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EXISTENCE OF INFINITELY MANY SOLUTIONS
FOR A FORWARD BACKWARD HEAT EQUATION

BY
KLAUS HÖLLIG1

Abstract. Let f be a piecewise linear function which satisfies the condition
s<¡>(s) > es2, c > 0, i e R, and which is monotone decreasing on an interval
(a, b) C R+ . It is shown that for / e C2[0,1], with max /' > a, there exists a
T > 0 such that the initial boundary value problem

», = ♦<«„),.   ux(0,t) = ux(i,t)=0,   u(-,0)=f,

has infinitely many solutions «satisfying ll«ll0, HuJI*,, Il m, II2 * <•(/,$) on [0,1] X
[0, T].

0. Introduction. Consider the initial boundary value problem

«, = ♦(«,),.       (x,r)E[0,l]x[0,r],
(1) «,(0,0 = 8,(1,0 = 0,     te[o,T],

u(x,0)=f(x),       x6[0,l].
If <t> is strictly monotone increasing with <j>' > c > 0, (1) has a unique solution which
is, roughly speaking, as smooth as the function <¡>. On the other hand, if <£' < -c < 0,
(1) is a 'backward' parabolic equation and, because of the smoothing effect, may
have a solution only for special initial values.

In nonlinear diffusion, for which equation (1) is a simple model in one space
dimension, <i> need not be monotone increasing. The Clausius-Duhem inequality [D,
p. 79] in one space dimension merely implies that the graph of <¡> lies in the first and
third quadrant. An additional, physically reasonable hypothesis regarding <¡> is the
coercivity condition

(c) s$(s) s* cs2,       c>0.

This assumption allows <i> to have monotone decreasing parts (e.g. the model cubic
</>(s) = ïî3 - b2 + 2s).

A natural and interesting question is whether problem (1) has a solution if the
usual assumption </>' > 0 is replaced by the weaker coercivity condition (c). Under
this hypothesis J. Bona, J. Nohel and L. Wahlbin [BNW,HN] obtained several a
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300 KLAUS HÖLLIG

priori  estimates for  problem  (1).   Assuming the  existence of a solution u in
W2X([0,1] X [0, T]) they showed, e.g., that

H-,T) l2,[0,l) + 2cK '2,[o, ijx[o,r] /
2
2,[0,1]»

"Mx"oo,[0,1]X[0, T] "" L      "V\J  yilco,[0,l]-

For smooth solutions they also proved a maximum principle for ux. Using Galerkin
approximations these estimates almost yield the existence of weak solutions. The
difficulty, which prevents completing an existence proof, is that the map ux -» <i>( ux )
is not weakly continuous if <¡S is not monotone.

The above estimates and J. Nohel's continuing optimism concerning the existence
of weak solutions motivated our investigations. We study the simplest case where <b
is a typical nonmonotone piecewise linear function satisfying (c). We shall assume
that <j> is of the form

<f> (s) /f.

(2)

(l+d)

i.e. 4>(s) = mxs — (mx + m2)(s — a)+ +(m2 + m3)(s — b)+ , mj > 0, <b(b) > 0.
Clearly, if the initial function / satisfies max f'<a, then by the maximum

principle any solution of the equation u, = mxuxx solves problem (1).
If, however, max /' > a, (1) cannot have a smooth solution in general. More

precisely, if f'([a, ß]) C (a, b) for some interval [a, ß] Ç (0,1) and /|(a,^) is not
analytic, then (1) cannot have a solution with continuous partial derivative with respect
to x.

To see this, assume that ux is continuous on [a, ß] X [0, T] and define
v(x, t) := u(x,T — t). Since ux(-,0)=f we have, for small enough T,
ux([a, ß],[0, T]) C (a, b). Hence v, restricted to the rectangle [a, ß] X [0, T], is a
solution of

»Í = m2Vxx>

v(a, t) = u(a,T-t),       v(ß, t) = u(ß,T-t),
v(x,0) = u(x, T),

and the smoothing property of the heat equation implies that v(- ,T) = u(- ,0) = f
is analytic on (a, ß), which is contrary to the hypothesis.
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SOLUTIONS FOR A FORWARD BACKWARD HEAT EQUATION 301

In fact the above argument shows that, in general, ux cannot be piecewise
continuous with respect to a finite partition of [0,1] X [0, T], This fact is also
supported by numerical computations which we did jointly with C. de Boor.
Approximations u"( ■, t) to ux( ■, t) oscillate in intervals where <j>' is negative. This
phenomenon has been independently observed by G. Strang and M. Abdel-Naby
[SA].

We use the following notation for the norms of the spaces C, Lp, Ca, a < 1 :

Halloo = sup |*(«)|,       H\\p=(f\m\pdè)   ",

||*||a = 11*11, +   sup  | *(«)-*(€') l/l €-€T-
£,{'eS2

Unless explicitly specified the domain fi will be clear from the context, e.g., in the
Theorem below the norms are taken on fi = [0,1] X [0, T].

