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Abstract 

Consider the Hamiltonian system zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
i zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 1 , .  . . , N. 

Here, H E  C2(R2N, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAR). In this paper, we investigate the existence of periodic orbits of (HS) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAon a 
given energy surface X = { z E W Z N  ; H (  z) = c} ( c  > 0 is a constant). The surface I: is required to verify 
certain geometric assumptions: B bounds a star-shaped compact region B and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAu 8 c  B c pS for 
some ellipsoid %‘c RZN, 0 < (Y < p. We exhibit a constant S > 0 (depending in an explicit fashion on 
the lengths of the main axes of Lf and one other geometrical parameter of I) such that if furthermore zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
p2 /a2<  I + 8, then (HS) has at least N distinct geometric orbits on P. This result is shown to extend 
and unify several earlier works on this subject (among them works by Weinstein, Rabinowitz, 
Ekeland-Lasry and Ekeland). In proving this result we construct index theories for an S’-action, 
from which we derive abstract critical point theorems for S’-invariant functionals. We also derive 
an estimate for the minimal period of solutions to differential equations. 

1. Introduction 

This paper is concerned with the existence of periodic orbits on a given energy 
surface for a Hamiltonian system 

(1.1) i = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAJH’ (z ) .  

Here; z = z( t )  : R + R”, i = dx/dt ,  H E C2(R2N, R) is the Hamiltonian and J is 
the standard skew symmetric matrix 

where I stands for the identity in W”’. Trajectories of (1.1) remain on energy 
surfaces H = constant. 
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1.1. The main result. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBALet us first explain our main result. Let zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa be the 
matrix defined by 

a' being the diagonal zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAN zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAX N matrix 

where w l r  4 4 , zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAwN are positive reals. The set 

N zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
i =  I 

defines an ellipsoid in RZN ( ( , )  denotes the scalar product in RZN and x = 

(x l ,  . * , xZN) . )  Without loss of generality we may assume that the energy surface 
on which we are looking for periodic solutions of (1.1) is defined by 

(1.2) C = { X €  RZN ; H ( x )  = 1). 

We assume that H ' ( z )  # 0 for all z E I; and that 

Z is a Cz-manifold which is strictly star shaped' 
with respect to the origin and bounds 
%= {x E RZN ; H ( x )  5 I}, which is compact, 

(1.3) 

( 1.4) a 8 c  92 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAc zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp8 for some O <  a < P .  

By assumption (1.3), the tangent plane TxC to C at a point x E C never hits 
the origin. We may therefore define p > 0 to be the largest positive real such that 

(1.5) T , c , ~  ip =0 for all X E C ,  

where 8, = {x E RZNI 1x1 < p } .  
Our main result is the following 

THEOREM 1.1. Giveng ,  t h e r e e x i s t s a c o n s t a n t 6 = 6 ( p z / a Z , w , ; .  - , w N ) > O  

such that ( 1. I )  possesses at least N distinct periodic orbits on any surface C satisfying 

(1.3)-( 1.5) with p z / a z <  1 + 6. 

The explicit dependence of 6 on p z I a 2  and the frequencies w I  , . . . , oN are 
given in subsection 1.2 below. 

Remark 1.2. Actually, and more precisely (see Section 7), we prove that 
given p ,  1 5 p S N,  there is a constant 6, with 0 < 6 = aN 5 aNPl  5 .  . .5  6 ,  = +a 

' That is, x-t  x/lxl is a diffeomorphism from Z onto S 2 N - ' .  
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such that, if P 2 / a 2 <  1 +a,, then (1.1) has at least zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp periodic orbits on I;. In 
general, the constant 6, that we obtain increases as p decreases. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

1.2. Estimate of 6. Let 1 E N  be the number of equivalence classes of the 
set {w I  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA, . , w N }  in R*/Q*. That is, relabeling the.w,, we assume that 

