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EXISTENCE OF LIMIT CYCLES
FOR COUPLED VAN DER POL EQUATIONS

NORIMICHI HIRANO AND SLAWOMIR RYBICKI\dagger

ABSTRACT. In this paper, we consider the existence of limit cycles of coupled van
der Pol equations by using $S^{1}$ -degree theory.

1. INTRODUCTION

Our purpose in the present paper is to discuss the exsitence of solutions for the
system of Lienard differential equations. Asecond order ordinary differential equa-
tion of the form

$u_{tt}+f(u)u_{t}+g(u)=e(t)$

is called aLienard differential equation, where $f$ : $\mathbb{R}^{N}arrow \mathbb{R}^{N}$ and $g:\mathbb{R}^{N}arrow \mathbb{R}^{N}$ are
usually assumed to be acontinuous function on $\mathbb{R}^{N}$ , and $e(t)$ : $\mathbb{R}arrow \mathbb{R}^{N}$ is aforcing
term. Recent 30 years, Lienard equation has been investigated by many authors
from various points of view. One of the reason why many mathemticians have been
studied this kind of equations is that abroad class of phenomina in Science and
Engineering is presented by the Lienard equation. Though the Lienard equation is
very simple, the investigation of solutions for the equation is very difficult. One of
most interesting problem is to find anontrivial solution of the autonomous Liearnd
equation. Let consider the Lienard problem with $f(t)=\epsilon(t^{2}-1)$ and $g(t)=t$ for
$t\in \mathbb{R}$ , where $\epsilon>0$ is agiven constant. That is we consider the problem

$u_{tt}+\epsilon(u^{2}-1)u_{t}+u=0$ $t\in \mathbb{R}$ (1.1)

Problem (1.1) is known as van del Pol equation. The van der Pol euation has
been studied by many authors due to its adoption to wide variety of mechnical)
electonical, biological and economical systems, and the behavior of the solutions is
now well understood(cf. Guchenheimer and Holmes $[[?]]$ . When $e(t)=0$ , Problem
(1.1) has exactly one limit cycle, that is there exists aunique nontrivial periodic
solution of (1.1). The period of the solution is determined by $\epsilon>0$ . The proof
of the existence of the limit cycle is basend on the Poincare-Bendixson theorem.
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Since Poincare-Bendixson theorem is valid only in two dimensional Euclidian space,
the proof for the exsitence of llimit cycle of (1.1) is not effective in n-dimensional
cased $( n\geq 2)$ . We will see in this paper that there is alimit cycle for asystem of
autonomous van $\mathrm{d}\mathrm{e}\mathrm{l}$ Pol type equations.

On the other hand, the Lienard equation with aperiodic forcing term $e(t)$ has
also been studied by many authors. It is known under some conditions, the Liniard
problem has multiple periodic solutions and sometimes the dynamics of the solu-
tions are chaotic. We will see that under suitable conditions, $\mathrm{n}$-dimensional Lienard
equation has periodic solutions.

2. LIENARD EQUATION WITH PERIODIC FORCING TERMS

In this section, we discuss the Lienard equation of the form

$u_{tt}+ \frac{d}{dt}F(u)+Au=e(t)$ $t\in \mathbb{R}$ (V)

where $N\geq 2,$ $u\in \mathbb{R}^{N},$ $A$ is $(n, n)$ -matrix, $F$ : $\mathbb{R}^{N}arrow \mathbb{R}^{N}$ is a $C^{1}$ function
and $e$ : $\mathbb{R}arrow \mathbb{R}^{N}$ is acontinuous $T$-periodic function with period $T>0$ . In [He],
Egami and the author established an existence result for the periodic solution of
problem V. To state the result, we need to give some notations In the following, $|\cdot|$

and $\langle\cdot, \cdot\rangle$ stands for the norm and the inner product of $\mathbb{R}^{N}$ , respectively. For each
$u\in L^{2}([0, T];\mathbb{R}^{N})$ , we put $||u||=( \int_{0}^{T}|u|^{2})^{1/2}$ . We also set

$H=\{u\in C([0, T];\mathbb{R}^{N})$ : $u(0)=u(T),$ $\int_{0}^{T}|u|^{2}dt<\infty,$ $\int_{0}^{T}|u_{t}|^{2}dt<\infty\}$ .

