫
D̂(x∼)

ψ̂(x∼, q̂∼, t) dq̂
∼
.

Since the right-hand side of (1.1a) is equal to

∇
∼

x · τ
≈
(x
∼
, t) = ∇

∼
x p0(x

∼
, t)

+ ∇
∼

x · k μ

⎛⎝∫
D̂(x

∼
)

q̂
∼
q̂
∼

� Û ′
(

1
2 |q̂

∼
|2
)
J x
�0,q̂

ψ̂(x
∼
, q̂
∼
, t) dq̂

∼
− ρ(x

∼
, t) I

≈

⎞⎠ ,

after transferring ∇∼ x p0(x∼, t) to the left-hand side of (1.1a) and redefining the pressure
p(x∼, t) as p(x∼, t) − p0(x∼, t), the extra-stress tensor τ

≈
(x∼, t) becomes

τ
≈
(x∼, t) = k μ

(∫
D̂(x∼)

q̂
∼
q̂
∼

� Û ′
(

1
2 |q̂∼|

2
)
J x
�0,q̂

ψ̂(x∼, q̂∼, t) dq̂
∼
− ρ(x∼, t) I≈

)
,

which is the Kramers expression for the elastic extra-stress tensor τ
≈
, except that

here, in the case of a general heterogeneous solvent-velocity field u∼(x∼, t), we have the

directional Friedrichs mollification J x
�0,q̂

ψ̂ of ψ̂ instead of ψ̂ itself appearing in the
classical Kramers expression.

We shall adopt the simplifying assumption that the configuration space D̂ is
homogeneous, that is, D̂(x∼) = D̂ for all x∼ ∈ Ω, where D̂ is a fixed balanced set,
independent of x (see, however, the papers [4, 24] cited above). For the sake of
simplicity of exposition, we drop the ̂ ’s from our notation: in what follows we shall
write ψ, q

∼
, F∼ , U , D instead of ψ̂, q̂

∼
, F̂∼ , Û , D̂ throughout.

Thus, the governing equations become (1.1a–d), where τ
≈

is defined by

(1.11) τ
≈
(x∼, t) = k μ

(∫
D

q
∼
q
∼

� U ′
(

1
2 |q∼|

2
)
J x
�0,qψ(x∼, q∼, t) dq

∼
− ρ(x∼, t) I≈

)
,

with

(1.12) ρ(x∼, t) =

∫
D

ψ(x∼, q∼, t) dq
∼
,

and, defining ε = 
20/8λ, we see that ψ(x∼, q∼, t) is a solution to the Fokker–Planck
equation

(1.13)
∂ψ

∂t
+(u∼ ·∇∼ x )ψ+∇∼ q ·((∇≈ x J x

�0,qu∼) q
∼
ψ) = εΔxψ+

1

2λ
∇∼ q ·(∇∼ q ψ+U ′ q

∼
ψ).

This model has two noteworthy features compared to classical Fokker–Planck
equations for bead-spring models appearing in the literature. The first of these is
the presence of the x∼-dissipative center-of-mass diffusion term εΔxψ ≡ (
20/8λ) Δxψ
on the right-hand side of the Fokker–Planck equation (1.13). In standard deriva-
tions of bead-spring models the center-of-mass diffusion term is routinely omitted,
on the grounds that it is several orders of magnitude smaller than the other terms
in the equation. Indeed, when L ≈ 1 is a characteristic macroscopic length scale
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(such as, for example, diam(Ω)), Bhave, Armstrong and Brown [3] estimate the ra-
tio 
20/L

2 to be in the range of about 10−9 to 10−7. However, the omission of the
term εΔxψ from (1.13) in the case of a heterogeneous solvent velocity u∼(x∼, t) is a
mathematically counterproductive model reduction. When εΔxψ is absent, (1.13)
becomes a degenerate parabolic equation exhibiting hyperbolic behavior with re-
spect to (x∼, t). Since the study of weak solutions to the coupled problem requires
one to work with velocity fields u∼ that have very limited Sobolev regularity (typi-
cally u∼ ∈ L∞(0, T ;L∼

2(Ω)) ∩ L2(0, T ;H∼
1
0(Ω))), one is then forced into the technically

unpleasant framework of hyperbolically degenerate parabolic equations with rough
transport coefficients [1]. The resulting difficulties are further exacerbated by the fact
that, when D is bounded, a typical spring force F∼ (q

∼
) for a finitely extensible model

(such as FENE) explodes as q
∼

approaches ∂D; see Example 1.2 above. For these rea-

sons, here we shall retain the center-of-mass diffusion term in (1.13). In fact, one of
the objectives of this paper is to give mathematical foundation to the model reduction
ε = 0 by rigorously justifying the limiting process ε → 0+.

The second noteworthy feature of the model is the presence of the directional
Friedrichs mollifier J x

�0,q
in the Kramers expression (1.11) and in the Fokker–Planck

equation (1.13). In standard derivations of these, upon postulating that ψ and u∼ are
sufficiently smooth, the local homogeneity assumption is used (in its classical form,
expressed as the requirement that u∼ is “approximately linear” on the characteristic mi-
croscopic length scale 
0) to approximate J x

�0,q
ψ(x∼, q∼, t) by ψ(x∼, q∼, t) and J

∼
x
�0,q

u∼(x∼, t)

by u∼(x∼, t) to simplify the model. We shall refrain from performing such approxima-
tions and will retain the Friedrichs mollifiers in the Kramers expression and in the
Fokker–Planck equation, given that they naturally arise in the derivation of the model.
Since the anisotropic mollifiers need to act in all possible directions q

∼
contained in

the balanced set D, we shall, instead, make a different, apparently more reasonable,
simplification which does not necessitate the imposition of additional smoothness re-
quirements on u∼ or ψ: we shall replace, in both (1.11) and (1.13), the directional
Friedrichs mollifiers J x

�0,q
and J

∼
x
�0,q

by their isotropic counterparts Jx
α and J∼

x
α, where

0 < α ≤ 
0. In the simplified case, when the drag term in (1.13) is corotational, that
is, the tensor ∇

≈ x u∼ is replaced by its skew-symmetric part 1
2 ([∇

≈ x u∼] − [∇
≈ x u∼]�)), we

shall rigorously justify, by passing to the limit α → 0+, the model reduction α = 0
which corresponds to replacing the Friedrichs mollifiers by identity operators.

We conclude this introduction with a brief survey of developments on the analysis
of classical bead-spring models, all of which correspond to formally letting ε = 0 in
(1.13), i.e., omitting the center-of-mass diffusion term, and formally letting α = 0,
i.e., replacing the Friedrichs mollifiers J x

α,q and J
∼

x
α,q by identity operators.

An early effort to show the existence and uniqueness of local-in-time solutions to
a family of bead-spring type polymeric flow models is due to Renardy [25]. While the
class of potentials F∼ (q

∼
) considered by Renardy [25] (cf. hypotheses (F) and (F′) on

pp. 314–315) does include the case of Hookean dumbbells, it excludes the practically
relevant case of the FENE model (see Example 1.2 above). More recently, E, Li, and
Zhang [10] and Li, Zhang, and Zhang [17] have revisited the question of local existence
of solutions for dumbbell models. A further development in this direction is the work
of Zhang and Zhang [31], where the local existence of regular solutions to FENE-type
models has been shown. All of these papers require high regularity of the initial data.

Constantin [6] has considered the Navier–Stokes equations coupled to nonlinear
Fokker–Planck equations describing the evolution of the probability distribution of the
particles interacting with the fluid. He described, in the case when D is a Riemannian
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manifold, relations determining the coefficients of the stresses added in the fluid by
the particles; these relations link the extra stresses to the kinematic effect of the fluid
velocity on the particles and to the interparticle interaction potential. In equations
(of Type 1, in the terminology of [6]) where the extra stresses depend linearly on the
particle distribution density, as is the case in the present paper, the energy balance
requires a response potential. In equations (of Type 2) where the added stresses
depend quadratically on the particle distribution, it is shown that energy balance can
be achieved without a dynamic response potential, and global existence of smooth
solutions is shown if inertial effects are neglected. The necessary relationship (eq.
(2.14) in [6]) for the existence of a Lyapunov function in the sense of Theorem 2.2 of
[6] does not hold for the polymer models considered in the present paper.

Otto and Tzavaras [23] have investigated the Doi model (which is similar to a
Hookean model considered here, except that D = S2) for suspensions of rod-like
molecules in the dilute regime. For certain parameter values, the velocity gradient
vs. stress relation defined by the stationary and homogeneous flow is not rank-one
monotone. They considered the evolution of possibly large perturbations of stationary
flows and proved that, even in the absence of a microscopic cutoff, discontinuities in
the velocity gradient cannot occur in finite time.

In a recent paper Jourdain, Lelièvre, and Le Bris [15] studied the existence of
solutions to the FENE model in the case of a simple Couette flow; by using tools
from the theory of stochastic differential equations, they established the existence of
a unique local-in-time solution to the FENE model in two space dimensions (d = 2)
when the velocity field u∼ is unidirectional and of the particular form u∼(x1, x2) =
(u1(x2), 0)�. The notion of solution for which existence is proved in the paper of
Jourdain, Lelièvre, and Le Bris [15] is mixed deterministic-stochastic in the sense that
it is deterministic in the “macroscopic” variable x∼ but stochastic in the “microscopic”
variable q

∼
. In contrast, our notion of solution (cf. section 3 below) is deterministic

both macroscopically and microscopically, since the microscales are modelled here
by the probability density function ψ(x∼, q∼, t). The choice between these different
notions of solution has far-reaching consequences on computational simulation: mixed
deterministic-stochastic notions of solution necessitate the use of Monte Carlo-type
algorithms for the numerical approximation of polymer configurations, as proposed in
the monograph of Öttinger [22] and, for example, in the paper of Jourdain, Lelièvre,
and Le Bris [14]; whereas weak solutions in the sense considered in the present paper
can be approximated by entirely deterministic (e.g., Galerkin-type) schemes, as was
done, for example, in Lozinski et al. [20]—at the cost of solving a Fokker–Planck
equation in 2d spatial dimensions.

In the case of Hookean dumbbells, and assuming ε = 0 and α = 0, the coupled
microscopic-macroscopic model described above yields, formally, taking the second
moment of q

∼
�→ ψ(q

∼
, x∼, t), the fully macroscopic, Oldroyd-B model of viscoelastic flow

(cf. section 2.2 below). Lions and Masmoudi [18] have shown the existence of global-
in-time weak solutions to the Oldroyd-B model in a simplified corotational setting, as
described in section 2.2, but with α = 0, ε = 0, σ

≈
(·) = ∇∼ x (·) on the right-hand side of

(2.19), and σ
≈
(·) = ω

≈
(·) in the definition of the upper-convective derivative (2.17). The

argument of Lions and Masmoudi [18] is based on exploiting the propagation in time
of the compactness of the solution and the DiPerna–Lions theory [8] of renormalized
solutions to linear hyperbolic equations with nonsmooth transport coefficients. It is
not known if an identical global existence result for the Oldroyd-B model also holds in
the absence of the crucial assumption that the drag term is corotational. We note in
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passing that, assuming ε > 0 and α = 0, the coupled microscopic-maroscopic model
above yields, taking the appropriate moments in the case of Hookean dumbbells, a
dissipative version of the Oldroyd-B model. In this sense, the Hookean dumbbell
model has a macroscopic closure: it is the Oldroyd-B model when ε = 0, and a
dissipative version of Oldroyd-B (cf. (2.19) below) when ε > 0. In contrast, the
FENE model is not known to have an exact closure at the macroscopic level, though
Du, Yu, and Liu [9] and Yu, Du, and Liu [30] have recently considered the analysis
of approximate closures of the FENE model. Previously, El-Kareh and Leal [11] had
proposed a macroscopic model, with added dissipation in the equation which governs
the evolution of the conformation tensor A

≈
(x∼, t) :=

∫
D
q
∼
q
∼
�ψ(x∼, q∼, t) dq

∼
in order to

account for Brownian motion across streamlines; the model can be thought of as an
approximate macroscopic closure of a FENE-type micro-macro model with center-of-
mass diffusion.

Simultaneously, Barrett, Schwab, and Süli [2] established the existence of global-
in-time weak solutions to the coupled microscopic-macroscopic model (1.1a–d) and
(1.13) with ε = 0, an x∼-mollified velocity gradient in the Fokker–Planck equation and
an x∼-mollified probability density function ψ in the Kramers expression—admitting a
large class of potentials U (including the Hookean dumbbell model as well as general
FENE-type models); in addition to these mollifications, u∼ in the x∼-convective term (u∼ ·
∇∼ x )ψ in the Fokker–Planck equation was also mollified. Unlike Lions and Masmoudi
[18], the arguments in [2] did not require the assumption that the drag term was
corotational in the FENE case. The mollification Sαu∼ of the velocity field u∼ that was
considered in [2] was stimulated by the Leray-α model of the incompressible Navier–
Stokes equations (the viscous Camassa–Holm equations), proposed by Foias, Holm,
and Titi [12], and was defined as follows: the mollified velocity field Sαu∼ = v∼ is the
solution of the following Helmholtz–Stokes problem:

(1.14) v∼ − αΔx v∼ + ∇∼ x π = u∼ in Ω, ∇∼ x · v∼ = 0 in Ω, v∼ = 0∼ on ∂Ω,

where π is a pressure-like auxiliary variable (with no particular physical meaning).
This definition ensures that the mollified velocity field Sαu∼ = v∼ remains divergence-
free and satisfies the same boundary condition as u∼. In [2] the motivation for intro-
ducing the mollification was of purely technical nature: the need to rigorously justify
the passage to the limit in the proof of the existence of weak solutions, based on a
compactness argument. It is interesting to observe on reflection that, when start-
ing from first principles, the derivation of the coupled Navier–Stokes–Fokker–Planck
model does, in fact, include a mollification of ψ in the Kramers formula for the extra-
stress tensor as well as of the velocity gradient in the Fokker–Planck equation, just as
in [2], albeit the mollifiers are directional Friedrichs mollifiers rather than Helmholtz–
Stokes mollifiers. In classical derivations of the model, the mollifiers are approximated
by identity operators, on the grounds that the functions to which they are applied are
smooth enough to justify such a model reduction; absurdly, in the proof of existence
of weak solutions to the reduced model, the mollifiers then have to be reinstated since
the requisite smoothness hypotheses which were used to justify the model reduction
are absent. Thus, in this paper we chose to retain the Friedrichs mollifiers which
naturally arise in the derivation of the model—our only modelling approximation be-
ing to replace the directional Friedrichs mollifiers by their isotropic counterparts Jx

α

and J∼
x
α, 0 < α ≤ 
0; in particular, unlike the argument presented in [2], here we do

not mollify the x∼-convective term (u∼ · ∇x)ψ in the Fokker–Planck equation. For the
same reason, instead of formally neglecting the center-of-mass diffusion term εΔxψ in
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the Fokker–Planck equation (1.13) on the grounds that ε � 1, we consciously retain
this term in our model, at least initially. We shall then rigorously justify the model
reduction ε = 0.