I 
{wl; - - ,wN}={wI , ’  * * , w ; , , w : ;  . . , w p , l  

(1.6) wf = nfw’, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAn: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE N, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAj =  1 , .  . . 9 PI, 

with w f ~ R T , p , + * . . + p , = N ,  and 

where w ’  is defined to be the largest positive real satisfying (1.6) (i.e., w ’ >  0 is 
the largest common integral divider of the w i ) .  Note that w ’ / w J  g Q for all i # j .  
We define a1 > 0 by setting 

(1.7) 

Furthermore, we set 

Observe that 6,>0, since w‘/wJgQ, i # j .  Now, we set 

(1.9) 

We shall show that this 6 is a possible choice in Theorem 1.1. 

S = min {al ,  S2}. 

1.3. Remarks. The above results extend and unify most of the known results 
dealing with the existence of periodic solutions on an energy surface. 

Indeed, it is easily seen that the local results of A. Weinstein [19], [20] are 
obtained from Theorem 1.1 by observing that if zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAH ( 0 )  =0, H‘(O)=O and H”(0) 
is positive definite,’ then, for E > 0 small enough, the surface { H  = E }  (near 0) 
satisfies the hypothesis of the theorem. The global results of A. Weinstein [21] 
or P. H. Rabinowitz [18] who show the existence of at least one periodic orbit 
under the assumption (1.3) (in [18]), or less generally that zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA9 is convex (in [21]) 
just correspond to the case p = 1 in Remark 1.2.. Note that in this case (since 
a1 = + co) the assumptions (1.4) and ( 1.5) may as well be dropped. 

The global multiplicity result of I. Ekeland and J. M. Lasry [ 113 corresponds 
to the particular case when 8 is a ball (a’= I )  and 9 is convex. In fact, taking 
Bp = a%‘, the explicit formula (1.7) for 6 yields 1 + 6 = 2, which is precisely the 
result of Ekeland and Lasry. Hence, in this particular case Theorem 1.1 covers 
the results of [ 111 and the constants 8, (cf. Section 7) also allow us to recover 

* The extension of this result due to J. Moser [15], where H”(0)  is not necessarily positive, does 
not seem to follow from the above results. 
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the extension for this case due to Ambrosetti and Mancini [I]. Finally, Theorem 
I .  1 can be seen to contain a recent perturbation result of I. Ekeland zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[ 101, Theorem 
18, for Hamiltonian systems. 

We present two proofs of Theorem 1.1, both of which rely on critical point 
theory via S1-action index theories. In Section 2, we construct an index related 
to some S1-action. As a generalization of this index we then define a relative 
index which allows us to obtain critical points for unbounded indefinite func- 
tionals. In Section 3, we derive general and abstract critical point theorems for 
functionals which are invariant under the S’-action. A crucial feature in these 
two sections is that the S1-action is allowed to have a nontrivial fixed-point space. 
In Section 4, we give estimates for the minimal period of solutions for some 
differential equations. (The main result in Section 4 extends a theorem contained 
in the work of Croke and Weinstein [9].) Sections 2 to 4 are more general than 
the framework of Theorem 1.1 and, we believe, are of independent interest. 

In Section 5, we use the relative index defined in subsection 2.3 to give a 
proof of Theorem 1.1 by working with an indefinite functional. An alternate proof 
of Theorem 1.1 by the methods of convex analysis (and using the index of 
subsection 2.2) is given in Section 6. Finally, in Section 7, we outline some 
extensions and make a few comments. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Remark 1.3. It will be seen in the course of the proof (see Sections 5 and 
6) that we actually also obtain fairly precise estimates on the minimal periods 
of the orbits. 

Remark 1.4. Theorem 1.1 has been announced in our note [7]. 

Remark 1.5. Existence of periodic orbits for conservative systems which 
are not necessarily Hamiltonian, on a given energy surface, is investigated in 
~41, ~51, ~61. 

