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1. INTRODUCTION

The purpose of this paper is to prove the following result in birational algebraic
geometry:

Theorem 1.1. Let (X, A) be a projective Kawamata log terminal pair.
If A is big and Kx + A is pseudo-effective, then Kx + A has a log terminal
model.

In particular, it follows that if Kx + A is big, then it has a log canonical model
and the canonical ring is finitely generated. It also follows that if X is a smooth
projective variety, then the ring

R(X,Kx) = P H°(X,0x(mKx)),
meN
is finitely generated.

The birational classification of complex projective surfaces was understood by
the Italian algebraic geometers in the early 20th century: If X is a smooth complex
projective surface of non-negative Kodaira dimension, that is, x(X, Kx) > 0, then
there is a unique smooth surface Y birational to X such that the canonical class Ky
is nef (that is Ky - C' > 0 for any curve C' C Y). Y is obtained from X simply by
contracting all —1-curves, that is, all smooth rational curves E with Kx - F = —1.
If, on the other hand, (X, Kx) = —oo, then X is birational to either P? or a ruled
surface over a curve of genus g > 0.

The minimal model program aims to generalise the classification of complex
projective surfaces to higher dimensional varieties. The main goal of this program
is to show that given any n-dimensional smooth complex projective variety X, we
have:

o If K(X, Kx) > 0, then there exists a minimal model, that is, a variety YV
birational to X such that Ky is nef.

o If x(X, Kx) = —o0, then there is a variety Y birational to X which admits
a Fano fibration, that is, a morphism Y — Z whose general fibres F’
have ample anticanonical class — K.

It is possible to exhibit 3-folds which have no smooth minimal model, see for
example (16.17) of [37], and so one must allow varieties X with singularities. How-
ever, these singularities cannot be arbitrary. At the very minimum, we must still
be able to compute Ky - C for any curve C' C X. So, we insist that Ky is Q-
Cartier (or sometimes we require the stronger property that X is Q-factorial). We
also require that X and the minimal model Y have the same pluricanonical forms.
This condition is essentially equivalent to requiring that the induced birational map
¢: X --» Y is Kx-non-positive.
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There are two natural ways to construct the minimal model (it turns out that
if one can construct a minimal model for a pseudo-effective Kx, then one can
construct Mori fibre spaces whenever K x is not pseudo-effective). Since one of the
main ideas of this paper is to blend the techniques of both methods, we describe
both methods.

The first method is to use the ideas behind finite generation. If the canonical
ring

R(X,Kx) = @ H(X,Ox(mKx))
meN

is finitely generated and Kx is big, then the canonical model Y is nothing more
than the Proj of R(X,Kx). It is then automatic that the induced rational map
¢: X --» Y is Kx-negative.

The other natural way to ensure that ¢ is Kx-negative is to factor ¢ into a
sequence of elementary steps all of which are Kx-negative. We now explain one
way to achieve this factorisation.

If Kx is not nef, then, by the cone theorem, there is a rational curve C' C X such
that Kx - C' < 0 and a morphism f: X — Z which is surjective, with connected
fibres, onto a normal projective variety and which contracts an irreducible curve D
if and only if [D] € RT[C] C N;1(X). Note that p(X/Z) =1 and —Kx is f-ample.
We have the following possibilities:

e If dim Z < dim X, this is the required Fano fibration.

e Ifdim Z = dim X and f contracts a divisor, then we say that f is a divisorial
contraction and we replace X by Z.

e If dim Z = dim X and f does not contract a divisor, then we say that f is
a small contraction. In this case K  is not Q-Cartier, so that we cannot
replace X by Z. Instead, we would like to replace f: X — Z by its flip
fT: Xt — Z, where XT is isomorphic to X in codimension 1 and Kx+
is fT-ample. In other words, we wish to replace some K x-negative curves
by K x+-positive curves.

The idea is to simply repeat the above procedure until we obtain either a minimal
model or a Fano fibration. For this procedure to succeed, we must show that flips
always exist and that they eventually terminate. Since the Picard number p(X)
drops by one after each divisorial contraction and is unchanged after each flip, there
can be at most finitely many divisorial contractions. So we must show that there
is no infinite sequence of flips.

This program was successfully completed for 3-folds in the 1980s by the work of
Kawamata, Kollar, Mori, Reid, Shokurov and others. In particular, the existence
of 3-fold flips was proved by Mori in [26].

Naturally, one would hope to extend these results to dimension 4 and higher by
induction on the dimension.

Recently, Shokurov has shown the existence of flips in dimension 4 [34] and
Hacon and M°Kernan [§] have shown that assuming the minimal model program in
dimension n — 1 (or even better simply finiteness of minimal models in dimension
n —1), then flips exist in dimension n. Thus we get an inductive approach to finite
generation.

Unfortunately the problem of showing termination of an arbitrary sequence of
flips seems to be a very difficult problem and in dimension > 4 only some partial
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answers are available. Kawamata, Matsuda and Matsuki proved [I8] the termina-
tion of terminal 4-fold flips, Matsuki has shown [25] the termination of terminal
4-fold flops and Fujino has shown [5] the termination of canonical 4-fold (log) flips.
Alexeev, Hacon and Kawamata [I] have shown the termination of Kawamata log
terminal 4-fold flips when the Kodaira dimension of —(Kx + A) is non-negative
and the existence of minimal models of Kawamata log terminal 4-folds when either
A or Kx + A is big by showing the termination of a certain sequence of flips (those
that appear in the MMP with scaling). However, it is known that termination
of flips follows from two natural conjectures on the behaviour of the log discrep-
ancies of n-dimensional pairs (namely the ascending chain condition for minimal
log discrepancies and semicontinuity of log discrepancies; cf. [35]). Moreover, if
k(X,Kx + A) > 0, Birkar has shown [2] that it suffices to establish acc for log
canonical thresholds and the MMP in dimension one less.
We now turn to the main result of the paper:

Theorem 1.2. Let (X,A) be a Kawamata log terminal pair, where Kx + A is
R-Cartier. Let m: X — U be a projective morphism of quasi-projective varieties.
If either A is w-big and Kx + A is w-pseudo-effective or Kx + A is w-big, then

(1) Kx + A has a log terminal model over U,
(2) if Kx + A is w-big then Kx + A has a log canonical model over U, and
(3) if Kx + A is Q-Cartier, then the Oy -algebra

R(m, Kx +A) = @ mOx(Lm(Kx + A)),
meN

1s finitely generated.

We now present some consequences of Theorem [I.2] most of which are known to
follow from the MMP. Even though we do not prove termination of flips, we are able
to derive many of the consequences of the existence of the MMP. In many cases we
do not state the strongest results possible; anyone interested in further applications
is directed to the references. We group these consequences under different headings.

1.1. Minimal models. An immediate consequence of Theorem [I.2]is:

Corollary 1.1.1. Let X be a smooth projective variety of general type.
Then

(1) X has a minimal model,
(2) X has a canonical model,
(3) the ring
R(X,Kx) = @ H(X,Ox(mKx))
meN

1s finitely generated, and
(4) X has a model with a Kahler-Einstein metric.

Note that (4) follows from (2) and Theorem D of [4]. Note that Siu has announced
a proof of finite generation for varieties of general type using analytic methods; see
[36).

Corollary 1.1.2. Let (X,A) be a projective Kawamata log terminal pair, where
Kx + A is Q-Cartier.
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Then the ring

R(X, Kx +A) = @) HO(X, Ox (cm(Kx + A)))
meN
is finitely generated.

Let us emphasize that in Corollary we make no assumption about Kx + A
or A being big. Indeed Fujino and Mori, [0], proved that Corollary follows
from the case when Kx + A is big.

We will now turn our attention to the geography of minimal models. It is well
known that log terminal models are not unique. The first natural question about
log terminal models is to understand how any two are related. In fact there is a
very simple connection:

Corollary 1.1.3. Let m: X — U be a projective morphism of normal quasi-
projective varieties. Suppose that Kx + A is Kawamata log terminal and A is big
over U. Let ¢;: X --+Y;, i =1 and 2, be two log terminal models of (X,A) over

Then the birational map Yy --+ Y3 is the composition of a sequence of (Ky, +I'1)-
flops over U.

Note that Corollary [[LT.3 has been generalised recently to the case when A is not
assumed big, [I7]. The next natural problem is to understand how many different
models there are. Even if log terminal models are not unique, in many important
contexts, there are only finitely many. In fact Shokurov realised that much more
is true. He realised that the dependence on A is well-behaved. To explain this, we
need some definitions:

Definition 1.1.4. Let 7: X — U be a projective morphism of normal quasi-
projective varieties, and let V' be a finite dimensional affine subspace of the real
vector space WDivg(X) of Weil divisors on X. Fix an R-divisor A > 0 and define

Va={A|A=A+B,BeV}
La(V)={A=A+BeV,|Kx+ A is log canonical and B > 0},
Ear(V)={A € La(V)|Kx + A is pseudo-effective over U },

Nar(V)={A e Ls(V)|Kx + A is nef over U }.
Given a birational contraction ¢: X --+ Y over U, define
Wepar(V)={A€&ar(V)|¢is a weak log canonical model for (X, A) over U },
and given a rational map ¢: X --» Z over U, define

Ay ax(V)={A €Es~(V)]|9 is the ample model for (X,A) over U },

(cf. Definitions B.6.7 and for the definitions of weak log canonical model and
ample model for (X, A) over U).

We will adopt the convention that £L(V) = Lo(V). If the support of A has no
components in common with any element of V', then the condition that B > 0 is
vacuous. In many applications, A will be an ample Q-divisor over U. In this case,
we often assume that A is general in the sense that we fix a positive integer such
that kA is very ample over U, and we assume that A = %A’, where A’ ~y kA is
very general. With this choice of A, we have

Naz(V)CEax(V)CLAV)=L(V)+AC VA=V + A,
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and the condition that the support of A has no common components with any
element of V' is then automatic. The following result was first proved by Shokurov
[32] assuming the existence and termination of flips:

Corollary 1.1.5. Let m: X — U be a projective morphism of normal quasi-
projective varieties. Let V' be a finite dimensional affine subspace of WDivg(X)
which is defined over the rationals. Suppose there is a divisor Ay € V' such that
Kx + Ag is Kawamata log terminal. Let A be a general ample Q-divisor over U,
which has no components in common with any element of V.

(1) There are finitely many birational contractions ¢;: X --+Y; over U, 1 <

1 < p such that
p

Eax(V) =W,
i=1

where each W; = Wy, a,-(V) is a rational polytope. Moreover, if ¢: X --»
Y is a log terminal model of (X,A) over U, for some A € E4(V), then
¢ = ¢, for some 1 <1i < p.

(2) There are finitely many rational maps j: X --» Z; over U, 1 < j < ¢
which partition E4 (V') into the subsets Aj = Ay, Ax(V).

(3) For every 1 < i < p thereis a1 < j < q and a morphism f, ;: Y; — Z,
such that W; C Aj.

In particular E4.-(V') is a rational polytope and each flj is a finite union of
rational polytopes.

Definition 1.1.6. Let (X, A) be a Kawamata log terminal pair and let D be a big
divisor. Suppose that Kx+A is not pseudo-effective. The effective log threshold
is

o(X,A,D)=sup{t € R|D + t(Kx + A) is pseudo-effective }.
The Kodaira energy is the reciprocal of the effective log threshold.

Following ideas of Batyrev, one can easily show that:

Corollary 1.1.7. Let (X,A) be a projective Kawamata log terminal pair and let
D be an ample divisor. Suppose that Kx + A is not pseudo-effective.

If both Kx + A and D are Q-Cartier, then the effective log threshold and the
Kodaira energy are rational.

Definition 1.1.8. Let m: X — U be a projective morphism of normal quasi-
projective varieties. Let D® = (D1, Ds,..., Dy) be a sequence of Q-divisors on X.
The sheaf of Oy -algebras,

R(m, D*) = @ m0x(LY_miD;),

meNF

is called the Cox ring associated to D°®.
Using Corollary [[L.T.5lone can show that adjoint Cox rings are finitely generated:

Corollary 1.1.9. Let w: X — U be a projective morphism of normal quasi-
projective varieties. Fix A > 0 to be an ample Q-divisor over U. Let A; = A+ By,
for some Q-divisors By, Ba,...,Br > 0. Assume that D; = Kx + A; is divisorially
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log terminal and Q-Cartier. Then the Cox ring,

%(TF, D.) = @ W*Ox(LZ miDiJ),
meNFE
is a finitely generated Oy -algebras.

1.2. Moduli spaces. At first sight Corollary might seem a hard result to
digest. For this reason, we would like to give a concrete, but non-trivial example.
The moduli spaces Mg)n of n-pointed stable curves of genus g are probably the
most intensively studied moduli spaces. In particular the problem of trying to
understand the related log canonical models via the theory of moduli has attracted
a lot of attention (e.g., see [7], [24] and [11]).

Corollary 1.2.1. Let X = Mg’n be the moduli space of stable curves of genus g
with n marked points and let A;, 1 < i < k denote the boundary divisors.

Let A =73",a;A; be a boundary. Then Kx + A is log canonical and if Kx + A
is big, then there is a log canonical model X --+ Y. Moreover if we fiz a positive
rational number & and require that the coefficient a; of A; is at least 0 for each i,
then the set of all log canonical models obtained this way is finite.

1.3. Fano varieties. The next set of applications is to Fano varieties. The key
observation is that given any divisor D, a small multiple of D is linearly equivalent
to a divisor of the form Kx + A, where A is big and Kx + A is Kawamata log
terminal.

Definition 1.3.1. Let m: X — U be a projective morphism of normal varieties,
where U is affine.

We say that X is a Mori dream space if h!(X,Ox) = 0 and the Cox ring is
finitely generated over the coordinate ring of U.

Corollary 1.3.2. Let m: X — U be a projective morphism of normal varieties,
where U is affine. Suppose that X is Q-factorial, Kx+A is divisorially log terminal
and —(Kx + A) is ample over U.

Then X is a Mori dream space.

There are many reasons why Mori dream spaces are interesting. As the name
might suggest, they behave very well with respect to the minimal model program.
Given any divisor D, one can run the D-MMP, and this ends with either a nef
model, or a fibration, for which —D is relatively ample, and in fact any sequence
of D-flips terminates.

Corollary was conjectured in [I2] where it is also shown that Mori dream
spaces are GIT quotients of affine varieties by a torus. Moreover the decomposition
given in Corollary is induced by all the possible ways of taking GIT quotients,
as one varies the linearisation.

Finally, it was shown in [I2] that if one has a Mori dream space, then the Cox
Ring is finitely generated.

We next prove a result that naturally complements Theorem We show that
if Kx + A is not pseudo-effective, then we can run the MMP with scaling to get a
Mori fibre space:

Corollary 1.3.3. Let (X,A) be a Q-factorial Kawamata log terminal pair. Let
m: X — U be a projective morphism of normal quasi-projective varieties. Suppose
that Kx + A is not w-pseudo-effective.
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Then we may run f: X --»Y a (Kx + A)-MMP over U and end with a Mori
fibre space g: Y — W over U.

Note that we do not claim in Corollary [L3.3] that however we run the (Kx + A)-
MMP over U, we always end with a Mori fibre space; that is, we do not claim that
every sequence of flips terminates.

Finally we are able to prove a conjecture of Batyrev on the closed cone of nef
curves for a Fano pair.

Definition 1.3.4. Let X be a projective variety. A curve X is called nef if B-> > 0
for all Cartier divisors B > 0. NF(X) denotes the cone of nef curves sitting inside
Hy(X,R) and NF(X) denotes its closure.

Now suppose that (X, A) is a log pair. A (Kx + A)-co-extremal ray is an
extremal ray F of the closed cone of nef curves NF(X) on which Ky +A is negative.

Corollary 1.3.5. Let (X,A) be a projective Q-factorial Kawamata log terminal
pair such that —(Kx + A) is ample.

Then NF(X) is a rational polyhedron. If F = F; is a (K x + A)-co-extremal ray,
then there exists an R-divisor © such that the pair (X, ©) is Kawamata log terminal
and the (Kx +©)-MMP 7: X --+Y ends with a Mori fibre space f: Y — Z such
that F is spanned by the pullback to X of the class of any curve ¥ which is contracted

by f.

1.4. Birational geometry. Another immediate consequence of Theorem is
the existence of flips:

Corollary 1.4.1. Let (X,A) be a Kawamata log terminal pair and let m: X — Z
be a small (Kx + A)-extremal contraction.
Then the flip of © exists.

As already noted, we are unable to prove the termination of flips in general.
However, using Corollary [[LT.5] we can show that any sequence of flips for the
MMP with scaling terminates:

Corollary 1.4.2. Let m: X — U be a projective morphism of normal quasi-
projective varieties. Let (X, A) be a Q-factorial Kawamata log terminal pair, where
Kx + A is R-Cartier and A is w-big. Let C' > 0 be an R-divisor.

If Kx + A + C is Kawamata log terminal and m-nef, then we may run the
(Kx + A)-MMP over U with scaling of C.

Another application of Theorem [[.2]is the existence of log terminal models which
extract certain divisors:

Corollary 1.4.3. Let (X,A) be a log canonical pair and let f: W — X be a log
resolution. Suppose that there is a divisor Ag such that Kx + Ag is Kawamata log
terminal. Let & be any set of valuations of f-exceptional divisors which satisfies
the following two properties:

(1) & contains only valuations of log discrepancy at most one, and
(2) the centre of every wvaluation of log discrepancy one in € does not contain
any non-Kawamata log terminal centres.

Then we may find a birational morphism w: Y — X, such thatY is Q-factorial
and the exceptional divisors of m correspond to the elements of €.
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For example, if we assume that (X, A) is Kawamata log terminal and we let &
be the set of all exceptional divisors with log discrepancy at most one, then the
birational morphism 7: Y — X defined in Corollary [[L4.3] above is a terminal
model of (X, A). In particular there is an R-divisor I' > 0 on Y such that Ky +I" =
7*(Kx + A) and the pair (Y,T') is terminal.

If instead we assume that (X, A) is Kawamata log terminal but & is empty,
then the birational morphism 7: Y — X defined in Corollary [[L4.3] above is a log
terminal model. In particular 7 is small, Y is Q-factorial and there is an R-divisor
I' >0onY such that Ky + ' = n*(Kx + A).

We are able to prove that every log pair admits a birational model with Q-
factorial singularities such that the non-Kawamata log terminal locus is a divisor:

Corollary 1.4.4. Let (X,A) be a log pair.
Then there is a birational morphism mw: Y — X, where Y is Q-factorial, such
that if we write
Ky +T' =Ky +T1 + T =7"(Kx + A),

where every component of I'y has coefficient less than one and every component of
'y has coefficient at least one, then Ky + 'y is Kawamata log terminal and nef
over X and no component of I'y is exceptional.

Even though the result in Corollary [[43] is not optimal as it does not fully
address the log canonical case, nevertheless, we are able to prove the following
result (cf. [31], [21], [13]):

Corollary 1.4.5 (Inversion of adjunction). Let (X, A) be a log pair and letv: S —
S’ be the normalisation of a component S’ of A of coefficient one.
If we define © by adjunction,

Z/*(Kx—l—A) :Ks—f—@,

then the log discrepancy of Kg + © is equal to the minimum of the log discrepancy
with respect to Kx + A of any valuation whose centre on X is of codimension at
least two and intersects S.

One of the most compelling reasons to enlarge the category of varieties to the
category of algebraic spaces (equivalently Moishezon spaces, at least in the proper
case) is to allow the possibility of cut and paste operations, such as one can perform
in topology. Unfortunately, it is then all too easy to construct proper smooth
algebraic spaces over C, which are not projective. In fact the appendix to [10] has
two very well-known examples due to Hironaka. In both examples, one exploits the
fact that for two curves in a threefold which intersect in a node, the order in which
one blows up the curves is important (in fact the resulting threefolds are connected
by a flop).

It is then natural to wonder if this is the only way to construct such examples,
in the sense that if a proper algebraic space is not projective, then it must contain
a rational curve. Kollar dealt with the case when X is a terminal threefold with
Picard number one; see [19]. In a slightly different but related direction, it is
conjectured that if a complex Kéhler manifold M does not contain any rational
curves, then Ky is nef (see for example [30]), which would extend some of Mori’s
famous results from the projective case. Kollar also has some unpublished proofs
of some related results.
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The following result, which was proved by Shokurov assuming the existence and
termination of flips, cf. [33], gives an affirmative answer to the first conjecture and
at the same time connects the two conjectures:

Corollary 1.4.6. Let m: X — U be a proper map of normal algebraic spaces,
where X is analytically Q-factorial.

If Kx+A is divisorially log terminal and w does not contract any rational curves,
then 7 is a log terminal model. In particular w is projective and Kx + A is w-nef.

2. DESCRIPTION OF THE PROOF

Theorem A (Existence of pl-flips). Let f: X — Z be a pl-flipping contraction
for an n-dimensional purely log terminal pair (X, A).
Then the flip f*: Xt — Z of f exists.

Theorem B (Special finiteness). Let m: X — U be a projective morphism of
normal quasi-projective varieties, where X is Q-factorial of dimension n. Let V
be a finite dimensional affine subspace of WDivg(X), which is defined over the
rationals, let S be the sum of finitely many prime divisors and let A be a general
ample Q-divisor over U. Let (X,Aq) be a divisorially log terminal pair such that
S < Ag. Fix a finite set € of prime divisors on X .

Then there are finitely 1 < ¢ < k many birational maps ¢;: X --» Y; over U
such that if ¢: X --» Y is any Q-factorial weak log canonical model over U of
Kx + A, where A € Ls1o(V), which only contracts elements of € and which does
not contract every component of S, then there is an index 1 < i < k such that the
induced birational map £:Y; --» Y is an isomorphism in a neighbourhood of the
strict transforms of S.