Our first objective is to show the existence of weak solutions to the complete
model, corresponding to α > 0 and ε > 0. This is accomplished in section 3 after
formulating carefully in section 2 the class of potentials U considered. In particular,
we show in section 2 how the Hookean dumbbell model and the FENE model fit into
the general setting. In addition, we introduce a family of weighted Sobolev spaces
which represent the natural functional-analytic framework for the problem; we also
recall from [2] some crucial density and trace results in these weighted spaces. These
weighted space are closely related to the Fokker–Planck equation under consideration:
the weight of the space is the Maxwellian induced by the potential U appearing in
the Fokker–Planck equation. We then rigorously justify the model reduction ε =
0. In particular, we rigorously pass to the limit ε → 0+ in both the corotational
and the general noncorotational case; in the latter case we confine ourselves to the
physically relevant situation when D is a bounded domain. We also justify the model
reduction α = 0 in the corotational case by rigorously passing to the limit α →
0+. The rigorous justification of the model reduction α = 0 remains open in the
general noncorotational case; under our weak smoothness requirements on the data,
the justification of the simultaneous model reduction (α, ε) = (0, 0) also remains
open. While our “macroscopic” energy estimate, which bounds the velocity field u∼ in
terms of the data, is completely uniform with respect to both ε and α in both the
corotational and the general noncorotation case, the resulting compactness results are,
unfortunately, of insufficient strength to admit rigorous passage to the simultaneous
limit (α, ε) → (0+, 0+).

2. Polymer models. We term polymer models under consideration here micro-
scopic–macroscopic-type models, since the continuum mechanical macroscopic equa-
tions of incompressible fluid flow are coupled to a microscopic model: the Fokker–
Planck equation describing the statistical properties of particles in the continuum.
We first present these equations and collect assumptions on the parameters in the
model.

2.1. Microscopic-macroscopic polymer models. Let Ω ⊂ R
d be a bounded

open set with a Lipschitz-continuous boundary ∂Ω, and suppose that the set D ⊆ R
d,

d = 2 or 3, of admissible elongation vectors q
∼

in (1.13) is an open set which may be
bounded or unbounded. For the sake of simplicity of presentation, we shall suppose
that D is either a bounded open ball in R

d, or D = R
d; these two cases cover all

practically relevant scenarios involving the microscopic-macroscopic models discussed
here. Our arguments in the case when the configuration domain D is a bounded
open ball can be extended, with only minimal changes, to situations when D is any
bounded open domain in R

d with smooth boundary (e.g., an ellipse, to account for
anisotropy in the molecule’s configuration).

Our system of equations involves the following Friedrichs mollifier with respect
to x∼. Let j ∈ W 1,∞(Rd) with compact support in the closed unit ball B(0∼, 1), such
that

∫
B(0∼,1)

j(x∼) dx∼ = 1, j(x∼) ≥ 0, and j(−x∼) = j(x∼) for all x∼ ∈ B(0∼, 1). Then for any

α ∈ (0, 1], let (Jx
αη)(x∼) : L1(Ω) → W 1,∞(Ω) be such that

(Jx
αη)(x∼) =

∫
Ω

jα(x∼ − y
∼
) η(y

∼
) dy

∼
∀x∼ ∈ Ω ,(2.1)
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where jα(x∼) = α−d j(α−1 x∼). In addition, we extend Jx
α in the natural way to vector

and tensor functions to obtain J∼
x
α : L∼

1(Ω) → W∼
1,∞(Ω) and J

≈
x
α : L

≈
1(Ω) → W

≈
1,∞(Ω).

Gathering (1.1a–d), (1.11), and (1.13) together, we then consider the following
initial-boundary-value problem dependent on parameters α, ε ∈ (0, 1]:

(Pα,ε) Find u∼α,ε : (x∼, t) ∈ R
d+1 �→ u∼α,ε(x∼, t) ∈ R

d and pα,ε : (x∼, t) ∈ R
d+1 �→

pα,ε(x∼, t) ∈ R such that

∂u∼α,ε

∂t
+ (u∼α,ε · ∇∼ x )u∼α,ε − ν Δx u∼α,ε + ∇∼ x pα,ε = ∇∼ x · τ

≈
(α)(ψα,ε)(2.2a)

in Ω × (0, T ],

∇∼ x · u∼α,ε = 0 in Ω × (0, T ],(2.2b)

u∼α,ε = 0∼ on ∂Ω × (0, T ],(2.2c)

u∼α,ε(x∼, 0) = u∼0(x∼) ∀x∼ ∈ Ω,(2.2d)

where ν ∈ R>0 is the viscosity and τ
≈

(α)(ψα,ε) : (x∼, t) ∈ R
d+1 �→ τ

≈
(α)(ψα,ε)(x∼, t) ∈

R
d×d is the symmetric extra-stress tensor, dependent on a probability density function

ψα,ε : (x∼, q∼, t) ∈ R
2d+1 �→ ψα,ε(x∼, q∼, t) ∈ R, defined as

(2.3) τ
≈

(α)(ψα,ε) = k μ (C
≈

(Jx
αψα,ε) − ρ(ψα,ε) I≈) ≡ k μ (J

≈
x
α[C

≈
(ψα,ε)] − ρ(ψα,ε) I≈).

Here k, μ ∈ R>0 are, respectively, the Boltzmann constant and the absolute temper-
ature, I

≈
is the unit d× d tensor, and

C
≈

(ψα,ε)(x∼, t) =

∫
D

ψα,ε(x∼, q∼, t)U
′( 1

2 |q∼|
2) q

∼
q
∼

� dq
∼

(2.4a)

and

ρ(ψα,ε)(x∼, t) =

∫
D

ψα,ε(x∼, q∼, t) dq
∼
.(2.4b)

In addition, the real-valued, continuous, nonnegative, and strictly monotonic increas-
ing function U , defined on a relatively open subset of [0,∞), is an elastic potential
which gives the elastic force F∼ : D → R

d on the springs via (1.2).
Roughly speaking, the probability density ψα,ε(x∼, q∼, t) represents the probability

at time t of finding the center of mass of a dumbbell at x∼ and having elongation vector
q
∼
. Hence ρ(ψα,ε)(x∼, t) is the density of the polymer chains located at x∼ at time t. It

follows from (1.13) that ψα,ε satisfies the Fokker–Planck equation

∂ψα,ε

∂t
+ (u∼α,ε · ∇∼ x )ψα,ε + ∇∼ q · (σ

≈
(J∼

x
αu∼α,ε) q∼ψα,ε)(2.5)

=
1

2λ
∇∼ q · (∇∼ q ψα,ε + U ′ q

∼
ψα,ε) + εΔx ψα,ε in Ω ×D × (0, T ],

together with suitable initial and boundary conditions which will be stated below.
In (2.5) the parameter λ ∈ R>0 characterizes the elastic relaxation property of

the fluid, and σ
≈
(v∼) is related to ∇

≈ x v∼, where (∇
≈ x v∼)(x∼, t) ∈ R

d×d and {∇
≈ x v∼}ij = ∂vi

∂xj
.

We will be interested in two possible choices:

(i) the noncorotational case σ
≈
(v∼) = ∇

≈ x v∼,(2.6a)
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or

(ii) the corotational case σ
≈
(v∼) = ω

≈
(v∼) ,(2.6b)

where

∇
≈

x v
∼

= D
≈

(v
∼
) + ω

≈
(v
∼
), D

≈
(v
∼
) =

1

2
[∇
≈

x v
∼

+ (∇
≈

x v
∼
)� ],(2.7)

and ω
≈
(v
∼
) =

1

2
[∇
≈

x v
∼
− (∇

≈
x v

∼
)� ] .

In the corotational case no smoothing is necessary in the extra-stress tensor, and so
we will replace (2.3) by

τ
≈

(α)(ψα,ε) =

⎧⎨⎩ k μ (J≈
x
α[C≈ (ψα,ε)] − ρ(ψα,ε) I≈) if σ≈(·) = ∇≈ x (·) ,

k μ (C≈ (ψα,ε) − ρ(ψα,ε) I≈) if σ≈(·) = ω≈ (·) .
(2.8)

Introducing the (normalized) Maxwellian

M(q
∼
) =

e
−U( 1

2 |q
∼
|2)∫

D

e−U dq
∼

,

we have that

(2.9) M ∇∼ q M
−1 = −M−1 ∇∼ q M = U ′ q

∼
.

In addition, the following identities hold:

(2.10) ∇∼ q U = U ′ q
∼
, ∇∼ q U

′ = U ′′ q
∼
, and Δq U = U ′′ |q

∼
|2 + U ′ d.

Thus, the Fokker–Planck equation (2.5) can be rewritten as

∂ψα,ε

∂t
+ (u∼α,ε · ∇∼ x )ψα,ε + ∇∼ q · (σ

≈
(Jx

αu∼α,ε) q∼ψα,ε)(2.11)

=
1

2λ
∇∼ q ·

(
M ∇∼ q

(
ψα,ε

M

))
+ εΔx ψα,ε in Ω ×D × (0, T ].

We impose the following boundary and initial conditions:

ψα,ε = 0 on Ω × ∂D × (0, T ],(2.12a)

ε∇∼ x ψα,ε · n∼ = 0 on ∂Ω ×D × (0, T ],(2.12b)

ψα,ε(x∼, q∼, 0) = ψ0(x∼, q∼) ≥ 0 ∀(x∼, q∼) ∈ Ω ×D,(2.12c)

where n∼ is normal to ∂Ω. Here
∫
Ω×D

ψ0(x∼, q∼) dq
∼

dx∼ = 1. The boundary conditions

for ψα,ε on ∂Ω × D × (0, T ] and Ω × ∂D × (0, T ] have been chosen so as to ensure
that

∫
Ω×D

ψα,ε(x∼, q∼, t) dq
∼

dx∼ = 1 for all t ≥ 0. As we shall see later, the choice of the
function space for ψα,ε and the decay properties of the Maxwellian near ∂D under
the structural conditions stated in section 2.2 below imply that both ψα,ε = 0 and
∇∼ q ψα,ε · q∼ = 0 on Ω × ∂D × (0, T ]. Hence, the boundary condition (2.12a) will be
seen to be redundant.

When D = R
d, the boundary condition (2.12a) on ∂D, the boundary of D, is

replaced by a decay condition at infinity which demands that |ψ| converges to 0
sufficiently fast as |q

∼
| tends to ∞; we shall be more specific about this later.
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2.2. Two examples.

2.2.1. FENE-type models. A widely used model is the FENE model, where
D = B(0∼, b

1
2 ) and

U(s) = − b

2
ln

(
1 − 2 s

b

)
, and hence e

−U( 1
2 |q∼|2)

=

(
1 −

|q
∼
|2

b

)b
2

.(2.13)

Here B(0∼, s) is the bounded open ball of radius s > 0 in R
d centered at the origin, and

b > 0 is an input parameter. Hence the length |q
∼
| of the elongation vector q

∼
cannot

exceed b
1
2 .

2.2.2. Hookean dumbbells. Letting b → ∞ in (2.13) leads to the so-called
Hookean dumbbell model, where

(2.14) D = R
d and U(s) = s, and therefore e

−U( 1
2 |q∼|2)

= e
− 1

2 |q∼|2
.

This particular kinetic model for ε, α ∈ (0, 1], with σ
≈
(J∼

x
αu∼α,ε) = ∇

≈ x (J∼
x
αu∼α,ε), corre-

sponds formally to an Oldroyd-B type model, or with σ
≈
(J∼

x
αu∼α,ε) = ω

≈
(J∼

x
αu∼α,ε) to a

corotational Oldroyd-B type model. Indeed, multiplying (2.5) by q
∼
q
∼
�, integrating

over D, performing integration by parts (assuming that ψα,ε and |∇qψα,ε| decay to
zero sufficiently fast as |q

∼
| → ∞), and noting (2.4a) and for any r∼ ∈ R

d that

(2.15) (r∼.∇∼ q ) q
∼
q
∼

� = r∼ q
∼

� + q
∼
r∼
� and Δq (q

∼
q
∼

�) = 2 I
≈

yields that C
≈ α,ε(x∼, t) ≡ C

≈
(ψα,ε(x∼, t)) satisfies

(2.16) λ

(
δC
≈ α,ε

δt
− εΔx C≈ α,ε

)
+ C

≈ α,ε = ρα,ε I≈ in Ω × (0, T ],

where ρα,ε(x∼, t) ≡ ρ(ψα,ε(x∼, t)) and

(2.17)
δC
≈

δt
=

∂C
≈

∂t
+ (u∼α,ε · ∇∼ x )C

≈
− [σ

≈
(J∼

x
αu∼α,ε)C≈ + C

≈
[σ
≈
(J∼

x
αu∼α,ε)]

� ]

is the upper-convected time derivative. Similarly, integrating (2.5) over D and noting
(2.4b) yields that ρα,ε satisfies

(2.18)
∂ρα,ε
∂t

− εΔx ρα,ε + (u∼ · ∇∼ x )ρα,ε = 0 in Ω × (0, T ].

Hence in the Hookean case, the probability density function ψα,ε can be eliminated,
leading to a closed model for u∼α,ε, C≈ α,ε, and ρα,ε. Moreover, if either α = 0 or
σ
≈
(v∼) = ω

≈
(v∼), then (2.16) and (2.18) can be combined, noting (2.8), to yield that the

extra stress τ
≈α,ε(x∼, t) ≡ τ

≈
(α)(ψα,ε) satisfies

(2.19)

λ

(
δτ
≈α,ε

δt
− εΔx τ≈α,ε

)
+ τ

≈α,ε = k μλ ρα,ε [σ
≈
(J∼

x
αu∼α,ε) + [σ

≈
(J∼

x
αu∼α,ε)]

� ] in Ω× (0, T ],

which, in the case of formally setting ε = α = 0, is the Oldroyd-B constitutive equation
if σ

≈
(u∼) = ∇

≈ x u∼ or the corotational Oldroyd-B constitutive equation if σ
≈
(u∼) = ω

≈
(u∼); in

the latter case, the right-hand side of (2.19) is identically equal to 0.
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2.3. General structural assumptions on the potential. Suppose that D is
a bounded open ball in R

d or D = R
d. We assume that q

∼
�→ U( 1

2 |q∼|
2) ∈ C∞(D) with

q
∼
�→ U( 1

2 |q∼|
2) nonnegative and q

∼
�→ U ′( 1

2 |q∼|
2) positive on D, and that there exist

constants ci > 0, i = 1, 2, such that

(2.20) (U ′)2 − U ′′ ≥ c1 ∀q
∼
∈ D and (U ′)2 − U ′′ ≥ 2c2 U

′ ∀q
∼

: |q
∼
|2 ≥ d

c2
,

where B(0∼, (
d
c2

)
1
2 ) ⊂⊂ D.

