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The three-well problem consists in looking for minimizers
u : Ω ⊂ R

3 → R
3 of a functional I(u) =

∫
Ω

W (∇u) dx, where
the elastic energy W models the tetragonal phase of a phase-
transforming material. In particular, W attains its minimum
on K =

⋃3
i=1 SO(3)Ui, with Ui being the three distinct diag-

onal matrices with eigenvalues (λ, λ, λ̃), λ, λ̃ > 0 and λ 6= λ̃.
We show that, for boundary values F in a suitable relatively
open subset of M

3×3 ∩ {F : det F = det U1}, the differential
inclusion {

∇u ∈ K in Ω

u(x) = Fx on ∂Ω .

has Lipschitz solutions.

1 Introduction

The direct method in the calculus of variations is a powerful tool to prove the
existence of minimizers for variational integrals that are lower semicontinuous
in some class of admissible functions A. In the context of nonlinear elasticity,
the total energy of the system is typically modeled by

I(u) =

∫

Ω

W (∇u) dx

where Ω ⊂ R
3 is the reference configuration, u : Ω → R

3 the elastic de-
formation, and W : M

3×3 → R the free energy density which depends
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only on the deformation gradient ∇u. We may assume that W ≥ 0 with
K = {X : W (X) = 0} 6= ∅ and that W satisfies a p-growth condition of
the form c1|X|p − c2 ≤ W (X) ≤ c3(1 + |X|p) with p > 1 and c1, c3 > 0;
the natural space of admissible functions is then a subspace of the Sobolev
space W 1,p(Ω; R3) subject to suitable displacement and traction boundary
conditions. In this setting, the direct method is applicable if I is weakly
lower semicontinuous in W 1,p and Morreys [16] fundamental theorem states
that I is wealky lower semicontinuous if and only if W is quasiconvex in the
sense that

∫

U

W (F ) dx ≤

∫

U

W
(
F + ∇φ

)
dx

for all F ∈ M
3×3, for all φ ∈ C∞

0 (U ; R3), and for all open and bounded sets
U .

In this note we are interested in variational models for phase transfor-
mations in solids in the spirit of [2, 3, 5] for which the energy fails to be
quasiconvex in the sense of Morrey. The fact that the direct method based
on quasiconvexity of W and lower semicontinuity of I cannot be applied
does not imply that the variational problem does not have minimizers. In
fact, several methods based on Gromov’s idea of convex integration or on
Baire’s category theorem have been developed that allow one to estabish the
existence of solutions to the partial differential inclusion

∇u ∈ K a.e.,

which are automatically minimizers of I(u), see e.g. [7, 8, 13, 14, 18, 20,
17, 15] and the references therein. In the case of affine boundary conditions
u(x) = Fx on ∂Ω, this method works if the matrix F belongs to a certain
semiconvex hull of K, the rank-one convex hull Krc, and Krc satisfies an
additional geometric condition, see Section 2 for more information. This
approach is very powerful in its generality, but few explicit examples are
known in the literature, see in particular Problem 17 in [1]. In [18] existence
of solutions for the two-well problem in two dimensions was obtained. This
paper presents the first application to a multi-well problem with a discrete
point group in three dimensions and with physical relevance; for a related
case with continuous symmetry see [6, 9].

Assume for definiteness that the energy density W describes the tetrag-
onal phase of a material that undergoes a cubic to tetragonal phase trans-
formation, such as InTl or NiAl. In this case the zero set K of W is given
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by

K =
3⋃

i=1

SO(3)
(
λ2ei ⊗ ei +

1

λ

(
Id − ei ⊗ ei

))
(1.1)

where {e1, e2, e3} is the standard basis in R
3, λ > 1, and SO(3) the group

of proper rotations, i.e., of all matrices Q ∈ M
3×3 with QT Q = Id and

det Q = 1. More generally we consider the set K given by

K =
6⋃

i=1

SO(3)Ui (1.2)

where U1 = diag(λ1, λ2, λ3) with 0 < λ1 ≤ λ2 ≤ λ3 and where at least
one inequality is strict. The remaining matrices U2, . . . , U6 are given by the
permutations of the three eigenvalues on the diagonal. For simplicity we
assume that λ1λ2λ3 = 1.