Theorem C (Existence of log terminal models). Let m: X — U be a projective
morphism of normal quasi-projective varieties, where X has dimension n. Suppose
that Kx + A is Kawamata log terminal, where A is big over U.

If there exists an R-divisor D such that Kx + A ~g gy D >0, then Kx + A has
a log terminal model over U.

Theorem D (Non-vanishing theorem). Let m: X — U be a projective morphism
of normal quasi-projective varieties, where X has dimension n. Suppose that Kx +
A is Kawamata log terminal, where A is big over U.

If Kx + A is w-pseudo-effective, then there exists an R-divisor D such that
KX+ANR,U D 20

Theorem E (Finiteness of models). Let w: X — U be a projective morphism of
normal quasi-projective varieties, where X has dimension n. Fix a general ample
Q-divisor A > 0 over U. LetV be a finite dimensional affine subspace of WDivg(X)
which is defined over the rationals. Suppose that there is a Kawamata log terminal
pair (X, Ag).

Then there are finitely many birational maps ¢;: X --» Z; over U, 1 < j <1
such that if v: X --» Z is a weak log canonical model of Kx + A over U, for some
A € LA(V), then there is an index 1 < j < I and an isomorphism §: Z; — Z
such that ¢ = § o 1p;.

Theorem F (Finite generation). Let m: X — Z be a projective morphism to
a normal affine variety. Let (X,A = A+ B) be a Kawamata log terminal pair
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of dimension n, where A > 0 is an ample Q-divisor and B > 0. If Kx + A s
pseudo-effective, then

(1) The pair (X,A) has a log terminal model p: X --» Y. In particular if
Kx + A is Q-Cartier, then the log canonical ring

R(X,Kx +A) = @ H(X,0x(cm(Kx + A)2))
meN

1s finitely generated.

(2) Let V.C WDivg(X) be the vector space spanned by the components of A.
Then there is a constant § > 0 such that if G is a prime divisor contained
in the stable base locus of Kx + A and E € LAo(V) such that || — Al < 4,
then G is contained in the stable base locus of Kx + E.

(3) Let W C V be the smallest affine subspace of WDivg(X) containing A,
which is defined over the rationals. Then there is a constant n > 0 and
a positive integer r > 0 such that if =2 € W is any divisor and k is any
positive integer such that |2 — Al < n and k(Kx + E)/r is Cartier, then
every component of Fix(k(Kx + Z)) is a component of the stable base locus
of Kx + A.

The proofs of Theorem [Al Theorem [B] Theorem [C] Theorem D Theorem [E] and
Theorem [F] proceed by induction:

Theorem [E},_; implies Theorem [Al,; see the main result of [9].

Theorem [El,_; implies Theorem [Bl,; cf. ([&4).

Theorem [A], and Theorem [B], imply Theorem [Cl,; cf. (E.8]).
Theorem[D}, 1, Theorem[Bl, and Theorem[Cl], imply Theorem[Dl,; cf. (G.6)).
Theorem [}, and Theorem [D}, imply Theorem [El,; cf. (T.3).

Theorem [}, and Theorem [D}, imply Theorem [El,; cf. ([B.1).

2.1. Sketch of the proof. To help the reader navigate through the technical
problems which naturally arise when trying to prove Theorem [[L2] we review a
natural approach to proving that the canonical ring

R(X,Kx) = P H(X,0x(mKx))
meN

of a smooth projective variety X of general type is finitely generated. Even though
we do not directly follow this method to prove the existence of log terminal models,
instead using ideas from the MMP, many of the difficulties which arise in our
approach are mirrored in trying to prove finite generation directly.

A very natural way to proceed is to pick a divisor D € |kK x|, whose existence
is guaranteed as we are assuming that Kx is big, and then to restrict to D. One
obtains an exact sequence

0 — HX,0x((l-k)Kx)) — H°(X,0x(IKx)) — H°(D,0Op(mKp)),

where | = m(1+k) is divisible by k+ 1, and it is easy to see that it suffices to prove
that the restricted algebra, given by the image of the maps

HY(X,0x(m(1 +k)Kx)) — H°(D,0p(mKp)),

is finitely generated. Various problems arise at this point. First D is neither smooth
nor even reduced (which, for example, means that the symbol Kp is only formally
defined; strictly speaking we ought to work with the dualising sheaf wp). It is
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natural then to pass to a log resolution, so that the support S of D has simple
normal crossings, and to replace D by S. The second problem is that the kernel of
the map
HY(X,0x(m(1+k)Kx)) — H°(S,0s(mKs))
no longer has any obvious connection with
H(X,0x((m(1+k) — k)Kx)),

so that even if we knew that the new restricted algebra were finitely generated, it
is not immediate that this is enough. Another significant problem is to identify the
restricted algebra as a subalgebra of

P HO(S,05(mKs)).

meN
since it is only the latter that we can handle by induction. Yet another problem is
that if C' is a component of S, it is no longer the case that C is of general type, so
that we need a more general induction. In this case the most significant problem to
deal with is that even if K¢ is pseudo-effective, it is not clear that the linear system
|kK¢| is non-empty for any k£ > 0. Finally, even though this aspect of the problem
may not be apparent from the description above, in practice it seems as though
we need to work with infinitely many different values of k and hence D = Dy,
which entails working with infinitely many different birational models of X (since
for every different value of k, one needs to resolve the singularities of D).

Let us consider one special case of the considerations above, which will hopefully
throw some more light on the problem of finite generation. Suppose that to resolve
the singularities of D we need to blow up a subvariety V. The corresponding divisor
C will typically fibre over V' and if V' has codimension two, then C' will be close to a
P'-bundle over V. In the best case, the projection 7: C' — V will be a P!'-bundle
with two disjoint sections (this is the toroidal case) and sections of tensor powers
of a line bundle on C will give sections of an algebra on V which is graded by N2,
rather than just N. Let us consider then the simplest possible algebras over C which
are graded by N2. If we are given a submonoid M C N? (that is, a subset of N2
which contains the origin and is closed under addition), then we get a subalgebra
R C C?[z,y] spanned by the monomials

{='y’ [ (i,5) € M }.
The basic observation is that R is finitely generated iff M is a finitely generated
monoid. There are two obvious cases when M is not finitely generated,

M ={(i,7) €N*|j >0} U{(0,0)} and {(i,j) € N?|i>V2j}.
In fact, if C C R? is the convex hull of the set M, then M is finitely generated iff
C is a rational polytope. In the general case, we will be given a convex subset C of
a finite dimensional vector space of Weil divisors on X and a key part of the proof
is to show that the set C is in fact a rational cone. As naive as these examples are,
hopefully they indicate why it is central to the proof of finite generation to
e consider divisors with real coefficients, and
e prove a non-vanishing result.
We now review our approach to the proof of Theorem As is clear from the
plan of the proof given in the previous subsection, the proof of Theorem is by
induction on the dimension and the proof is split into various parts. Instead of
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proving directly that the canonical ring is finitely generated, we try to construct a
log terminal model for X. The first part is to prove the existence of pl-flips. This is
proved by induction in [§], and we will not talk about the proof of this result here,
since the methods used to prove this result are very different from the methods we
use here. Granted the existence of pl-flips, the main issue is to prove that some
MMP terminates, which means that we must show that we only need finitely many
flips.

As in the scheme of the proof of finite generation sketched above, the first step is
to pick D € |kK x|, and to pass to a log resolution of the support S of D. By way
of induction we want to work with Kx + S rather than Kx. As before this is tricky
since a log terminal model for Kx + S is not the same as a log terminal model for
Kx. In other words, having added S, we really want to subtract it as well. The
trick however is to first add S, construct a log terminal model for Kx 4.5 and then
subtract S (almost literally component by component). This is one of the key steps
to show that Theorem [Al, and Theorem [Bl, imply Theorem [Cl,. This part of the
proof splits naturally into two parts. First we have to prove that we may run the
relevant minimal model programs; see §4] and the beginning of §&l Then we have
to prove this does indeed construct a log terminal model for Kx; see §0l

To gain intuition for how this part of the proof works, let us first consider a
simplified case. Suppose that D = S is irreducible. In this case it is clear that S is
of general type and Kx is nef if and only if Kx + S is nef and in fact a log terminal
model for Kx is the same as a log terminal model for Kx + S. Consider running
the (Kx 4+ S)-MMP. Then every step of this MMP is a step of the Kx-MMP and
vice versa. Suppose that we have a (Kx + S)-extremal ray R. Let 7: X — Z be
the corresponding contraction. Then S- R < 0, so that every curve ¥ contracted by
m must be contained in S. In particular 7 cannot be a divisorial contraction, as S is
not uniruled. Hence 7 is a pl-flip and by Theorem [Al,, we can construct the flip of
m, ¢: X --+ Y. Consider the restriction ¢: S --» T of ¢ to S, where T is the strict
transform of S. Since log discrepancies increase under flips and S is irreducible,
1) is a birational contraction. After finitely many flips, we may therefore assume
that ¢ does not contract any divisors, since the Picard number of S cannot keep
dropping. Consider what happens if we restrict to S. By adjunction, we have

(Kx +8)|s = Ks.

Thus ¥: S --+» T is Kg-negative. We have to show that this cannot happen infin-
itely often. If we knew that every sequence of flips on S terminates, then we would
be done. In fact this is how special termination works. Unfortunately we cannot
prove that every sequence of flips terminates on S, so that we have to do something
slightly different. Instead we throw in an auxiliary ample divisor H on X, and
consider Kx + S+ tH, where t is a positive real number. If ¢ is large enough, then
Kx + S + tH is ample. Decreasing ¢, we may assume that there is an extremal
ray R such that (Kx +S+¢H)-R=0. If t =0, then Kx + S is nef and we are
done. Otherwise (Kx +.5) - R < 0, so that we are still running a (Kx + S)-MMP,
but with the additional restriction that Kx + S + tH is nef and trivial on any ray
we contract. This is the (Kx 4+ S)-MMP with scaling of H. Let G = H|s. Then
Kg+tG is nef and so is K7 +tG’, where G = 1,G. In this case K1 +tG’ is a weak
log canonical model for Kg + tG (it is not a log terminal model, both because
might contract divisors on which Kg + tG is trivial and more importantly because
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T need not be Q-factorial). In this case we are then done, by finiteness of weak log
canonical models for (S, tG), where t € [0,1] (cf. Theorem [El,_1).

We now turn to the general case. The idea is similar. First we want to use
finiteness of log terminal models on S to conclude that there are only finitely many
log terminal models in a neighbourhood of S. Secondly we use this to prove the
existence of a very special MMP and construct log terminal models using this MMP.
The intuitive idea is that if ¢: X --» Y is K x-negative, then Kx is bigger than Ky
(the difference is an effective divisor on a common resolution) so that we can never
return to the same neighbourhood of S. As already pointed out, in the general case
we need to work with R-divisors. This poses no significant problem at this stage
of the proof, but it does make some of the proofs a little more technical. By way
of induction, suppose that we have a log pair Kx + A = Kx + S+ A + B, where
S is a sum of prime divisors, A is an ample divisor (with rational coefficients) and
the coefficients of B are real numbers between zero and one. We are also given a
divisor D > 0 such that Kx + A ~g D. The construction of log terminal models
is similar to the one sketched above and breaks into two parts.

In the first part, for simplicitly of exposition we assume that S is a prime divisor
and that Kx + A is purely log terminal. We fix S and A but we allow B to vary and
we want to show that finiteness of log terminal models for S implies finiteness of log
terminal models in a neighbourhood of S. We are free to pass to a log resolution, so
we may assume that (X, A) is log smooth and if B = Y b; B;, then the coefficients
(by,ba,...,b) of Bliein [0,1]*. Let © = (A —S)|g so that (Kx +A)|s = Kg+6.

Suppose that f: X --» Y is a log terminal model of (X,A). There are three
problems that arise, two of which are quite closely related. Suppose that g: S --» T
is the restriction of f to S, where T is the strict transform of S. The first problem
is that g need not be a birational contraction. For example, suppose that X is a
threefold and f flips a curve ¥ intersecting S, which is not contained in S. Then
S-¥ > 0sothat T-E < 0, where F is the flipped curve. In this case £ C T so that
the induced birational map S --+ T extracts the curve E. The basic observation
is that E must have log discrepancy less than one with respect to (S,0). Since
the pair (X, A) is purely log terminal if we replace (X, A) by a fixed model which
is high enough, then we can ensure that the pair (5, 0) is terminal, so that there
are no such divisors F, and ¢ is then always a birational contraction. The second
problem is that if F is a divisor intersecting .S which is contracted to a divisor lying
in T, then £ N S is not contracted by ¢g. For this reason, g is not necessarily a
weak log canonical model of (S, ©). However we can construct a divisor 0 < = < ©
such that g is a weak log canonical model for (S,Z). Suppose that we start with
a smooth threefold Y and a smooth surface 7" C Y which contains a —2-curve
>, such that Ky + T is nef. Let f: X — Y be the blowup of Y along 3 with
exceptional divisor F and let S be the strict transform of 7. Then f is a step of the
(Kx + S+ eE)-MMP for any e > 0 and f is a log terminal model of Kx + S+ eFE.
The restriction of f to S, g: S — T is the identity, but g is not a log terminal
model for Kg + eX, since Kg + eX is negative along X. It is a weak log canonical
model for Kp, so that in this case = = 0. The details of the construction of = are
contained in Lemma [£1]

The third problem is that the birational contraction g does not determine f.
This is most transparent in the case when X is a surface and S is a curve, since in
this case g is always an isomorphism. To remedy this particular part of the third
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problem we use the different, which is defined by adjunction,
(Ky + T)|T = Kr+ .

The other parts of the third problem only occur in dimension three or more. For
example, suppose that Z is the cone over a smooth quadric in P? and p: X — Z
and ¢q: Y — Z are the two small resolutions, so that the induced birational map
f: X --» Y is the standard flop. Let 7: W — Z blow up the maximal ideal, so
that the exceptional divisor F is a copy of P! xP'. Pick a surface R which intersects
E along a diagonal curve X. If S and T are the strict transforms of R in X and Y,
then the induced birational map g: S — T is an isomorphism (both S and T are
isomorphic to R). To get around this problem, one can perturb A so that f is the
ample model, and one can distinguish between X and Y by using the fact that g
is the ample model of (S, Z). Finally it is not hard to write down examples of flops
which fix =, but switch the individual components of =. In this case one needs to
keep track not only of E but the individual pieces (g9.B;)|r, 1 < i < k. We prove
that an ample model f is determined in a neighbourhood of T' by g, the different
® and (f.B;)|r; see Lemma 3l To finish this part, by induction we assume that
there are finitely many possibilities for g and it is easy to see that there are then
only finitely many possibilities for the different ® and the divisors (f.B;)|r, and
this shows that there are only finitely many possibilities for f. This explains the
implication Theorem [E],_; implies Theorem [Bl,. The details are contained in ¢4l
The second part consists of using finiteness of models in a neighbourhood of S
to run a sequence of minimal model programs to construct a log terminal model.
We may assume that X is smooth and the support of A 4+ D has normal crossings.
Suppose that there is a divisor C' such that

(%) Kx +A ~gy D+ aC,

where Kx + A + C' is divisorially log terminal and nef and the support of D is
contained in S. If R is an extremal ray which is (K x 4+ A)-negative, then D- R < 0,
so that S; - R < 0 for some component S; of S. As before this guarantees the
existence of flips. It is easy to see that the corresponding step of the (Kx + A)-
MMP is not an isomorphism in a neighbourhood of S. Therefore the (Kx + A)-
MMP with scaling of C' must terminate with a log terminal model for Kx + A.
To summarise, whenever the conditions above hold, we can always construct a log
terminal model of Kx + A.

We now explain how to construct log terminal models in the general case. We
may write D = Dy + Dy, where every component of D; is a component of .S and no
component of D5 is a component of S. If D, is empty, that is, every component of
D is a component of S, then we take C' to be a sufficiently ample divisor, and the
argument in the previous paragraph implies that Kx + A has a log terminal model.
If Dy # 0, then instead of constructing a log terminal model, we argue that we
can construct a neutral model, which is exactly the same as a log terminal model,
except that we drop the hypothesis on negativity. Consider (X,0 = A + ADs),
where A is the largest real number so that the coefficients of © are at most one.
Then more components of LO_ are components of D. By induction (X, ©) has a
neutral model, f: X --» Y. It is then easy to check that the conditions in the
paragraph above apply, and we can construct a log terminal model g: Y --+ Z
for Ky + g.A. It is then automatic that the composition h = go f: X --» Z is
a neutral model of Kx + A (since f is not (Kx + A)-negative, it is not true in
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general that h is a log terminal model of Kx 4+ A). However ¢ is automatically a
log terminal model provided we only contract components of the stable base locus
of Kx + A. For this reason, we pick D so that we may write D = M + F', where
every component of M is semiample and every component of F' is a component of
the stable base locus. This explains the implication Theorem [A], and Theorem [B],
imply Theorem [Cl,. The details are contained in §5l

Now we explain how to prove that if Kx + A = Kx + A+ B is pseudo-effective,
then Kx + A ~g D > 0. The idea is to mimic the proof of the non-vanishing
theorem. As in the proof of the non-vanishing theorem and following the work of
Nakayama, there are two cases. In the first case, for any ample divisor H,

R(X,Ox(Lm(Kx + A)i+ H))

is a bounded function of m. In this case it follows that Kx + A is numerically
equivalent to the divisor N,(Kx + A) > 0. It is then not hard to prove that
Theorem [Cl, implies that Kx + A has a log terminal model and we are done by
the base point free theorem.

In the second case we construct a non-Kawamata log terminal centre for

m(Kx-i-A)—i-H,

when m is sufficiently large. Passing to a log resolution, and using standard argu-
ments, we are reduced to the case when

Kx+A=Kx+S+A+ B,

where S is irreducible and (K x +A)|g is pseudo-effective, and the support of A has
global normal crossings. Suppose first that Kx + A is Q-Cartier. We may write

(Kx+S+ A+ B)|ls=Ks+C+ D,

where C' is ample and D > 0. By induction we know that there is a positive integer
m such that (S, Og(m(Ks + C + D))) > 0. To lift sections, we need to know
that h*(X,0x(m(Kx +S + A+ B) — S)) = 0. Now

m(Kx-i-A)—(KXJrB)—S:(m—l)(Kx-l-A)-i-A
:(m—l)(KX—FA—l—iml_lA).

As Kx + A+ A/(m —1) is big, we can construct a log terminal model ¢: X --» Y
for Kx + A+ A/(m — 1), and running this argument on Y, the required vanishing
holds by Kawamata-Viehweg vanishing. In the general case, Kx +S+ A+ B is an
R-divisor. The argument is now a little more delicate as h°(S, Os(m(Kg+C+ D)))
does not make sense. We need to approximate Kg + C + D by rational divisors,
which we can do by induction. But then it is not so clear how to choose m. In
practice we need to prove that the log terminal model Y constructed above does
not depend on m, at least locally in a neighbourhood of T, the strict transform of
S, and then the result follows by Diophantine approximation. This explains the
implication Theorem[D},_;, Theorem[Bl, and Theorem[C], imply Theorem[D],. The
details are in §6l

Finally, in terms of induction, we need to prove finiteness of weak log canonical
models. We fix an ample divisor A and work with divisors of the form Kx + A =
Kx + A+ B, where the coefficients of B are variable. For ease of exposition,
we assume that the supports of A and B have global normal crossings, so that
Kx +A=Kx + A+ > bB; is log canonical if and only if 0 < b; < 1 for all 1.
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The key point is that we allow the coeflicients of B to be real numbers, so that the
set of all possible choices of coefficients [0, 1]* is a compact subset of R¥. Thus we
may check finiteness locally. In fact since A is ample, we can always perturb the
coeflicients of B so that none of the coefficients is equal to one or zero and so we
may even assume that Ky + A is Kawamata log terminal.

Observe that we are certainly free to add components to B (formally we add
components with coefficient zero and then perturb so that their coefficients are
non-zero). In particular we may assume that B is the support of an ample divisor
and so working on the weak log canonical model, we may assume that we have a log
canonical model for a perturbed divisor. Thus it suffices to prove that there are only
finitely many log canonical models. Since the log canonical model is determined by
any log terminal model, it suffices to prove that we can find a cover of [0,1]¥ by
finitely many log terminal models. By compactness, it suffices to do this locally.

So pick b € [0,1]*. There are two cases. If Kx + A is not pseudo-effective,
then Ky + A + B’ is not pseudo-effective, for B’ in a neighbourhood of B, and
there are no weak log canonical models at all. Otherwise we may assume that
Kx + A is pseudo-effective. By induction we know that Kx + A ~g D > 0. Then
we know that there is a log terminal model ¢: X --» Y. Replacing (X,A) by
(Y, T = ¢.A), we may assume that Kx + A is nef. By the base point free theorem,
it is semiample. Let X — Z be the corresponding morphism. The key observation
is that locally about A, any log terminal model over Z is an absolute log terminal
model. Working over Z, we may assume that K x + A is numerically trivial. In this
case the problem of finding a log terminal model for Kx + A’ only depends on the
line segment spanned by A and A’. Working in a small box about A, we are then
reduced to finding a log terminal model on the boundary of the box and we are
done by induction on the dimension of the affine space containing B. Note that in
practice, we need to work in slightly more generality than we have indicated; first we
need to work in the relative setting and secondly we need to work with an arbitrary
affine space containing B (and not just the space spanned by the components of
B). This poses no significant problem. This explains the implication Theorem [C},
and Theorem [D}, imply Theorem [El,. The details are contained in {7l

The implication Theorem [C},, Theorem [Dl, and Theorem [E], imply Theorem [E,
is straightforward. The details are contained in §8

Let us end the sketch of the proof by pointing out some of the technical advan-
tages with working with Kawamata log terminal pairs (X, A), where A is big. The
first observation is that since the Kawamata log terminal condition is open, it is
straightforward to show that A is Q-linearly equivalent to A + B, where A is an
ample Q-divisor, B > 0 and Kx + A + B is Kawamata log terminal. The presence
of the ample divisor A is very convenient for a number of reasons, two of which we
have already seen in the sketch of the proof.