The norm of $H$ is defined by $||u||_{H}=(||u||^{2}+||u_{t}||^{2})^{1/2}$ for each $u\in H$ . We also
put

$\tilde{H}=\{u\in H$ : $\int_{0}^{2\pi}u(t)dt=0\}$ .

We denote by $B_{r}(0)$ the open ball in $H$ centered at 0with radius $r>0$ . $\partial B_{r}(0)$

denotes the boundary of $B_{r}(0)$ . That is $\partial B_{r}(0)=\{u\in H:||u||=r\}$ . For each
compact mapping $L:Harrow H$ and an open set $U$, we denote by $\deg(I-L, U, 0)$ the
Browder degree of $L$ on $U$ with respect to 0. We consider the case that $F$ has the
form

$F(x_{1}, x_{2}, \cdots, x_{n})=(\begin{array}{l}F_{2}(x_{2})F_{1}(x_{1})F_{N}(\cdots x_{N})\end{array})$ (F1)
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where $F_{i}$ : $\mathbb{R}arrow \mathbb{R}$ is continuous mapping. We put $f_{i}=F_{i}’$ for $1\leq i\leq N$ . We
assume that each $f_{i}$ satisfies

$f_{i}(0)<0$ and $\frac{f_{i}(s)-f_{i}(0)}{s^{2}}>0$ for $s\neq 0$ . (F2)

We put $\mu=\min\{\frac{f_{\}(s)-f\dot{.}(0)}{s^{2}}$ : $s\neq 0,1\leq i\leq N\}$ and $\nu=\min\{|f_{i}(0)| : 1\leq i\leq N\}$ .
We also assume that

$0<\langle Au, u\rangle\leq|u|^{2}$ for all $u\in \mathbb{R}^{N}\backslash \{0\}$ . (A1)

Then we have the following existence result[He]:

Theorem 2.1. Suppose that (Fl), (F2) hold. Let e $\in\tilde{H}$ . Then the problem (V)
has a T -periodic solution.

The proof of this theorem is based on the degree theory. For each $\lambda\in[0,1]$ ,
$\delta\in[0,1]$ , we define amapping $T(\lambda, \delta)$ : $\tilde{H}arrow\tilde{H}$ by $v=T(\lambda, \delta)u$ , where $v\in\tilde{H}$ is
the solution of problem

$v_{tt}=- \delta\frac{d}{dt}F(u)-\lambda u+\delta e(t)$ on $[0, T]$

$v(0)=v(T),$ $v_{t}(0)=v_{t}(T)$

It then easy to see that $T(\lambda, \delta)$ is acompact mapping. Next we define ahomotopy
of mappings on $\tilde{H}$ by

$H(t)u=\{$

$T(1-3(1-\lambda_{0})t, 1)u$ for $t\in[0,1/3]$ and $u\in H$

$T(\lambda_{0},2-3t)u$ for $t\in[1/3,2/3]$ and $u\in H$ .
$T(3\lambda_{0}(1-t), \mathrm{O})u$ for $t\in[2/3,1]$ and $u\in H$ .

Then $H$ : $[0, 1]$ $\mathrm{x}\tilde{H}arrow\tilde{H}$ is ahomotopy of compact mappings. By calculating the
degree of the

homotopy $H$, we can get the existence of periodic solutions. We can derive some
properties of the solutions.

Asolution $u$ of problem (V) is said to be an attractor if there exists aneighborhood
$U$ of the set $\{(u(t), u_{t}(t)) : t\in T\}\subset \mathbb{R}^{N}\cross \mathbb{R}^{N}$ such that for each $(u_{0}, v_{0})\in U$,

$\lim_{tarrow\infty}\sup\{|(\tau(t, (u_{0}, v_{0}), \tau_{t}(u_{0}, v_{0}))-(v, w)| : (v, w)\in\{(u(t), u_{t}(t)) : t\in T\}\}=0$,

where $\tau(t, (u_{0}, v_{0}))$ is the solution of initial value problem

$u_{tt}+ \frac{d}{dt}F(u)+Au=e(t)$

$u(0)=u_{0}$

$u_{t}(0)=v_{0}$ .
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On the other hand, asolution $u$ of (V) is said to be arepeller if there exists a
neighborhood $U$ of the set $\{(u(t), u_{t}(t)) : t\in T\}$ such that for each $(u_{0}, v_{0})\in U$,
there exists $t_{0}>0$ such that

($\tau(t, (u_{0}, v_{0})),$ $\tau_{t}(t, (u_{0}, v_{0}))\not\in U$ for all $t\geq t_{0}$ .

