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EXISTENCE OF GROUNDSTATES FOR A CLASS
OF NONLINEAR CHOQUARD EQUATIONS

VITALY MOROZ AND JEAN VAN SCHAFTINGEN

Abstract. We prove the existence of a nontrivial solution u ∈ H1(RN ) to
the nonlinear Choquard equation

−Δu + u =
(
Iα ∗ F (u)

)
F ′(u) in R

N ,

where Iα is a Riesz potential, under almost necessary conditions on the non-
linearity F in the spirit of Berestycki and Lions. This solution is a groundstate
and has additional local regularity properties; if moreover F is even and mono-
tone on (0,∞), then u is of constant sign and radially symmetric.
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1. Introduction

We consider the problem

(P) −Δu + u =
(
Iα ∗ F (u)

)
f(u) in R

N ,

where N ≥ 3, α ∈ (0, N), Iα : RN → R is the Riesz potential defined for every
x ∈ R

N \ {0} by

Iα(x) =
Γ(N−α

2 )
Γ(α2 )πN/22α|x|N−α

,
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F ∈ C1(R;R) and f := F ′. Solutions of (P) are formally critical points of the
functional defined by

I(u) = 1
2

∫
RN

|∇u|2 + |u|2 − 1
2

∫
RN

(
Iα ∗ F (u)

)
F (u).

We are interested in the existence and some qualitative properties of solutions to
(P).

Problem (P) is a semilinear elliptic equation with a nonlocal nonlinearity. For
N = 3, α = 2 and F (s) = s2

2 it covers in particular the Choquard–Pekar equation

(1.1) −Δu + u = (I2 ∗ |u|2)u in R
3,

introduced at least in 1954, in a work by S. I. Pekar describing the quantum me-
chanics of a polaron at rest [32]. In 1976 P. Choquard used (1.1) to describe an
electron trapped in its own hole, in a certain approximation to Hartree–Fock the-
ory of one component plasma [22]. In 1996 R. Penrose proposed (1.1) as a model of
self-gravitating matter [30]. In this context equation (1.1) is usually called the non-
linear Schrödinger–Newton equation. Note that if u solves (1.1), then the function
ψ defined by ψ(t, x) = eitu(x) is a solitary wave of the focusing time-dependent
Hartree equation

iψt + Δψ = −(I2 ∗ |ψ|2)ψ in R+ × R
N .

In this context (1.1) is also known as the stationary nonlinear Hartree equation.
The existence of solutions for stationary equation (1.1) was proved by variational
methods by E.H. Lieb, P.-L. Lions and G. Menzala [22,24,28] and also by ordinary
differential equations techniques [11, 30, 38]. In the more general case of equation
(P) with F (s) = 1

p |s|p, problem (P) is known to have a solution if and only if
N+α
N < p < N+α

N−2 ([27, p. 457], [31, Theorem 1]; see also [15, Lemma 2.7]).
The existence results for (P) up until now were only available when the nonlin-

earity F is homogeneous. This situation contrasts with the striking existence result
for the corresponding local problem
(1.2) −Δu + u = g(u) in R

N ,

which can be considered as a limiting problem of (P) when α → 0, with g = Ff .
H.Berestycki and P.-L. Lions [6, Theorem 1] have proved that (1.2) has a nontrivial
solution if nonlinearity g ∈ C(R;R) satisfies the assumptions

there exists C > 0 such that for every s ∈ R, sg(s) ≤ C
(
|s|2 + |s| 2N

N−2
)
,(g1)

lim
s→0

G(s)
|s|2 <

1
2

and lim sup
|s|→∞

G(s)
|s| 2N

N−2
≤ 0,(g2)

there exists s0 ∈ R \ {0} such that G(s0) >
s2
0
2
,(g3)

where G(s) =
∫ s

0 g(σ) dσ (and if g = Ff , then G = F 2

2 ). They also proved that
if u ∈ L∞

loc(RN ) is a finite energy solution of (1.2), then u satisfies the Pohožaev
identity [6, Proposition 1]

(1.3) N − 2
2

∫
RN

|∇u|2 + N

2

∫
RN

|u|2 = N

∫
RN

G(u).

This, in particular, implies that assumptions (g1), (g2) and (g3) are “almost nec-
essary” for the existence of nontrivial finite energy solutions of (1.2). Indeed, the
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necessity of (g3) follows directly from (1.3). For (g1) and (g2), if f(s) = sp with
s �∈ (1, N+2

N−2 ), then (1.3) immediately implies that (1.2) does not have any bounded
finite-energy nontrivial solution.

In this spirit, we prove the existence of solutions to Choquard equation (P),
assuming that nonlinearity f ∈ C(R;R) satisfies the growth assumption:

(f1) there exists C > 0 such that for every s ∈ R, |sf(s)| ≤ C
(
|s|

N+α
N + |s|

N+α
N−2

)
,

its antiderivative F : s ∈ R 	→
∫ s

0 f(σ) dσ is subcritical:

(f2) lim
s→0

F (s)
|s|N+α

N

= 0 and lim
|s|→∞

F (s)
|s|

N+α
N−2

= 0,

and nontrivial:
(f3) there exists s0 ∈ R \ {0} such that F (s0) �= 0.
It is standard to check using Hardy–Littlewood–Sobolev inequality that if f ∈
C(R;R) satisfies growth assumption (f1), then I defines on the Sobolev space
H1(RN ) a continuously differentiable functional and critical points of I are weak
solutions of equation (P). In what follows, solutions of (P) are always understood
in the weak sense.

We say u ∈ H1(RN ) \ {0} is a groundstate of (P) if u is a solution of (P) and
(1.4) I(u) = c := inf

{
I(v) : v ∈ H1(RN ) \ {0} is a solution of (P)

}
.

Our main result in this paper is the following.

Theorem 1 (Existence of a groundstate). Assume that N ≥ 3 and α ∈ (0, N). If
f ∈ C(R;R) satisfies (f1), (f2) and (f3), then (P) has a groundstate.

We also prove that any weak solution of (P) has additional regularity properties.

Theorem 2 (Local regularity). Assume that N ≥ 3 and α ∈ (0, N). If f ∈ C(R;R)
satisfies (f1) and u ∈ H1(RN ) solves (P), then for every q ≥ 1, u ∈ W 2,q

loc (RN ).

In particular, Theorem 2 with the Morrey–Sobolev embeddings implies that
solutions of (P) are locally Hölder continuous. If f has additional smoothness,
then regularity of u could be further improved via Schauder estimates. Let us
emphasize that Theorem 2 is established only under the growth assumption (f1)
and does not require additional subcriticality assumption (f2).

The regularity information of Theorem 2 allows us to establish a Pohožaev inte-
gral identity for all finite energy solutions of (P).

Theorem 3 (Pohožaev identity). Assume that N ≥ 3 and α ∈ (0, N). If f ∈
C(R;R) satisfies (f1) and u ∈ H1(RN ) solves (P), then

(1.5) N − 2
2

∫
RN

|∇u|2 + N

2

∫
RN

|u|2 = N + α

2

∫
RN

(
Iα ∗ F (u)

)
F (u).

In particular, (1.5) implies that if u �= 0 is a solution of (P), then

I(u) = α + 2
2(N + α)

∫
RN

|∇u|2 + α

2(N + α)

∫
RN

|u|2 > 0.

Pohožaev identity (1.5) shows that our assumptions (f1), (f2) and (f3) are
“almost necessary” for the existence of nontrivial solutions to (P). Indeed, if
F (s) = 1

p |s|p, then (1.5) implies that problem (P) does not have nontrivial weak
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solutions in H1(RN ) if p �∈
(
N+α
N , N+α

N−2
)

(see also [31, Theorem 2] where super-
critical ranges of p are included). If (f3) fails, then a solution u ∈ H1(RN ) would
satisfy −Δu + u = 0 and would then necessarily be trivial.