Firstly the restriction of an ample divisor to any divisor S is ample, so that if B
does not contain S in its support, then the restriction of A+ B to S is big. This is
very useful for induction.

Secondly, as we vary the coefficients of B, the closure of the set of Kawamata log
terminal pairs is the set of log canonical pairs. However, we can use a small piece
of A to perturb the coefficients of B so that they are bounded away from zero and
Kx + A+ B is always Kawamata log terminal.
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Finally, if (X, A) is divisorially log terminal and f: X — Y isa (Kx+A)-trivial
contraction, then Ky +I' = Ky + f.A is not necessarily divisorially log terminal,
only log canonical. For example, suppose that Y is a surface with a simple elliptic
singularity and f: X — Y is the blowup with exceptional divisor E. Then f is a
weak log canonical model of Kx + F, but Y is not log terminal as it does not have
rational singularities. On the other hand, if A = A + B, where A is ample, then
Ky + T is always divisorially log terminal.

2.2. Standard conjectures of the MMP. Having sketched the proof of Theorem
[[2], we should point out the main obstruction to extending these ideas to the case
when X is not of general type. The main issue seems to be the implication Kx
pseudo-effective implies k(X, Kx) > 0. In other words we need:

Conjecture 2.1. Let (X, A) be a projective Kawamata log terminal pair.
If Kx + A is pseudo-effective, then k(X,Kx + A) > 0.

We also probably need
Conjecture 2.2. Let (X,A) be a projective Kawamata log terminal pair.
If Kx + A is pseudo-effective and
RY(X,Ox(Lm(Kx + A)J+ H))
is not a bounded function of m, for some ample divisor H, then k(X, Kx +A) > 1.
In fact, using the methods of this paper, together with some results of Kawamata

(cf. [14] and [15]), Conjectures 211 and would seem to imply one of the main
outstanding conjectures of higher dimensional geometry:

Conjecture 2.3 (Abundance). Let (X, A) be a projective Kawamata log terminal
pair.
If Kx + A is nef, then it is semiample.

We remark that the following seemingly innocuous generalisation of Theorem
(in dimension n + 1) would seem to imply Conjecture 23] (in dimension n).

Conjecture 2.4. Let (X,A) be a projective log canonical pair of dimension n.
If Kx + A is big, then (X,A) has a log canonical model.

It also seems worth pointing out that the other remaining conjecture is:

Conjecture 2.5 (Borisov-Alexeev-Borisov). Fiz a positive integer n and a positive
real number € > 0.

Then the set of varieties X such that Kx + A has log discrepancy at least € and
—(Kx + A) is ample forms a bounded family.

3. PRELIMINARY RESULTS
In this section we collect together some definitions and results.

3.1. Notation and conventions. We work over the field of complex numbers C.
We say that two Q-divisors Dy, Dy are Q-linearly equivalent (D1 ~g Ds) if there
exists an integer m > 0 such that mD; are linearly equivalent. We say that a
Q-divisor D is Q-Cartier if some integral multiple is Cartier. We say that X is Q-
factorial if every Weil divisor is Q-Cartier. We say that X is analytically Q-factorial
if every analytic Weil divisor (that is, an analytic subset of codimension one) is
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analytically Q-Cartier (i.e., some multiple is locally defined by a single analytic
function). We recall some definitions involving divisors with real coefficients.

Definition 3.1.1. Let 7: X — U be a proper morphism of normal algebraic
spaces.

(1) An R-Weil divisor (frequently abbreviated to R-divisor) D on X is an
R-linear combination of prime divisors.

(2) An R-Cartier divisor D is an R-linear combination of Cartier divisors.

(3) Two R-divisors D and D’ are R-linearly equivalent over U, denoted
D ~gy D', if their difference is an R-linear combination of principal divi-
sors and an R-Cartier divisor pulled back from U.

(4) Two R-divisors D and D’ are numerically equivalent over U, denoted
D =y D', if their difference is an R-Cartier divisor such that (D—D’)-C =0
for any curve C' contained in a fibre of 7.

(5) An R-Cartier divisor D is ample over U (or m-ample) if it is R-linearly
equivalent to a positive linear combination of ample (in the usual sense)
Cartier divisors over U.

(6) An R-Cartier divisor D on X is nef over U (or m-nef) if D - C > 0 for any
curve C' C X, contracted by .

(7) An R-divisor D is big over U (or 7-big) if

hO(F, Op(umD.))
mdim F

lim sup > 0,

for the fibre F over any generic point of U. Equivalently D is big over U if
D ~py A+ B, where A is ample over U and B > 0 (cf. [28] II 3.16]).

(8) An R-Cartier divisor D is semiample over U (or m-semiample) if there is
a morphism f: X — Y over U such that D is R-linearly equivalent to the
pullback of an ample R-divisor over U.

(9) An R-divisor D is m-pseudo-effective if the restriction of D to the fibre
over each generic point of every component of U is the limit of divisors
D; > 0.

Note that the group of Weil divisors with rational coefficients WDivg(X), or
with real coefficients WDivg (X)), forms a vector space, with a canonical basis given
by the prime divisors. Given an R-divisor, ||D|| denotes the sup norm with respect
to this basis. If A =5 a;C; and B = b;C; are two R-divisors, then

ANB = Z min(a;, b;)C;.

Given an R-divisor D and a subvariety Z which is not contained in the singular
locus of X, multz D denotes the multiplicity of D at the generic point of Z. If
Z = FE is a prime divisor, then this is the coefficient of £ in D.

A log pair (X,A) (sometimes abbreviated by Kx + A) is a normal variety X
and an R-divisor A > 0 such that Kx + A is R-Cartier. We say that a log pair
(X,A) is log smooth if X is smooth and the support of A is a divisor with global
normal crossings. A birational morphism ¢g: Y — X is a log resolution of the pair
(X, A) if g is projective, Y is smooth, the exceptional locus is a divisor and g~ 1(A)
union the exceptional set of ¢ is a divisor with global normal crossings support.
By Hironaka’s Theorem we may, and often will, assume that the exceptional locus
supports an ample divisor over X. If we write

Ky +T =Ky + Y bli=g"(Kx+A),
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where T'; are distinct prime divisors, then the log discrepancy a(T';, X, A) of T'; is
1—1b;. The log discrepancy of (X, A) is then the infimum of the log discrepancy for
every I'; and for every resolution. The image of any component of I' of coefficient
at least one (equivalently log discrepancy at most zero) is a non-Kawamata log
terminal centre of the pair (X, A). The pair (X, A) is Kawamata log terminal if for
every (equivalently for one) log resolution g: Y — X as above, the coeflicients of
[ are strictly less than one, that is, b; < 1 for all . Equivalently, the pair (X, A)
is Kawamata log terminal if there are no non-Kawamata log terminal centres. The
non-Kawamata log terminal locus of (X, A) is the union of the non-Kawamata log
terminal centres. We say that the pair (X, A) is purely log terminal if the log
discrepancy of any exceptional divisor is greater than zero. We say that the pair
(X, A = > 64A;), where 6; € (0,1], is divisorially log terminal if there is a log
resolution such that the log discrepancy of every exceptional divisor is greater than
zero. By [22, (2.40)], (X,A) is divisorially log terminal if and only if there is a
closed subset Z C X such that

o (X\Z,Alx\z) is log smooth, and

o if f: Y — X is a projective birational morphism and F C Y is an irre-

ducible divisor with centre contained in Z, then a(E, X, A) > 0.

We will also often write
Ky +T=g"(Kx+A)+ E,

where I' > 0 and F > 0 have no common components, g.I' = A and F is g-
exceptional. Note that this decomposition is unique.

We say that a birational map ¢: X --+ Y is a birational contraction if ¢ is proper
and ¢! does not contract any divisors. If in addition ¢! is also a birational
contraction, we say that ¢ is a small birational map.

3.2. Preliminaries.

Lemma 3.2.1. Let w: X — U be a projective morphism of normal quasi-projective
varieties. Let D be an R-Cartier divisor on X and let D’ be its restriction to the
generic fibre of .

If D' ~g B’ > 0 for some R-divisor B’ on the generic fibre of 7, then there is a
divisor B on X such that D ~g yy B > 0 whose restriction to the generic fibre of m
is B'.

Proof. Taking the closure of the generic points of B’, we may assume that there is
an R-divisor B; > 0 on X such that the restriction of B; to the generic fibre is B’.
As

D' — B ~y 0,
it follows that there is an open subset U; of U, such that

(D = Bi)lv, ~r 0,

where V7 is the inverse image of U;. But then there is a divisor G on X such that

D - Bl ~R Ga

where Z = 7(Supp G) is a proper closed subset. As U is quasi-projective, there is
an ample divisor H > 0 on U which contains Z. Possibly rescaling, we may assume
that ' = 7*H > —G. But then

D~p (Bi+F+G)-F,
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so that
DNR’U(Bl-l-F-i-G)ZO. [l

3.3. Nakayama-Zariski decomposition. We will need some definitions and re-
sults from [2§].

Definition-Lemma 3.3.1. Let X be a smooth projective variety, B be a big
R-divisor and let C be a prime divisor. Let

oc(B) = inf{ multc(B') | B’ ~g B,B" > 0}.

Then o¢ is a continuous function on the cone of big divisors.
Now let D be any pseudo-effective R-divisor and let A be any ample Q-divisor.
Let
oc(D) = elg% oc(D + €A).

Then o¢ (D) exists and is independent of the choice of A.

There are only finitely many prime divisors C' such that o¢(D) > 0 and the
R-divisor Ny (D) = >~ 0c(D)C is determined by the numerical equivalence class
of D. Moreover D — N, (D) is pseudo-effective and N, (D — N,(D)) = 0.

Proof. See §III1.1 of [2§]. O

Proposition 3.3.2. Let X be a smooth projective variety and let D be a pseudo-
effective R-divisor. Let B be any big R-divisor.

If D is not numerically equivalent to N,(D), then there is a positive integer k
and a positive rational number B such that

(X, 0x(umDJ+ LkBJ)) > fm,  for all m > 0.

Proof. Let A be any integral divisor. Then we may find a positive integer k such
that
RY(X, Ox(LkBy— A)) > 0.
Thus it suffices to exhibit an ample divisor A and a positive rational number 3 such
that
RY(X,0x(LmDJ+ A)) > pBm  for all m > 0.

Replacing D by D — N, (D), we may assume that N, (D) = 0. Now apply (V.1.11)
of [28]. O

3.4. Adjunction. We recall some basic facts about adjunction; see [21], §16, §17]
for more details.

Definition-Lemma 3.4.1. Let (X,A) be a log canonical pair, and let S be a
normal component of LA of coefficient one. Then there is a divisor © on S such
that
(Kx +A)[s = Ks +©.
(1) If (X, A) is divisorially log terminal, then so is Kg + ©.
(2) If (X, A) is purely log terminal, then Kg + O is Kawamata log terminal.
(3) If (X,A = 9) is purely log terminal, then the coefficients of © have the
form (r — 1)/r, where r is the index of S at P, the generic point of the
corresponding divisor D on S (equivalently r is the index of Kx + S at P
or r is the order of the cyclic group Weil(Ox p)). In particular if B is a
Weil divisor on X, then the coefficient of B|g in D is an integer multiple
of 1/r.
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(4) If (X,A) is purely log terminal, f: Y — X is a projective birational
morphism and T is the strict transform of S, then (f|7).¥ = ©, where
Ky +T = f*(Kx + A) and ¥ is defined by adjunction,

(Ky+F)|T:KT+\I/.

3.5. Stable base locus. We need to extend the definition of the stable base locus
to the case of a real divisor.

Definition 3.5.1. Let m: X — U be a projective morphism of normal varieties.

Let D be an R-divisor on X. The real linear system associated to D over U
is

|ID/Ulrg ={C >0|C ~pu D}.

The stable base locus of D over U is the Zariski closed set B(D/U) given by
the intersection of the support of the elements of the real linear system |D/U|g. If
|D/U|g = 0, then we let B(D/U) = X. The stable fixed divisor is the divisorial
support of the stable base locus. The augmented base locus of D over U is the
Zariski closed set

B..(D/U) = B((D — eA)/U),
for any ample divisor A over U and any sufficiently small rational number ¢ > 0
(compare [23] Definition 10.3.2]).

Remark 3.5.2. The stable base locus, the stable fixed divisor and the augmented
base locus are only defined as closed subsets; they do not have any scheme structure.

Lemma 3.5.3. Let m: X — U be a projective morphism of normal varieties and
let D be an integral Weil divisor on X.

Then the stable base locus as defined in Definition B.5.1] coincides with the usual
definition of the stable base locus.

Proof. Let
|D/Ulg={C=0|C~qu D}
Let R be the intersection of the elements of |D/U|g and let @ be the intersection
of the elements of |D/U|q. It suffices to prove that @ = R. As |D/Ulg C |D/U|r,
it is clear that R C Q.
Suppose that ¢ R. We want to show that x ¢ Q. We may find D’ € |D/U|g
such that mult, D’ = 0. But then

D'=D+ )Y ri(fi)+7E,

where f; are rational functions on X, E is an R-Cartier divisor on U, and r; are
real numbers. Let V be the subspace of WDivg(X) spanned by the components of
D, D', 7*E and (f;). We may write E = )_e;E;, where E; are Cartier divisors.
Let W be the span of the (f;) and the 7*E;. Then W C V are defined over the
rationals. Set

P={D"eV|D">0, mult,D’ =0, D" —D e W} C |D/Ulz.

Then P is a rational polyhedron. As D’ € P, P is non-empty, and so it must
contain a rational point D”. We may write

D" =D+ si(fi)+ Y 7 E;,
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where s; and f; are real numbers. Since D and D have rational coefficients, it
follows that we may find s; and f; which are rational. But then D" € |D/U|qg, and
(]

sox ¢ Q.

Proposition 3.5.4. Let m: X — U be a projective morphism of normal varieties
and let D > 0 be an R-divisor. Then we may find R-divisors M and F such that
(1) M>0and F >0,
(2) D~py M+ F,
(3) every component of F is a component of B(D/U), and
(4) 4f B is a component of M, then some multiple of B is mobile.

We need two basic results.

Lemma 3.5.5. Let X be a normal variety and let D and D’ be two R-divisors such
that D ~g D'.

Then we may find rational functions f1, fo, ..., fr and real numbers r1,ro, ..., 7k
which are independent over the rationals such that

D=D"+Y ri(fi)

In particular every component of (f;) is either a component of D or D’.

Proof. By assumption we may find rational functions fi, fs,..., fx and real num-
bers ry,7s, ..., such that

k

=1
Pick k minimal with this property. Suppose that the real numbers r; are not
independent over Q. Then we can find rational numbers d;, not all zero, such that

Z dﬂ“i =0.

Possibly reordering we may assume that dy # 0. Multiplying through by an integer
we may assume that d; € Z. Possibly replacing f; by ffl, we may assume that
d; > 0. Let d be the least common multiple of the non-zero d;. If d; # 0, we replace
fi by fid /di (and hence r; by d;r;/d) so that we may assume that either d; = 0 or
1. For 1 <i <k, set

il ifdi =1,
TN ifdi=o,

Then
k—1

D = D/ + Z Ti(gi),
i=1
which contradicts our choice of k.
Now suppose that B is a component of (f;). Then
mult 5(D) = multg(D') + > rjn;,

where n; = multg(f;) is an integer and n; # 0. But then multg(D) —multg(D’) #
0, so that one of mult g(D) and multg(D’) must be non-zero. O
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Lemma 3.5.6. Let m: X — U be a projective morphism of normal varieties and
let

D' ~gyD, D>0, D >0,

be two R-divisors on X with no common components.
Then we may find D" € |D/U|r such that a multiple of every component of D"
is mobile.

Proof. Pick ample R-divisors on U, H and H’ such that D+7*H ~g D'+7*H' and
D+ 7*H and D' + 7* H' have no common components. Replacing D by D + n*H
and D' by D' + n*H’, we may assume that D’ ~g D.

We may write

D'=D+Y ri(f))=D+R,

where r; € R and f; are rational functions on X. By Lemma we may assume
that every component of R is a component of D + D’.

We proceed by induction on the number of components of D+D’. If ¢1, go, . . . , gk
are any rational numbers, then we may always write

C'=C+Q=C+Y alf)

where C > 0 and C’ > 0 have no common components. But now if we suppose
that ¢; is sufficiently close to r;, then C' is supported on D and C’ is supported on
D’. We have that mC ~ mC’ for some integer m > 0. By Bertini we may find
C" ~g C such that every component of C” has a multiple which is mobile. Pick
A > 0 maximal such that D; = D — AC' > 0 and D] = D' — AC’ > 0. Note that

Dl NRDlla Dlzov D/120a

are two R-divisors on X with no common components, and that D; + D] has fewer
components than D + D’. By induction we may then find

Dy € |Dilg,
such that a multiple of every component of DY is mobile. But then
D" = XC" + DY € |Dlg,
and every component of D" has a multiple which is mobile. O

Proof of Proposition 354l We may write D = M + F, where every component of
F is contained in B(D/U) and no component of M is contained in B(D/U). A
prime divisor is bad if none of its multiples is mobile.

We proceed by induction on the number of bad components of M. We may
assume that M has at least one bad component B. As B is a component of M, we
may find Dy € |D/U|g such that B is not a component of D;. If E = D A Dy, then
D'=D—-FE>0and D} =D; — FE >0, D' and D} have no common components
and D' ~g y Dj. By Lemma there is a divisor D" € |D’/U|g with no bad
components. But then D” + E € |D|g, B is not a component of D" + E and the
only bad components of D” + E are components of F, which are also components
of D. Therefore D" + E has fewer bad components than D and we are done by
induction. (]
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3.6. Types of models.

Definition 3.6.1. Let ¢: X --» Y be a proper birational contraction of normal
quasi-projective varieties and let D be an R-Cartier divisor on X such that D’ =
¢« D is also R-Cartier. We say that ¢ is D-non-positive (respectively D-negative)
if for some common resolution p: W — X and q: W — Y, we may write

p*D — q*D/ + E,
where E > 0 is g-exceptional (respectively E > 0 is g-exceptional and the support
of E contains the strict transform of the ¢-exceptional divisors).

We will often use the following well-known lemma.

Lemma 3.6.2 (Negativity of contraction). Let m: Y — X be a projective bira-
tional morphism of normal quasi-projective varieties.

(1) If E > 0 is an exceptional R-Cartier divisor, then there is a component F
of E which is covered by curves ¥ such that E -3 < 0.

(2) If 7*L = M + G+ E, where L is an R-Cartier divisor on X, M is a w-nef
R-Cartier divisor on'Y, G > 0, E is w-exceptional, and G and E have no
common components, then E > 0. Further if F1 is an exceptional divisor
such that there is an exceptional divisor Fy with the same centre on X as
Fy, with the restriction of M to Fy not numerically w-trivial, then Fy is a
component of G+ E.

(3) If X is Q-factorial, then there is a mw-exceptional divisor E > 0 such that
—F is ample over X. In particular the exceptional locus of 7 is a divisor.

Proof. Cutting by hyperplanes in X, we reduce to the case when X is a surface, in
which case (1) reduces to the Hodge Index Theorem. (2) follows easily from (1);
see for example (2.19) of [21]. Let H be a general ample Q-divisor over X. If X is
Q-factorial, then
E=n"n,H—-—H>0

is m-exceptional and —F is ample over X. This is (3). g
Lemma 3.6.3. Let X — U and Y — U be two projective morphisms of normal
quasi-projective varieties. Let ¢: X --+Y be a birational contraction over U and
let D and D’ be R-Cartier divisors such that D' = ¢, D is nef over U.

Then ¢ is D-non-positive (respectively D-negative) if given a common resolution
p: W — X and q: W — Y, we may write

p*D — q*D/ + E,

where p, E > 0 (respectively p. E > 0 and the support of p.E contains the union of
all ¢-exceptional divisors).

Further if D = Kx + A and D' = Ky + ¢, A, then this is equivalent to requiring

a(F, X, A) <a(FY,d.A) (respectively a(F, X, A) < a(F,Y, ¢.A)),

for all ¢-exceptional divisors F C X.
Proof. This is an easy consequence of Lemma [3.6.2] O

Lemma 3.6.4. Let X — U and Y — U be two projective morphisms of normal
quasi-projective varieties. Let ¢: X --+ Y be a birational contraction over U and
let D and D' be R-Cartier divisors such that ¢.D and ¢.D’ are R-Cartier. Let
p: W — X and qg: W — Y be common resolutions.
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If D and D' are numerically equivalent over U, then
In particular ¢ is D-non-positive (respectively D-negative) if and only if ¢ is D’'-
non-positive (respectively D'-negative).

Proof. Since

P (D—D') = q"6.(D — D)
is g-exceptional and numerically trivial over Y, this follows easily from Lemma
9.0.2) ([l

Definition 3.6.5. Let m: X — U be a projective morphism of normal quasi-
projective varieties and let D be an R-Cartier divisor on X.

We say that a birational contraction f: X --+ Y over U is a semiample model
of D over U if f is D-non-positive, Y is normal and projective over U and H = f,D
is semiample over U.

We say that g: X --» Z is the ample model of D over U if g is a rational
map over U, Z is normal and projective over U and there is an ample divisor H
over U on Z such that if p: W — X and q: W — Z resolve g, then ¢ is a
contraction morphism and we may write p*D ~r yy ¢*H + F, where I/ > 0 and for
every B € [p*D/U|g, then B > E.