The above assumptions hold for the Hookean case, (2.14), with c1 = 2c2 = 1; and
the FENE case, (2.13), assuming that b > 2, with c1 = b−2

b and c2 = b+2d−2
2b .

We shall also suppose that there exist positive constants ci, i = 3, . . . , 7, and
κ > 0, such that the Maxwellian M and the associated elastic potential U satisfy

c3[dist(q
∼
, ∂D)]κ ≤ M(q

∼
) ≤ c4 [dist(q

∼
, ∂D)]κ ∀q

∼
∈ D,(2.21a)

c5≤ [dist(q
∼
, ∂D)]U ′( 1

2 |q∼|
2) ≤ c6, [dist(q

∼
, ∂D)]2 |U ′′( 1

2 |q∼|
2)| ≤ c7 ∀q

∼
∈ D;(2.21b)

when D = R
d, then [dist(q

∼
, ∂D)]κ in (2.21a) is replaced by exp(−|q

∼
|2), and the factors

[dist(q
∼
, ∂D)] and [dist(q

∼
, ∂D)]2 in (2.21b) are omitted.

It is an easy matter to show that the Maxwellian M and the elastic potential U of
the FENE model and of the Hookean dumbbell model satisfy conditions (2.21a,b)—

with D = B(0∼, b
1
2 ) and κ = b

2 in the case of the FENE model; and D = R
d for the

Hookean dumbbell model.
We shall also require that

(2.22)

∫
D

[
1 + (1 + |q

∼
|2) ((U)2 + |q

∼
|2 (U ′)2)

]
M dq

∼
< ∞.

For the Hookean model (2.14) and the FENE model (2.13), with b > 2, (2.22) is
easily shown to hold. For example, we have that

(2.23) M :=

∫
D

M (U ′)2 |q
∼
|4 dq

∼
< ∞

for both models. In the Hookean case, (2.23) follows since

(2.24)

∫ ∞

0

e−s s
d+2
2 ds < ∞,

while in the FENE case, (2.23) follows since

(2.25)

∫ b

0

(
1 − s

b

) b−4
2

s
d+2
2 ds < ∞ if b > 2.

More generally, it follows from (2.21a,b), noting that U( 1
2 |q∼|

2) = − lnM(q
∼
) +

Const., that (2.22) holds, provided that either (i) κ > 1 when D is a bounded open
ball in R

d; or (ii) when D = R
d.

3. Existence of global weak solutions. Let

H∼ := {w∼ ∈ L∼
2(Ω) : ∇∼ x · w∼ = 0} and V∼ := {w∼ ∈ H∼

1
0(Ω) : ∇∼ x · w∼ = 0},(3.1)
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where the divergence operator ∇∼ x · is to be understood in the sense of vector-valued
distributions on Ω. Let V∼

′ be the dual of V∼ . Then for any γ ∈ (0, 1], let S∼ γ : V∼
′ → V∼

be such that S∼ γ v∼ is the unique solution to the Helmholtz–Stokes problem∫
Ω

S∼ γ v∼ · w∼ dx∼ + γ

∫
Ω

∇
≈ x S∼ γ v∼ : ∇

≈ x w∼ dx∼ = 〈v∼, w∼ 〉 ∀w∼ ∈ V∼ ,(3.2)

where 〈·, ·〉 denotes the duality pairing between V∼
′ and V∼ . We note that

〈v∼, S∼ γv∼〉 =

∫
Ω

[
γ |∇

≈ x [S∼ γv∼]|2 + |S∼ γv∼|2
]

dx∼ ∀v∼ ∈ V∼
′ ⊃ (H∼

1
0(Ω))′,(3.3)

and ‖S∼ γ · ‖H1(Ω) is a norm on V ′. In addition, we have from (3.2) that

‖S∼ γv∼‖2
L2(Ω) + γ ‖∇

≈ x [S∼ γv∼]‖2
L2(Ω) ≤ ‖v∼‖2

L2(Ω) ∀v∼ ∈ L∼
2(Ω),(3.4a)

‖(I∼ − S∼ γ)v∼‖2
L2(Ω) + γ ‖∇∼ x (I∼ − S∼ γ)v∼‖2

L2(Ω)(3.4b)

= γ

∫
Ω

∇∼ x v∼ · ∇∼ x (I − S∼ γ) v∼ dx∼ ≤
{

γ ‖∇∼ x v∼‖2
L2(Ω) ∀v∼ ∈ V∼ ,

γ2 ‖Δxv∼‖2
L2(Ω) ∀v∼ ∈ V∼ ∩H∼

2(Ω).

Hence it follows from (3.4b) that

‖(I∼ − S∼ γ)v∼‖H1(Ω) ≤ γ
1
2 ‖Δxv∼‖L2(Ω) ≤ (γd)

1
2 ‖v∼‖H2(Ω) ∀v∼ ∈ V∼ ∩H∼

2(Ω).(3.5)

Furthermore, for ∂Ω ∈ C2 and r > d (cf. Girault and Raviart [13, p. 88]) we have
that

(3.6a) S∼ γ : L∼
r(Ω) ⊂ V∼

′ → V∼ ∩W∼
2,r(Ω) ⊂ V∼ ∩C∼

1(Ω) is a bounded linear operator;

and hence Sobolev embedding yields that

‖S∼ γv∼‖W 1,∞(Ω) ≤ C ‖S∼ γv∼‖W 2,r(Ω) ≤ C(γ) ‖v∼‖Lr(Ω) ∀v∼ ∈ L∼
r(Ω).(3.6b)

The aims of this paper are to prove existence of a (global-in-time) solution of a weak
formulation of (i) the problem (Pα,ε) for any fixed parameters α, ε ∈ (0, 1]; (ii) the
problem (Pα), obtained by formally setting ε = 0 in (Pα,ε) (cf. (3.93a,b)), for any
fixed parameter α ∈ (0, 1] for both the corotational and general noncorotational cases
under the following assumptions on the data:

(3.7) ∂Ω ∈ C0,1, u∼0 ∈ H∼ , and M− 1
2 ψ0 ∈ L2(Ω×D) with ψ0 ≥ 0 a.e. in Ω×D.

In addition, if ∂Ω ∈ C2 we prove existence of a (global-in-time) solution of a weak
formulation of the problem (Pε), obtained by formally setting α = 0 in (Pα,ε)
(cf. (3.100a,b)), for any fixed parameter ε ∈ (0, 1], in the corotational case only.

The following results for Jx
α are easily established:

‖Jx
αη‖L2(Ω) ≤ ‖η‖L2(Ω) ∀η ∈ L2(Ω) ,(3.8a)

‖(I − Jx
α)η‖L2(Ω) → 0 as α → 0 ∀η ∈ L2(Ω) ,(3.8b) ∫

Ω

(Jx
αη1) η2 dx

∼
=

∫
Ω

η1 (Jx
αη2) dx

∼
∀η1, η2 ∈ L2(Ω) ,(3.8c)

∂

∂xi
(Jx

αη) = Jx
α

(
∂η

∂xi

)
, i = 1 → d ∀η ∈ H1

0 (Ω) .(3.8d)
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It follows from (3.8a) and (3.8d) that J∼
x
α satisfies

‖J
∼

x
αv∼

‖H1(Ω) ≤ ‖v
∼
‖H1(Ω) ∀v

∼
∈ H

∼

1
0(Ω) ,(3.9a)

‖J
∼

x
αv∼

‖W 1,∞(Ω) ≤ C(α) ‖v
∼
‖L1(Ω) ∀v

∼
∈ L

∼

1(Ω) .(3.9b)

We note that the results (3.8a–d) and (3.9a) hold if j ∈ L∞(Rd), with compact
support in the closed unit ball B(0∼, 1), j(x∼) ≥ 0 for x∼ ∈ R

d,
∫
B(0∼,1)

j(x∼) dx∼ = 1,

and j(−x∼) = j(x∼) for all x∼ ∈ B(0∼, 1), e.g., a constant multiple of the characteristic
function of B(0∼, 1). However, we require the result (3.9b) for our existence proof, and
hence our restriction to j ∈ W 1,∞(Rd) instead of j ∈ L∞(Rd).

Introducing

‖ϕ‖H0,1(Ω×D;M) :=

{∫
Ω×D

M
[
|ϕ|2 + |∇∼ q ϕ|2

]
dq

∼
dx∼

} 1
2

(3.10a)

and

‖ϕ‖H1(Ω×D;M) :=

{∫
Ω×D

M
[
|ϕ|2 + |∇∼ x ϕ|2 + |∇∼ q ϕ|2

]
dq

∼
dx∼

} 1
2

,(3.10b)

we then set

H0,1(Ω ×D;M) :=
{
ϕ ∈ L1

loc(Ω ×D) : ‖ϕ‖H0,1(Ω×D;M) < ∞
}

(3.11a)

and

H1(Ω ×D;M) :=
{
ϕ ∈ L1

loc(Ω ×D) : ‖ϕ‖H1(Ω×D;M) < ∞
}
.(3.11b)

We then define

X := M H1(Ω ×D;M),(3.12a)

Xq :=

{
ϕ ∈ X :

∫
Ω×D

|q
∼
|2 |ϕ|2

M
dq

∼
dx∼ < ∞

}
,(3.12b)

X+ := {ϕ ∈ X : ϕ(x∼, q∼) ≥ 0 for a.e. (x∼, q∼) ∈ Ω ×D },(3.12c)

and

X+
q := Xq ∩X+.(3.12d)

Clearly, if D is bounded, then Xq = X and X+
q = X+. We remark, in particular, that

due to the structural hypotheses on U (specifically, (2.22) and (2.21a)), both M and
M U belong to X+

q . Similarly to above, we define X0, X0
q , X0,+, and X0,+

q , where
X0 := M H0,1(Ω ×D;M).
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We note for future reference that (2.4a) and (2.23) yield that, for ϕ ∈ X0,∫
Ω

|C
≈

(ϕ)|2 dx
∼

=

∫
Ω

d∑
i=1

d∑
j=1

(∫
D

ϕU ′ qi qj dq
∼

)2

dx
∼

(3.13)

≤ d

(∫
D

M (U ′)2 |q
∼
|4 dq

∼

)(∫
Ω×D

|ϕ|2
M

dq
∼

dx
∼

)

= dM
(∫

Ω×D

|ϕ|2
M

dq
∼

dx
∼

)
.

Recalling Lemma 3.1 in Barrett, Schwab, and Süli [2], we have that

K0 :=

⎧⎨⎩ M · C∞(Ω ×D) if D is a bounded open ball in R
d,

C∞
0 (Ω ×D) if D ≡ R

d
(3.14)

is dense in X0
q . It is a simple matter to adapt the proof there to show that

K :=

⎧⎨⎩ M · C∞(Ω ×D) if D is a bounded open ball in R
d,

C∞(Ω;C∞
0 (D)) if D ≡ R

d
(3.15)

is dense in Xq. In addition, recalling Lemma 3.2 in Barrett, Schwab, and Süli [2], we
have that

(a) if D is a bounded open ball in R
d and the elastic potential U and the associated

Maxwellian M satisfy (2.21a) with κ ≥ 5 and (2.21b), then

(3.16a) U ′( 1
2 |q∼|

2)ϕ = 0 on Ω × ∂D ∀ϕ ∈ X0;

(b) if D = R
d, then, for all ϕ ∈ X0,

(3.16b) lim
R→∞

Rβ

∫
Ω×∂B(0∼,R)

U ′( 1
2 |q∼|

2) |ϕ| dS(q
∼
) dx∼ = 0 ∀β ≥ 0.

Recalling Lemma 3.3 in Barrett, Schwab, and Süli [2], we have for any constant L ≥ 0
that

(3.17) ϕ ∈ X0
q ⇒ [ϕ− LM ]+, [ϕ + LM ]− ∈ X0

q .

Of course, this result remains true if X0
q is replaced by Xq.

We note that

(3.18) ω
≈
(v∼) = −[ω

≈
(v∼)]� and hence q

∼

� ω
≈
(v∼) q

∼
= 0 ∀q

∼
∈ R

d.

Recalling (4.15a,b) in Barrett, Schwab, and Süli [2], it follows for all v∼ ∈ W∼
1,∞(Ω)

that ∫
Ω×D

ϕ (ω
≈
(v∼) q

∼
) · ∇∼ q

( ϕ

M

)
dq

∼
dx∼ = 0,(3.19a)

∫
Ω×D

M (ω
≈
(v∼) q

∼
) · ∇∼ q

( ϕ

M

)
dq

∼
dx∼ = 0 ∀ϕ ∈ X0

q .(3.19b)
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As no smoothing is required of the extra-stress tensor on the right-hand side of
the Navier–Stokes equations in the corotational case, we introduce

(3.20) I∼α :=

⎧⎨⎩ J∼
x
α if σ≈(·) = ∇≈ x (·),

I∼ if σ≈(·) = ω≈ (·).

3.1. Existence for (Pα,ε). In this subsection we will prove existence of a solu-
tion to the following weak formulation of (Pα,ε) for given parameters α, ε ∈ (0, 1]:

(Pα,ε) Find u∼α,ε ∈ L∞(0, T ;L∼
2(Ω)) ∩ L2(0, T ;V∼ ) ∩ W 1, 4d (0, T ;V∼

′) and ψα,ε ∈
L2(0, T ;X), with J∼

x
αu∼α,ε ∈ L∞(0, T ;W∼

1,∞(Ω)), M− 1
2 ψα,ε ∈ L∞(0, T ;L2(Ω × D)),

and C
≈

(ψα,ε) ∈ L∞(0, T ;L
≈

2(Ω)), such that u∼α,ε(·, 0) = u∼0(·) and

(3.21a)∫ T

0

〈
∂u∼α,ε

∂t
, w∼

〉
dt +

∫ T

0

∫
Ω

[
[(u∼α,ε · ∇∼ x )u∼α,ε] · w∼ + ν∇

≈ x u∼α,ε : ∇
≈ x w∼

]
dx∼ dt

= −k μ

∫ T

0

∫
Ω

C
≈

(ψα,ε) : ∇
≈ x (I∼αw∼ ) dx∼ dt ∀w∼ ∈ L

4
4−d (0, T ;V∼ ),

(3.21b)

−
∫ T

0

∫
Ω×D

ψα,ε

M

∂ϕ

∂t
dq

∼
dx∼ dt−

∫
Ω×D

ψ0(·, ·)
M

ϕ(·, ·, 0) dq
∼

dx∼

+

∫ T

0

∫
Ω×D

[
M

2λ
∇∼ q

(
ψα,ε

M

)
− [σ

≈
(J∼

x
αu∼α,ε) q∼ ]ψα,ε

]
· ∇∼ q

( ϕ

M

)
dq

∼
dx∼ dt

+

∫ T

0

∫
Ω×D

[
εM ∇∼ x

(
ψα,ε

M

)
− u∼α,ε ψα,ε

]
· ∇∼ x

( ϕ

M

)
dq

∼
dx∼ dt = 0 ∀ϕ ∈ X ,

where X is the completion of C∞
0 ((−T, T );K) in the norm ‖ · ‖X defined by

‖ϕ‖X := ‖ϕ‖
L

4
4−d (0,T ;Xq)

+

∥∥∥∥ |q
∼
|M 1

2∇
∼

q

( ϕ

M

)∥∥∥∥
L1(0,T ;L2(Ω×D))

(3.22)

+

∥∥∥∥M− 1
2
∂ϕ

∂t

∥∥∥∥
L1(0;T ;L2(Ω×D))

.