2. Index Theory for the S’-Action and a Relative Index Theory 

With the aim of constructing critical values by a Ljusternik-Schnirelman type 
minimax principle, we first require an “index theory” with respect to an $-action 
which has a nontriuiuljxed-point space. This is the purpose of the present section. 
Then we shall define an index theory relative to an invariant subspace X of E. 

Abstract critical point theorems for invariant functionals will be derived in 
the next section by using the index (for functionals which are “essentially” 
bounded below) and the relative index (for indefinite functionals). The applica- 
tions to Hamiltonian systems will be detailed afterwards. 

2.1. Notations and basic definitions. To begin with let us specify some 
notations and definitions. In all the sequel E is a complex separable Hilbert 
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space. The generic element of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAS' will be denoted either by 8 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( E R / ~ T Z )  or by 
eie. Let T be a unitary representation of S' in E, that is, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBATe E Isom (E) is defined 
for all 0, 11 TouII = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAllull for all u, Te+e,= TOTO, (hence To = Id, T-e = T i '  = TZ) and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
8+ Te is continuous. 

A representation R of S' in C k  (or an S'-action on zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBACk) will be termed regular 
if it only has a trivial fixed-point space (i.e., Reu = u for all 8, J U  = 0). Given 
a = (a,,  - * * , ak)  E Z k ,  an example of an S'-action R" is defined as follows: for 
[ = ( S 1 ; . . , S k ) ,  R ~ S = ( e x p { i a 1 8 } ~ l , ~ ~ ~ , e x p { i a k 0 } ~ ~ ) .  In this example R is 
regular if and only if a I ,  * * * , (Yk are all non-zero. We recall that due to the 
Peter-Weyl representation theorem, any S'-action on C k  is of the form R" for 
some k-tuple in some orthonormal basis. A set A c  E is said to be invariant 
(under T) if TeA=A for all 8. Note that S 2 k - ' = { ( ~ C k ;  ((1 = I }  is invariant 
under any S'-action on Ck. A functional F : E + R is invariant if F(  Teu) = F( u )  
for all u E E and for all 8. Finally, a mapping 4 : E + C k  is said to be equivariant 
with respect to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(T ,  R) if 4 0 To = R o o  4 for all 8. We denote by M k ( A ;  R) = 
C,,(A, C;\{O}) the space of all continuous maps 4 : A+Ck\{O} which are 
equivariant with respect to ( T ,  R). 

We denote by E o  the space of fixed points of T: E o  = { u E E ; TeU = u for all 
0 E R/27rE}. Henceforth we assume that 

(2.1) Eo is finite-dimensional. 

Let us define two classes of subsets of E: 

'8 = { A  c E ; A n  E o  = 0, A is closed and invariant under T}, 

gC = { A  E 8; A is compact}. 

Our first step will be to recall the geometrical S'-index theory of V. Benci [2] 
for these classes of subsets. 

DEFINITION 2.1. For A E  8 we define: 

y(A) = inf { k E N; there exists a regular S' -action 

R on C k  with Mk(A; R )  f 0). 
(2.2) 

As usual, y(A) = +a if A # 0 and no such k E N can be found, and y ( 0 )  = 0. 

will be seen to be a special case of the index defined in subsection 2.2 below. 
For the properties of this index we refer to Benci [2]. At any rate, this index 

2.2. An index for S'-actions with fixed points. Let us now consider the 
broader classes 

9 = { A c  E\{O}; A is closed and invariant under T}, 

Sc = { A  E zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA9: A is compact}. 
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Let us first observe that if zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA E  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA9 were any set such that zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA n  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAEo#  0, then the 
definition (2.1) would lead to ? ( A )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= +oo. We therefore require a more dis- 
criminating definition of the index. 