Lemma 3.6.6. Let m: X — U be a projective morphism of normal quasi-projective
varieties and let D be an R-Cartier divisor on X.

(1) If gi: X --+ X, i =1, 2, are two ample models of D over U, then there is
an isomorphism x: X1 — Xs such that go = x 0 g1-

(2) Suppose that g: X --+ Z is the ample model of D over U and let H be the
corresponding ample divisor on Z. If p: W — X and q: W — Z resolve
g, then we may write

p*D~ru ¢"H + E,

where E > 0 and if F' is any p-exceptional divisor whose centre lies in the
indeterminancy locus of g, then F' is contained in the support of E.

3) If f+ X --» Y is a semiample model of D over U, then the ample model
g: X --+ Z of D over U exists and g = ho f, where h: Y — Z is a con-
traction morphism and f.D ~ry h*H. If B is a prime divisor contained
in the stable fized divisor of D over U, then B is contracted by f.

(4) If f: X --» Y is a birational map over U, then f is the ample model of
D over U if and only if f is a semiample model of D over U and f.D is
ample over U.

Proof. Let g: Y — X resolve the indeterminacy of g; and let f; = g;0g9: Y — X
be the induced contraction morphisms. By assumption ¢*D ~r ¢y fiH; + E;, for
some divisor H,; on X; ample over U. Since the stable fixed divisor of f;H; over U
is empty, Ey > E. By symmetry £y = Ey and so f{'H; ~ryu f5H>. But then f;
and fo contract the same curves. This is (1).

Suppose that g: X --+» Z is the ample model of D over U. By assumption this
means that we may write

p*D ~pu q"H + E,

where £ > 0. We may write £ = FE; + E5, where every component of Ej is
exceptional for p but no component of E; is p-exceptional. Let V' = p(F'). Possibly
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blowing up more we may assume that p~1(V) is a divisor. Since V is contained
in the indeterminancy locus of g, there is an exceptional divisor F’ with centre V'
such that dimg(F’) > 0. But then ¢*H is not numerically trivial on F’ and we
may apply Lemma B.6.21 This is (2).

Now suppose that f: X --» Y is a semiample model of D over U. As f.D
is semiample over U, there is a contraction morphism h: Y — Z over U and
an ample divisor H over U on Z such that f,.D ~gpy R*H. If p: W — X and
qg: W — Y resolve the indeterminacy of f, then p*D ~g yy r*H + E, where £ > 0
is g-exceptional and r = hogq: W — Z. If B € |p*D/U|g, then B > E. But then
g="ho f: X --» Z is the ample model of D over U. This is (3).

Now suppose that f: X --» Y is birational over U. If f is a semiample model
of D over U, then (3) implies that the ample model g: X --» Z of D over U exists
and there is a contraction morphism h: Y — Z, such that f,D ~ry h*H, where
H on Z is ample over U. If f.D is ample over U, then h must be the identity.

Conversely suppose that f is the ample model. Suppose that p: W — X and
q: W — Y are projective birational morphisms which resolve f. By assumption
we may write p*D ~g y ¢"H + E, where H is ample over U. We may assume that
there is a g-exceptional Q-divisor F' > 0 such that ¢* H — F' is ample over U. Then
there is a constant § > 0 such that ¢*H — F'+ §E is ample over U. Suppose B is a
component of E. As B does not belong to the stable base locus of ¢*H — F + §F
over U, B must be a component of F. It follows that E is g-exceptional. If C is a
curve contracted by p, then

0=C-pD=C-¢*H+C-E,

and so C' is contained in the support of E. Thus if G is a divisor contracted by
p it is a component of E and G is contracted by g. Therefore f is a birational
contraction and f is a semiample model. Further f,D = H is ample over U. This
is (4). O

Definition 3.6.7. Let m: X — U be a projective morphism of normal quasi-
projective varieties. Suppose that Kx + A is log canonical and let ¢: X --» Y
be a birational contraction of normal quasi-projective varieties over U, where Y is
projective over U. Set I' = ¢, A.

e Y is a weak log canonical model for Kx + A over U if ¢ is (Kx + A)-
non-positive and Ky + I' is nef over U.

e Y is the log canonical model for Kx + A over U if ¢ is the ample model
of Kx + A over U.

e Y is a log terminal model for Kx + A over U if ¢ is (Kx + A)-negative,
Ky + T is divisorially log terminal and nef over U, and Y is Q-factorial.

Remark 3.6.8. Note that there is no consensus on the definitions given in Definition

B.6.7

Lemma 3.6.9. Let w: X — U be a projective morphism of normal quasi-projective
varieties. Let ¢: X --» Y be a birational contraction over U. Let (X,A) and
(X, A’) be two log pairs and set T = ¢ A, TV = ¢, A’. Let u > 0 be a positive real
number.
o Ifboth Kx+A and Kx+A’ are log canonical and Kx+A" ~p y p(Kx+A),
then ¢ is a weak log canonical model for Kx + A over U if and only if ¢ is
a weak log canonical model for Kx + A" over U.
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o Ifboth Kx + A and Kx + A’ are Kawamata log terminal and Kx + A =y
w(Kx +A"), then ¢ is a log terminal model for Kx + A over U if and only
if ¢ is a log terminal model for Kx + A’ over U.

Proof. Note first that either Ky + IV ~ppy p(Ky +T') or YV is Q-factorial. In
particular Ky +T is R-Cartier if and only if Ky +1I" is R-Cartier. Therefore Lemma
B84 implies that ¢ is (Kx + A)-non-positive (respectively (Kx 4+ A)-negative) if
and only if ¢ is (K x + A’)-non-positive (respectively (Kx + A’)-negative).

Since Kx + A" =y u(Kx + A) and pFE — E' =y 0, it follows that Ky + TV =¢
w(Ky +T), so that Ky + T is nef over U if and only if Ky +I" is nef over U. O

Lemma 3.6.10. Let m: X — U be a projective morphism of normal quasi-
projective varieties. Let ¢: X --+ Y be a birational contraction over U, where
Y is projective over U. Suppose that Kx + A and Ky + ¢./A are divisorially log
terminal and a(F, X, A) < a(F,Y, ¢.A) for all ¢-exceptional divisors F C X.

Ifo: 'Y --+ Z is a log terminal model of (Y, p.A) over U, thenn = po¢: X --+ Z
is a log terminal model of Kx + A over U.

Proof. Clearly n is a birational contraction, Z is Q-factorial and Kz + n.A is
divisorially log terminal and nef over U.

Let p: W — X, q¢: W — Y and r: W — Z be a common resolution. As ¢
is a log terminal model of (Y, ¢.A) we have that ¢*(Ky + ¢.A) —r*(Kz +n.A) =
E > 0 and the support of E contains the exceptional divisors of ¢. By assumption
Kx + A — p.g"(Ky + ¢.A) is an effective divisor whose support is the set of all
¢-exceptional divisors. But then

(Kx +A) = por*(Kz +n.A) = Kx + A = pog*(Ky + 6.A) + p.E
contains all the n-exceptional divisors and Lemma implies that 7 is a log
terminal model of Kx + A over U. O

Lemma 3.6.11. Let m: X — U be a projective morphism of normal quasi-
projective varieties. Let (X, A) be a Kawamata log terminal pair, where A is big
over U. Let f: Z — X be any log resolution of (X, A) and suppose that we write

Kz+ %)= f"(Kx+A)+ E,

where &g > 0 and E > 0 have no common components, f+®y = A and E is
exceptional. Let F' > 0 be any divisor whose support is equal to the exceptional
locus of f.

If n > 0 s sufficiently small and ® = &y + nF', then Kz + ® is Kawamata log
terminal and ® is big over U. Moreover if ¢p: Z --» W is a log terminal model
of Kz + ® over U, then the induced birational map : X --+ W is in fact a log
terminal model of Kx + A over U.

Proof. Everything is clear but the last statement. Set ¥ = ¢,®. By Lemma B.6.10]
possibly blowing up more, we may assume that ¢ is a morphism. By assumption if
we write

Kz+@=¢*(Kw+\IJ)+G,
then G > 0 and the support of G is the union of all the ¢-exceptional divisors.
Thus
ff(KEx+A)+ E+nF =¢"(Kw+7)+G.
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By negativity of contraction, Lemma [B.6.2] applied to f, G — F —nF > 0. In
particular ¢ must contract every f-exceptional divisor and so @ is a birational
contraction. But then ¢ is a log terminal model over U by Lemma [3.6.3] O

Lemma 3.6.12. Let w: X — U be a projective morphism of normal quasi-
projective varieties, where X is Q-factorial Kawamata log terminal. Let ¢: X --» Z
be a birational contraction over U and let S be a sum of prime divisors. Suppose
that there is a Q-factorial quasi-projective variety Y together with a small birational
projective morphism f: Y — Z.

If V is any finite dimensional affine subspace of WDivg(X) such that Lg(V)
spans WDivg(X) modulo numerical equivalence over U and Wy s..(V') intersects
the interior of Lg(V), then

Wo.5.x(V) = Ay 5.(V).
Proof. By (4) of LemmaB6.6 Wy 5.-(V) D Ag,s-(V). Since Wy 5..(V) is closed,
it follows that

W(;s,sm(V) D) .A¢,S,7T(V).
To prove the reverse inclusion, it suffices to prove that a dense subset of Wy, g (V)
is contained in Ag g (V).

Pick A belonging to the interior of Wy g.(V). If ¢p: X --» Y is the induced
birational contraction, then 1 is a Q-factorial weak log canonical model of Kx + A
over U and

Ky +T' = f*(KZ + ¢*A)a
where I' = ¢, A. As Lg(V) spans WDivg(X) modulo numerical equivalence over
U, we may find Ay € Lg(V) such that Ag — A is numerically equivalent over U to
uA for some p > 0. Let
A =A+e((Ag—A) — pA) = (1 — €)vA + €Ay,
where

l—€e—eu
 1l—c¢
Then A’ is numerically equivalent to A over U and if € > 0 is sufficiently small, then
A" > 0. As (X,vA) is Kawamata log terminal it follows that (X, A’) is Kawamata
log terminal. In particular Lemma [3.6.9] implies that 1) is a Q-factorial weak log
canonical model of Kx + A’ over U and so Ky + I' is Kawamata log terminal,
where IV = ¢, A’. As T" and I” are numerically equivalent over U, it follows that
Ky + I is numerically equivalent to zero over Z.

Let H be a general ample Q-divisor over U on Z. Let p: W — X and g: W —
Z resolve the indeterminacy locus of ¢ and let H' = p,q*H. It follows that ¢ is
H'-non-positive. Pick Ay € Lg(V') such that B = Ay — A is numerically equivalent
over U to nH' for some n > 0. Replacing H by nH we may assume that n = 1.
If C = 9. B, then C is numerically equivalent to f*H over U. Then both C' and
C — (Ky + I") are numerically trivial over Z, so that C — (Ky + I') is nef and
big over Z and Theorem [B.9.1] implies that ¢.B = f.C is R-Cartier. Lemma [3.6.4]
implies that ¢ is (Kx + A + AB)-non-positive and ¢, (Kx + A + AB) is ample over
U, for any A > 0. On the other hand, note that

A+AB=A+NA—A) e Ls(V),

for any A € [0,1]. Therefore ¢ is the ample model of Kx + A + AB over U for any
A€ (0,1]. O

v < 1.
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3.7. Convex geometry and Diophantine approximation.

Definition 3.7.1. Let V be a finite dimensional real affine space. If C is a convex
subset of V and F' is a convex subset of C, then we say that F' is a face of C if
whenever > r;v; € F, where r1,79,...,7, are real numbers such that > r; = 1,
r; > 0 and vy, v9,...,v; belong to C, then v; € F for some i. We say that v € C is
an extreme point if F' = {v} is a face of C.

A polyhedron P in V is the intersection of finitely many half-spaces. The
interior P° of P is the complement of the proper faces. A polytope P in V is a
compact polyhedron.

We say that a real vector space Vj is defined over the rationals, if V) = V’%R,

where V' is a rational vector space. We say that an affine subspace V of a real
vector space Vj, which is defined over the rationals, is defined over the rationals
if V is spanned by a set of rational vectors of V;;. We say that a polyhedron P is
rational if it is defined by rational half-spaces.

Note that a polytope is the convex hull of a finite set of points and the polytope
is rational if those points can be chosen to be rational.

Lemma 3.7.2. Let X be a normal quasi-projective variety and let V' be a finite
dimensional affine subspace of WDivg(X), which is defined over the rationals.
Then L(V) (cf. Definition [LIA for the definition) is a rational polytope.

Proof. Note that the set of divisors A such that Kx + A is R-Cartier forms an
affine subspace W of V', which is defined over the rationals, so that, replacing V' by
W, we may assume that Kx + A is R-Cartier for every A € V.

Let m: Y — X be a resolution of X, which is a log resolution of the support of
any element of V. Given any divisor A € V, if we write

Ky—FF:?T*(Kx-FA),

then the coefficients of I" are rational affine linear functions of the coefficients of
A. On the other hand, the condition that Kx + A is log canonical is equivalent to
the condition that the coefficient of every component of I' is at most one and the
coefficient of every component of A is at least zero. O

Lemma 3.7.3. Let w: X — U be a projective morphism of normal quasi-projective
varieties. Let V' be a finite dimensional affine subspace of WDivg(X) and let A > 0
be a big R-divisor over U. Let C C L4(V) be a polytope.

If B4 (A/U) does not contain any non-Kawamata log terminal centres of (X, A),
for every A € C, then we may find a general ample Q-divisor A’ over U, a finite
dimensional affine subspace V' of WDivg(X) and a translation

L: WDivg(X) — WDivg(X),

by an R-divisor T R-linearly equivalent to zero over U such that L(C) C La/(V')
and (X,A — A) and (X, L(A)) have the same non-Kawamata log terminal centres.
Further, if A is a Q-divisor, then we may choose T Q-linearly equivalent to zero
over U.

Proof. Let A1, Aq,...,A; be the vertices of the polytope C. Let 3 be the set of
non-Kawamata log terminal centres of (X, A;) for 1 < ¢ < k. Note that if A € C,
then any non-Kawamata log terminal centre of (X, A) is an element of 3.
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By assumption, we may write A ~g gy C + D, where C is a general ample Q-
divisor over U and D > 0 does not contain any element of 3. Further Lemma [3.5.3]
implies that if A is a Q-divisor, then we may assume that A ~q ¢y C + D.

Given any rational number § > 0, let

L: WDivg(X) — WDivg(X) given by L(A)=A+§C+D—A)

be the translation by the divisor T'= §(C'+ D — A) ~gr v 0. Note that T ~g ¢ 0 if
A is a Q-divisor. As C' 4+ D does not contain any element of 3, if ¢ is sufficiently
small, then

Kx +L(A) = Kx + A + 8(C+ D — A) = Kx +6C + (A; — §A + 6D)

is log canonical for every 1 < ¢ < k and has the same non-Kawamata log ter-
minal centres as (X,A; — A). But then L(C) C La/(V'), where A’ = 6C and
V' =Vi_sya4sp and (X, A — A) and (X, L(A)) have the same non-Kawamata log

terminal centres. O

Lemma 3.7.4. Let w: X — U be a projective morphism of normal quasi-projective
varieties. Let V be a finite dimensional affine subspace of WDivg(X), which is de-
fined over the rationals, and let A be a general ample Q-divisor over U. Let S
be a sum of prime divisors. Suppose that there is a divisorially log terminal pair
(X, Ag), where S = LAgJ, and let G > 0 be any divisor whose support does not
contain any non-Kawamata log terminal centres of (X, Ag).

Then we may find a general ample Q-divisor A’ over U, an affine subspace
V' of WDivg(X), which is defined over the rationals, and a rational affine linear
isomorphism

L: V5+A — VSIUFA/,
such that

o L preserves Q-linear equivalence over U,

o L(Ls+a(V)) is contained in the interior of Lsya (V'),

o forany A € L(Lsya(V)), Kx—+A is divisorially log terminal and LAL =S,
and

o for any A € L(Ls+a(V)), the support of A contains the support of G.

Proof. Let W be the vector space spanned by the components of Ag. Then Ag €
Ls(W) and Lemma implies that Ls(W) is a non-empty rational polytope.
But then L£g(W) contains a rational point and so, possibly replacing Ay, we may
assume that Kx + Ag is Q-Cartier.

We first prove the result in the case that K x+A is R-Cartier for every A € Vg, 4.
By compactness, we may pick Q-divisors Ay, Ag, ..., A; € Vsi 4 such that Lg4(V)
is contained in the simplex spanned by A, Ag,...,A; (we do not assume that
A; > 0). Pick a rational number € € (0,1/4] such that

E(Al - Ao) + (1 - 26)A
is an ample Q-divisor over U, for 1 < <. Pick
Ai ~Q,U G(Al - Ao) -+ (1 - 26)A,

general ample Q-divisors over U. Pick A’ ~q i €A a general ample Q-divisor over
U. If we define L: Vgya — WDivg(X) by

LA)=(1—-)Ai+ A+ eAg+ A —(1—)A~qu A,
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and extend to the whole of Vg 4 by linearity, then L is an injective rational linear
map which preserves Q-linear equivalence over U. We let V' be the rational affine
subspace of WDivg(X) defined by V&, 4, = L(Vsya). Note also that L is the
composition Ly o Ly of

Li(A) =Ai+ Ai/(1—€)+ A —A and La(A) = (1 — )A + e(A + Ay).

If A€ Lgia(V), then Kx + A+ A’ — A is log canonical, and as A; is a general
ample Q-divisor over U it follows that Kx + A+4/3A;+ A’ — A is log canonical as
well. As 1/(1 —¢€) < 4/3, it follows that if A € Lg44(V), then Kx + L1 (A) is log
canonical. Therefore, if A € Lg4(V), then Kx + L(A) is divisorially log terminal
and LL(A)L=S.

Pick a divisor G’ such that S+ A’ + G’ belongs to the interior of Lgya/(V'). As
G + G’ contains no log canonical centres of (X, Ag) and X is smooth at the generic
point of every log canonical centre of (X, Ay), we may pick a Q-Cartier divisor
H > G + G’ which contains no log canonical centres of (X,Aq). Pick a rational
number 1 > 0 such that A’ —nH is ample over U. Pick A” ~qy A’ —nH a general
ample Q-divisor over U. Let § > 0 by any rational number and let

T: WDivg(X) — WDivg(X)

be translation by 6(nH + A" — A’) ~gu 0. If V" is the span of V', A" and H
and & > 0 is sufficiently small, then T(L(Ls+4(V))) is contained in the interior
of Lsanys(V"), Kx + T(A) is divisorially log terminal and the support of T'(A)
contains the support of G, for all A € L(Lgs44(V)). If we replace L by T o L,
Véia by T(L(Vsya)) and A" by §A”, then this finishes the case when Kx 4 A is
R-Cartier for every A € Vg 4.

We now turn to the general case. If

Wo={BeV|Kx+ S+ A+ Bis R-Cartier },

then Wy C V is an affine subspace of V', which is defined over the rationals. Note
that Ls1a(V) = Leyra(Wy). By what we have already proved, there is a rational
affine linear isomorphism Lg: Wy — W(, which preserves Q-linear equivalence
over U, a general ample Q-divisor A’ over U, such that Lo(Lgy.(Wp)) is contained
in the interior of Lg1 4/ (W), and for every divisor A € Lo(Ls+a(Wy)), Kx + A is
divisorially log terminal and the support of A contains the support of G.

Let W3 be any vector subspace of WDivg(X), which is defined over the rationals,
such that V = Wy+W; and WonW; C {0}. Let V' = Wj+Wj. Since L preserves
Q-linear equivalence over U, WiNW; = Wy N Wy and Lgya (V') = Lera (W)).
If we define L: V4 — V},, by sending A + By + By to Lo(A + By) + Bi, where
B; € W, then L is a rational affine linear isomorphism, which preserves Q-linear
equivalence over U and L(Lg4+4(V)) is contained in the interior of Loy 4/(V’). O

Lemma 3.7.5. Let w: X — U be a projective morphism of normal quasi-projective
varieties. Let (X, A = A+ B) be a log canonical pair, where A >0 and B > 0.

If A is w-big and B4 (A/U) does not contain any non-Kawamata log terminal
centres of (X, A) and there is a Kawamata log terminal pair (X, Ao), then we may
find a Kawamata log terminal pair (X, A" = A’ + B’), where A’ > 0 is a general
ample Q-divisor over U, B' > 0 and Kx + A’ ~py Kx + A. If in addition A is a
Q-divisor, then Kx + A" ~qgu Kx + A.
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Proof. By Lemma [B7.3] we may assume that A is a general ample Q-divisor over
U. If V is the vector space spanned by the components of A, then A € L4(V) and
the result follows by Lemma [3.7.4] O

Lemma 3.7.6. Let V' be a finite dimensional real vector space, which is defined
over the rationals. Let A C 'V be a lattice spanned by rational vectors. Suppose
that v € V' is a vector which is not contained in any proper affine subspace W C 'V
which is defined over the rationals.
Then the set
X={mv+AlmeNXeA}

is dense in V.

Proof. Let

qg:V—V/A
be the quotient map and let G be the closure of the image of X. As G is infinite
and V/A is compact, G has an accumulation point. It then follows that zero is also
an accumulation point and that G is a closed subgroup.