This, in particular, implies that each ϕ ∈ X satisfies ϕ(·, ·, T ) = 0.
Remark 3.1. If d = 2, then u∼α,ε ∈ C([0, T ];H∼ ) (cf. Lemma 1.2 on p. 176 of

Temam [28]), whereas if d = 3, then u∼α,ε is weakly continuous only as a mapping
from [0, T ] into H∼ (similarly as in Theorem 3.1 on p. 191 in Temam [28]). It is in the
latter, weaker sense that the imposition of the initial condition to the u∼α,ε-equation
will be understood for d = 2, 3: that is, limt→0(u∼α,ε(·, t), v∼(·)) = (u∼0(·), v∼(·)) for all
v∼ ∈ H∼ .

Throughout we will assume that (2.21a,b) hold, with κ ≥ 5 if D is a bounded
open ball in R

d so that (3.16a) holds. In addition, we assume that (2.22) and (3.7)
hold. In order to prove existence of these weak solutions to (Pα,ε), we consider a time
semidiscretization. To this end, for any T > 0, let N Δt = T and tn = nΔt, n = 0 →
N . An alternative approach would have been to use spatial semidiscretization, but
the existence proof would have then required detailed knowledge of spectral properties
of linear elliptic operators in Sobolev spaces with strongly degenerate weights. Time
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semidisretization is our preferred choice of technique, as it admits the use of an elliptic
fixed-point argument at each time level.

In order to prove existence of weak solutions under minimal smoothness require-
ments on the initial data, we introduce u∼

0 ∈ V∼ and ψ0 ∈ L2(Ω×D;M−1) as follows:

u∼
0 = S∼Δt u∼0 and ψ0 =

ψ0

1 + Δt |q
∼
|2 .(3.23)

Here we have adopted similar notation to that in (3.10a,b). It follows immediately
that ψ0 ≥ 0 a.e. in Ω ×D, and from (3.7) and (3.4a) that∫

Ω

[ |u∼0|2 + Δt |∇
≈ x u∼

0|2 ] dx∼ +

∫
Ω×D

(1 + Δt |q
∼
|2 )

|ψ0|2
M

dq
∼

dx∼ ≤ C .(3.24)

In addition, we have that u∼
0 converges to u∼0 weakly in H∼ and ψ0 converges to ψ0

weakly in L2(Ω ×D;M−1) as Δt → 0.
As seen in [2], the noncorotational case is harder to analyze than the corotational

case. Therefore in some places in the analysis below, we have to distinguish between
these cases. For all v∼ ∈ W∼

1,∞(Ω), we introduce

A(v∼) :=

⎧⎨⎩ ‖∇≈ x v∼‖2
L∞(Ω) if σ≈(·) = ∇≈ x ·,

0 if σ≈(·) = ω≈ (·).
(3.25)

It follows from (3.9b) that A(J∼
x
αv∼) is well defined for all v∼ ∈ L∼

1(Ω).
Let u∼

0
α,ε = u∼

0 and ψ0
α,ε = ψ0. Then, for n = 1 → N , given {u∼n−1

α,ε , An−1
α,ε , ψn−1

α,ε } ∈
V∼ × R

+ × X+
q , where An−1

α,ε = A(J∼
x
αu∼

n−1
α,ε ), find {u∼n

α,ε, A(J∼
x
αu∼

n
α,ε), ψ

n
α,ε, C≈ (ψn

α,ε)} ∈
V∼ × R

+ ×X+
q × L

≈
2(Ω) such that

∫
Ω

[
u
∼

n
α,ε − u

∼

n−1
α,ε

Δt
+ (u

∼

n−1
α,ε · ∇

∼
x )u

∼

n
α,ε

]
· w

∼
dx

∼
+ ν

∫
Ω

∇
≈

x u
∼

n
α,ε : ∇

≈
x w

∼
dx

∼
(3.26a)

= −k μ

∫
Ω

C
≈

(ψn
α,ε) : ∇

≈
x (I

∼
αw

∼
) dx

∼
∀w

∼
∈ V

∼
,

∫
Ω×D

ψn
α,ε − ψn−1

α,ε

Δt

ϕ

M
dq

∼
dx

∼

(3.26b)

+

∫
Ω×D

|q
∼
|2
[
(1 + λA(J

∼

x
αu∼

n
α,ε) )ψn

α,ε − (1 + λAn−1
α,ε )ψn−1

α,ε

] ϕ

M
dq

∼
dx

∼

+

∫
Ω×D

[
M

2λ
∇
∼

q

(
ψn
α,ε

M

)
− [σ

≈
(J
∼

x
αu∼

n
α,ε) q

∼
]ψn

α,ε

]
· ∇

∼
q

( ϕ

M

)
dq

∼
dx

∼

+

∫
Ω×D

[
εM ∇

∼
x

(
ψn
α,ε

M

)
− u

∼

n
α,ε ψ

n
α,ε

]
· ∇

∼
x

( ϕ

M

)
dq

∼
dx

∼
= 0 ∀ϕ ∈ Xq.

It is convenient to rewrite (3.26a) as
(3.27)

b(u∼
n−1
α,ε )(u∼

n
α,ε, w∼ ) =

∫
Ω

[
u∼
n−1
α,ε · w∼ − Δt k μC

≈
(ψn

α,ε) : ∇
≈ x (I∼αw∼ )

]
dx∼ ∀w∼ ∈ V∼ ,
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where for all v∼ ∈ V∼ , w∼ i ∈ H∼
1
0(Ω), i = 1, 2,

b(v
∼
)(w

∼
1, w

∼
2) :=

∫
Ω

[
w
∼

1 + Δt (v
∼
· ∇

∼
x )w

∼
1

]
· w

∼
2 dx

∼
+ Δt ν

∫
Ω

∇
≈

x w
∼

1 : ∇
≈

x w
∼

2 dx
∼
.

(3.28)

It follows from (3.28) that∫
Ω

[(v∼ · ∇∼ x )w∼ 1] · w∼ 2 dx∼(3.29)

= −
∫

Ω

[(v∼ · ∇∼ x )w∼ 2] · w∼ 1 dx∼ ∀v∼ ∈ V, ∀w∼ 1, w∼ 2 ∈ H∼
1
0(Ω),

and hence b(v∼)(·, ·) is a continuous and coercive bilinear functional on V∼ × V∼ .
For r > d, let

Y∼
r :=

{
v∼ ∈ L∼

r(Ω) :

∫
Ω

v∼ · ∇∼ x w∼ dx∼ = 0 ∀w∼ ∈ W∼
1, r

r−1 (Ω)

}
.(3.30)

It is also convenient to rewrite (3.26b) as

aα,ε(u∼
n
α,ε)(ψ

n
α,ε, ϕ) = 
nα,ε(ϕ) ∀ϕ ∈ Xq,(3.31)

where, for all ϕ1, ϕ2, ϕ ∈ Xq and v∼ ∈ Y∼
r,

aα,ε(v∼)(ϕ1, ϕ2) :=

∫
Ω×D

(
W (J∼

x
αv∼)ϕ1 ϕ2 + Δt

[
εM ∇∼ x

(ϕ1

M

)
− v∼ϕ1

]
· ∇∼ x

(ϕ2

M

)

+ Δt

[
M

2λ
∇∼ q

(ϕ1

M

)
− [σ

≈
(J∼

x
αv∼) q

∼
]ϕ1

]
· ∇∼ q

(ϕ2

M

))
dq

∼
dx∼,(3.32a)


nα,ε(ϕ) :=

∫
Ω×D

Wn−1
α,ε ψn−1

α,ε ϕ dq
∼

dx∼,(3.32b)

and

W (v
∼
) :=

1 + Δt |q
∼
|2 (1 + λA(v

∼
) )

M
, Wn−1

α,ε =
1 + Δt |q

∼
|2 (1 + λAn−1

α,ε )

M
.(3.32c)

We have from Sobolev embedding that

(3.33) Ls(Ω;L2(D;M)) ⊂ H1(Ω;L2(D;M)),

where s ∈ [1,∞) if d = 2 or s ∈ [1, 6] if d = 3. It follows from (3.30) and (3.33) that
for r > d ∫

Ω×D

v∼ϕ · ∇∼ x

( ϕ

M

)
dq

∼
dx∼ = 0 ∀v∼ ∈ Y∼

r, ∀ϕ ∈ Xq .(3.34)

In addition, it is easily deduced from (3.25), (3.19a), and (3.12b) that aα,ε(v∼)(·, ·) is a
continuous nonsymmetric bilinear functional on Xq×Xq and 
nα(·) is a linear functional
on Xq. Moreover, noting (3.34), and either noting (3.19a) in the corotational case
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or noting (3.25) and applying Young’s inequality in the noncorotational case, we see
that

(3.35)

aα,ε(v∼)(ϕ,ϕ)

≥
∫

Ω×D

[
Wc |ϕ|2 + Δt εM

∣∣∣∇∼ x

( ϕ

M

)∣∣∣2 +
ΔtM

4λ

∣∣∣∇∼ q

( ϕ

M

)∣∣∣2] dq
∼

dx∼ ∀ϕ ∈ Xq,

where

Wc :=
1 + Δt |q

∼
|2

M
.(3.36)

Hence aα,ε(v∼)(·, ·) is coercive on Xq ×Xq.
In order to prove existence of a solution to (3.26a,b), we consider a fixed-point

argument. Given û∼ ∈ Y∼
r with r > d, let {ψ	, u∼

	} ∈ Xq × V∼ be such that

aα,ε(û∼)(ψ	, ϕ) = 
nα,ε(ϕ) ∀ϕ ∈ Xq,(3.37a)

b(u∼
n−1
α,ε )(u∼

	, w∼ ) =

∫
Ω

[
u∼
n−1
α,ε · w∼ − Δt k μC

≈
(ψ	) : ∇

≈ x (I∼αw∼ )
]

dx∼ ∀w∼ ∈ V∼ ,(3.37b)

where, recalling (3.9b), J∼
x
αû∼ ∈ W∼

1,∞(Ω).
Noting (3.35), the Lax–Milgram theorem yields the existence of a unique solution

to (3.37a). Noting (3.29), there exists a unique solution to (3.37b). Therefore the
overall procedure (3.37a,b) is well defined.

Lemma 3.2. Let G∼ : Y∼
r → V∼ ⊂ Y∼

r, r ∈ (d, 6), denote the nonlinear map that
takes û∼ to u∼

	 = G∼ (û∼) via the procedure (3.37a,b). Then G∼ has a fixed point. Hence
there exists a solution {u∼n

α,ε, A(J∼
x
αu∼

n
α,ε), ψ

n
α,ε, C≈ (ψn

α,ε)} ∈ V∼ × R
+ × X+

q × L
≈

2(Ω) to
(3.26a,b).

Proof. Clearly, a fixed point of G∼ yields a solution of (3.26a,b). In order to show
that G∼ has a fixed point, we apply Schauder’s fixed-point theorem; that is, we need
to show that (i) G∼ : Y∼

r → Y∼
r, r ∈ (d, 6), is continuous, that (ii) it is compact, and

that (iii) there exists a C	 ∈ R
+ such that

‖û∼‖Lr(Ω) ≤ C	(3.38)

for every û∼ ∈ Y∼
r and β ∈ (0, 1] satisfying û∼ = β G∼ (û∼).

Let {û∼
(i)}i≥0 be such that

û∼
(i) ∈ Y∼

r → û∼ ∈ Y∼
r strongly in L∼

r(Ω) as i → ∞.(3.39)

We need to show that

v̂∼
(i) := G∼ (û∼

(i)) → G∼ (û∼) strongly in L∼
r(Ω) as i → ∞,(3.40)

in order to prove (i) above. We have from the definition of G∼ , see (3.37a,b), that, for
all i ≥ 0 ,
(3.41a)

b(u∼
n−1
α,ε )(v̂∼

(i), w∼ ) =

∫
Ω

[
u∼
n−1
α,ε · w∼ − Δt k μC

≈
(ψ̂(i)) : ∇

≈ x (I∼αw∼ )
]

dx∼ ∀w∼ ∈ V∼ ,
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where ψ̂(i) ∈ Xq satisfies

aα,ε(û∼
(i))(ψ̂(i), ϕ) = 
nα,ε(ϕ) ∀ϕ ∈ Xq,(3.41b)

and from (3.9b) we have that

J∼
x
α û∼

(i) → J∼
x
α û∼ strongly in W∼

1,∞(Ω) as i → ∞.(3.41c)

Choosing w∼ ≡ v∼
(i) in (3.41a), and noting (3.29), (3.9a), and (3.13), yields that, for all

i ≥ 0, v̂∼
(i) ∈ V∼ satisfies∫

Ω

[
|v̂∼

(i)|2 + |v̂∼
(i) − u∼

n−1
α,ε |2 − |u∼n−1

α,ε |2
]

dx∼ + Δt ν

∫
Ω

|∇
≈ x v̂∼

(i)|2 dx∼(3.42)

≤ C Δt

∫
Ω×D

|ψ̂(i)|2
M

dq
∼

dx∼,

where we have noted the simple identity

(3.43) 2 (s1 − s2) s1 = s2
1 + (s1 − s2)

2 − s2
2 ∀s1, s2 ∈ R.