Our main result is the following existence theorem, which provides a
partial answer to a question raised by Ball [1, Problem 17] and discussed in
the lower part of page 40 there.

Theorem 1.1. Let K be as in (1.2), and let Ω ⊂ R
3 be a bounded domain.

Then there is a ρ > 0 such that for all v ∈ C1,α(Ω; R3) with

∇v ∈ Bρ(Id) ∩ {X : det X = 1} everywhere (1.3)

there exists a Lipschitz solution to the partial differential relation

{
∇u ∈ K in Ω,

u = v on ∂Ω .

Moreover, u can be obtained arbitrarily close to v, in the supremum norm.

It is clear that any solution u given in Theorem 1.1 is a minimizer of I.
Concerning the regularity of the solutions, the rigidity results in [12] imply
that ∇u is not a function of bounded variation if K is as in (1.1). This result
is a generalization of the corresponding statement in two dimensions in [11].
This implies that these ground states have necessarily infinite surface energy
in the sense that the area of the phase boundaries, i.e., the perimeter of the
sets Ei = {x ∈ Ω : ∇u(x) ∈ SO(3)Ui}, is infinite. Every solution with finite
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surface area is necessarily locally a function of one variable, also referred to
as a simple laminate, which cannot have affine boundary conditions unless
F ∈ K.

The proof of Theorem 1.1 uses the approach by Müller and Šverák [18],
who have extended Gromov’s method of convex integration to the case of
Lipschitz mappings with constraints on the determinant, together with con-
structions which are related to those in [10]. The key difficulty is that the
rank-one convex hulls of the sets K in (1.1) and (1.2) are not explicitly
known. In [4] it was shown that the identity belongs to Krc. In [10] the hull
was shown to be eight-dimensional, and it was shown that a relatively open
neighbourhood of the identity matrix Id, with radius scaling quadratically
in λ3 − λ1, is contained in Krc. However, this does not suffice in order to
construct solutions since it does not deliver an in-approximation, see Section
2. The main step in the proof of Theorem 1.1 is to show that there are matri-
ces F ∈ Krc arbitrarily close to K for which an open neighbourhood is also
contained in Krc. Once this statement is verified by an explicit construction,
an in-approximation of K can easily be obtained. The convex integration
approach of [18] provides the existence.

2 Preliminaries

A function f : M
m×n → R is said to be rank-one convex if t 7→ f(F + tR)

is convex in t for all F ∈ M
m×n and all R ∈ M

m×n with rank(R) = 1.
The rank-one convex hull Krc of a compact set K ⊂ M

m×n is the set of all
matrices F that cannot be separated from K by rank-one convex functions,

Krc =
{
F : f(F ) ≤ sup

X∈K
f(X) for all f rank-one convex

}
.

It follows from the definition that for A, B ∈ K with rank(A − B) = 1 the
entire segment

[A, B] =
{
λA + (1 − λ)B, λ ∈ [0, 1]

}

is contained in Krc. To iterate this construction, we define K(0) = K and

K(i+1) = K(i) ∪
{
[A, B] : A, B ∈ K(i), rank(A − B) = 1

}
.
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Matrices in K(i) are also referred to as averages of ith order laminates. The
lamination convex hull K lc is the infinite union

K lc =
∞⋃

i=1

K(i).

The proof of Theorem 1.1 is based on the construction of a large subset
of K lc using this iterated construction. However, in general the rank-one
convex hull of a set K cannot be obtained through this process and the
inclusion K lc ⊂ Krc may be strict. It is an open problem to find the rank-
one convex hulls for the sets (1.1) and (1.2) and to decide whether they can
be determined by taking finitely many convex combinations of matrices along
rank-one lines.