Whereas the upper critical exponent (N + α)/(N − 2) appears as a natural
extension of the critical Sobolev exponent 2N/(N − 2) for the local problem (1.2)
with G = F 2, the lower critical exponent (N + α)/N in assumptions (f1) and (f2)
is a new phenomenon. It is due to the effect of the nonlocal term in (P) and has
no analogues in (1.2). The growth restriction |sf(s)| ≤ c|s|(N+α)/N for |s| < 1
occurs naturally in the application of the Hardy–Littlewood–Sobolev inequality to
verify that I ∈ C1(H1(RN );R). In fact, Pohožaev identity confirms that the power
(N + α)/N is optimal for the existence of solutions, and in this respect it plays the
role of the lower critical exponent for (P).

Finally, we obtain qualitative properties of groundstates of (P), which are the
counterpart of the properties obtained for solutions of the corresponding local equa-
tion [10, 14, 16].

Theorem 4 (Qualitative properties of groundstates). Assume that N ≥ 3 and
α ∈ (0, N). If f ∈ C(R;R) satisfies (f1) and, in addition, f is odd and has
constant sign on (0,∞), then every groundstate of (P) has constant sign and is
radially symmetric with respect to some point in R

N .

Before explaining the proofs of our results, we recall the strategy of H.Berestycki
and P.-L. Lions’s proof of the existence of solutions to (1.2) [6, §3]. They consider
the constrained minimization problem

(1.6) min
{∫

RN

|∇u|2 : u ∈ H1(RN ) and
∫
RN

G(u) − |u|2
2

= 1
}

;

they first show that by the Pólya–Szegő inequality for the Schwarz symmetrization,
the minimum can be taken on radial and radially nonincreasing functions. Then
they show the existence of a minimum v ∈ H1(RN ) by the direct method of the
calculus of variations. This minimum v satisfies the equation

−Δv = θ
(
g(v) − v

)
in R

N ,

with a Lagrange multiplier θ > 0. They conclude by noting that u ∈ H1(RN )
defined for x ∈ R

N by u(x) = v(x/
√
θ) solves (1.2).

The approach of H.Berestycki and P.-L. Lions fails for nonlocal problem (P) for
two different reasons. First, the nonlocal term will not be preserved or controlled
under Schwarz symmetrization unless the nonlinearity f satisfies the more restric-
tive assumption of Theorem 4. Second, the final scaling argument fails: the three
terms in (P) scale differently in space, so one cannot hope to get rid of a Lagrange
multiplier by scaling in space. In general, a constrained minimization of type (1.6)
cannot be used for the study of solutions of equations with multiple scaling rates.

Similar issues of multiple scaling rates arise, for instance, in the study of nonlocal
nonlinear Schrödinger–Maxwell or Schrödinger–Poisson equations. For instance,
the existence of a radial groundstate solution to a class of Schrödinger–Maxwell
equations under general Berestycki–Lions type assumptions on the nonlinear term
was established in [2] by applying the mountain–pass theorem to a family of trun-
cated functionals and then by proving the convergence of the obtained sequence of
radially symmetric critical points using the radial compactness lemma of Strauss.
Despite some similarities, the structure of Schrödinger–Maxwell equations is very
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different with Choquard equations and thus new techniques are required for the
study of (P). Moreover, such results establish the existence of radial groundstates
while we are interested in the construction of global groundstates.

In the present work, in order to prove the existence of solutions of (P), instead
of the constrained minimization problem of type (1.6), we consider in section 2 the
mountain pass level

(1.7) b = inf
γ∈Γ

sup
t∈[0,1]

I
(
γ(t)

)
,

where the set of paths is defined as

(1.8) Γ =
{
γ ∈ C

(
[0, 1];H1(RN )

)
: γ(0) = 0 and I(γ(1)) < 0

}
.

Classically, in order to show that b is a critical level of the functional I, one con-
structs a Palais–Smale sequence at the level b, that is, a sequence (un)n∈N in
H1(RN ) such that I(un) → b and I ′(un) → 0 as n → ∞. Then one proves that
the sequence (un)n∈N converges up to translations and extraction of a subsequence
[37, 43]. The first step of this approach is to establish the boundedness of the se-
quence (un)n∈N in H1(RN ). Usually this involves an Ambrosetti–Rabinowitz type
superlinearity assumption, which in our setting would require the existence of μ > 1
such that s ∈ R

+ 	→ F (s)/sμ is nondecreasing.
In order to avoid an Ambrosetti–Rabinowitz type condition, in section 2 we

employ a scaling technique introduced by L. Jeanjean. It consists in constructing a
Palais–Smale sequence that satisfies asymptotically the Pohožaev identity [18] (see
also [1,2,4,17] ). This improvement is related to the monotonicity trick of M. Struwe
[37, §II.9] and L. Jeanjean [19]. Next, we prove with a concentration compactness
argument the existence of a nontrivial solution u to (P) under the assumptions (f1),
(f2) and (f3) only. This combination of the scaling technique with a concentration-
compactness argument which does not rely on the radial compactness and a priori
radial symmetry of the solution is a novelty in our proof.

To conclude that such a constructed solution u is a groundstate, we first show
that I(u) = b. This is a straightforward computation if u satisfies the Pohožaev
identity (1.5) proved in section 3.3. This however brings a regularity issue, as the
proof of the identity (1.5) requires a little more regularity than u ∈ H1(RN ). The
growth assumption (f1) allows a critical growth of f and is too weak for a direct
bootstrap argument. We study the delicate question of regularity of u in section 3.1
by introducing a new regularity result which can be thought of as a nonlocal coun-
terpart of the critical Brezis–Kato regularity result [8]. Once additional regularity
of the solution u is established, the Pohožaev identity (1.5) follows and can be em-
ployed to estimate the critical level I(u). This is done using the construction of
paths associated to critical points in section 4.1 following L. Jeanjean and K. Tanaka
[20].

The qualitative properties of the groundstate of Theorem 4 are established in
section 5. We show that the absolute value of a groundstate and its polarization are
also groundstates. This leads to contradiction with the strong maximum principle
if the solution is not invariant under these transformations.

Finally in section 6 we explain how the proof of Theorem 1 can be simplified
under the assumptions of Theorem 4 using symmetric mountain pass [40], adapting
the original argument of Berestycki and Lions for (P).
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2. Construction of a solution

2.1. Construction of a Pohožaev–Palais–Smale sequence. We first prove
that there is a sequence of almost critical points at the level b defined in (1.7) that
satisfies asymptotically (1.5). We define the Pohožaev functional P : H1(RN ) → R

for u ∈ H1(RN ) by

P(u) = N − 2
2

∫
RN

|∇u|2 + N

2

∫
RN

|u|2 − N + α

2

∫
RN

(
Iα ∗ F (u)

)
F (u).

Proposition 2.1 (Construction of a Pohožaev–Palais–Smale sequence). If f ∈
C(R;R) satisfies (f1) and (f3), then there exists a sequence (un)n∈N in H1(RN )
such that, as n → ∞,

I(un) → b > 0,

I ′(un) → 0 strongly in
(
H1(RN )

)′
,

P(un) → 0.

Proof. Our strategy consists in first proving in claims 1 and 2 that the functional
I has the mountain pass geometry before concluding by a minimax principle.

Claim 1. The critical level satisfies

b < ∞.