Theorem 2.2. Suppose that (Fl) and (F2) hold. Let $e\in\tilde{H}$ .
(1) if $||e||$ is sufficiently small, there exists a solution $et\in\tilde{H}$ of (V) which is $a$

repeller;
(2) if $||e||$ is sufficiently large, there exists a solution $u\in\tilde{H}$ of (V) which is an
attractor.

The proof of above theorem is also based on the degree theory.

3. EXISTENCE OF LIMIT CYCLES

For the existence of limit cycle of autonormous Lienard equation, we consider a
coupled van $\mathrm{d}\mathrm{e}\mathrm{l}$ Pol equations. The existence of limit cycles for coupled van der Pol
equations is not yet established except some restrictive cases(cf. [6]). In the present
paper, we discuss the existence of limit cycles for coupled van der Pol equations by
using $S^{1}$ -degree theory. To avoid unnecessary complexity, we restrict ourselves to
the case that $n=2$ . That is we consider the problem

$\{$

$\ddot{u}_{1}+\epsilon_{1}(u_{1}^{2}-1)\dot{u}_{1}+u_{1}+c_{2}u_{2}=0$

$\ddot{u}_{2}+\epsilon_{2}(u_{2}^{2}-1)\dot{u}_{2}+c_{1}u_{1}+u_{2}=0$

(P)

Our argument below remains valid for the case that $n>2$ . We impose that following
condition on $c_{1}$ and $c_{2}$ :

$c_{1}\cdot c_{2}\in(0,1)\cup(1, +\infty)$ (A)

We can now state our main result:

Theorem 3.3. For any $\alpha$ sufficiently $large_{f}$ there exist $\epsilon_{1},$ $\epsilon_{2}>0$ such that problem
(P) has a nontrivial periodic solution $u\in C^{2}(\mathbb{R})\mathrm{x}C^{2}(\mathbb{R})$ with period $2\pi\alpha$ .

The proof of theorem above is based on the theory of $S^{1}$ -degree. We will explain
the frame work of the theory and show how the theory is applied to our problem.

$S^{1}$ -degree:We denote by $\Gamma_{0}$ the free abelian group generated by $\mathrm{N}$ and let $\Gamma=$

$\mathbb{Z}_{2}\oplus\Gamma_{0}$ . Then $\gamma\in\Gamma$ means $\gamma=\{\gamma_{f}\}$ , where $\gamma_{0}\in \mathbb{Z}_{2}$ and $\gamma_{t}\in \mathbb{Z}$ for $r\in \mathrm{N}$ . Let
$V$ be aHilbert space which is arepresentation of $S^{1}$ . For each proper subgroup
$\mathbb{Q}$ of $S^{1}$ and each $S^{1}$ -equivariant subset $X$ of $V$, we denote $X^{\mathbb{Q}}$ the subset of fixed
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points of $\mathbb{Q}$ in $X$ . For each $U\subset V\oplus \mathbb{R}$ and each $S^{1}$ equivariant compact mapping
$f$ : $Uarrow V_{)}$ we define, by using the fact that there is aone-t0-0ne correspondence
between $\mathrm{N}$ and the proper, closed subgroups $\mathbb{Q}$ of $S^{1},$ $Deg(I-f, U)=\{\gamma_{r}\}\in\Gamma$ by
$\gamma_{0}=\deg_{S^{1}}(I-f, U)$ and $\alpha_{r}=\deg_{\mathbb{Q}}(I-f, U)$ if $r=|\mathbb{Q}|$ , where $\mathbb{Q}$ is aclosed proper
subgroup of $S^{1}$ (cf. [1] and [5]). The $S^{1}$ -degree theory has been studied by several
authors. The following theorem has been formulated and proved in [1] and describe
properties of $S^{1}$ -degree.