Choosing ϕ ≡ ψ̂(i) in (3.41b), and noting (3.35) and (3.32b,c), yields, for all i ≥ 0,
that∫

Ω×D

⎡⎣Wc |ψ̂(i)|2 + 2 Δt εM

∣∣∣∣∣∇∼ x

(
ψ̂(i)

M

)∣∣∣∣∣
2

+
ΔtM

2λ

∣∣∣∣∣∇∼ q

(
ψ̂(i)

M

)∣∣∣∣∣
2
⎤⎦ dq

∼
dx∼

≤ (1 + λAn−1
α,ε )2

∫
Ω×D

Wc |ψn−1
α,ε |2 dq

∼
dx∼ ≤ C(α).(3.44)

Combining (3.42) and (3.44), and noting a well-known embedding result and a Poincaré
inequality, we have for all i ≥ 0 that

‖v̂∼
(i)‖Lr(Ω) ≤ C ‖∇

≈ x v̂∼
(i)‖L2(Ω) ≤ C(α) .(3.45)

It follows from (3.44), (3.45), (3.13), and (2.4a), noting the compactness of the em-

bedding H∼
1(Ω) ↪→ L∼

r(Ω), r ∈ (d, 6), that there exists a subsequence {ψ̂(ik), v̂∼
(ik)}ik≥0

and functions ψ̂ ∈ Xq and v̂∼ ∈ V∼ such that as ik → ∞

W
1
2
c ψ̂(ik) → W

1
2
c ψ̂ weakly in L2(Ω ×D),(3.46a)

M
1
2 ∇

∼
x

(
ψ̂(ik)

M

)
→ M

1
2 ∇

∼
x

(
ψ̂

M

)
weakly in L

∼

2(Ω ×D),(3.46b)

M
1
2 ∇

∼
q

(
ψ̂(ik)

M

)
→ M

1
2 ∇

∼
q

(
ψ̂

M

)
weakly in L

∼

2(Ω ×D),(3.46c)

C
≈

(ψ̂(ik)) → C
≈

(ψ̂) weakly in L
≈

2(Ω),(3.46d)

v̂
∼

(ik) → v̂
∼

weakly in H
∼

1(Ω),(3.46e)

v̂
∼

(ik) → v̂
∼

strongly in L
∼

r(Ω).(3.46f)
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It follows from (3.41a), (3.28), and (3.46d,e) that v̂∼ ∈ V∼ and ψ̂ ∈ Xq satisfy

b(u∼
n−1
α,ε )(v̂∼, w∼ ) =

∫
Ω

[
u∼
n−1
α,ε · w∼ − Δt k μC

≈
(ψ̂) : ∇

≈ x (I∼αw∼ )
]

dx∼ ∀w∼ ∈ V∼ .(3.47)

It follows from (3.41b,c), (3.39), (3.32a–c), (3.25), (3.46a–c), and (3.33) that û∼ ∈ Y∼
r,

J∼
x
αû∼ ∈ W∼

1,∞(Ω), and ψ̂ ∈ Xq satisfy

aα,ε(û∼)(ψ̂, ϕ) = 
nα,ε(ϕ) ∀ϕ ∈ Xq.(3.48)

Combining (3.48) and (3.47), we have that v̂∼ = G∼ (û∼) ∈ V∼ . Therefore the whole

sequence v̂∼
(i) ≡ G∼ (û∼

(i)) → G∼ (û∼) strongly in L∼
r(Ω) as i → ∞, and so (i) holds.

As the embedding V∼ ↪→ L∼
r(Ω), r ∈ (d, 6), is compact, it follows that (ii) holds.

As regards (iii), û∼ = β G∼ (û∼) implies that {ψ̂, û∼} ∈ Xq × V∼ satisfies

aα,ε(û
∼
)(ψ̂, ϕ) = 
nα,ε(ϕ) ∀ϕ ∈ Xq,(3.49a)

b(u
∼

n−1
α,ε )(û

∼
, w
∼

) = β

∫
Ω

[
u
∼

n−1
α,ε · w

∼
− Δt k μC

≈
(ψ̂) : ∇

≈
x (I

∼
αw

∼
)
]

dx
∼

∀w
∼

∈ V
∼
.(3.49b)

Choosing w∼ ≡ û∼ in (3.49b) yields, similarly to (3.42), that

1
2

∫
Ω

[
|û∼|2 + |û∼ − β u∼

n−1
α,ε |2 − β2 |u∼n−1

α,ε |2
]

dx∼ + Δt ν

∫
Ω

|∇
≈ x û∼|2 dx∼

= −Δt β k μ

∫
Ω

C
≈

(ψ̂) : ∇
≈ x (I∼αû∼) dx∼ ≤ C Δt

∫
Ω×D

|ψ̂|2
M

dq
∼

dx∼.(3.50)

Choosing ϕ = ψ̂ in (3.49a) yields, similarly to (3.44), that

∫
Ω×D

⎡⎣Wc |ψ̂|2 + 2 Δt εM

∣∣∣∣∣∇∼ x

(
ψ̂

M

)∣∣∣∣∣
2

+
ΔtM

2λ

∣∣∣∣∣∇∼ q

(
ψ̂

M

)∣∣∣∣∣
2
⎤⎦ dq

∼
dx∼

≤ (1 + λAn−1
α,ε )2

∫
Ω×D

Wc |ψn−1
α,ε |2 dq

∼
dx∼ ≤ C(α).(3.51)

Combining (3.50) and (3.51), and noting the embedding V∼ ↪→ L∼
r(Ω), gives rise to the

desired bound (3.38) with C dependent on Δt and α. Hence (iii) holds, and so G∼ has
a fixed point. Finally, as ψn−1

α,ε ∈ X+
q and ψn

α,ε ∈ Xq =⇒ [ψn
α,ε]− ∈ Xq, recall (3.17),

it follows from (3.31) and (3.32a,b) that

aα,ε(u
∼

n
α,ε)([ψ

n
α,ε]−, [ψ

n
α,ε]−) = aα,ε(u

∼

n
α,ε)(ψ

n
α,ε, [ψ

n
α,ε]−) = 
nα,ε([ψα,ε]−) ≤ 0.(3.52)

Therefore (3.35) yields that [ψn
α,ε]− = 0; that is, ψn

α,ε ∈ X+
q . Thus we have proved

existence of a solution to (3.26a,b).
Choosing w∼ ≡ u∼

n
α,ε in (3.27) yields, similarly to (3.50), that

1
2

∫
Ω

[
|u∼n

α,ε|2 + |u∼n
α,ε − u∼

n−1
α,ε |2 − |u∼n−1

α,ε |2
]

dx∼ + Δt ν

∫
Ω

|∇
≈ x u∼

n
α,ε|2 dx∼

= −Δt k μ

∫
Ω

C
≈

(ψn
α,ε) : ∇

≈ x (I∼αu∼
n
α,ε) dx∼ ≤ C Δt

∫
Ω×D

|ψn
α,ε|2

M
dq

∼
dx∼.(3.53)
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Choosing w∼ ≡ S∼ γ(
u∼

n
α,ε−u∼

n−1
α,ε

Δt ) ∈ V∼ in (3.27) yields, noting (3.3), (3.20), (3.9a), and
(3.29), that

∫
Ω

⎡⎣γ ∣∣∣∣∣∇≈ x

[
S
∼
γ

(
u
∼

n
α,ε − u

∼

n−1
α,ε

Δt

)]∣∣∣∣∣
2

+

∣∣∣∣∣S∼ γ

(
u
∼

n
α,ε − u

∼

n−1
α,ε

Δt

)∣∣∣∣∣
2
⎤⎦ dx

∼
(3.54)

= −ν

∫
Ω

∇
≈

x u
∼

n
α,ε : ∇

≈
x

[
S
∼
γ

(
u
∼

n
α,ε − u

∼

n−1
α,ε

Δt

)]
dx

∼

+

∫
Ω

C
≈

(ψn
α,ε) : ∇

≈
x

(
I
∼
α

[
S
∼
γ

(
u
∼

n
α,ε − u

∼

n−1
α,ε

Δt

)])
dx

∼

+

∫
Ω

u
∼

n
α,ε ·

[
(u
∼

n−1
α,ε · ∇

∼
x )

[
S
∼
γ

(
u
∼

n
α,ε − u

∼

n−1
α,ε

Δt

)]]
dx

∼

≤ C

∫
Ω

[
|C
≈

(ψn
α,ε)|2 + |∇

≈
x u

∼

n
α,ε|2 + |u

∼

n−1
α,ε |2 |u

∼

n
α,ε|2

]
dx

∼
.

Applying the Cauchy–Schwarz inequality, the algebraic-geometric mean inequality,
and a Gagliardo–Nirenberg inequality yields that

∫
Ω

|u∼n−1
α,ε |2 |u∼n

α,ε|2 dx∼ ≤
(∫

Ω

|u∼n−1
α,ε |4 dx∼

) 1
2
(∫

Ω

|u∼n
α,ε|4 dx∼

) 1
2

≤ 1
2

n∑
m=n−1

∫
Ω

|u∼m
α,ε|4 dx∼

≤ C

n∑
m=n−1

[(∫
Ω

|u∼m
α,ε|2 dx∼

)2− d
2
(∫

Ω

|∇
≈ x u∼

m
α,ε|2 dx∼

) d
2

]
.(3.55)

First we consider the corotational case for (3.31), where we can exploit (3.19a).
Choosing ϕ = ψn

α,ε in (3.31), and noting (3.43), (3.25), (3.34), and (3.19a), yields that

∫
Ω×D

Wc

[
|ψn

α,ε|2 + |ψn
α,ε − ψn−1

α,ε |2
]

dq
∼

dx∼ + 2 Δt ε

∫
Ω×D

M

∣∣∣∣∇∼ x

(
ψn
α,ε

M

)∣∣∣∣2 dq
∼

dx∼

+
Δt

λ

∫
Ω×D

M

∣∣∣∣∇∼ q

(
ψn
α,ε

M

)∣∣∣∣2 dq
∼

dx∼ =

∫
Ω×D

Wc |ψn−1
α,ε |2 dq

∼
dx∼.(3.56)

Summing (3.53) and (3.56) from n = 1 → m, with 1 ≤ m ≤ N , and noting (3.24)
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yields that

max
n=0→N

[∫
Ω×D

Wc |ψn
α,ε|2 dq

∼
dx∼

]
+

1

λ

N∑
n=1

Δt

∫
Ω×D

M

∣∣∣∣∇∼ q

(
ψn
α,ε

M

)∣∣∣∣2 dq
∼

dx∼

+ ε

N∑
n=1

Δt

∫
Ω×D

M

∣∣∣∣∇∼ x

(
ψn
α,ε

M

)∣∣∣∣2 dq
∼

dx∼ +

N∑
n=1

∫
Ω×D

Wc |ψn
α,ε − ψn−1

α,ε |2 dq
∼

dx∼

+ max
n=0→N

[∫
Ω

|C
≈

(ψn
α,ε)|2 dx∼

]

≤ C

∫
Ω×D

Wc |ψ0|2 dq
∼

dx∼ ≤ C,(3.57a)

max
n=0→N

[∫
Ω

|u∼n
α,ε|2 dx∼

]
+

N∑
n=1

∫
Ω

|u∼n
α,ε − u∼

n−1
α,ε |2 dx∼ + ν

N∑
n=1

Δt

∫
Ω

|∇
≈ x u∼

n
α,ε|2 dx∼

≤ C

∫
Ω

|u∼0|2 dx∼ + C T

∫
Ω×D

Wc |ψ0|2 dq
∼

dx∼ ≤ C(T ).(3.57b)

In addition, taking the 2
d power of both sides of (3.54), summing from n = 1 → N ,

and noting (3.55), (3.57a,b), and (3.24) yields that

N∑
n=1

Δt

⎛⎝∫
Ω

⎡⎣γ ∣∣∣∣∣∇≈ x

[
S
∼
γ

(
u
∼

n
α,ε − u

∼

n−1
α,ε

Δt

)]∣∣∣∣∣
2

+

∣∣∣∣∣S∼ γ

(
u
∼

n
α,ε − u

∼

n−1
α,ε

Δt

)∣∣∣∣∣
2
⎤⎦ dx

∼

⎞⎠
2
d

(3.58)

≤ C

[
N∑

n=1

Δt

(∫
Ω

|C
≈

(ψn
α,ε)|2 dx

∼

) 2
d

]
+ C(T )

[
N∑

n=1

Δt

∫
Ω

|∇
≈

x u
∼

n
α,ε|2 dx

∼

] 2
d

+ C(T )

[
max

n=0→N

(∫
Ω

|u
∼

n
α,ε|2 dx

∼

) 4
d−1

] [
N∑

n=0

Δt

∫
Ω

|∇
≈

x u
∼

n
α,ε|2 dx

∼

]

≤ C(T ).

We now consider the noncorotational case for (3.31), where at first we have to
apply a different testing procedure to ϕ = ψn

α,ε than the one used in the corotational
case. Choosing ϕ = M in (3.31) yields that∫

Ω×D

[ 1 + Δt |q
∼
|2 (1 + λA(J

∼

x
αu∼

n
α,ε) ) ]ψn

α,ε dq
∼

dx
∼

(3.59)

=

∫
Ω×D

[ 1 + Δt |q
∼
|2 (1 + λAn−1

α,ε ) ]ψn−1
α,ε dq

∼
dx

∼
.
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Choosing ϕ = U M in (3.31), and noting (2.10), (2.4a), (3.16a,b), (2.9), and (2.20),
yields that∫

Ω×D

(ψn
α,ε − ψn−1

α,ε )U dq
∼

dx∼ − Δt

∫
Ω

C
≈

(ψn
α,ε) : ∇

≈ x (J∼
x
αu∼

n
α,ε) dx∼

+ Δt

∫
Ω×D

|q
∼
|2
[
(1 + λA(J∼

x
αu∼

n
α,ε) )ψn

α,ε − ( 1 + λAn−1
α,ε )ψn−1

α,ε

]
U dq

∼
dx∼

= −Δt

2λ

∫
Ω×D

M ∇∼ q

(
ψn
α,ε

M

)
· U ′ q

∼
dq

∼
dx∼

=
Δt

2λ

∫
Ω×D

[(
U ′′ − (U ′)2

)
|q
∼
|2 + dU ′

]
ψn
α,ε dq

∼
dx∼

≤ −Δt c2
2λ

∫
Ω×{|q

∼
|2≥ d

c2
}
|q
∼
|2 U ′ ψn

α,ε dq
∼

dx∼ +
Δt d

2λ

∫
Ω×{|q

∼
|2≤ d

c2
}
U ′ ψn

α,ε dq
∼

dx∼

≤ −Δt c2
2λ

∫
Ω×{|q

∼
|2≥ d

c2
}
|q
∼
|2 U ′ ψn

α,ε dq
∼

dx∼

+C Δt

∫
Ω×D

[
1 + Δt |q

∼
|2 (1 + λA(J∼

x
αu∼

n
α,ε) )

]
ψn
α,ε dq

∼
dx∼.(3.60)

Combining (3.53) in the noncorotational case and (3.60) multiplied by k μ, and noting
(3.59), yields that