Proof of the claim. We need to show that the set of paths Γ is nonempty. In view
of the definition of Γ, it is sufficient to construct u ∈ H1(RN ) such that I(u) < 0.
If we choose s0 of assumption (f3) so that F (s0) �= 0 and set w = s0χB1 , we obtain∫

RN

(
Iα ∗ F (w)

)
F (w) = F (s0)2

∫
B1

∫
B1

Iα(x− y) > 0.

By (f1) the left-hand side is continuous in L2(RN ) ∩ L
2N

N−2 (RN ). Since H1(RN ) is
dense in L2(RN ) ∩ L

2N
N−2 (RN ), there exists v ∈ H1(RN ) such that∫

RN

(
Iα ∗ F (v)

)
F (v) > 0.

We will take the function u in the family of functions uτ ∈ H1(RN ) defined for
τ > 0 and x ∈ R

N by uτ (x) = v
(
x
τ

)
. On this family, we compute for every τ > 0,

I(uτ ) = τN−2

2

∫
RN

|∇v|2 + τN

2

∫
RN

|v|2 − τN+α

2

∫
RN

(
Iα ∗ F (v)

)
F (v),

and observe that for τ > 0 large enough, I(uτ ) < 0. �

Claim 2. The critical level satisfies

b > 0.

Proof of the claim. Recall the Hardy–Littlewood–Sobolev inequality [23, theorem
4.3]: if s ∈ (1, Nα ), then for every v ∈ Ls(RN ), Iα ∗ v ∈ LNs/(N−αs)(RN ) and

(2.1)
∫
RN

|Iα ∗ v| Ns
N−αs ≤ C

(∫
RN

|v|s
) N

N−αs

,
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where C > 0 depends only on α, N and s. By the upper bound (f1) on F , for every
u ∈ H1(RN ),∫

RN

(
Iα ∗ F (u)

)
F (u) ≤ C

(∫
RN

|F (u)| 2N
N+α

)1+ α
N

≤ C ′
(∫

RN

|u|2 + |u| 2N
N−2

)1+ α
N

≤ C ′′
((∫

RN

|u|2
)1+ α

N +
(∫

RN

|∇u|2
)1+ α+2

N−2
)
.

Hence there exists δ > 0 such that if
∫
RN |∇u|2 + |u|2 ≤ δ, then∫

RN

(
Iα ∗ F (u)

)
F (u) ≤ 1

4

∫
RN

|∇u|2 + |u|2,

and therefore
I(u) ≥ 1

4

∫
RN

|∇u|2 + |u|2.

In particular, if γ ∈ Γ, then
∫
RN |∇γ(0)|2 + |γ(0)|2 = 0 < δ <

∫
RN |∇γ(1)|2 +

|γ(1)|2 and by the intermediate value theorem there exists τ̄ ∈ (0, 1) such that∫
RN |∇γ(τ̄ )|2 + |γ(τ̄)|2 = δ. At the point τ̄ ,

δ

4
≤ I

(
γ(τ̄)

)
≤ sup

τ∈[0,1]
I(γ(τ )).

Since γ ∈ Γ is arbitrary, this implies that b ≥ δ
4 > 0. �

Conclusion. Following L. Jeanjean [18, §2] (see also [17, §4]), we define the map
Φ : R×H1(RN ) → H1(RN ) for σ ∈ R, v ∈ H1(RN ) and x ∈ R

N by
Φ(σ, v)(x) = v(e−σx).

For every σ ∈ R and v ∈ H1(RN ), the functional I ◦ Φ is computed as

I
(
Φ(σ, v)

)
= e(N−2)σ

2

∫
RN

|∇v|2 + eNσ

2

∫
RN

|v|2 − e(N+α)σ

2

∫
RN

(
Iα ∗ F (v)

)
F (v).

In view of (f1), I ◦ Φ is continuously Fréchet–differentiable on R × H1(RN ). We
define the family of paths

Γ̃ =
{
γ̃ ∈ C

(
[0, 1];R×H1(RN )

)
: γ̃(0) = (0, 0) and (I ◦ Φ)

(
γ̃(1)

)
< 0

}
.

As Γ = {Φ ◦ γ̃ : γ̃ ∈ Γ̃}, the mountain pass levels of I and I ◦ Φ coincide:
b = inf

γ̃∈Γ̃
sup

τ∈[0,1]
(I ◦ Φ)

(
γ̃(τ )

)
.

By the minimax principle [43, theorem 2.9], there exists a sequence
(
(σn, vn)

)
n∈N

in R×H1(RN ) such that as n → ∞,
(I ◦ Φ)(σn, vn) → b,

(I ◦ Φ)′(σn, vn) → 0 in
(
R×H1(RN )

)∗
.

Since for every (h,w) ∈ R×H1(RN ),
(I ◦ Φ)′(σn, vn)[h,w] = I ′(Φ(σn, vn)

)
[Φ(σn, w)] + P

(
Φ(σn, vn)

)
h,

we reach the conclusion by taking un = Φ(σn, vn). �
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2.2. Convergence of Pohožaev–Palais–Smale sequences. We will now show
how a solution of problem (P) can be constructed from the sequence given by
Proposition 2.1.

Proposition 2.2 (Convergence of Pohožaev–Palais–Smale sequences). Let f ∈
C(R;R) and (un)n∈N be a sequence in H1(RN ). If f satisfies (f1) and (f2),(
I(un)

)
n∈N

is bounded and, as n → ∞,

I ′(un) → 0 strongly in (H1(RN ))′,
P(un) → 0,

then
– either up to a subsequence un → 0 strongly in H1(RN ),
– or there exists u ∈ H1(RN ) \ {0} such that I ′(u) = 0 and a sequence (an)n∈N of

points in R
N such that up to a subsequence un(· − an) ⇀ u weakly in H1(RN )

as n → ∞.

Proof. Assume that the first part of the alternative does not hold, that is,

(2.2) lim inf
n→∞

∫
Rn

|∇un|2 + |un|2 > 0.

We first establish in claim 1 the boundedness of the sequence and then the nonva-
nishing of the sequence in claim 2.

Claim 1. The sequence (un)n∈N is bounded in H1(RN ).

Proof of claim 1. For every n ∈ N,
α + 2

2(N + α)

∫
RN

|∇un|2 + α

2(N + α)

∫
RN

|un|2 = I(un) − 1
N + α

P(un).

As the right-hand side is bounded by our assumptions, the sequence (un)n∈N is
bounded in H1(RN ). �

Claim 2. For every p ∈ (2, 2N
N−2 ),

lim inf
n→∞

sup
a∈RN

∫
B1(a)

|un|p > 0.

Proof of claim 2. First, by (2.2) and the definition of the Pohožaev functional P
we have

(2.3) lim inf
n→∞

∫
RN

(
Iα ∗ F (un)

)
F (un)

= lim inf
n→∞

N − 2
N + α

∫
RN

|∇u|2 + N

N + α

∫
RN

|u|2 − 2
N + α

P(un) > 0.

For every n ∈ N, the function un satisfies the inequality ([26, lemma I.1], [43, lemma
1.21], [31, lemma 2.3])∫

RN

|un|p ≤ C
(∫

RN

|∇un|2 + |un|2
)(

sup
a∈RN

∫
B1(a)

|un|p
)1− 2

p

.

As F is continuous and satisfies (f2), for every ε > 0, there exists Cε such that for
every s ∈ R,

|F (s)| 2N
N+α ≤ ε

(
|s|2 + |s| 2N

N−2
)

+ Cε|s|p.
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Since (un)n∈N is bounded in H1(RN ) and hence, by the Sobolev embedding, in
L

2N
N−2 (RN ), we have

lim inf
n→∞

∫
RN

|F (un)| 2N
N+α ≤ C ′′ε + C ′

ε

(
lim inf
n→∞

sup
a∈RN

∫
B1(a)

|un|p
)1− 2

p

.