Theorem 3.4 ([1]). Let $V$ be a Hilbert space which is a representation of $S^{1},$ $U$ be
an open bounded, invariant subset of $V\oplus \mathbb{R}$ and $f$ : $Uarrow V$ is a compact $S^{1}$ -mapping
such that
$(I-f)(\partial U)\subset V\backslash \{0\}$ . Then there exists a $\Gamma$ -valued function $Deg(I-f, U)$ called
$S^{1}$ -degree, satisfying the following properties:

(a) if $\mathrm{D}\mathrm{e}\mathrm{g}_{\mathbb{Q}}(I-f, U)\neq 0$ , then $(I-f)^{-1}(0)\cap U^{\mathbb{Q}}\neq\phi$ ,
(b) if $U_{0}\subset U$ is open, invariant and $(I-f)^{-1}(0)\cap U\subset U_{0}$ , then

$\mathrm{D}\mathrm{e}\mathrm{g}(I-f, U)=\mathrm{D}\mathrm{e}\mathrm{g}(I-f, U_{0})$ ;

(c) if $h$ : $cl(U)\cross[0,1]arrow V$ is an $S^{1}$ -equivariant homotopy of compact mappings
such that $(I-h)(\partial U\cross[0,1])\subset V\backslash \{0\}$ . Then

$\mathrm{D}\mathrm{e}\mathrm{g}(I-h_{0}, U)=\mathrm{D}\mathrm{e}\mathrm{g}(I-h_{1}, U)$ .

To apply $S^{1}$ -degree theory to our problem, we need some preparations. We denote
by $<.,$ $\cdot>_{2}$ the scalar product of $L^{2}([0,2\pi], \mathbb{R}^{2})$ . Define
$\mathbb{H}_{per}=$ { $v:\mathbb{R}arrow \mathbb{R}^{2}$ : $v$ is absolutely continuous, $<\dot{v},\dot{v}>_{2}:<\infty$ and $v(t)=v(t+2\pi)$ :: $\forall:t\in \mathbb{R}$ }
and scalar products $<\cdot,$ $\cdot>_{\mathrm{H}_{\mathrm{p}er}}$ : $\mathbb{H}_{per}\cross \mathbb{H}_{per}arrow \mathbb{R}$ as follows

$<w,$ $v>_{\mathbb{H}_{per}}=<w,$ $v>_{2}+<\dot{w},\dot{v}>_{2}$ .
Let $S^{1}=\{z\in \mathbb{C}:::|z|=1\}$ be agroup of complex numbers with an action given
by multiplication. For any fixed $m\in \mathrm{N}$ we denote by $\mathbb{Z}_{m}$ acyclic group of order $m$

and define homomorphism $\rho_{m}$ : $S^{1}arrow GL(2, \mathbb{R})$ as follows

$\rho_{m}(e^{\sqrt{-1}\theta})=[\cos(m\theta)\sin(m\theta)$ $-\sin(m\theta)\cos(m\theta)]$ .

It is obvious that $\mathbb{R}[1, m]:=(\mathbb{R}^{2}, \rho_{m})$ is atw0-dimensional representation of the
group $S^{1}$ . We will denote by $\mathbb{R}[k, m]$ the direct sum of $k$ copies of representation
$\mathbb{R}[1, m]$ and by $\mathbb{R}[k, 0]k$ -dimensional trivial representation of the group $S^{1}$ . Define
action $\rho:S^{1}\cross \mathbb{H}_{per}arrow \mathbb{H}_{per}$ of the group $S^{1}$ as follows

$\rho(\theta, v(t))=v(t+\theta)$ (3.1)
In the following fact we collect some well known properties of the space $\mathbb{H}_{per}$ .

Under the above assumptions:
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Fact 3.1. 1. $(\mathbb{H}_{per}, <., \cdot>_{\mathbb{H}_{p\mathrm{e}r}})$ is a separable Hilbert space,
2. $(\mathbb{H}_{per}, <., \cdot>_{\mathbb{H}_{per}})$ is an orthogonal representation of the group $S^{1}$ with $S^{1}$ -action

given by (3.1),

3. $\mathbb{H}_{per}=\oplus \mathbb{R}[2, n]n=0\infty$ .