Theorem. For $ as described by (2) and any /EC2 [0,1] with max /' > a,
f'(0) — f'(l) = 0, there exists T > 0 such that problem (1) has infinitely many solutions
u satisfying the equation u, — <j>(ux)x on [0,1] X [0, T] in the sense of L2. Each such
solution satisfies the estimates \\ u || „, || ux || x, || u, \\ 2 *s c, where T, c, a depend on «¡> and
f. Moreover, we have ux([0,1],(0, T]) n (a, b) = 0.

The last conclusion reflects the qualitative behavior of numerical solutions to
problem (1) which has been observed in numerical experiments. It also shows that
our family of solutions does not depend on the values of § in the interval (a, b). In fact
<í>l(a b) could be defined arbitrarily. Also note that the solutions are slightly smoother
than predicted by the a priori estimates mentioned earlier.

We think that the Theorem should extend to a more general class of smooth
nonmonotone constitutive functions <j>. Our technique of proof requires a linear
relation between the monotone increasing parts of <p (cf. relation (3) below). Also
one might think that imposing an additional condition (in analogy to hyperbolic
conservation laws) leads to a (unique?) solution with special properties.

Before beginning with the proof of the Theorem let us choose a convenient
normalization for the piecewise linear functions <i>. The change of variables u(x, t) =
U( px, qt) transforms (1) into the equation

ut = *(ux)x
with O(i) = q~xp<j>(ps). From this one can easily check that we may without loss of
generality assume that m, = 1 and (¡>(a) + <¡>(b) = 2. If we define d by <j>(1 + d) =
0(1) = 1, then, with this normalization, <j> is completely determined by the three
parameters a, b, d (cf. figure (2) where this normalization has already been chosen).

Crucial for the existence proof is the relation

(3) 4>{s + A + Bs) = <p(s),       2-a<s*ia,
where, to be precise,

.      ad + a + b-2-2d 2 + d-q-b ^ R - ^ aA =-,    B — -;- > -1,   A + B = d > 0.
a — I a — l
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302 KLAUS HÖLLIG

The following pathological feature of problem (1) is implied by identity (3). For any
function x: [0,1] - {0,1} ande E [2 - a, a],

u(x,t)= [X(c + x(y)(A+Bc))dy

is a solution ofO = ¡¡>(ux)x, because by (3), <t>(ux) = c.
In proving the Theorem we first consider in §1 the special case B — 0 which

simplifies the analysis and illustrates the basic idea behind the proof of the general
case done in §2. In the Appendix we state a regularity result for a linear parabolic
equation needed for our arguments.

1. The case B = 0. For B = 0 the normalized <p is of the form

and relation (3) becomes particularly simple:

(3') <t>(s + d) = <t>(s),       2-a<s<a.
Numerical computations indicate the existence of solutions u with ux([0,1],(0, T])

n (a, b) = 0. This suggests splitting u into a smooth and an oscillating part,
u = v + w. In view of (3') we choose w of the form

(4) w(x,t) = d(\(y,t)dy

with x: [0, l]2 -» {0,1}, i.e. wx = dx assumes only the two values 0 and d:

(4.1) vv,G{0,¿}.

If vx « 1, <f>(vx + wx)x = vxx, i.e. the oscillations of wx are not recognized by the
right-hand side of (1). This is the reason for the existence of solutions corresponding
to initial data / with f'([0, l]) Ci (a, b) ¥= 0. The function x, and hence w, will
depend only on / and be constructed so that the resulting equation for v is as regular
as possible. To this end, and for reasons that will become apparent in the proof of
Proposition 1, we require that w satisfy

(4.2) w, E Lx,
(4.3)w(x,0) = h(x), where

A(0) = 0   and   h'(x)
0, /'(*)<!.
f'(x)-l,    Kf'(x)<l+d,
d, l+d<f'(x);

(4.4) for all e>0 there exists T > 0 such that for t < T,

{/'<l-e}C{X(-,0 = 0}    and   {/' > 1 + d+ e} Ç {X(-, 0 = 0-
Here we used the notation {* > y} := {x: ^(x) > y). Condition (4.4) means that
the oscillations of x are essentially restricted to a neighborhood of the set {x: f'(x)
E(l,l + d)}X[0,T].

Assuming the existence of a function w satisfying (4.1)-(4.4) we now construct a
solution for problem (1).
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Proposition 1. Let w of the form (4) satisfy (4.1)-(4.4) and define v as the solution
of the problem

(5)       v, = vxx-w„   vx(0,t) = vx(l,t)=0,    v(x,0)=g(x),

f'(x), f'(x)<l,
where g(0) =/(0) andg'(x) := \ 1, 1 </'(*) < 1 + d,

f'(x)-d,     l+d<f'(x).

Then there exists T> 0 such that u = v + w is a solution of (1) satisfying the
regularity assertions of the Theorem.

Proof. From the definition of the initial values g, h for v, w, (4.4) and (5), it
follows that u satisfies the boundary and initial conditions. Also note that g",
h" E Lx. This follows from the continuity of g', W and/ £ C2[0,1].