Since ε > 0 is arbitrary, if lim infn→∞ supa∈RN

∫
B1(a)|un|p = 0, then

lim inf
n→∞

∫
RN

|F (un)| 2N
N+α = 0,

and the Hardy–Littlewood–Sobolev inequality implies that

lim inf
n→∞

∫
RN

(
Iα ∗ F (un)

)
F (un) = 0,

in contradiction with (2.3). �

Conclusion. Up to a translation, we can now assume that for some p ∈ (2, 2N
N−2 ),

lim inf
n→∞

∫
B1

|un|p > 0.

By Rellich’s theorem, this implies that up to a subsequence, (un)n∈N converges
weakly in H1(RN ) to u ∈ H1(RN ) \ {0}.

As the sequence (un)n∈N is bounded in H1(RN ), by the Sobolev embedding,
it is also bounded in L2(RN ) ∩ L

2N
N−2 (RN ). By (f1), the sequence (F ◦ un)n∈N is

therefore bounded in L
2N

N+α (RN ). Since the sequence (un)n∈N converges weakly to
u in H1(RN ), it converges up to a subsequence to u almost everywhere in R

N . By
continuity of F , (F ◦ un)n∈N converges almost everywhere to F ◦ u in R

N . This
implies that the sequence (F ◦ un)n∈N converges weakly to F ◦ u in L

2N
N+α (RN ). As

the Riesz potential defines a linear continuous map from L
2N

N+α (RN ) to L
2N

N−α (RN ),
the sequence (Iα ∗ (F ◦ un))n∈N converges weakly to Iα ∗ (F ◦ u) in L

2N
N−α (RN ).

On the other hand, in view of (f1) and by Rellich’s theorem, the sequence
(f ◦ un)n∈N converges strongly to f ◦ u in Lp

loc(RN ) for every p ∈ [1, 2N
α+2 ). We

conclude that(
Iα ∗ (F ◦ un)

)
(f ◦ un) ⇀

(
Iα ∗ (F ◦ u)

)
(f ◦ u) weakly in Lp(RN ),

for every p ∈ [1, 2N
N+2 ). This implies in particular that for every ϕ ∈ C1

c (RN ),∫
RN

∇u · ∇ϕ + uϕ−
∫
RN

(
Iα ∗ (F ◦ u)

)(
(f ◦ u)ϕ

)
= lim

n→∞

∫
RN

∇u · ∇ϕ + uϕ−
∫
RN

(
Iα ∗ (F ◦ un)

)
(f ◦ un)ϕ = 0;

that is, u is a weak solution of (P). �

We point out that the assumption (f2) is only used in the proof of claim 2. Note
also that without the additional assumptions of Theorem 4 we cannot rely on the
Strauss radial compactness lemma [6, theorem A1] which is equivalent to the com-
pactness of the embedding of the Sobolev subspace of radial functions H1

rad(RN ) into
Lp(RN ) for 2 < p < 2N/(N − 2). Instead, our proof of convergence of Pohožaev–
Palais–Smale sequences uses a direct concentration–compactness type argument of
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Proposition 2.2. Such an approach could be useful for the study of other problems
where radial symmetry of solutions either fails or is not readily available.

Observe that in the limit α → 0, the assumptions (f1), (f2) and (f3) do not allow
us to recover exactly (g1), (g2) and (g3). The gap between (f1) when α → 0 and (g1)
is purely technical. When α → 0, (f2) gives the assumptions lims→0 F (s)2/|s|2 = 0
and lim|s|→∞ F (s)2/|s|2N/(N−2) = 0, which is stronger than (g2). The first as-
sumption is not really surprising, as it can be observed that in (1.2) both g(u)
and u have the same spatial homogeneity and therefore by scaling it could always
be assumed that lims→0 G(s)/s2 = 0. The second assumption is equivalent to
lim sup|s|→∞ F (s)2/|s|2N/(N−2) ≤ 0. Finally (f3) gives G(s) = F (s)2 ≥ 0, which is
actually weaker than (g3). This weakening of the condition can also be explained
by the difference between the various scalings of the problem (P).

3. Regularity of solutions and Pohožaev identity

The assumption (f1) is too weak for the standard bootstrap method as in [12,
lemma A.1], [31, proposition 4.1]. Instead, in order to prove regularity of solutions
of (P) we shall rely on a nonlocal version of the Brezis–Kato estimate.

3.1. A nonlocal Brezis–Kato type regularity estimate. A special case of the
regularity result of Brezis and Kato [8, theorem 2.3] states that if u ∈ H1(RN ) is a
solution of the linear elliptic equation

(3.1) −Δu + u = V u in R
N ,

and V ∈ L∞(RN ) + L
N
2 (RN ), then u ∈ Lp(RN ) for every p ≥ 1. We extend this

result to a class of nonlocal linear equations.

Proposition 3.1 (Improved integrability of solution of a nonlocal critical linear
equation). If H,K ∈ L

2N
α (RN ) + L

2N
α+2 (RN ) and u ∈ H1(RN ) solves

(3.2) −Δu + u = (Iα ∗Hu)K,

then u ∈ Lp(RN ) for every p ∈ [2, N
α

2N
N−2 ). Moreover, there exists a constant Cp

independent of u such that(∫
RN

|u|p
) 1

p ≤ Cp

(∫
RN

|u|2
) 1

2
.

Note that the space L2N/(α+2)(RN ) is critical in this statement: starting from the
information that u ∈ H1(RN ) ⊂ L2N/(N−2)(RN ), a standard Hardy–Littlewood–
Sobolev estimate would just show that u ∈ L2N/(N−2)(RN ) and would thus give no
additional regularity information. Instead, our proof of Proposition 3.1 follows the
strategy of Brezis and Kato (see also Trudinger [39, Theorem 3]). The adaptation
of the argument is complicated by the nonlocal effect of u on the right-hand side.

Our main new tool for the proof of Proposition 3.1 is the following lemma, which
is a nonlocal counterpart of the estimate [8, lemma 2.1]: if V ∈ L∞(RN )+L

N
2 (RN ),

then for every ε > 0, there exists Cε such that

(3.3)
∫
RN

V |u|2 ≤ ε2
∫
RN

|∇u|2 + Cε

∫
RN

|u|2.
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Lemma 3.2. Let N ≥ 2, α ∈ (0, 2) and θ ∈ (0, 2). If H,K ∈ L
2N
α+2 (RN ) +

L
2N
α (RN ) and α

N < θ < 2 − α
N , then for every ε > 0, there exists Cε,θ ∈ R such

that for every u ∈ H1(RN ),∫
RN

(
Iα ∗ (H|u|θ)

)
K|u|2−θ ≤ ε2

∫
RN

|∇u|2 + Cε,θ

∫
RN

|u|2.

In the limit α = 0, this result is consistent with (3.3); the parameter θ only plays
a role in the nonlocal case.

In order to prove Lemma 3.2, we shall use several times the following inequality.

Lemma 3.3. Let q, r, s, t ∈ [1,∞) and λ ∈ [0, 2] such that

1 + α

N
− 1

s
− 1

t
= λ

q
+ 2 − λ

r
.

If θ ∈ (0, 2) satisfies

min(q, r)
( α

N
− 1

s

)
< θ < max(q, r)

(
1 − 1

s

)
,

min(q, r)
( α

N
− 1

t

)
< 2 − θ < max(q, r)

(
1 − 1

t

)
,

then for every H ∈ Ls(RN ), K ∈ Lt(RN ) and u ∈ Lq(RN ) ∩ Lr(RN ),∫
RN

(Iα ∗
(
H|u|θ)

)
K|u|2−θ ≤ C

(∫
RN

|H|s
) 1

s
(∫

RN

|K|t
) 1

t
(∫

RN

|u|q
)λ

q
(∫

RN

|u|r
) 2−λ

r

.