The connected component G of G containing the identity is a Lie subgroup of
V/A and so by Theorem 15.1 of [3], Gy is a torus. Thus Gg = W/A, where

W = Hi(Go.R) = Ay @R = H(Go, Z) 9R C H\(G,Z) @R = Hy(G.R)

is a subspace of V' which is defined over the rationals. On the other hand, G/Gy
is finite as it is discrete and compact. Thus a translate of v by a rational vector is
contained in W and so W = V. O

Lemma 3.7.7. Let C be a rational polytope contained in a real vector space V of
dimension n, which is defined over the rationals. Fir a positive integer k and a
positive real number a.

If v € C, then we may find vectors vi,va,...,v, € C and positive integers
mi, Ma, ..., My, which are divisible by k, such that v is a convex linear combination
of the vectors vy, v, ...,v, and

lv; — o] < &, where Mi%i s integral.
Proof. Rescaling by k, we may assume that kK = 1. We may assume that v is not
contained in any proper affine linear subspace which is defined over the rationals.
In particular v is contained in the interior of C since the faces of C are rational.

After translating by a rational vector, we may assume that 0 € C. After fixing
a suitable basis for V' and possibly shrinking C, we may assume that C = [0,1]™ C
R™ and v = (21,29,...,2,) € (0,1)". By Lemma B0 for each subset I C
{1,2,...,n}, we may find

vr = (81, 82,..-,8,) € (0,1)"NQ",

and an integer my such that mjvy is integral, such that
«@
lv—vr|| < — and s; < z; if and only if j € I.
mr

In particular v is contained inside the rational polytope B C C generated by the
v7. Thus v is a convex linear combination of a subset vy, v2,...,v, of the extreme
points of B. (]
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3.8. Rational curves of low degree. We will need the following generalisation
of a result of Kawamata, see Theorem 1 of [I6], which is proved by Shokurov in the
appendix to [29].

Theorem 3.8.1. Let m: X — U be a projective morphism of normal quasi-
projective varieties. Suppose that (X, A) is a log canonical pair of dimension n,
where Kx + A is R-Cartier. Suppose that there is a divisor Ag such that Kx + Ag
is Kawamata log terminal.

If R is an extremal ray of NE(X/U) that is (Kx + A)-negative, then there is a
rational curve X spanning R, such that

0<—(Kx+A)E§2’n

Proof. Passing to an open subset of U, we may assume that U is affine. Let V be
the vector space spanned by the components of A+ Ag. By Lemma [3.7.2] the space
L(V) of log canonical divisors is a rational polytope. Since Ag € £(V'), we may find
Q-divisors A; € V with limit A, such that Kx + A; is Kawamata log terminal. In
particular we may assume that (Kx + Ag) - R < 0. Replacing 7 by the contraction
defined by the extremal ray R, we may assume that —(Kx + A) is m-ample.

Theorem 1 of [16] implies that we can find a rational curve 3; contracted by m
such that

_(KX +A1) . Ei S 2n.

Pick a m-ample Q-divisor A such that —(Kx + A+ A) is also m-ample. In particular
—(Kx + A; + A) is m-ample for i > 0. Now

It follows that the curves ¥; belong to a bounded family. Thus, possibly passing to
a subsequence, we may assume that 3 = 3; is constant. In this case

—(Kx+A)-¥=lm—(Kx +A;) X <2n. O
Corollary 3.8.2. Let m: X — U be a projective morphism of normal quasi-
projective varieties. Suppose the pair (X, A = A+B) has log canonical singularities,
where A > 0 is an ample R-divisor over U and B > 0. Suppose that there is a
divisor Ag such that Kx + Ag is Kawamata log terminal.

Then there are only finitely many (K x+A)-negative extremal rays Ry, Ro, ..., Ry,
of NE(X/U).

Proof. We may assume that A is a Q-divisor. Let R be a (Kx + A)-negative
extremal ray of NE(X/U). Then

—(Kx+B)-R=—(Kx+A)-R+A-R>0.
By Theorem B.81] R is spanned by a curve ¥ such that
—(Kx + B)-X < 2n.

But then
A-Y¥=—-(Kx+B)- X+ (Kx+A) -3 <2n.
Therefore the curve ¥ belongs to a bounded family. Il
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3.9. Effective base point free theorem.

Theorem 3.9.1 (Effective Base Point Free Theorem). Fiz a positive integer n.
Then there is a positive integer m > 0 with the following property:

Let f: X — U be a projective morphism of normal quasi-projective varieties,
and let D be a nef R-divisor over U, such that aD — (Kx + A) is nef and big over
U, for some positive real number a, where (X, A) is Kawamata log terminal and X
has dimension n.

Then D is semiample over U and if aD is Cartier, then maD is globally generated
over U.

Proof. Replacing D by aD we may assume that a = 1. As the property that D is
either semiample or globally generated over U is local over U, we may assume that
U is affine.

By assumption we may write D — (Kx + A) ~py A+ B, where A is an ample
Q-divisor and B > 0. Pick € € (0,1) such that (X,A + eB) is Kawamata log
terminal. Then

D—(Kx+A+eB)=(1—-¢€¢)(D—(Kx+A))+eD—(Kx+A+B))

is ample. Replacing (X, A) by (X, A+€eB) we may therefore assume that D—(Kx +
A) is ample. Let V be the subspace of WDivg(X) spanned by the components of
A. As L(V) is a rational polytope, cf. Lemma 372 which contains A, we may
find A’ such that Kx + A’ is Q-Cartier and Kawamata log terminal, sufficiently
close to A so that D — (Kx + A’) is ample. Replacing (X, A) by (X, A’) we may
therefore assume that Kx + A is Q-Cartier.

The existence of the integer m is Kollar’s effective version of the base point free
theorem [20].

Pick a general ample Q-divisor A such that D—(Kx+A+A) is ample. Replacing
A by A+ A, we may assume that A = A + B, where A is ample and B >
0. By Corollary there are finitely many (Kx + A)-negative extremal rays
R1, RQ, ey Rk of NE(X) Let

F={aeNEX)|D-a=0}.
Then F is a face of NE(X) and if « € F, then (Kx + A)-a < 0, and so F is
spanned by a subset of the extremal rays Ry, Rs,..., Rx. Let V be the smallest

affine subspace of WDivg(X), which is defined over the rationals and contains D.
Then

C={CeV|C-a=0,YVaeF}
is a rational polyhedron. It follows that we may find positive real numbers 1, ro,
...,1rq and nef Q-Cartier divisors D1, D, ..., D, such that D = %" r,D,. Possibly
re-choosing D1, D, ..., D, we may assume that D, — (Kx + A) is ample. By the
usual base point free theorem, D, is semiample and so D is semiample. O

Corollary 3.9.2. Fiz a positive integer n. Then there is a constant m > 0 with
the following property:

Let f: X — U be a projective morphism of normal quasi-projective varieties
such that Kx + A is nef over U and A is big over U, where (X, A) is Kawamata
log terminal and X has dimension n.

Then Kx + A is semiample over U and if v is a positive constant such that
r(Kx + A) is Cartier, then mr(Kx + A) is globally generated over U.
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Proof. By Lemma we may find a Kawamata log terminal pair
Kx+ A+ B~y Kx + A,
where A > 0 is a general ample Q-divisor over U and B > 0. As
(Kx +A)— (Kx+B)~pu A

is ample over U and Kx + B is Kawamata log terminal, the result follows by
Theorem 3911 O

Lemma 3.9.3. Let m: X — U be a projective morphism of quasi-projective vari-
eties. Suppose that (X, A) is a Kawamata log terminal pair, where A is big over
U.

If ¢: X --+'Y is a weak log canonical model of Kx + A over U, then

(1) ¢ is a semiample model over U,

(2) the ample model v: X --» Z of Kx + A over U exists, and

(3) there is a contraction morphism h: Y — Z such that Ky +T ~gy h*H,
for some ample R-divisor H over U, where I' = ¢, A.

Proof. Ky 41T is semiample over U by Corollary (3) of Lemma [B.6.6] implies
(2) and (3). O

3.10. The MMP with scaling. In order to run a minimal model program, two
kinds of operations, known as flips and divisorial contractions are required. We
begin by recalling their definitions.

Definition 3.10.1. Let (X,A) be a log canonical pair and f: X — Z be a
projective morphism of normal varieties. Then f is a flipping contraction if

(1) X is Q-factorial and A is an R-divisor,
(2) f is a small birational morphism of relative Picard number p(X/Z) = 1,
and
(3) —(Kx + A) is f-ample.
The flip f*: X+ — Z of a flipping contraction f: X — Z is a small birational
projective morphism of normal varieties f7: XT — Z such that Kx+ + At is
fT-ample, where A™ is the strict transform of A.

Lemma 3.10.2. Let (X, A) be a Kawamata log terminal pair, let f: X — Z be
a flipping contraction and let f+: XT — Z be the flip of f. Let ¢p: X ——» X1 be
the induced birational map.

Then

(1) ¢ is the log canonical model of (X, A) over Z,
(2) (XT, A" = ¢, A) is log canonical,

(3) Xt is Q-factorial, and

(1) p(X+/2) = 1.

Proof. As ¢ is small, Lemma implies that ¢ is (Kx + A)-negative and this
implies (1) and (2).

Let B be a divisor on X+ and let C C X be the strict transform of B. Since
p(X/Z) =1, we may find A € R such C'+ A\(Kx + A) is numerically trivial over U.
But then Theorem B.9.0] implies that C' + A(Kx + A) = f*D, for some R-Cartier
divisor D on Z. Therefore B + A(Kx+ + AT) = fT*D, and this implies (3) and
(4). O
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Remark 3.10.3. Results of Ambro and Fujino imply that the results of Lemma
hold in the case when (X, A) is log canonical.

In terms of our induction, we will need to work with a more restrictive notion of
flipping contraction.

Definition 3.10.4. Let (X, A) be a purely log terminal pair and let f: X — Z be
a projective morphism of normal varieties. Then f is a pl-flipping contraction if

(1) X is Q-factorial and A is an R-divisor,

(2) f is a small birational morphism of relative Picard number p(X/Z) = 1,
(3) —(Kx + A) is f-ample, and

(4) S = AL is irreducible and —S is f-ample.

A pl-flip is the flip of a pl-flipping contraction.

Definition 3.10.5. Let (X,A) be a log canonical pair and f: X — Z be a
projective morphism of normal varieties. Then f is a divisorial contraction if

(1) X is Q-factorial and A is an R-divisor,

(2) f is a birational morphism of relative Picard number p(X/Z) = 1 with
exceptional locus a divisor, and

(3) —(Kx + A) is f-ample.

Remark 3.10.6. If f: X — Z is a divisorial contraction, then an argument similar
to Lemma shows that (Z, f.A) is log canonical and Z is Q-factorial.

Definition 3.10.7. Let (X,A) be a log canonical pair and f: X — Z be a
projective morphism of normal varieties. Then f is a Mori fibre space if

(1) X is Q-factorial and A is an R-divisor,
(2) f is a contraction morphism, p(X/Z) =1 and dim Z < dim X, and
(3) —(Kx + A) is f-ample.

The objective of the MMP is to produce either a log terminal model or a Mori
fibre space. Note that if Kx + A has a log terminal model, then Kx + A is pseudo-
effective and if Kx + A has a Mori fibre space, then K x + A is not pseudo-effective,
so these two cases are mutually exclusive.

There are several versions of the MMP, depending on the singularities that are
allowed (typically, one restricts to Kawamata log terminal singularities or divisori-
ally log terminal singularities or terminal singularities with A = 0) and depending
on the choices of negative extremal rays that are allowed (traditionally any choice
of an extremal ray is acceptable).

In this paper, we will run the MMP with scaling for divisorially log terminal pairs
satisfying certain technical assumptions. We will need the following key result.

Lemma 3.10.8. Let w: X — U be a projective morphism of normal quasi-
projective varieties. Suppose that the pair (X,A = A+ B) has Kawamata log
terminal singularities, where A > 0 is big over U, B > 0, D is a nef R-Cartier
divisor over U, but Kx + A is not nef over U. Set

A=sup{p|D+ u(Kx + A) is nef over U }.
Then there is a (Kx + A)-negative extremal ray R over U, such that
(D+ XNKx +A))-R=0.
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Proof. By Lemma we may assume that A is ample over U.

By Corollary there are only finitely many (K x 4+ A)-negative extremal rays
Ri, Ry, ..., Ry over U. For each (Kx + A)-negative extremal ray R;, pick a curve
>; which generates R;. Let

) D%
= mn-—-————0.
Pl T Ky rA) -5,

Then D + pu(Kx + A) is nef over U, since it is non-negative on each R;, but it is
zero on one of the extremal rays R = R;. Thus A = p. (]

Lemma 3.10.9. Let m: X — U be a projective morphism of normal quasi-
projective varieties and let (X, ) be a Kawamata log terminal pair. Suppose
that (X,A = A+ B) is a log canonical pair, where A > 0 is big over U, B > 0,
B, (A/U) contains no non-Kawamata log terminal centres of (X, A) and C is an
R-Cartier divisor such that Kx + A is not nef over U, whilst Kx + A + C' is nef
over U.

Then there is a (Kx + A)-negative extremal ray R and a real number 0 < A < 1
such that Kx + A + \C' is nef over U but trivial on R.

Proof. By Lemma we may assume that Ky + A is Kawamata log terminal
and that A is ample over U. Apply Lemma[3I08to D = Kx + A+ C. O

Remark 3.10.10. Assuming existence and termination of the relevant flips, we may
use Lemma to define a special minimal model program, which we will refer
to as the (Kx + A)-MMP with scaling of C.

Let m: X — U be a projective morphism of normal quasi-projective varieties,
where X is Q-factorial, (X, A+ C =S+ A+ B + C) is a divisorially log terminal
pair, such that LAy = S, A > 0 is big over U, B, (A4/U) does not contain any
non-Kawamata log terminal centres of (X, A), and B > 0, C > 0. We pick A > 0
and a (Kx + A)-negative extremal ray R over U as in Lemma B.I0.9 above. If
Kx + A is nef over U we stop. Otherwise A > 0 and we let f: X — Z be the
extremal contraction over U defined by R. If f is not birational, we have a Mori
fibre space over U and we stop. If f is birational, then either f is divisorial and we
replace X by Z or f is small and assuming the existence of the flip f*: X+ — Z,
we replace X by X . In either case Kx + A + AC is nef over U and Kx + A is
divisorially log terminal and so we may repeat the process.

In this way, we obtain a sequence ¢;: X; --» X;;1 of Kx + A flips and divisorial
contractions over U and real numbers 1 > A\; > A9 > -+ such that Kx, +A; +\;,C;
is nef over U, where A; = (¢;—1)+A;—1 and C; = (¢;—1)+Ci_1.

Note that by Lemma BI0.I1] each step of this MMP preserves the condition
that (X, A) is divisorially log terminal and By (A/U) does not contain any non-
Kawamata log terminal centres of (X,A) so that we may apply Lemma
By Lemma and Remark BT0.6] (X, A + A\C) is log canonical. However the
condition that B4 (A/U) does not contain any non-Kawamata log terminal centres
of (X, A+ XC) is not necessarily preserved.

Lemma 3.10.11. Let w: X — U be a projective morphism of normal quasi-
projective varieties. Suppose that Kx + A is divisorially log terminal, X is Q-
factorial and let ¢: X --+Y be a sequence of steps of the (Kx + A)-MMP over U.
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IfT' = ¢ A, then

(1) ¢ is an isomorphism at the generic point of every non-Kawamata log ter-
minal centre of Ky + . In particular (Y,T) is divisorially log terminal.

(2) If A=S+A+B, where S = .AL, A >0 is big over U, B4(A/U) does not
contain any non-Kawamata log terminal centres of Kx + A, and B > 0,
then ¢S = LT, ¢ A is big over U and B4 (¢.A/U) does not contain any
non-Kawamata log terminal centres of Ky +T.

In particular T ~g y IT', where (Y,I") is Kawamata log terminal and T

1s big over U.

Proof. We may assume that ¢ is either a flip or a divisorial contraction over U.
We first prove (1). Let p: W — X and ¢: W — Y be common log resolutions,
which resolve the indeterminacy of ¢. We may write

p*(KX +A) = q*(Ky JrF) + F,

where F is exceptional and contains every exceptional divisor over the locus where
¢! is not an isomorphism. In particular the log discrepancy of every valuation with
centre on Y contained in the locus where ¢! is not an isomorphism with respect
to Ky + I' is strictly greater than the log discrepancy with respect to Kx + A.
Hence (1) follows.

Now suppose that A =S+ A+ B, A is big over U and no non-Kawamata log
terminal centre of (X, A) is contained in B, (A/U). Pick a divisor C on Y which
is a general ample Q-divisor over U. Possibly replacing C' by a smaller multiple,
we may assume that B((A — ¢;1C)/U) does not contain any non-Kawamata log
terminal centres of (X, A). Thus A—¢;1C ~g y D > 0, where D does not contain
any non-Kawamata log terminal centres of (X,A). If € > 0 is sufficiently small,
then (X, A’ = A 4 eD) is divisorially log terminal, (X,A) and (X, A’) have the
same non-Kawamata log terminal centres and ¢ is a Kx + A’ flip or a divisorial
contraction over U. (1) implies that (Y,IV = ¢, A’) is divisorially log terminal and
hence ¢, D does not contain any non-Kawamata log terminal centres of (Y,T"). (2)
follows as ¢, A — C ~ry ¢D > 0. O

Lemma 3.10.12. Let w: X — U be a projective morphism of quasi-projective
varieties. Suppose that (X, A) is a divisorially log terminal pair. Let S be a prime
divisor.

Let fi: X; --+ X,;41 be a sequence of flips and divisorial contractions over U,
starting with X1 := X, for the (Kx + A)-MMP, which does not contract S. If f; is
not an isomorphism in a neighbourhood of the strict transform S; of S, then neither
is the induced birational map X; --+ X, j > i.

Proof. Since the map f; is (Kx, +A;)-negative and X; 1 --» X, is (Kx,,, +Ajt1)-
negative, there is some valuation v whose centre intersects .S;, such that

a(y, Xl', Az) < a(y, Xi+1, Ai+1) and a(l/, Xi+1, Ai+1) < a(l/, Xj, AJ)

But then a(v, X;, A;) < a(v, X;,Aj), so that X; --» X is not an isomorphism in
a neighbourhood of S;. O

3.11. Shokurov’s polytopes. We will need some results from [32]. First we give
some notation. Given a ray R C NE(X), let

Rt={AecL(V)|(Kx+A)-R=0}.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



444 C. BIRKAR, P. CASCINI, C. D. HACON, AND J. MCKERNAN

Theorem 3.11.1. Let w: X — U be a projective morphism of normal quasi-
projective varieties. Let V' be a finite dimensional affine subspace of WDivg(X),
which is defined over the rationals. Fiz an ample Q-divisor A over U. Suppose that
there is a Kawamata log terminal pair (X, Ay).

Then the set of hyperplanes R* is finite in L4(V), as R ranges over the set of
extremal rays of NE(X/U). In particular, Na (V) is a rational polytope.

Corollary 3.11.2. Let m: X — U be a projective morphism of normal quasi-
projective varieties. Let V' be a finite dimensional affine subspace of WDivg(X),
which is defined over the rationals. Fix a general ample Q-divisor A over U. Sup-
pose that there is a Kawamata log terminal pair (X, Ag). Let ¢: X --» Y be any
birational contraction over U.

Then Wy a,=(V) is a rational polytope. Moreover there are finitely many mor-
phisms f;: Y — Z; over U, 1 < i <k, such that if f: Y — Z is any contraction
morphism over U and there is an R-divisor D on Z, which is ample over U, such
that Ky +T = ¢.(Kx + A) ~pu f*D for some A € Wy a (V), then there is an
index 1 < i <k and an isomorphism n: Z; — Z such that f =no f;.

Corollary 3.11.3. Let w: X — U be a projective morphism of normal quasi-
projective varieties. Let V' be a finite dimensional affine subspace of WDivr(X),
which is defined over the rationals. Fix a general ample Q-divisor A over U. Let
(X, Ag) be a Kawamata log terminal pair, let f: X — Z be a morphism over U
such that Ag € La(V) and Kx + Ao ~r,u f*H, where H is an ample divisor over
U. Let ¢: X --+Y be a birational contraction over Z.

Then there is a neighbourhood Py of Ag in LA(V) such that for all A € Py, ¢
s a log terminal model for Kx + A over Z if and only if ¢ is a log terminal model
for Kx + A over U.

Proof of Theorem BTl Since L£4(V) is compact it suffices to prove this locally
about any point A € L4(V). By Lemma B.74] we may assume that Kx + A is
Kawamata log terminal. Fix ¢ > 0 such that if A" € L4(V) and ||[A" — A < ¢,
then A’ — A+ A/2 is ample over U. Let R be an extremal ray over U such that
(Kx +A")-R=0, where A" € L4(V) and ||A" — Al| < e. We have

(Kx +A—A4/2)-R=(Kx+A")-R—(A"—A+A/2)-R<0.

Finiteness then follows from Corollary

Na (V) is surely a closed subset of £4(V). If Kx + A is not nef over U, then
Theorem B.8Tlimplies that K x +A is negative on a rational curve ¥ which generates
an extremal ray R of NE(X/U). Thus N4 (V) is the intersection of £4(V) with
the half-spaces determined by finitely many of the extremal rays of NE(X/U). O

Proof of Corollary BIT.2l Since L4(V) is a rational polytope, its span is an affine
subspace of V4, which is defined over the rationals. Possibly replacing V', we may
therefore assume that £4 (V') spans V4. By compactness, to prove that Wy a (V)
is a rational polytope, we may work locally about a divisor A € Wy 4 (V). By
Lemma B.7.4] we may assume that Kx + A is Kawamata log terminal, in which
case Ky +1I' is Kawamata log terminal as well. Let W C WDivg(Y') be the image
of V. If C = ¢, A, then C is big over U and by Lemmas [3.7.3] and B.7.4, we may
find a rational affine linear isomorphism L: W — W’ and an ample Q-divisor C’
over U such that L(I') belongs to the interior of Lc(W') and L(¥) ~gu ¥ for
any ¥ € W. Theorem B.IT.Tlimplies that Ncr (W) is a rational polytope, where
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¢: Y — U is the structure morphism, and so N¢ (W) is a rational polytope
locally about T'.