In view of (5), the equation ut = §(ux)x is equivalent to

(*) <t>(vx + wx)x = vxx.

Since g", wt E Lx, we have by Theorem A (cf. Appendix), applied to problem (5),
that vx E Ca. Therefore, for small t,

{vx(-,t)>l+e) C{g'>l+e/2] = {f>l+d+e/2}.

From (2') and (4.4) it follows that for x E {vx( ■, t) > 1 + e},

4>{vx(x, t) + wx(x, t)) = <t>{vx(x, t) + d) = vx(x, t).

We argue similarly if x E {vx(■, t) < 1 — e}. Finally, for x G (| vx(-, t) — 1 |< 2e}
with e < (a — l)/2, we apply (3') and (4.1) to complete the proof of (*).

The regularity assertions for u stated in the Theorem are consequences of (4.1),
(4.2) and Theorem A.    D

It remains to construct a function x so that w = dfx satisfies (4.1)-(4.4). The
difficulty lies in satisfying the initial condition w( ■ ,0) = h while wx = dx E {0, d)
and w, E Lx. We shall construct a piecewise linear function w with discontinuity
pattern as indicated by figure (6) that interpolates h(xjk) at the points xjk = c, +
j-2~k(c2 — cx), j — 0,...,2k, k — 0,1,..., where [c,,c2] is an arbitrary interval
containing supp h'. A modification of this construction will be used for the proof of
the general piecewise linear case in §2.

In the case A = 0, considered in this section, it is possible to construct a function
w satisfying (4.1)-(4.4) with a discontinuity pattern independent of the initial data.
This has been observed by G. Strang and we also include his construction (cf. p. 306)
which further illustrates the lack of uniqueness for problem (1).

We now describe the first mentioned construction and introduce some notation
for the discontinuity pattern which will be useful in §2. Let [cx, c2] C [0,1] be any
interval containing supp h' and consider the following infinite partition H(cx,c2,h)
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304 KLAUS HÖLLIG

of[c„c2]X[0,l]:

(6)

where we denote by zr, r = rxr2 • ■ ■ r,¿ , rv G {0,1}, the lines

,-;c = zr(0:[2-''' + 1,2-l"+2]-[0,l].

The endpoints of these lines are denoted by (zr,2'^ + x), (zr,2",r|+2), respectively.
We write rs, s E (0,1}, for rxr2 ■ ■ ■ r^s. Whenever it is convenient we interpret r as
the dual number 2ft i'V2"-1, e.g. we write rl = rO + 1, etc. However, since we do
not ignore leading zeros in the sequence r, different r 's may correspond to the same
number. As indicated by figure (6) we have

;*,<*,+,< •

IrO ~ Zr00 zroo = c\ + r2~\r\(c2- cx),

(7.1)

(7.2)

(7.3)

C7-4) ¿m =^rlO G [zr0,Z_rX].

With this notation we define x by

(8)
[o,   otherwise.

We now choose the points zrX which determine the partition II so that w
interpolates h on the vertical lines zr00 (bold lines in figure (6)); more precisely

(9) w(z_r0,t) = h(zr0),       r<2H1.
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Clearly, this implies lim,^0 w(-, t) = h, i.e. (4.3). Consider a typical subrectangle of
the partition II:

|r|+l

-|r|

rOO       rlO rll -(r+l)0

(r + 1)

We define zrX by

(10) d(IrX-¿r0)= fh'(y)dy,       Ir := [zr0, z(r+1)0],

and note that z,0 is implicitly determined by (7.2) and (7.4).
Since 0 < h' *£ d and Ir0 U Irl = /, we have

'ru-'m = d-y h' + f h'\ < z(r+1)0 Ic0>

rl — i.rXX hl)00 = z(r+1)0, which is consistent with (7.1). Moreover, we seei.e. z., = z.„ < z
that

¿(?rl  - £ro) = d(Zrll  - ZrOo) =  /"*' = ¿Orl ~ ZH>)>

i.e. the lines zr0, zrX are parallel. Therefore we have for t E [2"^_1,2~^],

[wx(y,t)dy = d(zrXX - zr00) = fh',

which implies (9). Note that we have equality in (7.1) in either one of the following
cases:

(H)
2-n = Zr

Z,m  = Z01 — "r!0>

iff/j'(/r) = 0,
Mh'(lr0) = d,

zr\\ = z(r+i)oo.    ifih'(lr) = d.

We already saw that w, defined by (4) and implicitly by (10), satisfies (4.1) and
(4.3). From (4) and figure (6) it is clear that w is continuous and therefore it is
sufficient to compute w, on the rectangles [0,1] X (2~J,2~J+i). For 2'j < t < 2'j+x
we have

(12) w(x,t)=  2 d((x-zr0(t))+-(x-zrX(t))+),
\A=J
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306 KLAUS HÖLLIG

(i3)        wt(x,t)= 2 «*(*;,(*-*rl(0)°+-*;»(*-*ro(0)°+).
V\=j

By (7.1),
Zr00 — Zr00 ~~ ZrOI ~~ Zrl0 ** Zrl 1 ^ Z(r+1)00>

with z(r+i)oo "" zroo = 2~M(c2 - cx), which implies

(7.5) 0 < z;0 = z'rX < 2.