Proof. First observe that if s̃ > 1, t̃ > 1 satisfy 1
t̃

+ 1
s̃ = 1 + α

N , the Hardy–
Littlewood–Sobolev inequality is applicable and∫

RN

(
Iα ∗ (H|u|θ)

)
K|u|2−θ ≤ C

(∫
RN

∣∣Huθ
∣∣s̃) 1

s̃
(∫

RN

∣∣Ku2−θ
∣∣t̃) 1

t̃
.

Let μ ∈ R. Note that if

(3.4) 0 ≤ μ ≤ θ and 1
s̃

:= μ

q
+ θ − μ

r
+ 1

s
< 1,

then by Hölder’s inequality(∫
RN

∣∣Huθ
∣∣s̃) 1

s̃ ≤
(∫

RN

|H|s
) 1

s
(∫

RN

|u|q
)μ

q
(∫

RN

|u|r
) θ−μ

r

.

Similarly, if

λ− (2 − θ) ≤ μ ≤ λ and 1
t̃

:= λ− μ

q
+ (2 − θ) − (λ− μ)

r
+ 1

t
< 1,(3.5)

then (∫
RN

∣∣Ku2−θ
∣∣t̃) 1

t̃ ≤
(∫

RN

|K|t
) 1

t
(∫

RN

|u|q
)λ−μ

q
(∫

RN

|u|r
) 2−θ−(λ−μ)

r

.

It can be checked that (3.4) and (3.5) can be satisfied for some μ ∈ R if and only if
the assumptions of the lemma hold. In particular, 1

t̃
+ 1

s̃ = 1
s + 1

t = λ
q + 2−λ

r = 1+ α
N ,

so that we can conclude. �

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



6568 VITALY MOROZ AND JEAN VAN SCHAFTINGEN

Proof of Lemma 3.2. Let H = H∗+H∗ and K = K∗+K∗ with H∗,K∗ ∈ L
2N
α (RN )

and H∗,K∗ ∈ L
2N
α+2 (RN ). Applying Lemma 3.3, with q = r = 2N

N−2 , s = t = 2N
α+2

and λ = 0, we have since |θ − 1| < N−α
N−2 ,∫

RN

(
Iα ∗ (H∗|u|θ)

)
(K∗|u|2−θ)

≤ C
(∫

RN

|H∗|
2N
α+2

)α+2
2N

(∫
RN

|K∗|
2N
α+2

)α+2
2N

(∫
RN

|u| 2N
N−2

)1− 2
N

.

Taking now s = t = 2N
α , q = r = 2 and λ = 2, we have since |θ − 1| < N−α

N ,∫
RN

(
Iα ∗ (H∗|u|θ)

)
(K∗|u|2−θ) ≤ C

(∫
RN

|H∗| 2Nα
) α

2N
(∫

RN

|K∗| 2Nα
) α

2N
∫
RN

|u|2.

Similarly, with s = 2N
α+2 , t = 2N

α , q = 2, r = 2N
N−2 and λ = 1,∫

RN

(
Iα ∗ (H∗|u|θ)

)
(K∗|u|2−θ)

≤ C
(∫

RN

|H∗|
2N
α+2

)α+2
2N

(∫
RN

|K∗| 2Nα
) α

2N
(∫

RN

|u|2
) 1

2
(∫

RN

|u| 2N
N−2

) 1
2−

1
N

and with s = 2N
α , t = 2N

α+2 , q = 2, r = 2N
N−2 and λ = 1,∫

RN

(
Iα ∗ (H∗|u|θ)

)
(K∗|u|2−θ)

≤ C
(∫

RN

|H∗| 2Nα
) α

2N
(∫

RN

|K∗|
2N
α+2

)α+2
2N

(∫
RN

|u|2
) 1

2
(∫

RN

|u| 2N
N−2

) 1
2−

1
N

.

By the Sobolev inequality, we have thus proved that for every u ∈ H1(RN ),∫
RN

(
Iα ∗ (H|u|θ)

)
(K|u|2−θ)

≤ C

((∫
RN

|H∗|
2N
α+2

∫
RN

|K∗|
2N
α+2

)α+2
2N

∫
RN

|∇u|2

+
(∫

RN

|H∗| 2Nα
∫
RN

|K∗| 2Nα
) α

2N
∫
RN

|u|2
)
.

The conclusion follows by choosing H∗ and K∗ such that

C
(∫

RN

|H∗|
2N
α+2

∫
RN

|K∗|
2N
α+2

)α+2
2N ≤ ε2. �

Proof of Proposition 3.1. By Lemma 3.2 with θ = 1, there exists λ > 0 such that
for every ϕ ∈ H1(RN ),∫

Rn

(
Iα ∗ |Hϕ|

)
|Kϕ| ≤ 1

2

∫
Rn

|∇ϕ|2 + λ

2

∫
RN

|ϕ|2.

Choose sequences (Hk)k∈N and (Kk)k∈N in L
2N
α (RN ) such that |Hk| ≤ |H|,

|Kk| ≤ |K|, and Hk → H and Kk → K almost everywhere in R
N . For each k ∈ N,

the form ak : H1(RN ) ×H1(RN ) → R defined for ϕ ∈ H1(RN ) and ψ ∈ H1(RN )
by

ak(ϕ, ψ) =
∫
RN

∇ϕ · ∇ψ + λϕψ −
∫
RN

(Iα ∗Hkϕ)Kkψ
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is bilinear and coercive; by the Lax–Milgram theorem [7, corollary 5.8], there exists
a unique solution uk ∈ H1(RN ) of
(3.6) −Δuk + λuk =

(
Iα ∗ (Hkuk)

)
Kk + (λ− 1)u,

where u ∈ H1(RN ) is the given solution of (3.2). It can be proved that the sequence
(uk)k∈N converges weakly to u in H1(RN ) as k → ∞.

For μ > 0, we define the truncation uk,μ : RN → R for x ∈ R
N by

uk,μ(x) =

⎧⎪⎨
⎪⎩
−μ if uk(x) ≤ −μ,

uk(x) if −μ < uk(x) < μ,

μ if uk(x) ≥ μ.

Since |uk,μ|p−2uk,μ ∈ H1(RN ), we can take it as a test function in (3.6):∫
RN

4(p−1)
p2

∣∣∇(uk,μ)
p
2
∣∣2 +

∣∣|uk,μ|
p
2
∣∣2

≤
∫
RN

(p− 1)|uk,μ|p−2∣∣∇uk,μ

∣∣2 + |uk,μ|p−2uk,μuk

=
∫
RN

(
Iα ∗ (Hkuk)

)(
Kk|uk,μ|p−2uk,μ

)
+ (λ− 1)u|uk,μ|p−2uk,μ.

If p < 2N
α , by Lemma 3.2 with θ = 2

p , there exists C > 0 such that∫
RN

(
Iα ∗ |Hkuk,μ|

)(
|Kk||uk,μ|p−2uk,μ

)
≤

∫
RN

(
Iα ∗ (|H||uk,μ|)

)(
|K||uk,μ|p−1)

≤ 2(p−1)
p2

∫
RN

∣∣∇(uk,μ)
p
2
∣∣2 + C

∫
RN

∣∣|uk,μ|
p
2
∣∣2.

We have thus
2(p−1)

p2

∫
RN

∣∣∇(uk,μ)
p
2
∣∣2 ≤ C ′

∫
RN

(
|uk|p + |u|p

)
+
∫
Ak,μ

(
Iα ∗ (|Kk||uk|p−1)

)
|Hkuk|,

where
Ak,μ =

{
x ∈ R

N : |uk(x)| > μ
}
.