Let p: Z — X be a log resolution of (X, A) which resolves the indeterminacy
locus of ¢, via a birational map q: Z — Y. We may write

Kz+\I/:p*(Kx+A),
Kz-i-(I):q*(Ky-i-F).

Note that A € Wy a-(V) if and only if I' = ¢, A € Ng (W) and ¥ — & > 0.
Since the map L: V — W given by A — I' = ¢, A is rational linear, the first
statement is clear.

Note that if f: Y — Z and f': Y — Z’ are two contraction morphisms over
U, then there is an isomorphism 7: Z — Z’ such that f' = no f if and only if the
curves contracted by f and f’ coincide.

Let f: Y — Z be a contraction morphism over U, such that

Ky +T' =Ky + ¢.A ~pu f*D,

where A € Wy 4 -(V) and D is an ample over U R-divisor on Z. T belongs to
the interior of a unique face G of N¢ (W), and the curves contracted by f are
determined by G. Now A belongs to the interior of a unique face F' of Wy a (V)
and G is determined by F. But as Wy 4,.(V) is a rational polytope it has only
finitely many faces F. (]

Proof of Corollary BI1.3l. By Theorem B.I1.J] we may find finitely many extremal
rays Ri, Ro,..., Ry of Y over U such that if Ky + ' = Ky + ¢.A is not nef over
U, then it is negative on one of these rays. If 'y = ¢4, then we may write

Ky +T =Ky +To+ (I'=To) ~ruv g"H + ¢ (A = Ay),

where g: Y — Z is the structure morphism. Therefore there is a neighbourhood
Py of Ag in L4(V) such that if Ky + T is not nef over U, then it is negative on an
extremal ray R;, which is extremal over Z. In particular if ¢ is a log terminal model
of Kx 4+ A over Z, then it is a log terminal model over U. The other direction is
clear. 0

4. SPECIAL FINITENESS

Lemma 4.1. Let m: X — U be a projective morphism of quasi-projective vari-
eties. Let (X,A =S+ A+ B) be a log smooth pair, where S = LAl is a prime
divisor, A is a general ample Q-divisor over U and B > 0. Let C = Als and
O = (A—-09)|s. Let p: X --» Y be a birational map over U which does not
contract S, let T be the strict transform of S and let 7: S --» T be the induced
birational map. Let T’ = ¢, A and define ¥ on T by adjunction,

(Ky +F)|T = Kr+ V.

If (S, ©) is terminal and ¢ is a weak log canonical model of Kx + A over U, then
there is a divisor C' < Z < O such that 7 is a weak log canonical model of Kg + =
over U, where 7,= = W.

Proof. Let p: W — X and ¢: W — Y be log resolutions of (X, A) and (Y,T),
which resolve the indeterminacy of ¢, where I' = ¢, A. Then we may write

Ky +A =p"(Kx+A)+FE and Kw+1I'=¢"(Ky +TI)+F,
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where A’ > 0 and £ > 0 have no common components, IV > 0 and F > 0 have
no common components, p, A’ = A, ¢.IV =T, p,E = 0 and ¢.F = 0. Since ¢ is
(Kx + A)-non-positive, we have F — E 4+ A’ — I > 0 and so

F>F and ' < A.

If R is the strict transform of S on W, then there are two birational morphisms
f=pr:R— Sand g = ¢qlg: R — T. Since (X, A) is purely log terminal,
(Y,T) is purely log terminal. In particular (T, ¥) is Kawamata log terminal. It
follows that

Kr+0 =f(Ks+0)+E and Kr+V9 =g (Kr+7)+ F/,

where ©' = (A’ — R)|r, E' = E|g, V' = (I" — R)|g and F’ = F|r. Moreover, every
component of F” is g-exceptional, by (4) of Definition-Lemma 34Tl As p and ¢ are
log resolutions

F' > F and U <@

Suppose that B is a prime divisor on R which is f-exceptional but not g-
exceptional. Then B is not a component of F’, and so it is not a component of
E’. But then the log discrepancy of B with respect to (S, ©) is at most one, which
contradicts the fact that (S, ©) is terminal. Thus 7 is a birational contraction.

As g.E' =0,

7,0 = ¢,0' > g,V =,
Let = < © be the biggest divisor on S such that 7.2 = ¥. In other words, if a
component of © is not T-exceptional, we replace its coefficient by the corresponding
coefficient of ¥ and if a component of © is T-exceptional, then we do not change
its coefficient. As A is a general ample Q-divisor over U, C' is not contained in the
locus where ¢ is not an isomorphism. It follows that C' < Z. We have

[ (Ks+E)=g"(Kr+V¥)+L,
where g,L = 0. Contrast this with
["(Ks+0)=g"(Kr+V)+ M.

We have already seen that M = F' — E' + © — ¥’ > 0. By definition of =, f.L
and f,M agree on the T-exceptional divisors. Since f,L is T-exceptional, it follows
that f,L > 0. But then Lemma B.6.3] implies that L > 0 and so 7 is a weak log
canonical model of Kg + = over U. O

Lemma 4.2. Let X — U and Y — U be two projective morphisms of normal
quasi-projective varieties, where X and Y are Q-factorial. Let f: X --» Y be a
small birational map over U. Let S be a prime divisor on X, let T be its strict
transform on Y, let g: S --» T be the induced birational map and let H be an
ample R-divisor on'Y over U. Let D be the strict transform of H in X.

If g is an isomorphism and D|s = ¢g*(H|r), then f is an isomorphism in a
neighbourhood of S and T.

Proof. If p: W — X is the normalisation of the graph of f and ¢: W — Y is
the induced birational morphism, then we may write

p'D=q"H+E,
where F is p-exceptional. Since f is small the exceptional divisors of p and ¢ are the

same. Since X and Y are Q-factorial the exceptional locus of p and ¢ are divisors
by (3) of Lemma [3.6.2 Notice also that if F' is a p-exceptional divisor, then it is
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covered by a family of p-exceptional curves which are not contracted by gq. Thus the
image of F' is contained in the indeterminancy locus of f and also in the support
of FE by (2) of Lemma[3.6.21 Putting all of this together, the support of E is equal
to the inverse image of the indeterminancy locus of f and of f~!.

Let R be the strict transform of S in W and let p; = p|g: R — S and ¢; =
qlr: R — T. Since

pi(Dls) = (" D)|r = (¢"H + E)|r = ¢i (H|1) + Elr,
we have E|g = 0. Thus S does not intersect the indeterminancy locus of f, and T

does not intersect the indeterminancy locus of f~!, and so f is an isomorphism in
a neighbourhood of S and T'. O

Lemma 4.3. Let m: X — U be a projective morphism of normal quasi-projective
varieties. Let (X, A;) be two, i = 1, 2, purely log terminal pairs, where S = LA,
is a prime divisor, which is independent of i. Let ¢;: X --+Y; be Q-factorial log
canonical models of Kx +A; over U, where the ¢; are birational and do not contract
S fori =1, 2. LetT; be the strict transform of S and let 7;: S --+ T; be the induced
birational maps. Let ®; be the different

(Ky, +T7)

T, = KTi + ;.
If
(
(
(
(

) the induced birational map x: Yy --+ Ys is small,

) the induced birational map o: Ty --» Ty is an isomorphism,

) O'*‘I)Q = ‘I)l, and

) for every component B of the support of (As — S), we have
(¢1+B)l1, = 0 ((¢2:B)1),

then x is an isomorphism in a neighbourhood of Ty and T.

Proof. Let I'; = ¢;,A; and define ¥; by adjunction,

(Kyi -|-].—‘1) T, = KTi + W,.

1
2
3
4

We have
Kr, +79; = (Km + T+ 1 *Ti)|Ti
= Kr, + ®; + (I's = T3) |,
so that ¥; = ®; + (¢ (A; — 9))|7,. Conditions (3) and (4) then imply that
0" Wy = 0" (P2 + (¢2:(A2 — 5))|1) = P1 + (d14(A2 — 5))Iry-
It follows that
(X" (Ky, +12))|n,

= (X2« (Kx + A2))|7,

= (¢1:(Kx + A2))|ny

= (Kyv; + T1 + ¢1:(A2 = 9))|my

= K7, + @1+ (¢14(A2 = 9))|ny

= o (K, + Us).

Thus Lemma implies that y is an isomorphism in a neighbourhood of 7T} and
Ts. O

Lemma 4.4. Theorem [El,_1 implies Theorem [Bl,.
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Proof. Suppose not. Then there would be an infinite sequence of Q-factorial weak
log canonical models over U, ¢;: X --» Y; for Kx + A;, where A; € Lga(V),
which only contract components of & and which do not contract every component
of S, such that if the induced birational map f;;: Y; --+ Y; is an isomorphism
in a neighbourhood of the strict transforms S; and S; of S, then ¢ = j. Since
¢ is finite, possibly passing to a subsequence, we may assume that f;; is small.
Possibly passing to a further subsequence, we may also assume that there is a fixed
component 7" of S such that ¢; does not contract T', and f;; is not an isomorphism in
a neighbourhood of the strict transforms of T'. Replacing S by T', we may therefore
assume that S is irreducible.

Pick Hy, Hs,...,Hy general ample over U Q-divisors which span WDivg(X)
modulo numerical equivalence over U and let H = Hy + Hy + --- + Hj be their
sum. We may replace V' by the subspace of WDivg(X) generated by V and
H,, Hs,... H;. Passing to a subsequence, we may assume that limA; = A, €
Ls+4(V). By Lemma B74 we may assume that Kx + A, is purely log terminal
and Ao is in the interior of Lg44(V'). Possibly passing to a subsequence we may
therefore assume that A; and A,, have the same support. We may therefore as-
sume that Kx + A, is purely log terminal and A; contains the support of H. By
Lemma we may therefore assume that ¢; is the ample model of Kx + A;
over U. In particular A; = A; implies i = j.

Pick A € Lg14(V) such that Kx + A is purely log terminal and A; < A for all
i>0. Let f: Y — X be a log resolution of (X, A). Then we may write

Ky +T = f'(Kx +A)+E,

where I' > 0 and £ > 0 have no common components, f.I' = A and f.E = 0.
Let T be the strict transform of S. Possibly blowing up more, we may assume
that (7, 0) is terminal, where © = (I' — T')|p. We may find F' > 0 an exceptional
Q-divisor so that f*A — F' is ample over U, (Y,I' + F) is purely log terminal and
(T,O + F|r) is terminal. Let A’ ~gy f*A — F be a general ample Q-divisor over
U. For every 7, we may write

Ky +Ti = f"(Kx + Ai) + Ei,
where I'; > 0 and E; > 0 have no common components, f.['; = A; and f.E; = 0.
Let
M="—ffA+ F+ A ~qu I'i.
Then Ky + I'j is purely log terminal and Lemma implies that f o ¢; is both
a weak log canonical model, and the ample model, of Ky + I'; over U.

Replacing X by Y we may therefore assume that (X, A) is log smooth and (S, ©)
is terminal, where © = (A — S)|s. Let

C=As <5< (A —=9)s<0O

be the divisors whose existence is guaranteed by Lemma[dT]so that 7; = ¢;|s: S --»
S; is a weak log canonical model (and the ample model) of Kg + Z; over U, where
S; is the strict transform of S. As we are assuming Theorem[El, 1, possibly passing
to a subsequence we may assume that the restriction g;; = fij|s,: S; --+ S; is an
isomorphism.

Since Y; is Q-factorial, we may define two R-divisors on \S; by adjunction,

(Ky, +Ti)ls, = Ks, +¥;  and  (Ky, + S5i)[s, = Kg, + @i,
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where I'; = ¢;xA;. Then
0<®; <V =735 <7.0.

As the coefficients of ®; have the form @ for some integer r > 0, by (3) of
Definition-Lemma B:4T] and the coefficients of © (and hence also of 7;.0) are all
less than one, it follows that there are only finitely many possibilities for ®;. Let
B be a component of the support of A; — S and let G = (¢;.(B))|s,- By (3) of
Definition-Lemma [B.4.0] the coefficients of G are integer multiples of 1/r. Pick a
real number 5 > 0 such that the coefficients of B in A; — S are at least 5. As

BG < ¢z*(Az - S)‘Sl < Ti*(_)v

there are only finitely many possibilities for G. Possibly passing to a subsequence,
we may assume ®; = f®; and that if B is a component of the support of A; — 5,
then (¢i(B))]s, = g;;((¢;+B)|s;). Lemma B3 implies that f;; is an isomorphism
in a neighbourhood of \S; and S}, a contradiction. O

5. LOG TERMINAL MODELS

Lemma 5.1. Assume Theorem [Bl,.
Let m: X — U be a projective morphism of normal quasi-projective varieties,
where X is Q-factorial of dimension n. Suppose that

Kx+A+C=Kx+S+A+B+C

is divisorially log terminal and nef over U, where S is a sum of prime divisors,
B, (A/U) does not contain any non-Kawamata log terminal centres of (X, A+ C)
and B >0, C > 0.

Then any sequence of flips and divisorial contractions for the (Kx + A)-MMP
over U with scaling of C, which does not contract S, is eventually disjoint from S.

Proof. We may assume that S is irreducible and by Lemma 374 we may assume
that A is a general ample Q-divisor over U. Let f;: X; --+» X; 1 be a sequence of
flips and divisorial contractions over U, starting with X; := X, for the (Kx + A)-
MMP with scaling of C.

Let € be the set of prime divisors in X which are contracted by any of the
induced birational maps ¢;: X --» X;. Then the cardinality of & is less than the
relative Picard number of X over U. In particular € is finite.

By assumption there is a non-increasing sequence of real numbers i, Ao, ... €
[0,1], such that Kx, + A; + A\;C; is nef over U, where A; is the strict transform of
A and C; is the strict transform of C. Further the birational map f; is (Kx, +4;)-
negative and (K x, +A; +\;C;)-trivial, so that f; is (Kx, +A;+AC;)-non-positive if
and only if A < \;. By induction, the birational map ¢; is therefore (Kx +A+\;C)-
non-positive. In particular ¢; is a Q-factorial weak log canonical model over U of
(X, A+ )\0).

Let V be the smallest affine subspace of WDivg(X) containing A —S — A and
C, which is defined over the rationals. As A + \,C € Lg;4(V), Theorem [Bl,
implies that there is an index k and infinitely many indices ! such that the induced
birational map Xj --» X is an isomorphism in a neighbourhood of S and S;. But
then Lemma [B.10.12] implies that f; is an isomorphism in a neighbourhood of \S; for
all i > k. O
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We use Lemma [5.I] to run a special MMP:

Lemma 5.2. Assume Theorem [Al, and Theorem [Bl,.

Let m: X — U be a projective morphism of normal quasi-projective varieties,
where X is Q-factorial of dimension n. Suppose that (X,A+C = S+A+B+C) is
a divisorially log terminal pair, such that L AL =S, A >0 is big over U, B, (A/U)
does not contain any non-Kawamata log terminal centres of (X, A+C), and B > 0,
C > 0. Suppose that there is an R-divisor D > 0 whose support is contained in S
and a real number o > 0, such that

(%) Kx +A~py D+ aC.

If Kx + A+ C is nef over U, then there is a log terminal model ¢: X --+» Y
for Kx + A over U, where B4 (¢.A/U) does not contain any non-Kawamata log
terminal centres of (Y,T' = ¢.A).

Proof. By Lemmas B.I0.9 and BT0.TT] we may run the (Kx 4+ A)-MMP with scaling
of C over U, and this will preserve the condition that B, (A/U) does not contain
any non-Kawamata log terminal centres of (X,A). Pick ¢ € [0,1] minimal such
that Kx + A 4+ tC is nef over U. If t = 0 we are done. Otherwise we may find
a (Kx 4+ A)-negative extremal ray R over U, such that (Kx + A+tC)- R = 0.
Let f: X — Z be the associated contraction over U. Ast > 0, C- R > 0 and so
D - R < 0. In particular f is always birational.

If f is divisorial, then we can replace X, S, A, B, C and D by their images in
Z. Note that @) continues to hold.

Otherwise f is small. As D-R < 0, R is spanned by a curve X which is contained
in a component T of S, where T'- % < 0. Note that Kx + S+ A+ B —¢(S —1T)
is purely log terminal for any € € (0,1), and so f is a pl-flip. As we are assuming
Theorem [Al,, the flip f': X' — Z of f: X — Z exists. Again, if we replace X,
S, A, B, C and D by their images in X', then (&) continues to hold.

On the other hand, this MMP is certainly not an isomorphism in a neighbour-
hood of S and so the MMP terminates by Lemma [B.11 O

Definition 5.3. Let m: X — U be a projective morphism of normal quasi-
projective varieties. Let (X, A = A + B) be a Q-factorial divisorially log terminal
pair and let D be an R-divisor, where A > 0, B > 0 and D > 0. A neutral model
over U for (X, A), with respect to A and D, is any birational map f: X --» Y over
U, such that

f is a birational contraction,

the only divisors contracted by f are components of D,

Y is Q-factorial and projective over U,

B, (f«A/U) does not contain any non-Kawamata log terminal centres of
(Y,T = f,.A), and

e Ky + T is divisorially log terminal and nef over U.

Lemma 5.4. Assume Theorem [Al, and Theorem [Bl,.

Let m: X — U be a projective morphism of normal quasi-projective varieties,
where X has dimension n. Let (X,A = A+ B) be a divisorially log terminal log
pair and let D be an R-divisor, where A > 0 is big over U, B >0 and D > 0 and
D and A have no common components.
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If
(i) Kx +A~gu D,
(ii) (X, Q) is log smooth, where G is the support of A+ D, and
(iii) B4(A/U) does not contain any non-Kaewamata log terminal centres of
(X,G)
then (X, A) has a neutral model over U, with respect to A and D.

Proof. We may write D = D; + Dy, where every component of Dy is a component
of LA and no component of D5 is a component of LAL. We proceed by induction
on the number of components of Ds.

Suppose Do = 0. If H is any general ample Q-divisor over U, which is sufficiently
ample, then Kx + A + H is divisorially log terminal and ample over U. As the
support of D is contained in LA, Lemma implies that (X, A) has a neutral
model f: X --» Y over U, with respect to A and D.

Now suppose that Dy #£ 0. Let

A=sup{t>0|(X,A+tDs) is log canonical }

be the log canonical threshold of Dy. Then A > 0 and (X,0 = A + ADy) is
divisorially log terminal and log smooth, Kx 4+ © ~r gy D + AD3 and the number
of components of D + ADs that are not components of LOJ is smaller than the
number of components of Ds. By induction there is a neutral model f: X --» Y
over U for (X, ©), with respect to A and D.

Now

Ky + fud ~pu fuD1 + fiDo,
KY +f*® = KY +f*A+)‘f*D2,

where Ky + f,© is divisorially log terminal and nef over U, and the support of f.D;
is contained in . f, AL. Since By (f.A/U) does not contain any non-Kawamata log
terminal centres of (Y, f,©), Lemma [5.2] implies that (Y, f.A) has a neutral model
g:Y --+ Z over U, with respect to f.A and f.D. The composition go f: X --» Z
is then a neutral model over U for (X, A), with respect to A and D. O

Lemma 5.5. Let m: X — U be a projective morphism of normal quasi-projective
varieties. Let (X, A = A+ B) be a Q-factorial divisorially log terminal log pair and
let D be an R-divisor, where A > 0 is big over U, B >0 and D > 0.

If every component of D is either semiample over U or a component of B((Kx +
A)/U) and f: X --» Y is a neutral model over U for (X, A), with respect to A and
D, then f is a log terminal model for (X, A) over U.

Proof. By hypothesis the only divisors contracted by f are components of B((Kx +
A)/U). Since the question is local over U, we may assume that U is affine. Since
B, (f.A/U) does not contain any non-Kawamata log terminal centres of (Y,T' =
f«A), Lemma B.73limplies that we may find Ky +I" ~gp v Ky + T, where Ky +1I"
is Kawamata log terminal and I" is big over U. Corollary B.9.2]implies that Ky +T'
is semiample over U.

If p: W — X and ¢: W — Y resolve the indeterminacy of f, then we may
write

p(Kx +A)+ E=q"(Ky +T) + F,

where £ > 0 and F > 0 have no common components, and both E and F are
exceptional for q.
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As Ky + T is semiample over U, B((¢*(Ky +T') + F)/U) and F have the same
support. On the other hand, every component of F is a component of B((p*(Kx +
A) + E)/U). Thus E = 0 and any divisor contracted by f is contained in the
support of F', and so f is a log terminal model of (X, A) over U. (]

Lemma 5.6. Theorem [Al, and Theorem [Bl, imply Theorem [C,.

Proof. By Lemma we may assume that A = A + B, where A is a general
ample Q-divisor over U and B > 0. By Proposition B.5.4] we may assume that
D = M + F, where every component of F' is a component of B(D/U) and there is
a positive integer m such that if L is a component of M, then mL is mobile.