This, together with (13), shows 11 w, 11 x < 2.
To prove (4.4), assume that f'(x) < 1 - e. By definition of g' we have f'(x) =

g'(x), h'(x) = 0 in this case. Since supp/i' C {/' > 1}, the continuity of/' implies
dist(x, supp h') > 8(e). From (4), (8) and (11) we see that wx(x, t) = 0 for t < 6/2.
The second assertion of (4.4) is proved by a similar argument.    D

Nonuniqueness. Clearly, properties (4.1)-(4.4) do not determine w uniquely. For
the construction of H(cx, c2, h), we could choose any interval [cx, c2] that contains
suppft'. Also we may perturb the points zrX which determine the discontinuity
pattern of wx = dx- The discontinuities distinguish w from the smooth part v of the
solution u and therefore we get a continuum of solutions for problem (1).

An alternative construction of w. G. Strang pointed out to us a nice construction of
a function w satisfying (4.1)-(4.4) which has a fixed discontinuity pattern, indepen-
dent of the initial data h. His idea can be briefly described as follows.

Given h with h(Q) = 0 and 0 < h'(x) < d, xE [0,1], there exist continuous
piecewise linear functions sk with

**!«;-i)2-*,y2-*) G (0>¿}>      y=l,...,2*,

\\h-sk\\K<d-2-k.

Consider the following partition of [0, l]2,

and define w as the piecewise linear continuous function with respect to this
partition that agrees with sk on the lines (x, 2'k), x E [0,1]. It can easily be checked
that w satisfies (4.1)-(4.4). Moreover, the construction is not unique. Any scaling
t h» at gives a different w with the same properties.
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2. The general case. As in the previous section we construct a solution u of the
form u — v + w where v is smooth and w is a function with oscillating derivative
with respect to x. In view of (3) we choose w of the form

(4') w(v, x, t) = fXX(v, y, t)(A + Bvx(y, t)) dy,

with x: [0,1] X [0, T] -» {0,1}. To obtain a sufficiently regular equation for v it
seems to be necessary to let x, i.e. the discontinuity pattern of the solution u, depend
on v. An appropriate choice of x will yield w E Ca and wt = Bxv, + \¡> with \p E Lx.
This choice of x, and hence of w, leads to an equation for v of the form (cf.
Proposition 2)

v, + Bx(v, -)v, + ^(v, ■) = vxx.

To solve it, we have to study the structure of the partition corresponding to x and
the dependence of w, x, * on ü.

We define the initial values for v and w by g(0) '■ = /(0), h(0) '■= 0 and

(14)

*'(*): =

h'(x)

1,
(f'(x)-A)/(l B),

0,
/'(*)-!,
(A + Bf'(x))/(l + B),

f'(x)<l,
1 </'(*) < 1 + d,
l+d<f'(x),

1 </'(*) < 1 + d,
l+d<f'(x).

Using A + B = d (cf. (3)) one can easily check that g', h' are continuous, and from
/ G C2[0,1] it follows that g", h" E Lx.

In order not to complicate the proof of the Theorem by unessential technical
details we assume that for the initial function/the set (1 </' < 1 + d) consists of
at most two intervals (cf. figure (14') below). In general we would have to carry out
the constructions described below separately for a finite number of intervals of a
suitably chosen partition of [0,1].

fix)  -t-

(14')
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308 KLAUS HÖLLIG

The partition Yl(v). Throughout this and the following paragraph we fix a
function v, with v, vx E C, that satisfies the initial condition v( ■, 0) = g with g
defined by (14), (14').

Since a> I, A + B = d > 0, B > -l (cf. (3)) there is a constant k with k < (a - 1)
such that

A + B[l - k, 1 + k] c(K,d+ \B\k].

Let us assume that max g' > 1 + k because this is the slightly more complicated case
for the construction of the partion II(u). We can find intervals l}, = [cJX, cJ2],

j = 1,2, and a constant K'(g') with 0 < k' < k and 2k' < c2x — cx2 so that

(15) g'{[CjX  - K', Cj2 + K'])C (I  -K, I   +K), ;=1,2,
g'([cX2^2x]) Q (I +k',oo).

Moreover, we may assume that cX2, c2X are of the form cu + v2~N(c22 — cxx), where
N = N( /') is sufficiently large. Since vx E C and vx( ■, 0) = g there exists
T(g', || vx II „) > 0 such that, for t < T, (15) remains valid with g' replaced by vx( ■, t).
This implies in particular

(16) A +Bvx(x,t) G (K,d+ \B\k),        (r,/)E/;x[0,r],j=l,2,

where /' = [c■-, — k', c 2 + k'], a fact we shall frequently use in the sequel.