DEFINITION 2.2. Let A E  9 and let zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAR be a regular S'-representation on Ck. 
We denote by M ; ( A ,  R )  the set of all continuous mappings h : A + E o  XCk having 
the properties: 

(2.3) (0,O) h ( A ) ,  

(2.4) 

( 2 . 5 )  h(u )= (u ,O)  for all u E A n E o .  

h is equivariant with respect to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(T, k ) ,  where 

ko(xo, 6) = (xo, R o t )  for all xOe E o  and ( E  C k ,  

DEFINITION 2.3. Let A E  9. The index of A, yo(A), is defined to be 

?,(A) = inf { k  E N; there exists a regular S'-action 

R on C k  with M ; ( A ,  R )  # 0}. 
(2.6) 

We now list the basic properties of this index. 

1 .  MONOTONICITY. Let A, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAB E 9. Assume there exists an equivariant map- 
ping g : A+ B and a continuous map 4 : Eo+ E o  such that $ # 0 on Eo\{O} and 
$ [ g ( u ) ] = u  for all U E E O ~ A .  Then yo(A)Syo(B) .  

2. SUBADDITIVITY. Let A zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE 9 and B E  8. Then 

yo(Au B) ?,(A) + 
- 

3 .  Let A E  9, B E  8 with y ( B ) <  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA+a. Then A\BE 9 and y , (A\B)Z 

4. Let A E  9 have an index y,(A) 2 k. Suppose ( B 0 ) l  = F, + F2,  with F, ,  F2 

5.  Let G c  ( E 0 ) I  be an invariant subspace of finite dimension. Let S = 

yo(A) - y ( B ) .  

invariant and orthogonal and dimc F, < k. Then A n F2 # 0. 

{ x € E 0 + G ,  l lxl l=p}forsomep>O.Then S ~ 9 ~ a n d  

yo( S )  = dim G. 

For the proof of these properties we refer to subsection 2.3 for the relative 
index defined there. (Indeed, it will be seen that yo can be obtained as a particular 
case of this index.) 

Here and thereafter, the dimension of a subspace always refers to the complex dimension (unless 
otherwise specified). 
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2.3. A relative index. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAThe classes zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAot; sets zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA9 and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBATC are defined as before. 
Let zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAX zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAc E be a closed linear subspace ’invariant under the action such that 
E O c  X I .  We shall also write Y = ( E 0 O X ) I ,  and we shall denote by Pv and Po 
the orthogonal projections onto zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAY, EO, respectively, and PI = Py + Po. 

DEFINITION 2.4. Assume zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA E 8 and let R be a regular S’-representation on 
Ck.  We denote by Dk(A,  R )  the set of all continuous mappings 

h : A + X L x C k ,  h ( u ) = ( h l ( u ) , h 2 ( u ) ) ,  

having the following properties: 

h is equivariant with respect to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(T,  R )  in the following sense: 
(2.8) 

h(T,u)  = ( T A ( u > ,  Roh*(u)),  

(2.9) h ( u ) = ( u , O )  for all uEAnEO, 

(2.10) P y h l =  Py + K ,  

with K : A +  Y compact (i.e., K continuous, and B boundedJK(B)  compact). 

Remark 2.5. If X I  = EO, then (2.10) is automatically satisfied, and hence 
the relative index reduces to the index introduced in subsection 2.2. 

DEFINITION 2.6. Let A E  9. The relative index of A with respect to X,  
y , (AIX) = y , ( A ) ,  is defined to be 

y , (A)  = inf { k  E N; there exists a regular S’-action 

(2.1 1) R on C k  with Dk(A, R )  f 0}, 

y , (A)  = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA+a, if A # 0 and no such k E N can be found, and y r ( 0 )  = 0. 

Remark 2.7. The preceding constructions of y,  yo, and yr are somewhat 
reminiscent of the notions of index and relative index introduced by E. Fadell, 
S .  Husseini and P. H. Rabinowitz [ 131. These authors build, using algebraic 
topology tools, a general theory of relative indices for spaces in the presence of 
some G-action, where G is a compact Lie group. 

Here we are giving a geometrical construction which reduces algebraic 
topology to the use of the S1-version of the Borsuk-Ulam theorem. 