Define
$\mathbb{H}=$ { $v$ : $\mathbb{R}arrow \mathbb{R}^{2}$ : $v$ is absolutely continuous, $<\dot{v},\dot{v}>_{2}<\infty$ and $v(t)=-v(\pi+t)\forall t\in \mathbb{R}$}‘
In the following fact we collect some well known properties of the space $\mathbb{H}_{0}$ .

Under the above assumptions:

Fact 3.2. 1. $\mathbb{H}=((\mathbb{H}_{perp})^{\mathbb{Z}_{2}})^{[perp]}$ ,
2. $(\mathbb{H}, <., \cdot>_{\mathbb{H}})$ is a separable Hilbert space,
3. $(\mathbb{H}, <., \cdot>_{\mathbb{H}})$ is an orthogonal representation of the group $S^{1}$ with $S^{1}$ -action

given by the restriction of (3.1),

4. $\mathbb{H}=\oplus \mathbb{R}[2,2n-1]n=1\infty$ .

Let $v=(v_{1}, v_{2})$ be aperiodic solution of (P) with period $2\pi\alpha$ for some $\alpha>1$ .
Then by putting $t=\alpha\tau$ and $u(\tau)=(u_{1}(\tau), u_{2}(\tau))=(v_{1}(\alpha\tau), v_{2}(\alpha\tau))$ , we find that
$u=(u_{1}, u_{2})\in \mathbb{H}$ is a $2\pi$ -periodic solution of problem

$\{$

$\ddot{u}_{1}+\epsilon_{1}\alpha(u_{1}^{2}-1)\dot{u}_{1}+\alpha^{2}(u_{1}+c_{2}u_{2})=0$

$\ddot{u}_{2}+\epsilon_{2}\alpha(u_{2}^{2}-1)\dot{u}_{2}+\alpha^{2}(c_{1}u_{1}+u_{2})=0$

(3.2)

Here we put

$F(u)=(\begin{array}{l}\epsilon_{1}(\frac{1}{3}u_{1}^{3}-u_{1})\epsilon_{2}(\frac{\mathrm{I}}{3}u_{2}^{3}-u_{2})\end{array})$ , $A=(\begin{array}{ll}\mathrm{l} c_{2}c_{1} 1\end{array})$ .

We define asmooth $S^{1}$ -equivariant function 0:IH$[ arrow[0,1]$ by the following

formula $\theta(u)=\eta(\frac{||u||^{2}}{2})$ .
Denote by $\pi$ : $\mathbb{R}[2,0]\oplus \mathbb{H}arrow \mathbb{H}$ the $S^{1}$ -equivariant orthogonal projection.
For each $\alpha>0$ and $\delta\in[0,1]$ , we define amapping $G(\cdot, \alpha, \delta)$ : $\mathbb{H}arrow \mathbb{H}$ by

$G(v, \alpha, \delta)=-\delta\alpha\pi(\int_{0}^{t}F(v(\tau))d\tau)+\alpha^{2}\theta(v)L(v)$
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Then each solution $u\in \mathbb{H}$ of problem $G(u, \alpha, \delta)=u$ for some $(\alpha, \delta)\in \mathbb{R}^{+}\cross \mathbb{R}^{+}$

satisfies

$..+ \delta\alpha\frac{d}{dt}F(u)+\alpha^{2}\theta(u)Au=0$ (3.3)

We will also consider the following family of differential equations

$..+ \delta\alpha\frac{d}{dt}F(u)+\alpha^{2}Au=0$ (3.4)

Then one can see that there exists acontinuous function $m:\mathbb{R}^{+}arrow \mathbb{R}^{+}$ such that
$||u||\leq m(\alpha)$ for each solution $u$ of 3.3.

We define abounded operator $E:\mathbb{H}arrow \mathbb{H}$ as follows

$E(v)=\pi(\begin{array}{ll}\epsilon_{1}\int_{0}^{t} v_{1}dt\epsilon_{2}\int_{0}^{t} v_{2}dt\end{array})$ for each $v=(v_{1}, v_{2})\in \mathbb{H}$ .