1

2

∫
Ω

[
|u∼n

α,ε|2 + |u∼n
α,ε − u∼

n−1
α,ε |2

]
dx∼ + Δt ν

∫
Ω

|∇
≈ x u∼

n
α,ε|2 dx∼

+ k μ

∫
Ω×D

[
1 + Δt |q

∼
|2 (1 + λA(J∼

x
αu∼

n
α,ε) )

]
U ψn

α,ε dq
∼

dx∼

+
Δt k μ c2

2λ

∫
Ω×{|q

∼
|2≥ d

c2
}
|q
∼
|2 U ′ ψn

α,ε dq
∼

dx∼

≤ 1

2

∫
Ω

|u∼n−1
α,ε |2 dx∼ + k μ

∫
Ω×D

[
1 + Δt |q

∼
|2 (1 + λAn−1

α,ε )
]
U ψn−1

α,ε dq
∼

dx∼

+C k μΔt

∫
Ω×D

[
1 + Δt |q

∼
|2 (1 + λAn−1

α,ε )
]
ψn−1
α,ε dq

∼
dx∼.(3.61)

Summing this from n = 1 → m, m = 1 → N , and noting by induction on (3.59) that∫
Ω×D

[
1 + Δt |q

∼
|2 (1 + λAn−1

α,ε )
]
ψn−1
α,ε dq

∼
dx∼(3.62)

=

∫
Ω×D

[
1 + Δt |q

∼
|2 (1 + λA0

α,ε)
]
ψ0 dq

∼
dx∼
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and (3.24), yields that

max
n=0→N

[∫
Ω

|u
∼

n
α,ε|2 dx

∼

]
+

N∑
n=1

∫
Ω

|u
∼

n
α,ε − u

∼

n−1
α,ε |2 dx

∼
(3.63)

+ ν

N∑
n=1

Δt

∫
Ω

|∇
≈

x u
∼

n
α,ε|2 dx

∼
+ k μ max

n=1→N

[∫
Ω×D

U ψn
α,ε dq

∼
dx

∼

]

+
k μ c2
2λ

N∑
n=1

Δt

∫
Ω×{|q

∼
|2≥ d

c2
}
|q
∼
|2 U ′ ψn

α,ε dq
∼

dx
∼

+ k μΔt max
n=1→N

[∫
Ω×D

|q
∼
|2 (1 + λA(J

∼

x
αu∼

n
α,ε) )U ψn

α,ε dq
∼

dx
∼

]

≤ C

∫
Ω

|u
∼

0|2 dx
∼

+ C(T )

∫
Ω×D

[
1 + Δt |q

∼
|2 (1 + λA0

α,ε)

]
(1 + U)ψ0 dq

∼
dx

∼

≤ C(T ).

The bounds on ψn
α,ε in (3.63) for the noncorotational case do not suffice in order to

pass to the limit Δt → 0 in the summation over n of (3.26b). One needs to establish
additional bounds on ψn

α,ε. We confine ourselves to the physically more realistic case
of FENE-type models, i.e., D bounded, for the general noncorotational case.

It follows from (3.25), (3.9b), and (3.63) that

N∑
n=1

Δt An−1
α,ε =

N∑
n=1

Δt ‖∇
≈ x (J∼

x
αu∼

n−1
α,ε )‖2

L∞(Ω) ≤ C(α)

N∑
n=1

Δt ‖u∼n−1
α,ε ‖2

L2(Ω)

≤ C1(α, T ) .(3.64)

Choosing ϕ = ψn
α,ε in (3.31) and noting (3.32c), (3.36), and (3.35) yields that∫

Ω×D

Wc ψ
n
α,ε (ψn

α,ε − ψn−1
α,ε ) dq

∼
dx∼

+ Δt ε

∫
Ω×D

M

∣∣∣∣∇∼ x

(
ψn
α,ε

M

)∣∣∣∣2 dq
∼

dx∼ +
Δt

4λ

∫
Ω×D

M

∣∣∣∣∇∼ q

(
ψn
α,ε

M

)∣∣∣∣2 dq
∼

dx∼

≤ Δt λAn−1
α,ε

∫
Ω×D

|q
∼
|2

M
ψn
α,ε ψ

n−1
α,ε dq

∼
dx∼.(3.65)

Applying the identity (3.43) and Young’s inequality to (3.65), and noting that D is
bounded and (3.64), with C1 ≡ C1(α, T ), yields that(

1 − 1

2
C−1

1 Δt An−1
α,ε

) ∫
Ω×D

Wc |ψn
α,ε|2 dq

∼
dx∼ +

∫
Ω×D

Wc |ψn
α,ε − ψn−1

α,ε |2 dq
∼

dx∼

+ 2 Δt ε

∫
Ω×D

M

∣∣∣∣∇∼ x

(
ψn
α,ε

M

)∣∣∣∣2 dq
∼

dx∼ +
Δt

2λ

∫
Ω×D

M

∣∣∣∣∇∼ q

(
ψn
α,ε

M

)∣∣∣∣2 dq
∼

dx∼

≤ (1 + C2 Δt An−1
α,ε )

∫
Ω×D

Wc |ψn−1
α,ε |2 dq

∼
dx∼,(3.66)
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where C2(α, T ). It follows from (3.66) and (3.64) that∫
Ω×D

Wc |ψn
α,ε|2 dq

∼
dx∼ ≤

1 + C2 Δt An−1
α,ε

1 − 1
2 C

−1
1 Δt An−1

α,ε

∫
Ω×D

Wc |ψn−1
α,ε |2 dq

∼
dx∼

≤ eC(α,T ) Δt An−1
α,ε

∫
Ω×D

Wc |ψn−1
α,ε |2 dq

∼
dx∼.(3.67)

Hence combining (3.67) and (3.64), summing (3.66) from n = 1 → N , and noting
(3.13) and (3.24) yields the bounds (3.57a) for the general noncorotational FENE
model; in particular,

max
n=0→N

[∫
Ω×D

Wc |ψn
α,ε|2 dq

∼
dx∼

]
+ ε

N∑
n=1

Δt

∫
Ω×D

M

∣∣∣∣∇∼ x

(
ψn
α,ε

M

)∣∣∣∣2 dq
∼

dx∼

+
1

λ

N∑
n=1

Δt

∫
Ω×D

M

∣∣∣∣∇∼ q

(
ψn
α,ε

M

)∣∣∣∣2 dq
∼

dx∼ +

N∑
n=1

∫
Ω×D

Wc |ψn
α,ε − ψn−1

α,ε |2 dq
∼

dx∼

+ max
n=0→N

[∫
Ω

|C
≈

(ψn
α,ε)|2 dx∼

]
≤ C(α, T ).(3.68)

Finally, taking the 2
d power of both sides of (3.54), summing from n = 1 → N , and

noting (3.55), (3.63), (3.68), and (3.24) yields, similarly to (3.58), that

N∑
n=1

Δt

⎛⎝∫
Ω

⎡⎣γ ∣∣∣∣∣∇≈ x

[
S∼ γ

(
u∼
n
α,ε − u∼

n−1
α,ε

Δt

)]∣∣∣∣∣
2

+

∣∣∣∣∣S∼ γ

(
u∼
n
α,ε − u∼

n−1
α,ε

Δt

)∣∣∣∣∣
2
⎤⎦ dx∼

⎞⎠
2
d

≤ C(α, T ).(3.69)

We have now established all of the analogues of the bounds (3.57a,b) and (3.58)
in the corotational case for the general noncorotational FENE-type potentials; see
(3.63), (3.68), and (3.69) above. The key difference is that the corotational bounds
are independent of α > 0, whereas the noncorotational bounds (3.68) and (3.69) are
α dependent.

Finally, we note that in the corotational case one can derive an upper bound, in
addition to the zero lower bound, on ψn

α,ε. To do so, we proceed inductively. Assuming
that for some Ln−1 ∈ R

+, ψn−1
α,ε ≤ Ln−1 M a.e. in Ω×D, we then determine Ln ∈ R

+

in terms of Ln−1 such that ψn
α,ε ≤ Ln M a.e. in Ω × D. Now, from (3.17), (3.31),

(3.32a,b), (3.19b), and (3.30), we have, for any Ln ∈ R
+, that [ψn

α,ε − Ln M ]+ ∈ Xq

and

aα,ε(u∼
n
α,ε)([ψ

n
α,ε − Ln M ]+, [ψ

n
α,ε − Ln M ]+)

= aα,ε(u∼
n
α,ε)(ψ

n
α,ε, [ψ

n
α,ε − Ln M ]+) − Ln aα,ε(u∼

n
α,ε)(M, [ψn

α,ε − Ln M ]+)

= 
nα,ε([ψ
n
α,ε − Ln M ]+) − Ln anc (M, [ψn

α,ε − Ln M ]+)

=

∫
Ω×D

Wc (ψn−1
α,ε − Ln M ) [ψn

α,ε − Ln M ]+ dq
∼

dx∼

≤
∫

Ω×D

[
Wc (Ln−1 − Ln )M

]
[ψn

α,ε − Ln M ]+ dq
∼

dx∼.(3.70)
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Choosing Ln = Ln−1 yields that the right-hand side of (3.70) is zero and hence from
(3.35) that [ψn

α,ε − Ln M ]+ ≡ 0. Thus, by induction, we have for n = 1 → N that

0 ≤ ψn
α,ε ≤ Ln M = L0 M a.e. in Ω ×D, where L0 := sup

(x
∼
,q
∼

)∈Ω×D

ψ0(x
∼
, q
∼
)

M(q
∼
)

.(3.71)

Now we introduce some definitions prior to passing to the limit Δt → 0+. Let

(3.72a) u∼
Δt
α,ε(·, t) :=

t− tn−1

Δt
u∼
n
α,ε(·) +

tn − t

Δt
u∼
n−1
α,ε (·), t ∈ [tn−1, tn], n ≥ 1,

and

(3.72b) u∼
Δt,+
α,ε (·, t) := u∼

n(·), u∼
Δt,−
α,ε (·, t) := u∼

n−1(·), t ∈ (tn−1, tn], n ≥ 1.

We note for future reference that

(3.73) u∼
Δt
α,ε − u∼

Δt,±
α,ε = (t− t±n )

∂u∼
Δt
α,ε

∂t
, t ∈ (tn−1, tn), n ≥ 1,

where t+n := tn and t−n := tn−1. Using the above notation, and introducing analogous
notation for {ψn

α,ε}Nn=0, (3.27) summed for n = 1 → N can be restated as∫ T

0

〈
∂u∼

Δt
α,ε

∂t
, w∼

〉
dt +

∫ T

0

∫
Ω

[[
(u∼

Δt,−
α,ε · ∇∼ x )u∼

Δt,+
α,ε

]
· w∼ + ν∇

≈ x u∼
Δt,+
α,ε : ∇

≈ x w∼
]

dx∼ dt

= −k μ

∫ T

0

∫
Ω

C
≈

(ψΔt,+
α,ε ) : ∇

≈ x (I∼αw∼ ) dx∼ dt ∀w∼ ∈ L
4

4−d (0, T ;V∼ ).(3.74)

Similarly, (3.31) summed for n = 1 → N can be restated as

∫ T

0

∫
Ω×D

Wc

ψΔt,+
α,ε − ψΔt,−

α,ε

Δt
ϕ dq

∼
dx

∼
dt

(3.75)

+

∫ T

0

∫
Ω×D

[
M

2λ
∇
∼

q

(
ψΔt,+
α,ε

M

)
− [σ

≈
(J
∼

x
αu∼

Δt,+
α,ε ) q

∼
]ψΔt,+

α,ε

]
· ∇

∼
q

( ϕ

M

)
dq

∼
dx

∼
dt

+

∫ T

0

∫
Ω×D

[
εM ∇

∼
x

(
ψΔt,+
α,ε

M

)
− u

∼

Δt,+
α,ε ψΔt,+

α,ε

]
· ∇

∼
x

( ϕ

M

)
dq

∼
dx

∼
dt

+

∫ T

0

∫
Ω×D

λ |q
∼
|2

M

[
A(J

∼

x
α u

∼

Δt,+
α,ε )ψΔt,+

α,ε −A(J
∼

x
α u

∼

Δt,−
α,ε )ψΔt,−

α,ε

]
ϕdq

∼
dx

∼
dt = 0

∀ϕ ∈ L2(0, T ;Xq).

We have from (3.57b) and (3.63) that

sup
t∈(0,T )

[∫
Ω

|u∼Δt(,±)
α,ε |2 dx∼

]
+

∫ T

0

∫
Ω

|u∼Δt,+
α,ε − u∼

Δt,−
α,ε |2

Δt
dx∼ dt

+ ν

∫ T

0

∫
Ω

|∇
≈ x u∼

Δt(,±)
α,ε |2 dx∼ dt ≤ C(T ).(3.76)
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In the above, the notation u∼
Δt(,±)
α,ε means u∼

Δt
α,ε with or without the superscripts ±.

Similarly, we have from (3.57a), (3.58), (3.68), and (3.69) that

sup
t∈(0,T )

[∫
Ω×D

|ψΔt(,±)
α,ε |2
M

dq
∼

dx
∼

]
+

1

λ

∫ T

0

∫
Ω×D

M

∣∣∣∣∣∇∼ q

(
ψΔt,+
α,ε

M

)∣∣∣∣∣
2

dq
∼

dx
∼

dt(3.77)

+ ε

∫ T

0

∫
Ω×D

M

∣∣∣∣∣∇∼ x

(
ψΔt,+
α,ε

M

)∣∣∣∣∣
2

dq
∼

dx
∼

dt + sup
t∈(0,T )

[∫
Ω

|C
≈

(ψΔt(,±)
α,ε )|2 dx

∼

]

+

∫ T

0

⎡⎣∫
Ω×D

Wc

|ψΔt,+
α,ε − ψΔt,−

α,ε |2

Δt
dq

∼
dx

∼
+

∥∥∥∥∥S∼ γ

∂u
∼

Δt
α,ε

∂t

∥∥∥∥∥
4
d

H1(Ω)

⎤⎦ dt

≤

⎧⎨⎩ C(T ) if σ≈(·) = ω≈ (·),

C(α, T ) if σ≈(·) = ∇≈ x (·) and D is bounded.