Following [18] we define Σ = {X ∈ M
n×n : det X = 1}. Suppose that

K ⊂ Σ. Then a sequence Ui ⊂ Σ is an in-approximation of K in Σ if the
sets Ui are open in Σ and if the following three conditions are satisfied:

i) the Ui are uniformly bounded;

ii) Ui ⊂ (Ui+1)
rc;

iii) Ui → K in the following sense: if Fi ∈ Ui and Fi → F , then F ∈ K.

In this situation the following existence result holds.

Theorem 2.1 (Theorem 1.3 in [18]). Suppose that Ui is an in-approximation
for the compact set K ⊂ Σ, and that v ∈ C1,α(Ω; Rn) with ∇v ∈ U1 in Ω.
Then there exists a Lipschitz map u ∈ W 1,∞(Ω; Rn) with

∇u ∈ K a.e. in Ω,

u = v on ∂Ω.

In view of this result the key step in the proof of Theorem 1.1 is the con-
struction of an in-approximation. This is accomplished in the next section.

3 Construction of an in-approximation

We start by recalling a result on the two-well problem in two dimensions.
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Lemma 3.1. Let s, t > 0,

V1 =

(
s 0
0 t

)
, V2 =

(
t 0
0 s

)
.

Then matrices X of the form X = QF , for Q ∈ SO(2),

F =

(
s′ a
0 t′

)
,

are in the lamination convex hull of SO(2)V1 ∪ SO(2)V2 if and only if

s′t′ = st , 2|s′| |a| + a2 ≤ |s − t|2 − |s′ − t′|2 .

Proof. This follows from the characterization of the semiconvex hulls for the
two-well problem in two dimensions,

(SO(2)V1 ∪ SO(2)V2)
lc =

{
F : det F = det V1 , |F (e1 ± e2)| ≤ |V1(e1 ± e2)|

}

see [3, 19].

Lemma 3.2. Let α > 0 and λi ∈ [1/α, α], 1 ≤ i ≤ n. Then, for any
F ∈ M

n×n there is Q ∈ SO(n) such that QF is upper triangular, and

|Q − Id| ≤ C|F − diag({λi})| .

Here C depends only on α and n.

Proof. It suffices to prove the statement if the right-hand side is small, in
particular we can suppose F to have full rank with “nearly” orthogonal
columns. For simplicity we write Fi = Fei for the ith column in F . There is
nothing to prove for n = 1. Assume the statement holds for some n− 1 ≥ 0.
Then it suffices to show that we can find Q close to the identity, which rotates
F1 onto e1. To do this, apply the Gram-Schmidt orthogonalization algorithm
to (F1, . . . , Fn), to generate an orthonormal set f1, . . . , fn, with f1 parallel to
F1. It is clear that |Fi − λifi| ≤ Cn|F − diag({λi})|, and the same holds for
|ei − fi|. Set Q =

∑
ei ⊗ fi. This concludes the proof.

Proposition 3.3. Let α > 0, 0 < 1/α < λ1 ≤ λ2 ≤ λ3 < α, and let
U1, . . . , U6 be the six diagonal matrices with the six permutations of λ1, λ2, λ3
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on the diagonal, not necessarily distinct. Let ε > 0, and suppose that µi,
i = 1, 2, 3, satisfy

µ1µ2µ3 = λ1λ2λ3 , λ1 ≤ µ1 ≤ µ2 ≤ µ3 ≤ λ3

with
λ1 + ε ≤ µi ≤ λ3 − ε , i = 1, 2, 3 ,

and
|µi − λi| ≤ α ε , i = 1, 2, 3 ,

Then there exists a constant C which depends only on α, such that

Bη(diag(µ1, µ2, µ3)) ∩ {F : det F = λ1λ2λ3} ⊂

(
6⋃

i=1

SO(3)Ui

)lc

for all η ≤ Cε2. If additionally

min (λ3 − λ2, λ2 − λ1) ≥
1

α
(3.1)

then the same holds for all η ≤ Cε.