Lemma 1. There exists T > 0 such that for t < 7" //ie equation

(17) y4x + fiü(x, 0 =^v + 5g(.v)
defines two one-to-one maps

Ay. Ij X [0, T] - Oj Ç /; X [0, T]:(y, t) - (x, t),      j = 1,2,

which are strictly monotone increasing in the first coordinate.

Proof. Since v E C and v( ■, 0) = g there exists T(g, || u II „, k') > 0 such that for
t<T,

AIj + Bvil^^^AIj + Bgilj),

which implies that (17) can be solved for x G /' if y G i.. To complete the proof, we
note that by (16) both sides of (17) are strictly increasing functions of their
arguments x, y, respectively.    D

For the definition of II(u) described below it is convenient to define a single map

A:[cn,c22]x[o,r]-»[o,i]x[o,r]
which agrees with Ay on Ij X [0, T]. To this end we set

ZL(0 = A,(c12,0,       ZR(t) = A2(c21, 0,
i.e. ZL, ZR denote the right and left boundaries of fl,, ß2, respectively, and define

\Aj{y,t),       (y,t)Eljx[0,T],
(18)      A(y,t) y-ZL(t) + I  _C'2 ZR(t),        cX2<y<c2x.

"21        L12
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As the individual maps A,, A is one-to-one and strictly monotone increasing in the
first coordinate. We cannot use (17) to define A, since for x E (cX2, c2X) the function
Ax + Bv(x, t) need not be monotone increasing,and hence (17) may not be uniquely
solvable for x.

The partition ri(ü) is a perturbation of the partition H(cxx,c22, h0) described in
§1, where the function h0 is defined by

h0(0) = 0,       h'0:= dh'/(A+Bg')

with h given by (14). Note that U(cxx. c22, hQ) refers to the partition constructed
from h0 rather than from h. We keep the notation introduced in §1, in particular we
denote by zr the lines determining the partitionn(cu, c22, h0). We define TL(v) as
the image of H(cxx,c22, h0) under the map A, i.e. we replace the lines zr, for
| r | > 2 — log2 T, by the curves

(19) zr(v, ■ ): [2-W + \2-M+2] - [0,1],    (zr(v, t), t) = A(zr(t), t).

Since the points cX2, c2X had been chosen of the form cxl + v2~N(c21 — cxx), the right
and left boundaries of the rectangles L X [2~|rl + 1,2~|r, + 2], j = 1,2, agree with lines
from the partition U(cxx,c22, hQ). Therefore, for the definition of one particular
curve zr(v, ■ ), A either coincides with A¡ or is given by the second formula in (18).
We denote by E the set of all r for which the first possibility applies, i.e.

Z={r:zr(t)Elx U/2,,G[2-M + \2-M + 2]}.

By Lemma 1 and definition (18) of A, the partition U(v) has the same structure
as il(cu, c22, h0). By this we mean that

(7.1') ■■■<zr(v,-)^zr+x(v, •)<■■■,

(7-2') zr0(v) = zr00(t>),

(7.3') z_rX(v)=zrXX(v),

(7-4') Zr0\(v) = Zrw(v)  E[zr0(v),ZrX(v)],

where zr(v), zr(t>) denote the upper and lower endpoints of the curves zr(v, ■ ). Note
that we have equality in (7.1') iff we have equality in (7.1) (cf. (11)). Since
h'0([cX2, c2X]) = d, this implies that

zn(». ■) = z(r+i)o(u. •).       rlgE.

The following lemma shows that for / -> 0 the partition n(t>) "converges" to
U(cxx,c22,h0).

Lemma 2. | zr(v, t) - zr(t) |< cta.

Here and in the sequel c denotes various positive constants which may depend on
/, a, || v II a, II vx II a. Also, we shall always assume | r \ > 2 — log2 T so that the curves
zr(v, • ) are well defined.

Proof. We may assume r E Z. Writing (17) in the form

A(x -y) + B(v(x, t) - v(y, t)) + B(v(y, t) - g(y)) = 0,
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we obtain the estimate

\(x-y){A+Bvxtt,t))\<cta

and the lemma follows from (16).    D

Lemma 3. Ilzr(u, • )||a < c, uniformly in r.

Proof. We may assume r EH,, and to simplify notation we set x = zr(v, t),
x' = zr(v, t'),y = zr(t),y' = zr(t'). From (17) we see that

A(x - x') + B(v(x, t) - v(x', 0) + B(v(x', t) - v(x', t'))
= A(y-y')+B(g(y)-g(y')).

Writing v(x, t) — v(x', t) = vx(i, t)(x - x'), using (16) and the estimate | g(y) —
g(y') I * c I z'r 111 ~ t' I finishes the proof.    D

The functions x(v, • ) and w(v, ■ ). Denote by Rr, R'r the deformed rectangles

R, := {(x, t): zr0(v, t)<x< zrX(v, t), t E [2"W , 2^+x]},

R'r : = {(x, t): zrX(v, t)<x< z(r+X)0(v, t), t E [2"M ,2"M + 1]}.