We are now in a position to prove the following convergence result.
Lemma 3.3. There exists a subsequence of {u∼Δt

α,ε, ψ
Δt
α,ε}Δt, and functions u∼α,ε ∈

L∞(0, T ; L∼
2(Ω)) ∩ L2(0, T ;V∼ ) ∩W 1, 4d (0, T ;V∼

′) and ψα,ε ∈ L2(0, T ;X+) with M− 1
2

ψα,ε ∈ L∞(0, T ;L2(Ω ×D)), such that, as Δt → 0,

ψ
Δt(,±)
α,ε

M
1
2

→ ψα,ε

M
1
2

weak* in L∞(0, T ;L2(Ω ×D)),(3.78a)

M
1
2 ∇

∼
q

(
ψΔt,+
α,ε

M

)
→ M

1
2 ∇

∼
q

(
ψα,ε

M

)
weakly in L2(0, T ;L

∼

2(Ω ×D)),(3.78b)

M
1
2 ∇

∼
x

(
ψΔt,+
α,ε

M

)
→ M

1
2 ∇

∼
x

(
ψα,ε

M

)
weakly in L2(0, T ;L

∼

2(Ω ×D)),(3.78c)

C
≈

(ψΔt(,±)
α,ε ) → C

≈
(ψα,ε) weak* in L∞(0, T ;L

≈

2(Ω)),(3.78d)

and

u∼
Δt(,±)
α,ε → u∼α,ε weak* in L∞(0, T ;L∼

2(Ω)),(3.79a)

u∼
Δt(,±)
α,ε → u∼α,ε weakly in L2(0, T ;V∼ ),(3.79b)

S∼ γ

∂u∼
Δt
α,ε

∂t
→ S∼ γ

∂u∼α,ε

∂t
weakly in L

4
d (0, T ;V∼ ),(3.79c)

u∼
Δt(,±)
α,ε → u∼α,ε strongly in L2(0, T ;L∼

r(Ω),(3.79d)

J∼
x
αu∼

Δt(,±)
α,ε → J∼

x
αu∼α,ε strongly in L∞(0, T ;W∼

1,∞(Ω)),(3.79e)

where r ∈ [1,∞) if d = 2 and r ∈ [1, 6) if d = 3.
Proof. The result (3.78a) follows immediately from the bounds on the first and

third terms on the left-hand side of (3.77), noting (3.36) and the notation (3.72a,b).
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It follows immediately from the bound on the second term on the left-hand side
of (3.77) that (3.78b) holds for some limit g

∼
∈ L2(0, T ;L∼

2(Ω × D)), which we need

to identify. However, for any η
∼
∈ L2(0, T ;C∼

∞
0 (Ω ×D)), it follows from (2.9) and the

compact support of η
∼

on D that [∇∼ q · (M 1
2 η

∼
) ]/M

1
2 ∈ L2(0, T ;L2(Ω×D)), and hence

the above convergence implies, noting (3.78a), that

∫ T

0

∫
Ω×D

g
∼
· η

∼
dq

∼
dx∼ dt ← −

∫ T

0

∫
Ω×D

ψΔt,+
α,ε

M
1
2

∇∼ q · (M 1
2 η

∼
)

M
1
2

dq
∼

dx∼ dt

→ −
∫ T

0

∫
Ω×D

ψα,ε

M
1
2

∇∼ q · (M 1
2 η

∼
)

M
1
2

dq
∼

dx∼ dt(3.80)

as Δt → 0. Hence the desired result (3.78b) follows from (3.80), noting the denseness
of C∞

0 (Ω × D) in L2(Ω × D). A similar argument also proves (3.78c). The desired
result (3.78d) follows immediately from (3.78a) and (2.4a). Finally, the nonnegativity

of ψα,ε follows from that of ψ
Δt(,±)
α,ε ; recall Lemma 3.2.

The results (3.79a–c) follow immediately from the bounds (3.76) and the bound
on u∼

Δt
α,ε in (3.77). The strong convergence result (3.79d) for u∼

Δt
α,ε follows immediately

from (3.79a–c), (3.3), and a standard compactness result, noting that V∼ ⊂ H∼
1
0(Ω) is

compactly embedded in L∼
r(Ω) for the stated values of r. We now prove (3.79d) for

u∼
Δt,±
α,ε . First, we obtain from the bound on the second term on the left-hand side of

(3.76) and from (3.73) that

‖u∼Δt
α,ε − u∼

Δt,±
α,ε ‖2

L2(0,T,L2(Ω)) ≤ C Δt .(3.81)

Second, we note from Sobolev embedding that, for all η ∈ L2(0, T ;H1(Ω)),

‖η‖L2(0,T ;Lr(Ω)) ≤ C ‖η‖1−β
L2(0,T ;L2(Ω)) ‖η‖

β
L2(0,T ;H1(Ω))(3.82)

for any r ∈ [2,∞) if d = 2 or any r ∈ [2, 6) if d = 3, where β = d ( 1
2 − 1

r ) ∈ [0, 1).
Hence, combining (3.81), (3.82), and (3.79d) for u∼

Δt
α,ε yields (3.79d) for u∼

Δt,±
α,ε . Finally,

the desired result (3.79e) follows immediately from (3.9b) and (3.79d).

Similarly to (3.82), we have, for any r ∈ [2,∞) if d = 2 or any r ∈ [2, 6] if d = 3,
that

(3.83) ‖η‖
L

2
β (0,T ;Lr(Ω))

≤ C ‖η‖L2(0,T ;H1(Ω)) if η ∈ L∞(0, T ;L2(Ω)),

where β = d ( 1
2 − 1

r ) ∈ [0, 1]. It follows from (3.79a–d), (3.78d), (3.29), (3.83),
and (3.2) that we may pass to the limit, Δt → 0, in (3.74) to obtain that u∼α,ε ∈
L∞(0, T ;L∼

2(Ω))∩L2(0, T ;V∼ )∩W 1, 4d (0, T ;V∼
′) and C

≈
(ψα,ε) ∈ L∞(0, T ;L

≈
2(Ω)) satisfy

(3.21a). It also follows from (3.23) that u∼α,ε(·, 0) = u∼0(·) in the required sense.

As we have no control of the time derivative ψΔt
α,ε, in order to pass to the Δt → 0

limit in (3.75) this derivative has to be transferred to the test function. We have for
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any fixed ϕ ∈ C∞
0 ((−T, T );K) that∫ T

0

∫
Ω×D

Wc

ψΔt,+
α,ε (x∼, q∼, t) − ψΔt,−

α,ε (x∼, q∼, t)

Δt
ϕ(x∼, q∼, t) dq

∼
dx∼ dt

= −
∫ T

0

∫
Ω×D

Wc ψ
Δt,−
α,ε (x∼, q∼, t)

ϕ(x∼, q∼, t) − ϕ(x∼, q∼, t− Δt)

Δt
dq

∼
dx∼ dt

−
∫

Ω×D

Wc ψ
0(x∼, q∼)

(
1

Δt

∫ t1

0

ϕ(x∼, q∼, t− Δt) dt

)
dq

∼
dx∼ .(3.84)

It follows for all ϕ ∈ C∞
0 ((−T, T );K) and for all (x∼, q∼, t) ∈ Ω ×D × (0, T ) that

ϕ(x∼, q∼, t) − ϕ(x∼, q∼, t− Δt)

Δt
=

∂ϕ

∂t
(x∼, q∼, t) + RΔt(ϕ)(x∼, q∼, t) ,

where

|RΔt(ϕ)(x∼, q∼, t)| ≤
Δt

2
max

(x∼,q
∼
,t)∈Ω×D×[−T,T ]

∣∣∣∣∂2ϕ

∂t2
(x∼, q∼, t)

∣∣∣∣ .(3.85)

Hence, combining (3.75), (3.84), and (3.85), we have for any fixed ϕ ∈ C∞
0 ((−T, T );

K) that

−
∫ T

0

∫
Ω×D

Wc ψ
Δt,−
α,ε

[
∂ϕ

∂t
+ RΔt(ϕ)

]
dq

∼
dx∼ dt

−
∫

Ω×D

Wc ψ
0(x∼, q∼)

(
1

Δt

∫ t1

0

ϕ(x∼, q∼, t− Δt) dt

)
dq

∼
dx∼

+

∫ T

0

∫
Ω×D

[
M

2λ
∇∼ q

(
ψΔt,+
α,ε

M

)
− [σ

≈
(J∼

x
αu∼

Δt,+
α,ε ) q

∼
]ψΔt,+

α,ε

]
· ∇∼ q

( ϕ

M

)
dq

∼
dx∼ dt

+

∫ T

0

∫
Ω×D

[
εM ∇∼ x

(
ψΔt,+
α,ε

M

)
− u∼

Δt,+
α,ε ψΔt,+

α,ε

]
· ∇∼ x

( ϕ

M

)
dq

∼
dx∼ dt

+

∫ T

0

∫
Ω×D

λ |q
∼
|2

M

[
A(J∼

x
α u∼

Δt,+
α,ε )ψΔt,+

α,ε −A(J∼
x
α u∼

Δt,−
α,ε )ψΔt,−

α,ε

]
ϕdq

∼
dx∼ dt = 0 .(3.86)

Now, similarly to (3.84), we have from (3.85), (3.77), (3.25), (3.9b), and (3.76)
for any ϕ ∈ C∞

0 ((−T, T );K) that∣∣∣∣∣∣
∫ T

0

∫
Ω×D

|q
∼
|2

M

[
A(J

∼

x
α u

∼

Δt,+
α,ε )ψΔt,+

α,ε −A(J
∼

x
α u

∼

Δt,−
α,ε )ψΔt,−

α,ε

]
ϕdx

∼
dq

∼
dt

∣∣∣∣∣∣(3.87)

= Δt

∣∣∣∣∫ T

0

∫
Ω×D

|q
∼
|2

M
A(J

∼

x
α u

∼

Δt,−
α,ε )ψΔt,−

α,ε

[
∂ϕ

∂t
+ RΔt(ϕ)

]
dq

∼
dx

∼
dt

+

∫
Ω×D

|q
∼
|2

M
A(J

∼

x
α u

∼

0)ψ0(x
∼
, q
∼
)

(
1

Δt

∫ t1

0

ϕ(x
∼
, q
∼
, t− Δt) dt

)
dq

∼
dx

∼

∣∣∣∣
≤ C(ϕ) Δt

∫ T

0

A(J
∼

x
α u

∼

Δt,−
α,ε ) dt ≤ C(ϕ) Δt .
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It follows from (3.78a–c), (3.79d,e), (3.85), (3.87), (3.36), and (3.23) that we may

pass to the limit Δt → 0 in (3.86) to obtain that ψα,ε ∈ L2(0, T ;X) with M− 1
2 ψα,ε ∈

L∞(0, T ;L2(Ω ×D)) and u∼α,ε ∈ L2(0, T ;V∼ ) satisfy

−
∫ T

0

∫
Ω×D

ψα,ε

M

∂ϕ

∂t
dq

∼
dx∼ dt−

∫
Ω×D

ψ0(·, ·)
M

ϕ(·, ·, 0) dq
∼

dx∼

+

∫ T

0

∫
Ω×D

[
M

2λ
∇∼ q

(
ψα,ε

M

)
− [σ

≈
(J∼

x
αu∼α,ε) q∼]ψα,ε

]
· ∇∼ q

( ϕ

M

)
dq

∼
dx∼ dt

+

∫ T

0

∫
Ω×D

[
εM ∇∼ x

(
ψα,ε

M

)
− u∼α,ε ψα,ε

]
· ∇∼ x

( ϕ

M

)
dq

∼
dx∼ dt = 0

∀ϕ ∈ C∞
0 ((−T, T );K) .(3.88)

Noting (3.33), (3.83), and that C∞
0 ((−T, T );K) is a dense subset of X , recall (3.22),

it follows that (3.88) remains true for all ϕ ∈ X . Hence we have proved existence of
a global weak solution of (Pα,ε), (3.21a,b). Moreover, it follows from (3.76), (3.77),
(3.78a–d), and (3.79a–c) that

(3.89a) sup
t∈(0,T )

[∫
Ω

|u∼α,ε|2 dx∼

]
+ ν

∫ T

0

∫
Ω

|∇
≈ x u∼α,ε|2 dx∼ dt ≤ C(T ),

(3.89b)

sup
t∈(0,T )

[∫
Ω×D

|ψα,ε|2
M

dq
∼

dx∼

]
+

1

λ

∫ T

0

∫
Ω×D

M

∣∣∣∣∇∼ q

(
ψα,ε

M

)∣∣∣∣2 dq
∼

dx∼ dt

+ ε

∫ T

0

∫
Ω×D

M

∣∣∣∣∇∼ x

(
ψα,ε

M

)∣∣∣∣2 dq
∼

dx∼ dt + sup
t∈(0,T )

[∫
Ω

|C
≈

(ψα,ε)|2 dx∼

]

+

∫ T

0

∥∥∥∥S∼ γ
∂u∼α,ε

∂t

∥∥∥∥ 4
d

H1(Ω)

dt ≤
{

C(T ) if σ≈(·) = ω≈ (·),
C(α, T ) if σ≈(·) = ∇≈ x (·) and D is bounded.

Remark 3.4. In the corotational case, if L0 is finite in (3.71), then we have a

uniform L∞(0, T ; L∞(Ω × D)) bound on M−1 ψ
Δ(,±)
α,ε . Moreover, it is then easily

established that the limit M−1 ψα,ε ∈ L∞(0, T ;L∞(Ω × D)) with ψα,ε ≥ 0 a.e. on
Ω ×D × (0, T ).

Remark 3.5. The argument presented above for noncorotational FENE-type mod-
els breaks down for noncorotational Hookean models, since in the transition from
bound (3.65) to (3.66) we exploit the fact that D is bounded. The difficulty could be
overcome if one could obtain a maximum principle on ψn along the lines of (3.70).
Unfortunately, in the case of D = R

d this does not appear to be readily achiev-
able. Having said this, our main focus of interest in the present article is FENE-type
microscopic-macroscopic models for diluted polymers where D is a bounded open ball
in R

d: the fact that in Hookean-type models the domain D is equal to the whole of
R

d stems from the physically unrealistic modelling assumption that the length |q
∼
| of

the elongation vector q
∼
∈ D of a polymer chain may be arbitrarily large.

Remark 3.6. Since the test functions in V∼ are divergence-free, the pressure has
been eliminated in (3.21a,b); it can be recovered in a very weak sense following the
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same procedure as for the incompressible Navier–Stokes equations discussed on p. 208
in Temam [28]; i.e., one obtains that

∫ t

0
pα,ε(·, s) ds ∈ C([0, T ];L2(Ω)).

Remark 3.7. It is a simple matter to adapt the proofs above to show that the
main results above remain true for (Pα,ε) if we replace the smoothing procedure J∼

x
α

by S∼α (including the definition of I∼α in (3.20)). The key results, (3.8b) and (3.9a,b),
that we exploit for J∼

x
α in the above, are now replaced by (3.4b) and (3.6b) for S∼α.

Unfortunately, we require ∂Ω ∈ C2 for (3.6b), as opposed to ∂Ω ∈ C0,1 for (3.9b).
Hence we prefer, in general, J∼

x
α over S∼α. However, S∼α does have one key advantage

over J∼
x
α in that S∼αv∼ ∈ H∼

1
0(Ω) if v∼ ∈ H∼

1
0(Ω).