Proof. In this proof α denotes the (fixed) constant entering the statement,
C a generic constant which might change from line to line and depends only
on α. Let V0 = diag(µ1, µ2, µ3), F ∈ Bη(V0) ∩ {X : det X = λ1λ2λ3}, and
K = ∪6

i=1SO(3)Ui. By Lemma 3.2, there exists a Q ∈ SO(3) such that
F ′ = QF is upper triangular and |F ′−V0| ≤ Cη. By invariance of K lc under
rotations it suffices to show that F ′ ∈ K lc.

We follow [10] and write

F ′ =

(
X u

0 0 δ

)
, X ∈ M

2×2, u ∈ R
2 , δ ∈ R .

The goal of the next few steps is to write F ′ as an average along rank-one
lines of matrices which have a special structure and for which one can show
by an explicity construction that they are contained in K lc.
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Step 1. Let u1 = X2 = Xe2, u2 = X1 = Xe1, and

Y i = X − tiui ⊗ ei

for ti ∈ R to be chosen below. We observe that, for all values of ti,

det Y i = det X , i = 1, 2 .

Indeed, det(X − tu1 ⊗ e1) = (det X) det(Id − te2 ⊗ e1) = det X. We choose
ti ∈ R so that Y i = QD, with Q ∈ SO(2) and D diagonal. This corresponds
to the requirement that the two columns of Y i be orthogonal, i.e.

0 = Y 1
1 · Y 1

2 = (X1 − t1u1) · X2 = (X1 − t1X2) · X2 ,

and analogously for Y 2. Therefore we choose

t1 =
X1 · X2

|X2|2
, t2 =

X1 · X2

|X1|2
.

Since |X−diag(µ1, µ2)| ≤ Cη, we have |t1|+ |t2| ≤ Cη. This implies that the
angle between u1 and u2 is larger than 1/C, hence we can write the vector u
in the form

u = γ1u1 + γ2u2

with |γ1| + |γ2| ≤ Cη. We further define

si = sgn(γi)(|γ1| + |γ2|) ,

so that

u =
|γ1|

|γ1| + |γ2|
s1u1 +

|γ2|

|γ1| + |γ2|
s2u2 .

Therefore the matrix F ′ is the average of a laminate supported on

F 1 =

(
X s1u1

0 0 δ

)
, F 2 =

(
X s2u2

0 0 δ

)
.

Using the rank-one direction ui ⊗ (tiei − sie3) we see that F i is the average
of a laminate supported on

P i =

(
X − tiui ⊗ ei 2siui

0 0 δ

)
, P̃ i =

(
X + tiui ⊗ ei 0

0 0 δ

)
,

which obey |P i − V0|+ |P̃ i − V0| ≤ Cη. Notice that the first two columns of

each of the matrices P i are orthogonal, and that the P̃ i’s are block-diagonal.
These two matrices are dealt with in the following two steps.
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Step 2. We next consider the matrices P i, and we write P for simplicity
in the sequel. Let Q ∈ SO(3) be such that QP is upper triangular. By
Lemma 3.2 we have |QP − V0| ≤ Cη. Since the first two columns of P are
orthogonal,

QP =




µ′
1 0 a

0 µ′
2 b

0 0 µ′
3


 =

1

2




µ′
1 0 2a

0 µ′
2 0

0 0 µ′
3


 +

1

2




µ′
1 0 0

0 µ′
2 2b

0 0 µ′
3


 .

Here, |µ′
i − µi| + |a| + |b| ≤ Cη. Consider the second of the two matrices on

the right-hand side, call it R2. We apply Lemma 3.1 to the (2, 3) × (2, 3)
block. Let s, t > 0 be such that

st = µ′

2µ
′

3 , λ1 ≤ s ≤ t ≤ λ3 ,

and |s − t| is maximal. This implies that either s = λ1, or t = λ3, or both.
We observe that, for i = 2, 3,

µ′

i − λ1 ≥ µi − λ1 − |µ′

i − µi| ≥ ε − Cη ,

and
λ3 − µ′

i ≥ λ3 − µi − |µ′

i − µi| ≥ ε − Cη .