Since p < 2N
α , by the Hardy–Littlewood–Sobolev inequality,∫

Ak,μ

(
Iα ∗ (|Kk||uk|p−1)

)
|Hkuk| ≤ C

(∫
RN

∣∣|Kk||uk|p−1∣∣r) 1
r
(∫

Ak,μ

|Hkuk|s
) 1

s

,

with 1
r = α

2N +1− 1
p and 1

s = α
2N + 1

p . By Hölder’s inequality, if uk ∈ Lp(RN ), then
|Kk||uk|p−1 ∈ Lr(RN ) and |Hkuk| ∈ Ls(RN ), whence by Lebesgue’s dominated
convergence theorem

lim
μ→∞

∫
Ak,μ

(
Iα ∗ (|Kk||uk|p−1)

)
|Hkuk| = 0.

In view of the Sobolev estimate, we have proved the inequality

lim sup
k→∞

(∫
RN

|uk|
pN

N−2

)1− 2
N ≤ C ′′ lim sup

k→∞

∫
RN

|uk|p.

By iterating over p a finite number of times we cover the range p ∈ [2, Nα
2N
N−2 ). �
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Remark 3.1. A close inspection of the proofs of Lemma 3.2 and of Proposition 3.1
gives a more precise dependence of the constant Cp. Given a function M : (0,∞) →
(0,∞) and p ∈ (2, Nα

2N
N−2 ), there exists Cp,M such that if for every ε > 0, K and H

can be decomposed as K = K∗ + K∗ and H = H∗ + H∗ with(∫
RN

|K∗|
2N
α+2

) 2N
α+2 ≤ ε and

(∫
RN

|K∗| 2Nα
) 2N

α ≤ M(ε),

(∫
RN

|H∗|
2N
α+2

) 2N
α+2 ≤ ε and

(∫
RN

|H∗| 2Nα
) 2N

α ≤ M(ε),

and if u ∈ H1(RN ) satisfies

−Δu + u = (Iα ∗Hu)K,

then one has (∫
RN

|u|p
) 1

p ≤ Cp,M

(∫
RN

|u|2
) 1

2
.

3.2. Regularity of solutions. Now we are in a position to establish additional
regularity of solutions of the nonlinear nonlocal problem (P).

Proof of Theorem 2. Define H : R
N → R and K : R

N → R for x ∈ R
N by

H(x) = F
(
u(x)

)
/u(x) and K(x) = f

(
u(x)

)
. Observe that for every x ∈ R

N ,

|K(x)| ≤ C
(
|u(x)| α

N + |u(x)|
α+2
N−2

)
and

|H(x)| ≤ C
(

N
N+α |u(x)| α

N + N−2
N+α |u(x)|

α+2
N−2

)
,

so that K,H ∈ L
2N
α (RN ) + L

2N
α+2 (RN ). By Proposition 3.1, u ∈ Lp(RN ) for every

p ∈ [2, N
α

2N
N−2 ). In view of (f1), F ◦u ∈ Lq(RN ) for every q ∈ [ 2N

N+α ,
N
α

2N
N+α ). Since

2N
N+α < N

α < N
α

2N
N+α , we have Iα ∗ (F ◦ u) ∈ L∞(RN ), and thus

|−Δu + u| ≤ C
(
|u| α

N + |u|
α+2
N−2

)
.

By the classical bootstrap method for subcritical local problems in bounded do-
mains, we deduce that u ∈ W 2,p

loc (RN ) for every p ≥ 1. �

3.3. Pohožaev identity. The proof of Pohožaev identity (1.5) is a generalization
of the argument for f(s) = sp [31] (see also particular cases [29], [13, lemma 2.1]).
The strategy is classical and consists in testing the equation against a suitable
cut-off of x · ∇u(x) and integrating by parts ([21, proposition 6.2.1], [43, appendix
B]).

Proof of Theorem 3. By Theorem 2, u ∈ W 2,2
loc (RN ). Fix ϕ ∈ C1

c (RN ) such that
ϕ = 1 in a neighbourhood of 0. The function vλ ∈ W 1,2(RN ) defined for λ ∈ (0,∞)
and x ∈ R

N by
vλ(x) = ϕ(λx)x · ∇u(x)

can be used as a test function in the equation to obtain∫
RN

∇u · ∇vλ +
∫
RN

uvλ =
∫
RN

(
Iα ∗ F (u)

)
(f(u)vλ).
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The left-hand side can be computed by integration by parts for every λ > 0 as∫
RN

uvλ =
∫
RN

u(x)ϕ(λx)x · ∇u(x) dx

=
∫
RN

ϕ(λx)x · ∇
( |u|2

2
)
(x) dx

= −
∫
RN

(
Nϕ(λx) + λx · ∇ϕ(λx)

) |u(x)|2
2

dx.

Lebesgue’s dominated convergence theorem implies that

lim
λ→0

∫
RN

uvλ = −N

2

∫
RN

|u|2.

Similarly, as u ∈ W 2,2
loc (RN ), the gradient term can be written as∫

RN

∇u · ∇vλ =
∫
RN

ϕ(λx)
(
|∇u|2 + x · ∇

( |∇u|2
2

)
(x)

)
dx

= −
∫
RN

(
(N − 2)ϕ(λx) + λx · ∇ϕ(λx)

) |∇u(x)|2
2

dx.

Lebesgue’s dominated convergence again is applicable since ∇u ∈ L2(RN ) and we
obtain

lim
λ→0

∫
RN

∇u · ∇vλ = −N − 2
2

∫
RN

|∇u|2.

The last term can be rewritten by integration by parts for every λ > 0 as∫
RN

(
Iα ∗ F (u)

)
(f(u)vλ) =

∫
RN

∫
RN

(F ◦ u)(y)Iα(x− y)ϕ(λx)x · ∇(F ◦ u)(x) dx dy

= 1
2

∫
RN

∫
RN

Iα(x− y)
(
(F ◦ u)(y)ϕ(λx)x · ∇(F ◦ u)(x)

+ (F ◦ u)(x)ϕ(λy) y · ∇(F ◦ u)(y)
)

dx dy

= −
∫
RN

∫
RN

F
(
u(y)

)
Iα(x− y)

(
Nϕ(λx) + x · ∇ϕ(λx)

)
F
(
u(x)

)
dx dy

+ N − α

2

∫
RN

∫
RN

F
(
u(y)

)
Iα(x− y)

(x− y) ·
(
xϕ(λx) − yϕ(λy)

)
|x− y|2 F

(
u(x)

)
dx dy.

We can thus apply Lebesgue’s dominated convergence theorem to conclude that

lim
λ→0

∫
RN

(
Iα ∗ F (u)

)
f(u) vλ = −N + α

2

∫
RN

(Iα ∗ F (u))F (u). �

4. From solutions to groundstates

4.1. Solutions and paths. One of the applications of the Pohožaev identity (1.5)
is the possibility to associate to any variational solution of (P) a path, following
an argument of L. Jeanjean and K. Tanaka [20].
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Proposition 4.1 (Lifting a solution to a path). If f ∈ C(R;R) satisfies (f1) and
u ∈ H1(RN ) \ {0} solves (P), then there exists a path γ ∈ C

(
[0, 1];H1(RN )

)
such

that
γ(0) = 0,

γ(1/2) = u,

I
(
γ(t)

)
< I(u), for every t ∈ [0, 1] \ {1/2},

I
(
γ(1)

)
< 0.