Pick a log resolution f: Y — X of the support of D and A, which resolves the
base locus of each linear system |mL|, for every component L of M. If ® is the
divisor defined in Lemma B.6.11] then every component of the exceptional locus
belongs to B((Ky + ®)/U) and replacing ® by an R-linearly equivalent divisor,
we may assume that ® contains an ample divisor over U. In particular, replacing
mn*L by a general element of the linear system |mn*L|, we may assume that
Ky +® ~ry N+ G, where every component of N is semiample, every component
of G is a component of B((Ky + ®)/U), and (Y,® + N + G) is log smooth. By
Lemma B.6.11] we may replace X by Y and the result follows by Lemmas [5.4] and
O

6. NON-VANISHING

We follow the general lines of the proof of the non-vanishing theorem; see, for
example, Chapter 3, §5 of [22]. In particular there are two cases:

Lemma 6.1. Assume Theorem [Cl,. Let (X,A) be a projective, log smooth pair of
dimension n, where LAL =0, such that Kx + A is pseudo-effective and A — A >0
for an ample Q-divisor A. Suppose that for every positive integer k such that kA
is integral,
RY(X,Ox(Lmk(Kx + A)i+ kA))
is a bounded function of m.
Then there is an R-divisor D such that Kx + /A ~r D > 0.

Proof. By Proposition 8.3.2] it follows that Kx + A is numerically equivalent to
N, (Kx + A). Since N, (Kx +A) — (Kx + A) is numerically trivial and ampleness
is a numerical condition, it follows that

A" =A+ Ny(Kx +A)— (Kx +A)

is ample and numerically equivalent to A. Thus, since A” is R-linearly equivalent
to a positive linear combination of ample Q-divisors, there exists 0 < A’ ~r A”
such that

Kx+A'=Kx+A +(A-A)
is Kawamata log terminal and numerically equivalent to Kx + A, and

Kx + A ~p N,(Kx + A) > 0.
Thus by Theorem [Cl,, Kx + A’ has a log terminal model ¢: X --» Y, which, by
Lemma [3:6.9] is also a log terminal model for Kx + A. Replacing (X, A) by (Y,T)

we may therefore assume that Ky + A is nef and the result follows by the base
point free theorem; cf. Corollary [3.9.2] [l
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Lemma 6.2. Let (X,A = A+ B) be a projective, log smooth pair, where A is a
general ample Q-divisor and .B. = 0. Suppose that there is a positive integer k
such that kA is integral and

hO(X, Ox(Lmk(Kx + A)1+ kA))

s an unbounded function of m.
Then we may find a projective, log smooth pair (Y,T') and a general ample Q-
divisor C on Y, where

e Y is birational to X,

e I'—-C>0,

e T =T, is an irreducible divisor, and

e ' and N, (Ky +T) have no common components.

Moreover the pair (Y,T') has the property that Kx + A ~g D > 0 for some
R-divisor D if and only if Ky + T ~r G > 0 for some R-divisor G.

Proof. Pick m large enough so that
k
hO(X, Ox (Lmk(Kx + A)J + kA)) > ( ”T;L ”) ,
where n is the dimension of X. By standard arguments, given any point x € X,
we may find a divisor H > 0 which is R-linearly equivalent to
vmk(Kx + A)a+ kA,
of multiplicity greater than kn at z. In particular, we may find an R-Cartier divisor
O0<H~pm(Kx+A)+A

of multiplicity greater than n at z. Given t € [0,m], consider
m—t 1
(t+1)(Kx +A)=Kx + TA+B+t(KX+A+EA)

—t t
~cp Kx+ A+ B+ —H
m m

Fix 0 <e< 1, let A’ = (¢/m)A and u =m — e. We have:

(1) Kx + Ap is Kawamata log terminal,

(2) Ay > A, for any t € [0,u] and

(3) the non-Kawamata log terminal locus of (X, A,) contains a very general
point z of X.

Let m: Y — X be a log resolution of (X, A + H). We may write
KY + \Ijt = W*(KX + At) + Et,
where E; > 0 and ¥; > 0 have no common components, 7, V; = A; and E; is
exceptional. Pick an exceptional divisor F' > 0 such that 7*A’ — F is ample and
let C' ~g 7 A’ — F be a general ample Q-divisor. For any t € [0, u], let
q)t:\Ift—W*A/+C+FNR \Ilt and Ft:q)t_(bt/\Na(KY+‘I)t)~
Then properties (1)—(3) above become

(1) Ky + Ty is Kawamata log terminal,
(2) Tt > C, for any t € [0,u], and
(3) (Y,T',) is not Kawamata log terminal.
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Moreover
(4) (Y,Ty) is log smooth, for any ¢ € [0, u], and
(5) Tt and N,(Ky +T';) do not have any common components.
Let
s =sup{t € [0,u] | Ky + T is log canonical }.
Note that
No(Ky + ®¢) = No(Ky + ¥y)
Ny(m*(Kx + Ay)) + E;
Ny ((t+1)7m"(Kx + A)) + E;
= (t+ 1)No (7" (Kx + A)) + E4.

Thus Ky + I'y is a continuous piecewise affine linear function of t. Setting I' = Ty,
we may write

r=T+C+8B,
where T = .T'J # 0, C is ample and B’ > 0. Possibly perturbing I', we may assume
that T is irreducible, so that Ky + I' is purely log terminal. O

We will need the following consequence of Kawamata-Viehweg vanishing:

Lemma 6.3. Let (X, A = S+ A+ B) be a Q-factorial projective purely log terminal
pair and let m > 1 be an integer. Suppose that

) m(Kx + A) is integral,

) m(Kx + A) is Cartier in a neighbourhood of S,

) h°(S, Os(m(Kx + A))) >0,

) Kx + G + B is Kawamata log terminal, where G > 0,
) A~g (m—1)tH + G for some tH, and

Then h9(X,O0x(m(Kx + A))) > 0.

Proof. Considering the long exact sequence associated to the restriction exact se-
quence,

00— O0Ox(m(Kx+A)—8) — Ox(m(Kx +A)) — Os(m(Kx +A)) — 0,
it suffices to observe that
H'(X,0x(m(Kx +A)—8)) =0,
by Kawamata-Viehweg vanishing, since
mEKx+A)—S=(m-1)(Kx+A)+Kx+A+B
~o Kx+G+B+(m—1)(Kx +A+1tH),
and Kx + A 4+ tH is big and nef. O
Lemma 6.4. Let X be a normal projective variety, let S be a prime divisor and let
D; be three, i = 1, 2, 3, R-Cartier divisors on X. Suppose that f;: X --+ Z; are
ample models of D;, i =1, 2, 3, where f; is birational and f; does not contract S.
Suppose that Z; is Q-factorial, i = 1, 2, and the induced birational map Zy --+ Zs
is an isomorphism in a neighbourhood of the strict transforms of S.

If D3 is a positive linear combination of D1 and D, then the induced birational
map Z; --+ Z3 1s an isomorphism in a neighbourhood of the strict transforms of S.
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Proof. By assumption D3 = A1 Dy 4+ Ao Do, where \; > 0. If g;: Z — Z; is the
normalisation of the graph of Z; --+ Z5, then g; is by assumption an isomorphism
in a neighbourhood of the strict transforms of S, for ¢ = 1, 2. Let f: X --» Z
be the induced birational map. Let g: W — X resolve the indeterminacy of f
and f3. Replacing X by W and D; by ¢g*D;, we may assume that f and f3 are
morphisms.

Let H; = fi.D;, i =1, 2, 3. As the ample model is a semiample model, by (4) of
LemmaB.6.6] E; = D; — f*H; > 0 is f;-exceptional. As H; is ample, ¢ = 1 and 2,
H = Mgy Hi+ Aags Ho is semiample. Let ¥ C Z be a curve. As ¥ is not contracted
by both g; and g2, g H; - ¥ > 0, with equality for at most one ¢. Thus H is ample.
Now

f3Hs + E3 = Ds
= MD1+ XDy
= AMfiHy+ Ao fs Ha + M By + Ao B
= f*(MgiHi + Xags Ha) + M E1 + A2 Es
= f"H + M\ E1 + A B
Note that F3 < A\ E; + Ao Es, as f*H has no stable base locus. Let T' = f(S). We

may write

f*H = fiHs + E3 — (M E1 + A2 E»).
Since A\ B1+ Mo Fs is f-exceptional in a neighbourhood of f~1(T'), B3 = A\ E1+ X2 E»
in a neighbourhood of f~!(7T'), by Lemma But then f and f3 contract
precisely the same curves in the same neighbourhood and so Z is isomorphic to Z3
in a neighbourhood of the strict transforms of S. ]

Lemma 6.5. Assume Theorem [Bl, and Theorem [Cl,.

Let (X,Ag =S+ A+ By) be a log smooth projective pair of dimension n, where
A > 0 is a general ample Q-divisor, LAgs = S is a prime divisor and By > 0.
Suppose that K x +4 is pseudo-effective and S is not a component of Ny (Kx+Ag).
Let Vg be a finite dimensional affine subspace of WDivg(X) containing By, which
is defined over the rationals.

Then we may find a general ample Q-divisor H > 0, a log terminal model
¢: X --» Y for Kx + Ao + H and a positive constant «, such that if B € Vj
and

||B — BoH < at,
for somet € (0,1], then there is a log terminal model : X --+ Z of Kx +A+tH =
Kx+ S+ A+ B+tH, which does not contract S, such that the induced birational
map x: Y --+ Z is an isomorphism in a neighbourhood of the strict transforms of

S.

Proof. Pick general ample Q-Cartier divisors H;, Hs,...,Hy, which span
WDivg(X) modulo numerical equivalence, and let V' be the affine subspace of
WDivg(X) spanned by Vy and Hy, Ha,...,Hi. Let C C Lsya(V) be a convex
subset spanning V', which does not contain Ay, but whose closure contains Ay,
such that if A € C, then Kx + A is purely log terminal, A — Ay is ample and
the support of A — Aq contains the support of the sum Hy + Hy + --- + Hy. In
particular if A € C, then N,(Kx + A) < N,(Kx + Ap). As the coefficients ¢ of
N, are continuous on the big cone, Definition-Lemma B.3.1] possibly replacing C
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by a subset, we may assume that if A € C, then N,(Kx + A) and N,(Kx + Ap)
share the same support. Moreover, if A € C, then Kx + A is big and so, as we
are assuming Theorem [(,, Kx + A has a log terminal model ¢: X --» Y, whose
exceptional divisors are given by the support of N,(Kx +Ag). In particular ¢ does
not contract S.

Given ¢: X --» Y, define a subset Sy C C as follows: A € Sy if and only if there
is a log terminal model ¥: X --» Z of Kx + A such that

e the induced rational map x: Y --» Z is an isomorphism in a neighbourhood
of the strict transforms of S.

Define a subset S(’p C Sy by requiring in addition that
e ¢ is isomorphic to the ample model of Kx + A in a neighbourhood of the
strict transforms of S.
As we are assuming Theorem [Bl,, there are finitely many 1 < j < [ birational
maps ¢;: X --»Y; such that

l
c=J Sy,
j=1

On the other hand, Lemma [3.6.12] implies that
l
!/
U S¢j
j=1

is a dense open subset of C.

We will now show that the sets Sj, are convex. Suppose that A; € Sy, i =1, 2,
and A is a convex linear combination of A; and Ay. Then A € C and so Kx + A
has a log terminal model ¢: X --» Z. By (3) of Lemma [B.6.6] there is a birational
morphism h: Z — Z' to the ample model of Kx + A. Let i X --» Z; be the
ample model of Kx + A;. Lemma implies that the induced birational map
Z; --» Z' is an isomorphism in a neighbourhood of the strict transforms of S. As
Z and Z; are isomorphic in codimension 1, Z — Z’ is small in a neighbourhood
of the strict transforms of S. As Z and Z' are Q-factorial in a neighbourhood of
the strict transforms of S, the morphism Z — Z’ is also an isomorphism in a
neighbourhood of the strict transforms of S. Thus A € S:b and so Séb is convex.

Shrinking C, we may therefore assume that C = S' for some 1 < j <.

Pick A= S+ A+ B € Cand pick H ~g A—Ap a general ample Q-divisor. Pick
a positive constant « such that if ||B — By|| < at for some B € V; and ¢ € (0, 1],
then S+ A+ B+ t(A —Ap) € C. By LemmaB69 Kx + S+ A+ B+ t(A — Ay)
and Kx + S+ A+ B+ tH have the same log terminal models. It follows that «
and H have the required properties. O

Lemma 6.6. Theorem [D},_1, Theorem [Bl, and Theorem [Cl, imply Theorem [Dl,.

Proof. By Lemma [3.2.1] it suffices to prove this result for the generic fibre of U.
Thus we may assume that U is a point, so that X is a projective variety.
Let f: Y — X be a log resolution of (X, A). We may write

Ky +T'=f"(Kx+A)+ E,

where I' > 0 and E > 0 have no common components, f,I' = A and f,F = 0. If
F > 0 is an R-divisor whose support equals the union of all f-exceptional divisors,
then I' + F' is big. Pick F so that (X,I'+ F') is Kawamata log terminal. Replacing
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(X, A) by (Y, T+F) we may therefore assume that (X, A) is log smooth. By Lemma
we may assume that A = A + B, where A is a general ample Q-divisor and
B > 0. By Lemmas and [6.2] we may therefore assume that A = S + A + B,
where (X, A) is log smooth, A is a general ample Q-divisor, and LA = S is a prime
divisor, which is not a component of N, (Kx + A).

Let V be the subspace of WDivg(X) spanned by the components of B. By
Lemma we may find a constant @ > 0, a general ample Q-divisor H on X,
and a log terminal model ¢: X --» Y of Kx + A + H such that if B' € V,
t € (0,1] and ||B — B’|| < at, then there is a log terminal model ¢': X --» Y’
of Kx + S+ A+ B’ + tH such that the induced rational map x: Y --» Y’ is an
isomorphism in a neighbourhood of the strict transforms of S. Pick € > 0 such that
A — eH is ample.

Let T be the strict transform of S on Y and define ®3 on T by adjunction

(Ky +T)|r = K1 + ®.

Let W be the subspace of WDivg(T') spanned by the components of (¢.B)|r + ®
and let L: V. — W be the rational affine linear map L(B’) = ®¢ + ¢.B'|r. Let
I' = ¢.A and let C = ¢, Alr. If we define ¥ on T by adjunction

(Ky +D)|lr = Kr + V¥,
then ¥ = C + L(B). As Kr + C + L(B) + t¢. H|r is nef for any ¢ > 0, it follows
that Kp + W is nef. Since C is big and K1 + ¥ is Kawamata log terminal, Lemma
B3 implies that there is a rational affine linear isomorphism L': WDivg(T) —
WDivg(T) which preserves Q-linear equivalence, an ample Q-divisor G on T and a
rational affine linear subspace W’ of WDivg(T) such that L'(U) C L&(W'), where
U C Lo(W) is a neighbourhood of ¥. Ng(W') is a rational polytope, by Theorem
BITIl In particular we may find a rational polytope C C V containing B such that
if B e€C, then Kx + A’ = Kx + S5+ A+ B’ is purely log terminal and

(Ky +T")|r = Kr + V'
is nef, where I'" = ¢, A’ and ¥/ = C 4 L(B'’). Pick a positive integer k such that if
r(Ky +1I") is integral, then rk(Ky + I") is Cartier in a neighbourhood of T. By
Corollary there is then a constant m > 0 such that mr(Ky + 1) is Cartier in
a neighbourhood of T' and mr (K + ¥') is base point free.

Lemma B777 implies that there are real numbers r; > 0 with > r; = 1, positive
integers p; > 0 and Q-divisors B; € C such that

pi( K x + A)
is integral, where A; =S + A + B;,
Kx +A= ZW(KX‘FAZ‘);
and e
[Bi — Bl < —,
m;

where m; = mp;. Let ¥; = C' 4+ L(B;). By our choice of p;, m;(Kr + ;) is base
point free and so

KO(T, O (mi(Kr + ¥;))) > 0.
Let ¢t; = ¢/m;. By Lemma there is a log terminal model ¢;: X --» Y; of
Kx+A;+t;H, such that the induced birational map x: Y --+ Y; is an isomorphism
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in a neighbourhood of T" and the strict transform 7; of S. In particular if I'; =
T; + ¢pix A+ ¢ B; and 7: T — T; is the induced isomorphism, then

7'*(I(y1 + Fz) T, = KT + \Ili7
and so the pair (Y;,T';) clearly satisfies conditions (1), (2), (4) and (7) of Lemma

As the induced birational map Y; --+ Y is an isomorphism in a neighbourhood
of T;, (3) of Lemma [6.3] also holds. As

i1
(mzfl)tli (m >6<6,

m;

A — (m; — 1)t;H is ample, and so we may pick a general ample Q-divisor L; such
that L; ~g A—(m;—1)t;H. Then Kx +S+L;+ B; is purely log terminal and as ¢;
is (Kx + A; +t;H)-negative and H is ample, ¢; is (Kx + S + L; + B;)-negative. It
follows that Ky, +T;+ ¢ (L; + B;) is purely log terminal so that Ky, + ¢;.(L; + B;)
is Kawamata log terminal, and conditions (5) and (6) of Lemmal[G3 hold. Therefore
Lemma [6.3] implies that

hO(Yi, Oy, (mi(Ky, + 1)) > 0.
As ¢; is (Kx+A;+t;H)-negative and H is ample, it follows that ¢; is (Kx+4;)-
negative. But then
R(X, Ox (mi(Kx + A;))) = h°(Y, Oy (m;(Ky +T}))) > 0.
In particular there is an R-divisor D such that

7. FINITENESS OF MODELS

Lemma 7.1. Assume Theorem [Cl, and Theorem [Dl,.

Let m: X — U be a projective morphism of normal quasi-projective varieties,
where X has dimension n. Let V be a finite dimensional affine subspace of
WDivg(X), which is defined over the rationals. Fix a general ample Q-divisor
A over U. Let C C LA(V) be a rational polytope such that if A € C, then Kx + A
is Kawamata log terminal.

Then there are finitely many rational maps ¢;: X --+Y; over U, 1 < i < k, with
the property that if A € CNE4 - (V), then there is an index 1 < i < k such that ¢;
is a log terminal model of Kx + A over U.

Proof. Possibly replacing V4 by the span of C, we may assume that C spans V4.
We proceed by induction on the dimension of C.

Suppose that Ag € C N Ea(V). As we are assuming Theorem [D], there is
an R-divisor Dy > 0 such that Kx + Ag ~ry Do and so, as we are assuming
Theorem [Cl,, there is a log terminal model ¢: X --» Y over U for Kx + Ag. In
particular we may assume that dimC > 0.

First suppose that there is a divisor Ag € C such that Kx + Ag ~r 0. Pick
O €C, © # Ag. Then there is a divisor A on the boundary of C such that

O —Ag = AA - Ay),
for some 0 < A < 1. Now
Kx+0=NKx+A)+(1—-N(Kx+ Ay
~rUAKx + A).

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



EXISTENCE OF MINIMAL MODELS FOR VARIETIES OF LOG GENERAL TYPE 459

In particular A € 4 (V) if and only if © € €4 (V) and Lemma implies
that Kx + A and K x + O have the same log terminal models over U. On the other
hand, the boundary of C is contained in finitely many affine hyperplanes defined
over the rationals, and we are done by induction on the dimension of C.

We now prove the general case. By Lemma [B7.4] we may assume that C is
contained in the interior of £4(V). Since L£4(V) is compact and C N E4 (V) is
closed, it suffices to prove this result locally about any divisor Ag € C N E4 (V).
Let ¢: X --+ Y be a log terminal model over U for Kx + Ag. Let I'yg = ¢ Ap.

Pick a neighbourhood Cy C L£L4(V) of Ay, which is a rational polytope. As ¢ is
(Kx + Ag)-negative we may pick Cy such that for any A € Cy, a(F,Kx + A) <
a(F, Ky +T) for all ¢-exceptional divisors FF C X, where I' = ¢, A. Since Ky +T is
Kawamata log terminal and Y is Q-factorial, possibly shrinking Cy, we may assume
that Ky + 1T is Kawamata log terminal for all A € Cy. In particular, replacing C by
Co, we may assume that the rational polytope C' = ¢, (C) is contained in L4 4 (W),
where W = ¢, (V). By Lemma B73] there is a rational affine linear isomorphism
L: W — V’ and a general ample Q-divisor A’ over U such that L(C’) C La/(V’),
L) ~gu T'forallT € ¢’ and Ky 4T is Kawamata log terminal for any I' € L(C").

Note that dimV’ < dimV. By Lemmas B.6.9] and B.6.10, any log terminal
model of (Y, L(T")) over U is a log terminal model of (X, A) over U for any A € C.
Replacing X by Y and C by L(C’), we may therefore assume that Kx + A is 7-nef.

By Corollary Kx + Ag has an ample model v: X — Z over U. In
particular Kx +Ag ~g,z 0. By what we have already proved there are finitely many
birational maps ¢;: X --» Y; over Z, 1 < i < k, such that for any A € CNE4 4 (V),
there is an index i such that ¢; is a log terminal model of Kx + A over Z. Since
there are only finitely many indices 1 < i < k, possibly shrinking C, Corollary
BIT3limplies that if A € C, then ¢; is a log terminal model for Kx + A over Z if
and only if it is a log terminal model for Kx + A over U.

Suppose that A € CNE4 (V). Then A € CNEay(V) and so there is an index
1 < i < k such that ¢; is a log terminal model for Kx + A over Z. But then ¢; is
a log terminal model for Kx + A over U. (]

Lemma 7.2. Assume Theorem [Cl, and Theorem [Dl,.

Let m: X — U be a projective morphism of normal quasi-projective varieties,
where X has dimension n. Suppose that there is a Kawamata log terminal pair
(X,Ag). Fiz A > 0, a general ample Q-divisor over U. Let V be a finite di-
mensional affine subspace of WDivg(X) which is defined over the rationals. Let
C C LA(V) be a rational polytope.