Choose η so small, that both terms are larger than ε/2. Then, it follows that

|s − t| ≥ |µ′

2 − µ′

3| +
1

2
ε .

By Lemma 3.1 the matrix R2 is in the lamination convex hull of

SO(3) diag(µ′

1, s, t) ∪ SO(3) diag(µ′

1, t, s) (3.2)

provided that
C|a| ≤ (s − t)2 − (µ′

2 − µ′

3)
2 . (3.3)

In turn,

(s − t)2 − (µ′

2 − µ′

3)
2 ≥ ε|µ′

2 − µ′

3| +
1

4
ε2 .

Since |a| ≤ Cη, condition (3.3) is always verified if η ≤ ε2/C. If (3.1)
additionally holds, then also |µ′

2−µ′
3| ≥ 1/C, and it suffices to take η ≤ ε/C.

Finally, the matrices in (3.2) are in the lamination convex hull of⋃6
i=1 SO(3)Ui. Indeed, assume s = λ1 (the case t = λ3 is analogous). Then,

µ′
1t = λ2λ3, and since t ≤ λ3, we have µ′

1 ≥ λ2. Another application of
Lemma 3.1 (with a = 0) concludes the proof of Step 2.
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Step 3. We consider P̃ i, and call it P̃ for simplicity. Let Q ∈ SO(3) be

such that QP̃ is upper triangular, and |Q − Id| ≤ Cη. Then,

QP̃ =




µ′
1 a 0

0 µ′
2 0

0 0 µ′
3




and we can treat it as R2 above.

Proof of Theorem 1.1. If λ2 ≤ (λ1 + λ3)/2 we set, for k ∈ N,

µk
1 = λ1(1 + 2−k) , µk

2 = λ2(1 + 2−k) , µk
3 = λ3(1 + 2−k)−2 ;

if instead λ2 > (λ1 + λ3)/2 we take

µk
1 = λ1(1 + 2−k) , µk

2 = λ2(1 + 2−k)−1/2 , µk
3 = λ3(1 + 2−k)−1/2 .

In both cases, for large enough k (say, k ≥ k0), we have

λ1 + c12
−k ≤ µk

1 ≤ µk
2 ≤ µk

3 ≤ λ3 − c12
−k ,

where c1 is constant depending on the λi, but not on k.
We define

Kk =
⋃

σ

SO(3) diag(µk
σ(1), µ

k
σ(2), µ

k
σ(3))

where σ runs over the six permutations of the indices {1, 2, 3} and, for some
c∗ > 0 to be chosen below,

Uk = {F : dist(F, Kk) ≤ c∗2
−2k , det F = 1} k ≥ k0 ,

and
Uk = (Uk0)rc , 0 ≤ k < k0 .

Proposition 3.3, applied with ε = c12
−k, guarantees that the set Uk is con-

tained in the lamination convex hull of Kk+1 ⊂ Uk+1 if c∗ is chosen small
enough. Moreover, Fk ∈ Uk and Fk → F imply F ∈ K. Therefore the family
Uk is an in-approximation of K. At the same time, by Proposition 3.3 there
is ρ > 0 such that

Bρ(Id) ∩ {X : det X = 1} ⊂ U1 = (Uk0)rc .

The result follows from Theorem 2.1.
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We finally show that if (3.1) holds then there exists an r > 0 such that K lc

contains the intersection of a full-dimensional half cone centered in U1 with
the set {X : det X = 1} ∩ B(U1, r). In general, we only obtain a quadratic
cusp.