Proof. The proof follows closely the arguments for the local problem developed
by L. Jeanjean and K. Tanaka [20, lemma 2.1]. We define the path γ̃ : [0,∞) →
H1(RN ) by

γ̃(τ )(x) =

{
u(x/τ) if τ > 0,
0 if τ = 0.

The function γ̃ is continuous on (0,∞); for every τ > 0,∫
RN

|∇γ̃(τ )|2 + |γ̃(τ )|2 = τN−2
∫
RN

|∇u|2 + τN
∫
RN

|u|2,

so that γ̃ is continuous at 0. By the Pohožaev identity of Theorem 3, the functional
can be computed for every τ > 0 as

I
(
γ̃(τ )

)
= τN−2

2

∫
RN

|∇u|2 + τN

2

∫
RN

|u|2 − τN+α

2

∫
RN

(
Iα ∗ F (u)

)
F (u)

=
(τN−2

2
− (N − 2)τN+α

2(N + α)

)∫
RN

|∇u|2 +
(τN

2
− NτN+α

2(N + α)

)∫
RN

|u|2.

It can be checked directly that I ◦ γ̃ achieves strict global maximum at 1: for every
τ ∈ [0,∞) \ {1}, I

(
γ̃(τ )

)
< I(u). Since

lim
τ→∞

I
(
γ̃(τ )

)
= −∞,

the path γ can then be defined by a suitable change of variable. �
4.2. Minimality of the energy and existence of a groundstate. We now have
all the tools available to show that the mountain-pass critical level b defined in (1.7)
coincides with the groundstate energy level c defined in (1.4), which completes the
proof of Theorem 1.

Proof of Theorem 1. By Propositions 2.1 and 2.2, there exists a Pohožaev–Palais–
Smale sequence (un)n∈N in H1(RN ) at the mountain-pass level b > 0, that converges
weakly to some u ∈ H1(RN ) \ {0} that solves (P). Since limn→∞ P(un) = 0, by
the weak convergence of the sequence (un)n∈N, the weak lower-semicontinuity of
the norm and the Pohožaev identity of Theorem 3,

I(u) = I(u) − P(u)
N + α

= α + 2
2(N + α)

∫
RN

|∇u|2 + α

2(N + α)

∫
RN

|u|2

≤ lim inf
n→∞

α + 2
2(N + α)

∫
RN

|∇un|2 + α

2(N + α)

∫
RN

|un|2

= lim inf
n→∞

I(un) − P(un)
N + α

= lim inf
n→∞

I(un) = b.

(4.1)
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Since u is a nontrivial solution of (P), we have I(u) ≥ c by definition of the
groundstate energy level c, and hence c ≤ b.

Let v ∈ H1(RN ) \ {0} be another solution of (P) such that I(v) ≤ I(u). If we
lift v to a path (Proposition 4.1) and recall the definition (1.7) of the mountain-pass
level b, we conclude that I(v) ≥ b ≥ I(u). We have thus proved that I(v) = I(u) =
b = c, and this concludes the proof of Theorem 1. �

4.3. Compactness of the set of groundstates. As a byproduct of the proof of
Theorem 1, the weak convergence of the translated subsequence of Proposition 2.2
can be upgraded into strong convergence.

Corollary 4.2 (Strong convergence of translated Pohožaev–Palais–Smale sequen-
ces). Under the assumptions of Proposition 2.2, if

lim inf
n→∞

∫
RN

|∇un|2 + |un|2 > 0,

and if
lim inf
n→∞

I(un) ≤ c,

then there exists u ∈ H1(RN ) \ {0} such that I ′(u) = 0 and a sequence (an)n∈N of
points in R

N such that up to a subsequence un(· − an) → u strongly in H1(RN )
as n → ∞.

Proof. By Proposition 2.2, up to a subsequence and translations, we can assume
that the sequence (un)n∈N converges weakly to u. Since equality holds in (4.1),

α + 2
2(N + α)

∫
RN

|∇u|2 + α

2(N + α)

∫
RN

|u|2

= lim inf
n→∞

α + 2
2(N + α)

∫
RN

|∇un|2 + α

2(N + α)

∫
RN

|un|2,

and hence (un)n∈N converges strongly to u in H1(RN ). �

As a direct consequence we have some information on the set of groundstates:

Proposition 4.3 (Compactness of the set of groundstates). The set of ground-
states

Sc =
{
u ∈ H1(RN ) : I(u) = c and u is a weak solution of (P)

}
is compact in H1(RN ) endowed with the strong topology up to translations in R

N .

Proof. This is a direct consequence of Theorem 3 and Corollary 4.2. �

Remark 4.1 (Uniform regularity of groundstates). By the uniform regularity of
solutions (Remark 3.1) and the compactness of the set of groundstates (Proposi-
tion 4.3), for every p ∈ [2, Nα

2N
N−2 ), Sc is bounded in Lp(RN ).

5. Qualitative properties of groundstates

5.1. Paths achieving the mountain-pass level. Arguments in this section will
use the following elementary property of the paths in the construction of the
mountain-pass critical level b.
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Lemma 5.1 (Optimal paths yield critical points). Let f ∈ C(R;R) satisfy (f1)
and γ ∈ Γ, where Γ is defined in (1.8). If for every t ∈ [0, 1] \ {t∗}, one has

b = I
(
γ(t∗)

)
> I

(
γ(t)

)
,

then I ′(γ(t∗)
)

= 0.

Proof. This can be deduced from the quantitative deformation lemma of M. Willem
(see [43, lemma 2.3]). Assume that I ′(γ(t∗)) �= 0. By continuity, it is possible to
choose δ > 0 and ε > 0 such that inf{‖I′(v)‖ : ‖v − γ(t∗)‖ ≤ δ} > 8ε/δ.
With Willem’s notation, take X = H1(RN ), S = {γ(t∗)} and c = b. By the de-
formation lemma, there exists η ∈ C([0, 1];H1(RN )) such that η(1, γ) ∈ Γ and
I
(
η(1, γ(t∗))

)
≤ b − ε < b and for every t ∈ [0, 1], we have I

(
η(1, γ(t))

)
≤

I
(
γ(t)

)
< b. Since [0, 1] is compact, we conclude with the contradiction that

supt∈[0,1] I
(
η(1, γ(t))

)
< b. �

5.2. Positivity of groundstates. We now prove that when f is odd, groundstates
do not change sign.

Proposition 5.2 (Groundstates do not change sign). Let f ∈ C(R;R) satisfy (f1).
If f is odd and does not change sign on (0,∞), then any groundstate u ∈ H1(RN )
of (P) has constant sign.

Proof. Without loss of generality, we can assume that f ≥ 0 on (0,∞). By Propo-
sition 4.1, there exists an optimal path γ ∈ Γ on which the functional I achieves
its maximum at 1/2. Since f is odd, F is even and thus for every v ∈ H1(RN ),

I(|v|) = I(v).
Hence, for every t ∈ [0, 1] \ {1/2},

I(|γ(t)|) = I(γ(t)) = I(γ( 1
2 )) = I(|γ( 1

2 )|).
By Lemma 5.1, |u| = |γ(1/2)| is also a groundstate. It satisfies the equation

−Δ|u| + |u| =
(
Iα ∗ F (|u|)

)
f(|u|).

Since u is continuous by Theorem 2, by the strong maximum principle we conclude
that |u| > 0 on R

N and thus u has constant sign. �
5.3. Symmetry of groundstates. In this section, we now prove that ground-
states are radial.

Proposition 5.3 (Groundstates are symmetric). Let f ∈ C(R;R) satisfies (f1).
If f is odd and does not change sign on (0,∞), then any groundstate u ∈ H1(RN )
of (P) is radially symmetric about a point.

The argument relies on polarizations. It is intermediate between the argument
based on equality cases in polarization inequalities [31] and the argument based on
the Euler-Lagrange equation satisfied by polarizations [5, 42].