Corresponding to the partition IT, constructed in the previous paragraph, we define
the function x by

(8') ( ) = I1'      (*. 0GÄr»
[0,   otherwise.

From the remark following (7.4') we see that

(20) X(v,x,t) = l,   ZL(t)<x<ZR(t),
i.e. x does not depend on the particular form of the curves zr(v, ■ ) for r G H. We
gave an explicit definition for these curves merely because then we do not have to
treat each of the intervals /,, I2 separately.

Substituting (8') into definition (4') for w we obtain

2 A(zsX(t) - zs0(t)) + B{g(zsX(t)) - g(zs0(t))),

(12')    w(v,x,t)
if (x,t)ER'r,

2 A(zsX(t) - zjt)) + B(g(zsX(t)) - g(zjt)))

+Ax + Bv(x, t) - Azr0(t) - Bg(zr0(t)),

if (x, t) ERr.

This follows from (17), (18). E.g., if (x, t) G R'r and 0 =£ x *£ ZL(t), we have

w(e, x, t) = 2 f"(A + Bvx(y, t)) dy

= %A(zsX(v, t) - zs0(v, 0) + B(v{zsX(v, t), t) - v(zs0(v, t), t))

= %A(zsX(t) - zs0(t)) + B(g(zsX(t)) - g(zs0(t))).
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We argue similarly if (x, t) E Rr and 0 < x < ZL(t). If ZL(t) *£ zrX(v, t) < ZR(t),
we have zrX — z(r+1)0, which implies R'r — 0. Therefore, if x E (ZL(t), ZR(t)),
x G Rr,

w(v, x, t) = w(v, ZL(t), t) + f    (A+ Bvx(y, t)) dy
JZL(t)

agrees with (12') because the terms AzsX + Bg(zsX) and Az(s+Xp + Bg(z(s+X)0)
cancel. Finally, if x > ZR(t), we argue similarly as for x < ZL(t).

If B — 0 one can check that h0 — h, zr(v, ■) = zr, Tl(v) = H(cxx, c22, h), wx =
Ax = ^X» which shows that our definition is consistent with the special case treated
in §1.

Lemma 4. limt^0\\w(v, ■, t) — h\\x =0.

Proof. Since | wx \ < | A \ +\B\\vx\< c, it is sufficient to check the convergence
for sufficiently many points. We shall show that

w(v,zr00(v,t),t) -^h(zr00(v,t)),        \r\-> oo,

uniformly in t G [2~|r|-1,2"|ri]. In view of Lemma 2 we can replace h(zr00(v, t)) by
h(zr00(t)) = h(zr0). From (12') we see that

w{v, zr00(v, t), 0=2 4Z,.(0 - z,o(0) + B{g{zsX(t)) - g(zs0(t))).
s<r0

By definition of the partition U(cxx, c22, hQ) (cf. (10)) we have

*,i(0 - z.o(0 = zs\ - zso = d'lfh'0.
*s

Using this, A + B = d and the mean value theorem twice, we obtain

2   ■■■ = l(A+Bg'Us))d-xfh'Q
s<r0 h

= 2(zV.)oo - zsOo)(h'o(U(A + Bg'(is))/d).

This can be interpreted as a Riemann sum for /[Cj j h'0(A + Bg')/d = f[Cut2r0] h',
which proves the lemma since h" E Lx.       □

From (12') we can formally compute w, (cf. p. 313 for a proof) which is given by

(13') wt(v, x, t) = Bx(v, x, t)vt(x, t) + >p(v, x, t)

where

' 2 B{g'(zsX(t)) - g'(zs0(t)))z's0,       (x, t) E R'r,
s<r

Z B(g'(zsX(t)) - g'(zs0(t)))z:0
s<r

- (A + Bg'{zr0(t)))z'r0,        (x,t)ERr.

Since g" G Lx we have ty E Lx and, if vt G L2, wt E L2.

Lemma 5. ||w(ü, -)lla2 ^ c-

(13")    *(v,x,t) =
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Proof. Since wx E Lx it is sufficient to prove the Holder continuity with respect
to t. In estimating w(v, x, t) — w(v, x. t') let us first assume that t, t' G [2~J,2~t+x\
We consider two cases:

1. For some r, | r \ = j, (x, t),(x, t') E Rr. In this case it follows from (12') that

\w(v,x, t) - w(v,x,t') I

2 B(g(zsX(t)) - g(zsX(t'))) + B(g(z50(t')) - g(zs0(t)))
s<r

+ \B\\v(x,t)-v(x,t')\ +A\zr0(t) -zr0(i')|

+ \B\\g(zJt))-g(zr0(t'))\

<\'-t'\l\B\\g'Us)zU-g'(Uz:o\+c\t-t'\a + c\t-t'\
<c\t - t'\a.