Corollary 3.4. Let 0 < λ1 ≤ λ2 ≤ λ3, with λ1 6= λ3, λ1λ2λ3 = 1, and let
U1 = diag(λ1, λ2, λ3), and U2, . . . , U6 be obtained via permutation as above.
For t ∈ [0, 1], let V (t) = diag (eσ1t, eσ2t, eσ3t), where σi = ln λi. Then there is
a constant C such that

Br(t)(V (t)) ∩ {F : det F = 1} ⊂

(
6⋃

i=1

SO(3)Ui

)lc

,

where r(t) = |V (t) − U1|
2/C. If additionally

min (λ3 − λ2, λ2 − λ1) ≥
1

α∗

(3.4)

holds, then the same is true with r(t) = |V (t)−U1|/C. The constants depend
on {λi} and α∗ (in the second case).

Proof. Let µi(t) = eσit. By Proposition 3.3 there is a ball B1/C(Id) contained
in the hull. Therefore it suffices to prove the statement for t ≥ 1/C. Then,
if (3.4) holds, then it holds uniformly in t, in the sense that

min (µ3 − µ2, µ2 − µ1) (t) ≥
1

α′
∗

,
1

C
≤ t ≤ 1

for some α′
∗ > 0. Let

ε(t) = min (|µ1(t) − λ1|, |µ3(t) − λ3|) .

Clearly (1 − t)/C ≤ ε(t) ≤ C(1 − t) on [0, 1]. We define

c0 = max

{
|µi(t) − λi|

ε(t)
: i ∈ {1, 2, 3} , t ∈ [0, 1]

}
.

It is easy to see that c0 is finite. For each t, we apply Proposition 3.3 with
ε = ε(t), and µi = µ(t), and α = max(c0, λ3, 1/λ1) in the first case, α =
max(c0, λ3, 1/λ1, α

′
∗) if (3.4) holds. The constant α, and hence C, does not

depend on t.
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We obtain that, for each t,

Bη(t)(V (t)) ∩ {F : det F = 1} ⊂

(
6⋃

i=1

SO(3)Ui

)lc

,

for η(t) = ε2(t)/C, and for η(t)ε(t)/C if (3.4) holds. The conclusion follows,
since |V (t) − U1| ≤ Cε(t).

Using a compactness argument and constructing an in-approximation
with a suitably large U0 one easily establishes the following generalization.

Corollary 3.5. The result of Theorem 1.1 holds also if (1.3) is replaced by

∇v ∈
⋃

t∈[0,1)

6⋃

j=1

Br(t)(Vj(t)) ∩ {F : det F = 1} on Ω̄,

where Vj is obtained from V (defined as in Corollary 3.4) by permutation
of the entries on the diagonal, and r(t) = (1 − t)2/C. If additionally (3.1)
holds, then the same is true with r(t) = (1 − t)/C.

We finally observe that the quadratic estimate given in [10] for the size
of the neighborhood of the identity contained in the rank-one hull of K is
optimal. Even more, we show that a quadratic inner radius is optimal also
for the convex hull.

Lemma 3.6. Let λ1, λ2, λ3 > 0, λ1λ2λ3 = 1, and K be as in (1.2). Then for
any |t| ≥ c maxij |λi − λj|

2 the matrix



1 0 0
0 1 t
0 0 1



 (3.5)

is not in the convex hull of K. Here c is a universal constant.

Proof. Let ε = maxij |λi − λj |. The result is trivial for large ε, hence it
suffices to focus on small ε. In this regime, the lemma follows by testing the
matrix with the vectors v± = (1,±1, 1). Precisely, for any matrix F ∈ K we
have

|Fv+|
2 = |Fv−|

2 =

3∑

i=1

λ2
i =

3∑

i=1

[
1 + 2(λi − 1) + (λi − 1)2

]

≤ 3 + 2

3∑

i=1

(λi − 1) + 3ε2 .
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An analogous expansion of the determinant gives

1 = λ1λ2λ3 = 1 +

3∑

i=1

(λi − 1) + O(ε2) .

Therefore the linear term cancels, and the foregoing inequality simplifies to

|Fv±|
2 ≤ 3 + cε2 , ∀F ∈ K .

Let now G be the matrix given in the statement. A simple calculation shows
that

|Gv±|
2 = 2 + (1 ± t)2 = 3 ± 2t + t2 .

We conclude that |t| ≤ cε2.
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