Before proving Proposition 5.3, we recall some elements of the theory of polar-
ization ([3], [41], [9], [44, §8.3]).

Assume that H ⊂ R
N is a closed half-space and that σH is the reflection with

respect to ∂H. The polarization uH : RN → R of u : RN → R is defined for x ∈ R
N

by

uH(x) =

{
max

(
u(x), u(σH(x))

)
if x ∈ H,

min
(
u(x), u(σH(x))

)
if x �∈ H.
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We will use the following standard property of polarizations [9, lemma 5.3].

Lemma 5.4 (Polarization and Dirichlet integrals). If u ∈ H1(RN ), then uH ∈
H1(RN ) and ∫

RN

|∇uH |2 =
∫
RN

|∇u|2.

We shall also use a polarization inequality with equality cases [31, lemma 5.3]
(without the equality cases, see [3, corollary 4], [41, proposition 8]).

Lemma 5.5 (Polarization and nonlocal integrals). Let α ∈ (0, N), u ∈ L
2N

N+α (RN )
and H ⊂ R

N be a closed half-space. If u ≥ 0, then∫
RN

∫
RN

u(x)u(y)
|x− y|N−α

dx dy ≤
∫
RN

∫
RN

uH(x)uH(y)
|x− y|N−α

dx dy,

with equality if and only if either uH = u or uH = u ◦ σH .

The last tool that we need is a characterization of symmetric functions by po-
larizations ([42, proposition 3.15], [31, lemma 5.4]).

Lemma 5.6 (Symmetry and polarization). Assume that u ∈ L2(RN ) is nonneg-
ative. There exist x0 ∈ R

N and a nonincreasing function v : (0,∞) → R such
that for almost every x ∈ R

N , u(x) = v(|x − x0|) if and only if for every closed
half-space H ⊂ R

N , uH = u or uH = u ◦ σH .

Proof of Proposition 5.3. The strategy consists in proving that uH is also a ground-
state (see corresponding results for the local problem [5,42] and a weaker abstract
result [35]) and to deduce therefrom that u = uH or uH = u ◦ σH .

Without loss of generality, we can assume that f ≥ 0 on (0,∞). By Propo-
sition 5.2, we can assume that u > 0. In view of Proposition 4.1, there exists
an optimal path γ such that γ(1/2) = u and γ(t) ≥ 0 for every t ∈ [0, 1]. For
every half-space H define the path γH : [0, 1] → H1(RN ) by γH(t) = (γ(t))H .
By Lemma 5.4, γH ∈ C([0, 1];H1(RN )). Observe that since F is nondecreasing,
F (uH) = F (u)H , and therefore, for every t ∈ [0, 1], by Lemmas 5.4 and 5.5,

I
(
γH(t)

)
≤ I

(
γ(t)

)
.

Observe that γH ∈ Γ so that

max
t∈[0,1]

I
(
γH(t)

)
≥ b.

Since for every t ∈ [0, 1] \ {1/2},

I
(
γH(t)

)
≤ I

(
γ(t)

)
< b,

we have
I
(
γH( 1

2 )
)

= I
(
γ( 1

2 )
)

= b.

By Lemmas 5.4 and 5.5, we have either F (u)H = F (u) or F (uH) = F (u ◦ σH) in
R

N . Assume that F (u)H = F (u). Then, we have for every x ∈ H,∫ u(x)

u(σH(x))
f(s) ds = F

(
u(x)

)
− F

(
u(σH(x))

)
≥ 0;
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this implies that either u(σH(x)) ≤ u(x) or f = 0 on [u(x), u(σH(x))]. In particular,
f(uH) = f(u) on R

N . By Lemma 5.1 applied to γH , we have I ′(uH) = 0; and
therefore,

−ΔuH + uH =
(
Iα ∗ F (uH)

)
f(uH) =

(
Iα ∗ F (u)

)
f(u).

Since u satisfies (P), we conclude that uH = u.
If F (uH) = F (u ◦ σH), we conclude similarly that uH = u ◦ σH . Since this

holds for arbitrary H, we conclude by Lemma 5.6 that u is radial and radially
decreasing. �

6. Alternative proof of the existence

In this section we sketch an alternative proof of the existence of a nontrivial
solution u ∈ H1(RN ) \ {0} such that c ≤ I(u) ≤ b, under the additional symmetry
assumption of Theorem 4 and in the spirit of the symmetrization arguments of
H.Berestycki and P.-L. Lions [6, pp. 325-326]. The advantage of this approach is
that it bypasses the concentration compactness argument and delays the Pohožaev
identity which is still needed to prove that b ≤ c.

Proof of Theorem 1 under the additional assumptions of Theorem 4. In addition
to (f1), (f2) and (f3), assume that f is an odd function which has constant sign on
(0,∞). With this additional assumption,

I ◦ Φ(σ, |v|H) ≤ I ◦ Φ(σ, v).

Therefore, by the symmetric variational principle [40, theorem 3.2], we can prove
as in the proof of Proposition 2.1 the existence of a sequence (un)n∈N and (vn)n∈N

such that as n → ∞,

I(un) → b,

I ′(un) → 0 in
(
H1(RN )

)′
,

P(un) → 0,

un − u∗
n → 0 in L2(RN ) ∩ L

2N
N−2 (RN ),

where u∗
n : RN → R is the Schwarz symmetrization of un, that is, for every t > 0,

{x ∈ R
N : u∗

n(x) > t} is a ball that has the same Lebesgue measure as {x ∈ R
N :

|un(x)| > t} ([33, 34], [3, corollary 3], [9, §2], [23, §3.3], [44, definition 8.3.1]).
As previously, the sequence (un)n∈N is bounded in H1(RN ); by the Pólya–Szegő

inequality ([33], [34], [9, theorem 8.2], [23, lemma 7.17], [44, theorem 8.3.14]), u∗
n ∈

W 1,2(RN ) and ∫
RN

|∇u∗
n|2 ≤

∫
RN

|∇un|2,

and thus the sequence (u∗
n)n∈N is also bounded in H1(RN ). Since u∗

n is radial for
every n ∈ N, the sequence (u∗

n)n∈N is compact in Lp(RN ) for every p ∈ (2, 2N
N−2 )

([36, lemmas 2 and 3], [25, proposition 1.1], [43, Corollary 1.26]).
As un−u∗

n → 0 as n → ∞ in L2(RN )∩L
2N

N−2 (RN ), the sequence (un)n∈N is also
compact Lp(RN ) for every p ∈ (2, 2N

N−2 ).
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In view of (f2), this implies that F (un) → F (u) as n → ∞ in L
2N

N+α (RN ) and
thus

(6.1) lim
n→∞

∫
RN

(
Iα ∗ F (un)

)
F (un) =

∫
RN

(
Iα ∗ F (u)

)
F (u) > 0.

Now one can prove that un(·−an) converges to a nontrivial solution u ∈ H1(RN ) \
{0} as in the proof of Proposition 2.2. By (6.1), it also follows that

c ≤ I(u) ≤ b.

Finally, employing the Pohožaev identity as in the proof of Theorem 1 allows us to
conclude that c = b. �
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[8] H. Brézis and T. Kato, Remarks on the Schrödinger operator with singular complex potentials,
J. Math. Pures Appl. (9) 58 (1979), no. 2, 137–151. MR539217 (80i:35135)

[9] F. Brock and A. Yu. Solynin, An approach to symmetrization via polarization, Trans. Amer.
Math. Soc. 352 (2000), no. 4, 1759–1796, DOI 10.1090/S0002-9947-99-02558-1. MR1695019
(2001a:26014)
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