We obtain the same estimate if (x, t), (x, t') E R'r.
2. Now consider the case when the points (x, t),(x, t') do not lie in a common

deformed rectangle Rr or R'r. It follows from Lemma 2 that at most c2ja of the
curves zrv(v, ■ ) can intersect the segment (x, [t, t']). Therefore we can find t = t0<
tx < • • • < tN = t', N< c2'a, such that for each pair (x, t„),(x, t„+x) either one of
the previous cases applies. Using Holder's inequality, we obtain

N
\w(v,x,t) - w(v,x,t')\<c 2 K - K-\ 1°^ Nx~a\t' - t\a<c\t' - t\a\

v=\

where for the last inequality we used N =£ c \ t' — t |~a.
The general case follows now easily. For / G [2'J,2~J+X], t' G [2-k,2~k + x],j < k,

we obtain, using the previous estimates,

\w(v,x,t)-w(v,x,t')\^c\\t-2-jf + \2-k+x-t'f+    2   2""a2
\ v=j+1 /

<c|í-í'|a2.    D

The dependence of II, x, w, \p on v. Throughout this paragraph, which is the final
preparation for the proof of the Theorem, we shall restrict v to the set

(21) K:= {o:||o||., IIo.II., ||üt||2< c,v(-,0) = g}.
We note that the constants in the previous lemmas, in particular k, k' and T, can
be chosen uniformly with respect to v G K.

Lemma 6. The following maps are continuous.

(22.1) v - zr(v, •):(*, II II.) - C([2-H+1,2-I1+2]),
(22.2) v - x(o, -):(K, II ||J - L2([0,1] X [0, T]),
(22.3) o-»*(!>,■):(*, II IIJ-^LjaO.llXlO.r]),
(22.4) v^w(v,-):(K,\\\\a,\\dx    ||J - C([0,1] X [0, T]).
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Proof of (22.1). We may assume r G E. For v, v' G K and the corresponding
curves x = zr(v, -),x' = zr(v', ■ ), we obtain from (17):

A(x - x') + B(v(x, t) - v(x', t)) + B(v(x', t) - v'(x', t)) = 0,

which implies | x — x' |< c||u — v'\\x because of (16).    D
Proof of (22.2). Since x G {0,1} we have

llx(o,-)-x(o\   )ll|<e+ llx(»,   )-x(o', •)ll2,[0,i]x[e,n-
For any £>0 only finitely many of the curves zr(v, •) overlap the rectangle
[0,1] X [e, T]. This observation finishes the proof in view of definition (8') of x and
(22.1).    D

We skip the proof of (22.3) which is a slight extension of this argument.
Proof of (22.4). Since for v G K, w(v, ■ ,0) = h, and w E C, it is sufficient to

prove the continuity into C([0,1] X [e, T]), any fixed e > 0. Skipping most of the
subscripts we write w(v, x, t) — w(v', x, t) in the form (cf. (4'))

f(A(X(v) - x(o')) + B(x(v) - x(o')K + BX(v')(vx - v'x)).

From the definition of x and (22.1) we see that

Hx(o, •, 0 - x(V, ■, OIL -» 0,   as || v - v'\\x - 0,
uniformly for t > e, which finishes the proof.    D

With the aid of Lemma 6 we can now justify the formal computation of wr
Proof of (13'). Let us first assume that v, is continuous. From (17) we see that

this implies zr(D,-)6C'([2^+1)rH+2]), Hence Rr, R'r have a piecewise C1
boundary, and since w is continuous we may compute w, separately on these sets. In
this case (13') is a direct consequence of definition (12') of w.

To finish the proof for v, E L2 we choose a smooth approximating sequence
v" E K, v" -» o, and note that by Lemma 6, w(v", ■) -* w(v, •), x(ü"> -)o, ~*
X(v,-)v?,4>(vn,-)^Hv,-)inL2.    D

The proof of the Theorem is based on the following proposition.

Proposition 2. There exists T > 0 such that the problem

,5a v, + Bx(v, -)v, + ^(v, -) = vxx

0,(0,0 = 0,0,0 = 0,       o(-,0) = g,
has a solution on the rectangle [0,1] X [0, T] satisfying \\ v \\ a, II vx II a, || vt \\ 2, \\ vxx || 2 <
c, where c, T and a depend on g.

Proof. We solve (5') by iterating in the form

(*) < + Bx(v"-x,-)v1 + tKo"-1, •) = <&

with boundary and initial conditions as in (5'). Since B > -1 we have 0 <
min(l, 1/(1 + B)) =£ 1/(1 + Bx), II^IL < c and we can apply Theorem A to get
uniform bounds for || v" \\ a, || v" \\ a, \\ v" \\ 2, || vxx II2, i.e. all iterates stay in a set of the
form (21). We choose T small enough, so that for all n, x(v" \ ")> *P(V"~\ ') are
well defined, i.e. T = T(K). By compactness we can select for a' < a a subsequence,
again denoted by v", for which (*) holds and o" -» o, v" -» vx in C, v" -* v,,
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vxx -» vxx weakly in L2. To pass to the limit in (*), i.e. to show that v is a solution of
(5'), we note that by Lemma 6 all terms in (*) converge weakly in L2 to the
corresponding expressions in (5'). E.g. we have

kmfx(v"-x, •)<<#> = lim/(x(o, -)*K + um/(x(o"-', •) - x(o, -))o>

= /x(«, -)<K>
where for the last step we used (22.2) and II «"<£||2 < c.    D

Proof of the Theorem. Let v be a solution of (5'). We claim that u = v + w
solves problem (1).