Then there are finitely many birational maps ¢;: X --» Z; over U, 1 < j <1
such that if ¥: X --» Z is a weak log canonical model of Kx + A over U, for some
A € C, then there is an index 1 < j <1 and an isomorphism £: Z; — Z such that

Y=oy

Proof. Suppose that A € C and Kx + A’ ~g y Kx + A is Kawamata log terminal.
Lemma, implies that ¥: X --» Z is a weak log canonical model of Kx + A
over U if and only if ¢ is a weak log canonical model of Kx + A’ over U. By
Lemma [3.7.4] we may therefore assume that if A € C, then Kx + A is Kawamata
log terminal.
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Let G be any divisor which contains the support of every element of V' and let
f:Y — X be a log resolution of (X,G). Given A € L4(V) we may write

Ky +T' = f"(Kx +A) + E,

where I' > 0 and E > 0 have no common components, f,I' = A and f,EF = 0. If
¥: X --» Z is a weak log canonical model of Kx + A over U, then Yo f: Y --» Z
is a weak log canonical model of Ky + T over U. If C’ denotes the image of C under
the map A — T, then C’ is a rational polytope, cf. Lemma B.7.2] and if T € C’,
then Ky +1" is Kawamata log terminal. In particular B (f*A/U) does not contain
any non-Kawamata log terminal centres of Ky + T, for any I" € C’. Let W be the
subspace of WDivg(Y") spanned by the components of the strict transform of G and
the exceptional locus of f. By Lemmas and [3.6.9] we may assume that there
is a general ample Q-divisor A’ on Y over U such that C' C L4/(W). Replacing X
by Y and C by C’, we may therefore assume that X is smooth.

Pick general ample Q-Cartier divisors Hy, Ha,...,H, over U, which generate
WDivg(X) modulo relative numerical equivalence over U and let H = Hy + Hs +
-+ + H, be their sum. By Lemma B74] we may assume that if A € C, then A
contains the support of H. Let W be the affine subspace of WDivg(X) spanned
by V' and the divisors Hi, Ho, ..., H,. Pick C’ to be a rational polytope in £ 4 (W)
containing C in its interior such that if A € C’, then Kx + A is Kawamata log
terminal.

By Lemmal[7 Tl there are finitely many 1 < 4 < k rational maps ¢;: X --» Y; over
U, such that given any A" € C'NE4 (W), we may find an index 1 < < k such that
¢; is a log terminal model of Kx + A’ over U. By Corollary for each index
1 <4 < k there are finitely many contraction morphisms f; ,,: Y; — Z; ,,, over
U such that if A" € Wy, 4(W) and there is a contraction morphism f:Y; — Z
over U, with

Ky, +T; =Ky, + ¢; A ~pu f*D,
for some ample over U R-divisor D on Z, then there is an index (i,7m) and an
isomorphism &: Z; ,, — Z such that f =&o fim. Let ¢;: X -—» Z;, 1 < j <[be
the finitely many rational maps obtained by composing every ¢; with every f; ;.

Pick A € C and let ©: X --» Z be a weak log canonical model of Kx + A over U.
Then Kz + 0O is Kawamata log terminal and nef over U, where © = ¢, A. As we are
assuming Theorem [C],, we may find a log terminal model n: Z --» Y’ of Kz + ©
over Z. Then Y’ is Q-factorial and the structure morphism £: Y’ — Z is a small
birational map, the inverse of 7. By Lemma B.6.12] we may find A" € C'NE4 (W)
such that ¢ is an ample model of Kx + A’ over U. Pick an index 1 < ¢ < k such
that ¢; is a log terminal model of Kx + A’ over U. By (4) of Lemma [3.6.6] there is
a contraction morphism f:Y; — Z such that

Ky, +T;i = f"(Kz 4+ 0'),

where IV = ¢, A’ and © = ¢, A’. As Kz + 0’ is ample over U, it follows that there
is an index m and an isomorphism &: Z; ,,, — Z such that f = {o f; ,,. But then

¢:fo¢i:é-ofi,mo¢i:é-o¢ja

for some index 1 < j <. O

Lemma 7.3. Theorem [}, and Theorem [Dl, imply Theorem [El,.
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Proof. Since L4 (V) is itself a rational polytope by Lemma 372 this is immediate
from Lemma O

8. FINITE GENERATION
Lemma 8.1. Theorem [C}, and Theorem [Dl, imply Theorem [E,.

Proof. Theorem [C}, and Theorem [D], imply that there is a log terminal model
w: X --»Y of Kx + A, and Ky +T' = p.(Kx + A) is semiample by (1) of Lemma
B3l (1) follows, as

R(X,Kx+A)~R(Y,Ky +7T).

As Ky + T is semiample the prime divisors contained in the stable base locus of
Kx + A are precisely the exceptional divisors of . But there is a constant § > 0
such that if = € V and |2 — A]| < J, then the exceptional divisors of p are also
(Kx + Z)-negative. Hence (2) follows.

Note that by Corollary B.IT.2] there is a constant > 0 such that if = € W and
IZ —A|l < n, then p is also a log terminal model of Kx +Z. Corollary implies
that there is a constant r > 0 such that if m(Ky + I') is integral and nef, then
mr(Ky +T) is base point free. It follows that if k(K x +=)/r is Cartier, then every
component of Fix(k(Kx + Z)) is contracted by p and so every such component is
in the stable base locus of Kx + A. This is (3). O

9. PROOF OF THEOREMS

Proof of Theorems [Al, Bl [C], D], [E and [El. This is immediate from the main result
of [9) and Lemmas [£4] [5.6] [6.6] and 811 O

Proof of Theorem [[2 Suppose K x +A is 7-big. Then we may write Kx +A ~g 7
B > 0. If € > 0 is sufficiently small, then Kx + A + ¢B is Kawamata log terminal.
Lemma [3.6.9] implies that Kx + A and Kx + A + €B have the same log terminal
models over U. Replacing A by A + ¢B we may therefore assume that A is big
over U. (1) follows by Theorem [C] and Theorem

(2) and (3) follow from (1) and Corollary B.9:2] O

10. PROOF OF COROLLARIES

Proof of Corollary [LTIl (1), (2) and (3) are immediate from Theorem [[2} (4) is

Theorem D of [4]. O
Proof of Corollary [LT.2 This is immediate by Theorem 5.2 of [6] and (3) of The-
orem O

Proof of Corollary [LT.3l Note that Y; and Y5 are isomorphic in codimension one.
Replacing U by the common ample model of (X, A), we may assume that Ky, +T';
is numerically trivial over U. Let Hs be a divisor on Y5, which is ample over U.
Let H; be the strict transform on Y;. Possibly replacing Ho by a small multiple,
we may assume that Ky, +I'; + H; is Kawamata log terminal.

Suppose that Ky, +I'1 + Hy is not nef over U. Then there is a (Ky, +1'1 + Hy)-
flip over U which is automatically a (Ky, 4+ I'1)-flop over U. By finiteness of log
terminal models for Kx + A over U, this (Ky, +T'1 + H1)-MMP terminates. Thus
we may assume that Ky, + I'y + H; is nef over U. But then Ky, + I's + H»
is the corresponding ample model, and so there is a small birational morphism
f: YT — Y5, AsY; is Q-factorial, f is an isomorphism. O
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Proof of Corollary [LTH. We first prove (1) and (2). By Theorem [E] and Corollary
BIT2 and since ample models are unique by (1) of Lemma it suffices to
prove that if A € €4 ,(V), then Kx + A has both a log terminal model over U and
an ample model over U.

By Lemmas and 3.6.9] we may assume that Kx + A is Kawamata log
terminal. Theorem implies the existence of a log terminal model over U and
the existence of an ample model then follows from Lemma [3.9.3]

(3) follows as in the proof of Corollary O

Proof of Corollary [LT.7. This is an immediate consequence of Corollary [LT.5 O

Proof of Corollary [LT9. Let V4 be the affine subspace of WDivg(X) generated
by Ay, As, ..., Ay. Corollary implies that there are finitely many 1 < p < ¢
rational maps ¢,: X --» Y, over U such that if A € £4 (V), then there is an index
1 < p < ¢ such that ¢, is a log terminal model of Kx + A over U. Let C C L4(V)
be the polytope spanned by A1, Ao, ..., A and let

Cp =Wy, 2-(V)NC.

Then C, is a rational polytope. Replacing A1, Ag, ..., Ay by the vertices of Cp,, we
may assume that C = C,, and we will drop the index p. Let #’: Y — U be the
induced morphism. Let I'; = ¢.A,;. If we pick a positive integer m so that both
G; =m(Ky +T;) and D; = m(Kx + A;) are Cartier for every 1 < i < k, then

R(m, D*) ~ R(r', G*).

Replacing X by Y, we may therefore assume that Kx + A; is nef over U. By Corol-
lary Kx + A; is semiample over U and so the Cox ring is finitely generated.
Aliter: By Lemma B75 we may assume that each Kx + A; is Kawamata log
terminal. Pick a log resolution f: Y — X of (X,A), where A is the support of
the sum Ay + Ay + -+ -+ Ag. Then we may write

where I'; and F; have no common components, f,['; = A; and f,F; = 0. We may
assume that there is an exceptional Q-divisor F' > 0 such that f*A — F is ample
over U and (Y, T'; + F) is Kawamata log terminal. Pick A’ ~qg y f*A — F a general
ample Q-divisor over U. Then

Gi=Ky+T1,+F—ffA+ A ~qu Ky + T}

is Kawamata log terminal and 2(w, D®) if finitely generated if and only if R(w o
f,G*®) if finitely generated, since they have isomorphic truncations. Replacing X
by Y we may therefore assume that (X, A) is log smooth.

Pick a positive integer m such that D; = m(Kx + A;) is integral for 1 < i < k.

Let
k

E =P Ox(mA)
i=1
and let Y = Px(F) with projection map f:Y — X. Pick 0, € Ox(mA; —mA)
with zero locus mA; and let 0 = (01,02, ...,0%) € H*(X, E(—=mA)). Let S be the
divisor corresponding to ¢ in Y. Let T}, T5, ..., Ty be the divisors on Y, given by
the summands of E, let T be their sum, and let T = T + f*A + S/m. Note that
Oy (m(Ky +1)) is the tautological bundle associated to E(mKx); indeed if k = 1,
this is clear and if k£ > 1, then it has degree one on the fibres and Oy (m(Ky +1T"))

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



EXISTENCE OF MINIMAL MODELS FOR VARIETIES OF LOG GENERAL TYPE 463

restricts to the tautological line bundle on each T; by adjunction and induction on
k. Thus
R(m,D*) ~ R(mo f,m(Ky +1T)).

On the other hand, (Y,I") is log smooth outside 7" and restricts to a divisorially log
terminal pair on each T; by adjunction and induction. Therefore (Y, T") is divisorially
log terminal by inversion of adjunction. Since T is ample over X, there is a positive
rational number € > 0 such that f*A + €T is ample over U. Let A" ~qu f*A+ €T
be a general ample Q-divisor over U. Then

Ky+FI:Ky+F7€T*f*A+AINQVUKy+r

is Kawamata log terminal. Thus R(w o f,m(Ky +1I")) is finitely generated over U
by Corollary O

We will need a well-known result on the geometry of the moduli spaces of n-
pointed curves of genus g:

Lemma 10.1. Let X = M, and let D be the sum of the boundary divisors.
Then
e X is Q-factorial,
o Kx is Kawamata log terminal and
o Kx + D islog canonical and ample.

Proof. X is Q-factorial, K x is Kawamata log terminal and K x + D is log canonical
as the pair (X, D) is locally a quotient of a normal crossings pair.

It is proved in [27] that Kx 4+ D is ample when n = 0. To prove the general
case, consider the natural map

T My i1 — Mg,

which drops the last point. Let Y = ngnﬂ and G be the sum of the boundary
divisors. If Mg, is the moduli stack of stable curves of genus g, then M, is the
coarse moduli space and so there is a representable morphism

f: Mg,n Mg,na

which only ramifies over the locus of stable curves with automorphisms. If g =1
and n < 1, then Ky + G is obviously m-ample. Otherwise the locus of smooth
curves with extra automorphisms has codimension at least two and in this case
Kxz,, + A= f"(Kx + D), where A is the sum of the boundary divisors. On the
other hand there is a fibre square

Mg,nJrl > Mg’n+1

_ f _
Mgn ——> My,
where 1) is the universal morphism. Since the stack is a fine moduli space, v is the
universal curve. If I' is the sum of the boundary divisors, then Kﬂq it T I" has
positive degree on the fibres of 1, by adjunction and the definition of a stable pair.
In particular Ky + G is ample on the fibres of 7.
On the other hand, we may write

Ky+G:7T*(Kx+D)+¢,
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for some Q-divisor #. It is proved in [7] that ¢ is nef. We may assume that
Kx + D is ample, by induction on n. If € > 0 is sufficiently small, it follows that
e(Ky + G) + (1 — e)n*(Kx + D) is ample. But then

Ky +G=¢Ky +G)+(1—¢)(Ky +G)
=e(Ky+G)+(1—e)n"(Kx + D)+ (1 —e)p
is also ample and so the result follows by induction on n. O

Proof of Corollary [L21l By Lemmal[l0.1] K x + D is ample and log canonical, where
D is the sum of the boundary divisors. In particular Kx + A is Kawamata log
terminal, provided none of the a; is equal to one.

Pick a general ample Q-divisor A ~g 6(Kx + D). Note that

(14 6)(Kx +A) = Kx + 6(Kx + D) + (1 +8)A — 5D
~g Kx+ A+ B.

Now

0<(A-6D)+6A=B=A+5(A-D)<D.
Thus the result is an immediate consequence of Theorem [C] Theorem [Dl and The-
orem [E] O

Proof of Corollary [L3.2 This is immediate by Corollary and the main result
of [12] (note that h'(X,Ox) = 0 by Kawamata-Viehweg vanishing). O

Proof of Corollary [L33 Pick any m-ample divisor A such that Kx + A+ A is 7-
ample and Kawamata log terminal. We may find € > 0 such that Kx + A 4 €A is
not m-pseudo-effective. We run the (Kx + A +€A)-MMP over U with scaling of A.
Since every step of this MMP is A-positive, it is automatically a (Kx + A)-MMP
as well. But as Kx + A + €A is not m-pseudo-effective, this MMP must terminate
with a Mori fibre space g: Y — W over U. O

Proof of Corollary [L33. As X is a Mori dream space, the cone of pseudo-effective
divisors is a rational polyhedron. It follows that NF(X) is also a rational polyhe-
dron, as it is the dual of the cone of pseudo-effective divisors.

Now suppose that F'is a co-extremal ray. As NF(X) is polyhedral, we may pick a
pseudo-effective divisor D which supports F. Pick € > 0 such that D—e(Kx +A) is
ample. Pick a general ample Q-divisor A ~g %D— (Kx+A) such that Kx+A+kA
is ample and Kawamata log terminal for some k& > 1. Then (X,0 = A + A) is
Kawamata log terminal and Kx + © ~q %D supports F. As in the proof of
Corollary [3.3 the (Kx +A)-MMP with scaling of A ends with a (Kx + 0)-trivial
Mori fibre space f: Y — Z, and it is easy to see that the pullback to X of a
general curve in the fibre of f generates F. O

Proof of Corollary [L4Tl The flip of 7 is precisely the log canonical model, so that
this result follows from Theorem O

Proof of Corollary [LZ2. This is immediate from Lemma and Theorem [El
([

Proof of Corollary [L43 Pick an ample Q-divisor A > 0 which contains the centre
of every element of € of log discrepancy one, but no non-Kawamata log terminal
centres. If ¢ > 0 is sufficiently small, then (X, A + €A) is log canonical and so
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replacing A by A + €A, we may assume that € contains no valuations of log dis-
crepancy one. Replacing A by (1 — n)A + nAg, where n > 0 is sufficiently small,
we may assume that Kx + A is Kawamata log terminal.

We may write

Kw+ ¥ = f*(Kx +A) + E,
where ¥ > 0 and £ > 0 have no common components, f,¥ = A and F is ex-
ceptional. Let F be the sum of all the exceptional divisors which are neither
components of E nor correspond to elements of €.

Pick € > 0 such that Ky + ® = Ky + ¥ + €F' is Kawamata log terminal. As f
is birational, ® is big over X and so by Theorem we may find a log terminal
model g: W --» Y for Ky +® over X. Let 7: Y — X be the induced morphism.
IfT = g.® and E' = g.(E + €F), then

Ky +T=7n"(Kx +A)+ F,
where Ky + I is nef over X. Negativity of contraction implies that E’ = 0 so that
Ky +T =7"(Kx + A).

But then we must have contracted every exceptional divisor which does correspond
to an element of €. O

Proof of Corollary [LZ4l Pick a log resolution f: Z — X of (X,A). We may
write
Kz +% = f"(Kx +A) + Ey,

where ¥ > 0 and Ey > 0 have no common components, Ey is f-exceptional and
f+¥ = A. We may write ¥ = W, +W,, where every component of ¥y has coefficient
less than one and every component of Ws has coefficient at least one. Let E; be
the sum of the components of ¥; which are exceptional. Pick § > 0 such that
K, + V3 is Kawamata log terminal, where W3 = ¥y +0F,. Let g: Z --+ Y be a
log terminal model of Kz 4+ W3 over X, whose existence is guaranteed by Theorem
If 7: Y — X is the induced birational morphism, then we may write

Ky+F:7T*(Kx+A)+E,

where I' = g.(V + 0E;) > 0, E = g.(Eyg + dE1) > 0 and Ky + I's is nef over X,
where I's = ¢, ¥3. If E # 0, then by Lemma [3.6.2] there is a family of curves ¥ C Y
contracted by 7, which sweeps out a component of E such that -3 < 0. Since F
and I'—T'3 have no common components, (I'—=I'3)-X > 0, so that (Ky +1'3)-X < 0,
a contradiction. Thus E = 0, in which case I's = I'1 and no component of I'; is
exceptional. O

Lemma 10.2. Let (X,A) be a quasi-projective divisorially log terminal pair and
let S be a component of the support of A.

Then there is a small projective birational morphism m:Y — X, where Y is
Q-factorial and =T is nef over X, where T is the strict transform of S.

In particular if 3 is a curve in' Y which is contracted by m and ¥ intersects T,
then ¥ is contained in T .

Proof. By (2.43) of [22] we may assume that (X, A) is Kawamata log terminal. Let
f:+ Z — X be alog terminal model of (X, A) over X, let ¥ be the strict transform
of A and let R be the strict transform of S. Let g: Z --+ Y be a log terminal
model of Kz + ¥ — eR over X, for any € > 0 sufficiently small. As ¥ — eR is big
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over X and Kz + ¥ is Kawamata log terminal, Lemma [3.7.3] and Corollary [[LT.5]
imply that we may assume that Y is independent of e. In particular —7 is 7-nef,
where 7: Y — X is the induced morphism. O

Proof of Corollary [LA5. We work locally about S. Let a be the log discrepancy of
Kg+0 and let b be the minimum of the log discrepancy with respect to Kx + A of
any valuation whose centre on X is of codimension at least two. It is straightforward
to prove that b < a; cf. (17.2) of [2I]. If B is a prime divisor on S which is not
a component of ©, then the log discrepancy of B with respect to (5, ©) is one, so
that a < 1. In particular we may assume that b < 1.

By the main theorem of [I3], (X, A) is log canonical near the image of S if and
only if (S, 0) is log canonical, and so we may assume that (X, A) is log canonical
and hence b > 0.

Suppose that (X, A) is not purely log terminal. By Corollary [[LZ4] we may find
a birational projective morphism 7: Y — X which only extracts divisors of log
discrepancy zero, and if we write Ky + ' = 7*(Kx + A), then Y is Q-factorial
and Ky is Kawamata log terminal. By connectedness, see (17.4) of [2I], the non-
Kawamata log terminal locus of Ky + I' contains the strict transform of S and is
connected (indeed the fibres are connected and we work locally about .S). Thus we
are free to replace X by Y, and so we may assume that X is Q-factorial and Kx
is Kawamata log terminal.

Suppose that (X, A) is purely log terminal. By Lemma [[0.2] there is a birational
projective morphism 7: Y — X such that Y is Q-factorial and the exceptional
locus over S is contained in the strict transform of S. Replacing X by Y, we may
assume that X is Q-factorial.

We may therefore assume that X is Q-factorial and Kx is Kawamata log termi-
nal. Let v be any valuation of log discrepancy b. Suppose that the centre of v is not
a divisor. By Corollary there is a birational projective morphism 7: ¥ — X
which extracts a single exceptional divisor F corresponding to v. Since X is Q-
factorial, the exceptional locus of 7 is equal to the support of E and so E intersects
the strict transform of S. Let I' = A’ + (1 — b) E, where A’ is the strict transform
of A. Then Ky +T' =7*(Kx + A).

Replacing X by Y we may therefore assume there is a prime divisor D # S on
X, whose coefficient A is 1 — b. By Definition-Lemma [B.4.1] some component B of
O has coefficient at least 1 — b, that is, log discrepancy b and so a < b. (I

Proof of Corollary [L4.6. Since this result is local in the étale topology, we may
assume that U is affine. Let f: Y — X be a log resolution of (X, A), so that the
composition ¥: Y — U of f and 7 is projective. We may write

Ky +1" = f"(Kx +A) + E,

where IV > 0 and F > 0 have no common components and E is f-exceptional. If
F > 0 is a Q-divisor whose support equals the exceptional locus of f, then for any
0<e< 1, (Y, =1+ €F) is Kawamata log terminal.

Pick a t-ample divisor H such that Ky +T'+H is ¢-ample. We run the (Ky +T)-
MMP over U with scaling of H. Since X contains no rational curves contracted
by m, this MMP is automatically an MMP over X. Since I' is big over X and
termination is local in the étale topology, this MMP terminates by Corollary
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Thus we may assume that Ky + 1 is f-nef, so that E + €F is empty, and hence f
small. As X is analytically Q-factorial it follows that f is an isomorphism. But

then 7 is a log terminal model. O
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