For each $\alpha>0$ and 66 $[0, 1]$ , we define amapping $H(\cdot, \cdot, \alpha, \delta)$ : $\mathbb{H}\oplus \mathbb{R}arrow \mathbb{H}$ by
$H(u, \lambda, \alpha, \delta)=G(u, \alpha, \delta)+\lambda\alpha E(u)$ .

It is easy to see that $H(\cdot, \cdot, \alpha, \delta)$ is an $S^{1}$ -equivariant compact mapping. One can
see that if $u\in \mathbb{H}$ satisfies $u=H(\cdot, \cdot, \alpha, \delta)$ for $(\alpha, \delta)\in \mathbb{R}^{+}\cross \mathbb{R}^{+}$ then

$\ddot{u}+\delta\alpha\frac{d}{dt}F(u)+\alpha^{2}\theta(u)Au=\lambda\alpha\frac{d^{2}}{dt^{2}}E(u)$ (3.5)

That is

$\{$

$\ddot{u}_{1}+\delta\epsilon_{1}\alpha(u_{1}^{2}-1)\dot{u}_{1}+\alpha^{2}\theta(u)(u_{1}+c_{2}u_{2})=\epsilon_{1}\alpha\lambda\dot{u}_{1}$

$\ddot{u}_{2}+\delta\epsilon_{2}\alpha(u_{2}^{2}-1)\dot{u}_{2}+\alpha^{2}\theta(u)(c_{1}u_{1}+u_{2})=\epsilon_{2}\alpha\lambda\dot{u}_{2}$

(3.6)

If $\theta(u)>0$ and $1+ \frac{\lambda}{\delta}>0$ , we put $\overline{\alpha}=\alpha\sqrt{\theta(u)}$ and
$w= \frac{u}{\sqrt{1+\frac{\lambda}{\delta}}}$

. Then (3.6) can

be rewritten as

$\{$

$\ddot{w}_{1}+\frac{\epsilon_{1}(\delta+\lambda)}{\sqrt{\theta(u)}}\tilde{\alpha}(w_{1}^{2}-1)\dot{w}_{1}+\tilde{\alpha}^{2}(w_{1}+c_{2}w_{2})=0$

$\ddot{w}_{2}+\frac{\epsilon_{2}(\delta+\lambda)}{\sqrt{\theta(u)}}\tilde{\alpha}(w_{2}^{2}-1)\dot{w}_{2}+\overline{\alpha}^{2}(c_{1}w_{1}+w_{2})=0$

(3.7)

Then one can see that $w=(w_{1}, w_{2})$ is asolution of (P) with $\epsilon_{1},$ $\epsilon_{2}$ and $\alpha$ replaced

by $\epsilon_{1}\frac{\delta+\lambda}{\sqrt{\theta(u)}},$ $\epsilon_{2}\frac{\delta+\lambda}{\sqrt{\theta(u)}}$ and $\overline{\alpha}$ .
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Lemma 3.1. 1. $\iota fc_{1}c_{2}\in(0,1)$ , then

$DEG_{\mathbb{Q}}(Id-H(\cdot, \cdot, \alpha, 0), U)=\{\begin{array}{l}0,\mathbb{Q}=S^{1}2,\mathbb{Q}=Z_{2m-1}form\in\{\mathrm{l},\ldots,n_{0}-1\}2,\mathbb{Q}=Z_{2n_{0}-1}and\mu_{n_{0}}^{-}>\frac{1}{\alpha^{2}}1,\mathbb{Q}=Z_{2n_{0}-1}and\mu_{n_{0}}^{-}<\frac{1}{\alpha^{2}}0,otherwise\end{array}$

where $U=\{u\in \mathbb{H} : m<||u||<M\}\cross[-1,1]$ ,
2. if $c_{1}c_{2}>1$ , then

$DEG_{\mathbb{Q}}(Id-H(\cdot, \cdot, \alpha, 0), U)=\{$

0, $\mathbb{Q}=S^{1}$ ,

1, $\mathbb{Q}=Z_{2m-1}$ for $m\in\{1, \ldots, n_{0}\}$ ,

0, otherwise,

where $U=\{u\in \mathbb{H} : m<||u||<M\}\cross[-1,1]$ .
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