From suppw C[cxx — k, c22 + k] X [0, T], (5') and Lemma 4 we see that u
satisfies the correct boundary and initial conditions. By (13') and (5') we have
vt + w, = vxx. Therefore it remains to show that

(*) vx = *(vx + y>x) = *{vx + x(A + Bvx)).

Set ß : = {(x, t) : ZL(t) <x< ZR(t), t E [0, T]]. By the continuity of vx we have,
for sufficiently small T > 0,

ox([o,i]x[o,r]\o)e(-oo,i + ii)
and

vx(Q Ufi,U ß2) C (1 - k,co).

Moreover, x is equal to 1 on ß and equal to 0 on [0,1] X [0, J]\{ß U ß, U ß2}.
Therefore, (*) follows from (2) and (3) which imply

<p(s)=s,       s<a,

<b(s + A + Bs) - s,        s>2-a.

The regularity assertions of the Theorem are consequences of Lemma 5 and
Proposition 2.    D

Nonuniqueness. By definition (8') of x, wx *s discontinuous across the curves zr.
These discontinuities distinguish w from v, the smooth part of the solution u. One
way of obtaining a continuum of different choices for w is to perturb the partition
H(cxx,c22, h0) and, hence, n(t>), e.g., as follows. In the construction of these
partitions we replace the intervals [2^ , 2^ + x] by [A2_lr|, \2'^ + x] with A = 1.

Acknowledgement. We thank John Nohel and Carl de Boor for their advice and
many fruitful discussions.

Appendix.

Theorem A. For a, f E Lx([0,1] X R+ ) with 0<a0^a, and g G C^([0,1]),
ß>l, with g'(0) = g'(l) = 0, the problem

u, = auxx+f,        (x, 0 e [0,1] X R+,
1   ^ «,(0,0 = ̂ 0,0 = 0,       u(-,0) = g
has a unique solution satisfying II u || a, || ux II a, II uxx || 2 < c where a > 0 and c depend
ona0,\\a\\x,\\f\\x,\\g\\ß,ß.
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There seems to be no convenient reference for this result. Therefore we include an
argument deducing it from results in [L].

Differentiating (A) with respect to x we obtain, with v = ux,

(A') vt = (avx)x+fx,       v(0,0 = o(l,0 = 0,       o(-,0 = g'-

This is an equation of the form (1.1) in [L, p. 134]. From Theorems 4.1, 4.2, 7.1, 10.1
in [L, pp. 133 — 210] with n = I, v — a0, p — \\a\\x, q — r — 00, ft, =
maxdlalL, H/IL), it follows that (A') has a unique solution satisfying Ho||a,
lloJL < c where a > 0 and c depend on the quantities above. (For our purposes
there is no point in distinguishing between the Holder continuity with respect to x
and t.)

With v the solution of (A') we set

(1) u(x,t) = h(t)+ (Xv(y,t)dy.
Jo

Formally substituting this into (A) we find that

A'(0 + (\(y, 0 dy = (avx)(x, t) +f(x, t)

and, therefore,

(2) h(t) = g(0) + f((avx)(x, t) +/(*, t)) di - \\v(y, t) - v( v,0)) dy.

For <#> G L2 we interpret J4>(x,r)dT as lim f<p"(x, r)dr, where <#>" is a smooth
approximating sequence, using the fact that the map 4> -» f¿ <í>( •, t) dr. L2 -» L2 is
continuous.

To justify the definition of h we have to show that the right-hand side of (2) does
not depend on x. To this end let <f> be a test function with supp <j> C (0,1) X (0, T)
and define t; by tj, = <f>, tj( •, T) = 0. Integrating by parts we obtain

ffh71tx = -ff((avx)(x,t)+f(x,t))r,x(x,t)dxdt

+ ff(v(x, t) - v(x,0))t),(x, t) dxdt = 0,

i.e. hx = 0. For the last equality we have used the fact that v is a weak solution of
(A') (cf. [L,p.  136]) and -Jf v(x,Q)t),(x, t)dxdt = fv(x,0)i](x,0)dx. From the
definition of h one can now easily check that m is a solution of (A).

To see that h, and hence u, is Holder continuous we write

\h(t')-h(t)\ = \[\h(t') -h(t))dx
K0

<| (' f\(avx)(x, t) + f(x, t)) dx dr\ + /"' f'\ v(y, t') - v(y, t) \ dy dx
\Jt Jo I     •'o •'0

«lllflo,! +|/|||2|í'-í|1/2 + c|í'-/|a.    D
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