3.2. Existence for (Pα). As the bounds (3.89a,b) are independent of the pa-
rameter ε, it follows immediately, similarly to (3.78a–d), (3.79a–d), and (3.89a,b),
that the following lemma holds.

Lemma 3.8. There exists a subsequence of {u∼α,ε, ψα,ε}ε, and functions u∼α ∈
L∞(0, T ;L∼

2(Ω))∩L2(0, T ;V∼ )∩W 1, 4d (0, T ;V∼
′) and ψα ∈ L2(0, T ;X0,+) with M− 1

2 ψα

∈ L∞(0, T ;L2(Ω ×D)), such that, as ε → 0,

ψα,ε

M
1
2

→ ψα

M
1
2

weak* in L∞(0, T ;L2(Ω ×D)),(3.90a)

M
1
2 ∇

∼
q

(
ψα,ε

M

)
→ M

1
2 ∇

∼
q

(
ψα

M

)
weakly in L2(0, T ;L

∼

2(Ω ×D)),(3.90b)

εM
1
2 ∇

∼
x

(
ψα,ε

M

)
→ 0 weakly in L2(0, T ;L

∼

2(Ω ×D)),(3.90c)

C
≈

(ψα,ε) → C
≈

(ψα) weak* in L∞(0, T ;L
≈

2(Ω)),(3.90d)

and

u∼α,ε → u∼α weak* in L∞(0, T ;L∼
2(Ω)),(3.91a)

u∼α,ε → u∼α weakly in L2(0, T ;V∼ ),(3.91b)

S∼ γ
∂u∼α,ε

∂t
→ S∼ γ

∂u∼α

∂t
weakly in L

4
d (0, T ;V∼ ),(3.91c)

u∼α,ε → u∼α strongly in L2(0, T ;L∼
r(Ω),(3.91d)

J∼
x
αu∼α,ε → J∼

x
αu∼α strongly in L∞(0, T ;W∼

1,∞(Ω)),(3.91e)

where r ∈ [1,∞) if d = 2 and r ∈ [1, 6) if d = 3.
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In addition, we have that

sup
t∈(0,T )

[∫
Ω

|u∼α|2 dx∼

]
+ ν

∫ T

0

∫
Ω

|∇
≈ x u∼α|2 dx∼ dt ≤ C(T ),(3.92a)

sup
t∈(0,T )

[∫
Ω×D

|ψα|2
M

dq
∼

dx∼

]
+

1

λ

∫ T

0

∫
Ω×D

M

∣∣∣∣∇∼ q

(
ψα

M

)∣∣∣∣2 dq
∼

dx∼ dt

+ sup
t∈(0,T )

[∫
Ω

|C
≈

(ψα)|2 dx∼

]
+

∫ T

0

∥∥∥∥S∼ γ
∂u∼α

∂t

∥∥∥∥ 4
d

H1(Ω)

dt

≤

⎧⎨⎩ C(T ) if σ≈(·) = ω≈ (·),

C(α, T ) if σ≈(·) = ∇≈ x (·) and D is bounded.
(3.92b)

Therefore in both the corotational and the noncorotational cases we can then
pass to limit ε → 0 in (Pα,ε) to obtain existence of a weak solution to the following
problem for a given α ∈ (0, 1]:

(Pα) Find u∼α ∈ L∞(0, T ;L∼
2(Ω))∩L2(0, T ;V∼ )∩W 1, 4d (0, T ;V∼

′) and ψα ∈ L2(0, T ;

X0), with J∼
x
αu∼α ∈ L∞(0, T ;W∼

1,∞(Ω)), M− 1
2 ψα ∈ L∞(0, T ;L2(Ω×D)) and C

≈
(ψα) ∈

L∞(0, T ;L
≈

2(Ω)), such that u∼α(·, 0) = u∼0(·) and∫ T

0

〈
∂u∼α

∂t
, w∼

〉
dt +

∫ T

0

∫
Ω

[
[(u∼α · ∇∼ x )u∼α] · w∼ + ν∇

≈ x u∼α : ∇
≈ x w∼

]
dx∼ dt

= −k μ

∫ T

0

∫
Ω

C
≈

(ψα) : ∇
≈ x (I∼αw∼ ) dx∼ dt ∀w∼ ∈ L

4
4−d (0, T ;V∼ ),(3.93a)

−
∫ T

0

∫
Ω×D

ψα

M

∂ϕ

∂t
dq

∼
dx∼ dt−

∫
Ω×D

ψ0(·, ·)
M

ϕ(·, ·, 0) dq
∼

dx∼

+

∫ T

0

∫
Ω×D

[
M

2λ
∇∼ q

(
ψα

M

)
− [σ

≈
(J∼

x
αu∼α) q

∼
]ψα

]
· ∇∼ q

( ϕ

M

)
dq

∼
dx∼ dt

−
∫ T

0

∫
Ω×D

u∼α ψα · ∇∼ x

( ϕ

M

)
dq

∼
dx∼ dt = 0 ∀ϕ ∈ X 0,(3.93b)

where X 0 is the completion of C∞
0 ((−T, T );K0) in the norm ‖ · ‖X 0 defined by

‖ϕ‖X 0 := ‖ϕ‖L2(0,T ;X0
q ) +

∥∥∥ |q
∼
|M 1

2∇∼ q

( ϕ

M

)∥∥∥
L1(0,T ;L2(Ω×D))

(3.94)

+ ‖M− 1
2∇∼ xϕ‖L2(0,T ;Lr(Ω;L2(D))) +

∥∥∥∥M− 1
2
∂ϕ

∂t

∥∥∥∥
L1(0;T ;L2(Ω×D))

with r > 2 if d = 2 or r = 3 if d = 3. This, in particular, implies that each ϕ ∈ X 0

satisfies ϕ(·, ·, T ) = 0.
Remark 3.9. In view of Remark 3.4, in the corotational case if L0 is finite

in (3.71), then one can show that M−1 ψα ∈ L∞(0, T ;L∞(Ω × D)) with ψα ≥ 0
a.e. on Ω×D× (0, T ). Hence the norm ‖ · ‖X 0 in (3.94) can be relaxed to the weaker
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norm ‖ϕ‖L2(0,T ;X0
q ) + ‖ |q

∼
|M ∇∼ q ( ϕ

M )‖L1(0,T ;L1(Ω×D)) + ‖∇∼ xϕ‖L1(0,T ;Lr(Ω;L1(D)))+

‖∂ϕ
∂t ‖L1(0;T ;L1(Ω×D)), where r > 1 if d = 2 or r = 6

5 if d = 3.
Remark 3.10. Although we have introduced smoothing through the parameter

α > 0 into the model (Pα) compared to the standard polymer model, (P0), we wish
to stress that in both the corotational and the noncorotational case the bounds on
u∼α, the variable of real physical interest, in (3.92a) are independent of this smoothing
parameter α.

3.3. Existence for (Pε) in the corotational case. Finally, in the corotational
case we can pass to the limit α → 0 in (Pα,ε) with J∼

x
α replaced by S∼α to obtain a weak

formulation of (Pε). Hence, recalling Remark 3.7, we require ∂Ω ∈ C2 to obtain the
existence result, and the bounds (3.89a,b), for (Pα,ε) with J∼

x
α replaced by S∼α. As the

bounds (3.89a,b) are independent of α in the corotational case, we obtain immediately
the following lemma.

Lemma 3.11. Let ∂Ω ∈ C2 and σ
≈
(·) = ω

≈
(·). Then there exists a subsequence of

{u∼α,ε, ψα,ε}α, and functions u∼ε ∈ L∞(0, T ;L∼
2(Ω))∩L2(0, T ;V∼ )∩W 1, 4d (0, T ;V∼

′) and

ψε ∈ L2(0, T ;X+) with M− 1
2 ψε ∈ L∞(0, T ;L2(Ω ×D)), such that, as α → 0,

ψα,ε

M
1
2

→ ψε

M
1
2

weak* in L∞(0, T ;L2(Ω ×D)),(3.95a)

M
1
2 ∇

∼
q

(
ψα,ε

M

)
→ M

1
2 ∇

∼
q

(
ψε

M

)
weakly in L2(0, T ;L

∼

2(Ω ×D)),(3.95b)

M
1
2 ∇

∼
x

(
ψα,ε

M

)
→ M

1
2 ∇

∼
x

(
ψε

M

)
weakly in L2(0, T ;L

∼

2(Ω ×D)),(3.95c)

C
≈

(ψα,ε) → C
≈

(ψε) weak* in L∞(0, T ;L
≈

2(Ω)),(3.95d)

and

u∼α,ε → u∼ε weak* in L∞(0, T ;L∼
2(Ω)),(3.96a)

u∼α,ε → u∼ε weakly in L2(0, T ;V∼ ),(3.96b)

S∼ γ
∂u∼α,ε

∂t
→ S∼ γ

∂u∼ε

∂t
weakly in L

4
d (0, T ;V∼ ),(3.96c)

u∼α,ε → u∼ε strongly in L2(0, T ;L∼
r(Ω),(3.96d)

where r ∈ [1,∞) if d = 2 and r ∈ [1, 6) if d = 3.
In addition, we have that

sup
t∈(0,T )

[∫
Ω

|u∼ε|2 dx∼

]
+ ν

∫ T

0

∫
Ω

|∇
≈ x u∼ε|2 dx∼ dt ≤ C(T ),(3.97a)

sup
t∈(0,T )

[∫
Ω×D

|ψε|2
M

dq
∼

dx∼

]
+

∫ T

0

∫
Ω×D

[
εM

∣∣∣∣∇∼ x

(
ψε

M

)∣∣∣∣2 +
1

λ

∣∣∣∣∇∼ q

(
ψε

M

)∣∣∣∣2
]

dq
∼

dx∼ dt

(3.97b)

+ sup
t∈(0,T )

[∫
Ω

|C
≈

(ψε)|2 dx∼

]
+

∫ T

0

∥∥∥∥S∼ γ
∂u∼ε

∂t

∥∥∥∥ 4
d

H1(Ω)

dt ≤ C(T ).
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It follows immediately from (3.96d), (3.4a,b), and (3.97a) that

S∼αu∼α,ε → u∼ε strongly in L2(0, T ;L∼
2(Ω)) as α → 0.(3.98)

Next, we note that for all v∼ ∈ H∼
1
0(Ω) and η

∼
∈ H1(Ω;L2(D;M))

∫
Ω×D

M [ω
≈
(v
∼
) q

∼
] · η

∼
dq

∼
dx

∼
= 1

2

∫
Ω×D

M

[
(v
∼
· q

∼
) (∇

∼
x · η

∼
) − [∇

≈
x (η

∼
) q

∼
] · v

∼

]
dq

∼
dx

∼
.

(3.99)

It is now a simple matter to prove existence of a solution to the following problem:
(Pε) Find u∼ε ∈ L∞(0, T ;L∼

2(Ω)) ∩ L2(0, T ;V∼ ) ∩W 1, 4d (0, T ;V∼
′) and ψε ∈ L2(0, T ;

X), with M− 1
2 ψε ∈ L∞(0, T ;L2(Ω × D)) and C

≈
(ψε) ∈ L∞(0, T ;L

≈
2(Ω)), such that

u∼ε(·, 0) = u∼0(·) and∫ T

0

〈
∂u∼ε

∂t
, w∼

〉
dt +

∫ T

0

∫
Ω

[
[(u∼ε · ∇∼ x )u∼ε] · w∼ + ν∇

≈ x u∼ε : ∇
≈ x w∼

]
dx∼ dt

= −
∫ T

0

∫
Ω

C
≈

(ψε) : ∇
≈ x w∼ dx∼ dt ∀w∼ ∈ L

4
4−d (0, T ;V∼ ),(3.100a)

−
∫ T

0

∫
Ω×D

ψε

M

∂ϕ

∂t
dq

∼
dx∼ dt−

∫
Ω×D

ψ0(·, ·)
M

ϕ(·, ·, 0) dq
∼

dx∼

+

∫ T

0

∫
Ω×D

[
εM ∇∼ x

(
ψε

M

)
− u∼ε ψε

]
· ∇∼ x

( ϕ

M

)
dq

∼
dx∼ dt

+

∫ T

0

∫
Ω×D

M

2λ
∇∼ q

(
ψε

M

)
· ∇∼ q

( ϕ

M

)
dq

∼
dx∼ dt

+
1

2

∫ T

0

∫
Ω×D

[
∇
≈ x

(
ψε ∇∼ q

( ϕ

M

))
q
∼

]
· u∼ε dq

∼
dx∼

− 1

2

∫ T

0

∫
Ω×D

(u∼ε · q∼)
[
∇∼ x ·

(
ψε ∇∼ q

( ϕ

M

))]
dq

∼
dx∼ = 0 ∀ϕ ∈ Y,(3.100b)

where Y is defined as the completion of C∞
0 ((−T, T );K) in the norm ‖ · ‖Y defined by

‖ϕ‖Y := ‖ϕ‖
L

4
4−d (0,T ;Xq)

+
∥∥∥ |q

∼
|M 1

2∇∼ q

( ϕ

M

)∥∥∥
Lr(0;T ;H1(Ω;L2(D)))

(3.101)

+

∥∥∥∥M− 1
2
∂ϕ

∂t

∥∥∥∥
L1(0;T ;L2(Ω×D))

with r > 2 if d = 2 or r = 4 if d = 3. This, in particular, implies that each ϕ ∈ Y
satisfies ϕ(·, ·, T ) = 0.

Noting (3.96a–d) and (3.95d), we can pass to the limit α → 0 in (3.21a) in the
corotational case to obtain (3.100a). As S∼αu∼α,ε ∈ L2(0, T ;V∼ ), we can apply (3.99)

to (3.88) with v∼ = S∼αu∼α,ε and η
∼

=
ψα,ε

M ∇∼ q ( ϕ
M ) and then use (3.95a–d), (3.96d), and

(3.98) to pass to the limit α → 0 to obtain (3.100b).



EXISTENCE OF SOLUTIONS TO SOME POLYMER MODELS 545

Finally, we note that, for any s ∈ (0, T ) and Δt sufficiently small such that
0 < Δt < s, we can choose ϕ(x∼, q∼, t) = 1

Δt {[s− t]+ − [s− Δt− t]+}M(q
∼
) in (Pε) to

yield that

1

Δt

∫ s

s−Δt

∫
Ω×D

ψε(x∼, q∼, t) dq
∼

dx∼ dt =

∫
Ω×D

ψ0(x∼, q∼) dq
∼

dx∼.

Passing to the limit Δt → 0, we deduce that∫
Ω×D

ψε(x∼, q∼, s) dq
∼

dx∼ =

∫
Ω×D

ψ0(x∼, q∼) dq
∼

dx∼ ∀s ∈ (0, T ).

Identical statements can be made about ψα in (Pα) and ψα,ε in (Pα,ε).
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