The papers [2], [3] of V. Benci have the same purpose of a “geometrical” 
construction. The index and pseudo-indices of V. Benci have the same type of 
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properties as our index and relative index: compare for example 

with V. Benci's zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAy r ( A u  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAB) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 yr (A)  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA+ y ( B )  

i * ( A u B ) s i * ( A ) + i ( B ) .  

However, the two constructions are in some sense "dual". V. Benci measures the 
topological complexity of the space by using the existence of groups of deforma- 
tions, while we are measuring it by obstructions: nonexistence of equivariant 
maps into spheres of too small dimension. 

In the next propositions, we list the basic properties of this relative index. 

PROPOSITION 2.8. Let A E  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA9. Suppose that X =  F,+ F2, with F,  and F2 
invariant orthogonal subspaces. If A n F2 = 0, then y , ( A )  5 dim F,. 

Proof Let Q :  E + F, denote the orthogonal projection onto F, .  Define 
h( u )  = ( P ,  u, Qu) .  Then it is easily seen that h : A + X1 x F,  satisfies conditions 
(2.7)-(2.10) (identify FI with Ck,  k = dim F , ,  which we may assume to be finite). 
Note that the S'-action on F,  , the trace of Ton F, , is regular. Hence h E D k ( A ,  T ) .  
This shows that y r ( A )  5 dim F,  . 

COROLLARY 2.9. Let zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA E F have an index y r ( A )  2 k. Suppose X = F, + F2,  
with FI , F2 invariant and orthogonal and dim FI < k.  Then zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA n  F2 # 0. 

PROPOSITION 2.10. Let G c X be an invariant subspace of jinite dimension. 

Let S = {x E X I @  GI llxll= p }  for some p > 0.  Then S E B and y , ( S )  = dim G zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(if 
G is infinite-dimensional, then yr(  S )  = + CO). 

First, y , ( S )  5 dim G, by Proposition 2.8. Let k = dim G. If y , ( S )  = j < 
k, there exists a regular S1 -action R on @' and a mapping h : S + X1 x @' satisfying 
(2.7)-(2.10). We show that h has necessarily a zero, contradicting (2.7). 

Y' be the decomposition of Y into its irreducible subspaces 
with respect to the S'-action. Let P,, : E + 0 Y' = Y,, denote the orthogonal 
projection onto Y,,. Thus, Y,,c Y forms a sequence of orthogonal invariant 
subspaces such that dim Y,, = n, Y. c Y.,, , and, for all x E Y, P,x + x as n + 00 

( P , x  + Pyx for all x E E ) .  Lastly, let Q : E + G be the orthogonal projection onto 
G.Thendefine h": (Y, ,OEo@G)nS+(Y, ,OEo)xC'  by letting h"=(hT,  h i )  

with 

Proof 

Let Y = 0 

hY(u)= J',hi(u)+Pohi(u), 

h2n(U) = h 2 ( ~ ) ,  

for all n. On the space ( Y,O E o )  xC' define an S'-action U by setting 

V0(5,17) =(Tot, ROT) 
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with 6 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAY,, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 E o ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA17 E C'. The mapping h" satisfies 

(2.12) h " ( u ) = ( u , O )  for all zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAu E E o n S ,  

(2.13) h" 0 Te zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= Ue 0 h". 

Identify (after a choice of suitable bases) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAY,O E o  and Y,O E o O  G with @" x @ '  
and @" xC'  x C k ,  respectively, where I = dim Eo.  We have thus obtained a map 
from the sphere in @" x@'  x C k  into @" x @' X C' with j < k which is equivariant 
according to the above actions and leaves @I, the fixed-point set, invariant. 
Therefore, h" has a zero by the S'-version of the Borsuk-Ulam theorem due 
to Fadell, Husseini and Rabinowitz [13]. An elegant proof of this result 
(modulo the use of the Peter-Weyl theorem) can be found in L. Nirenberg [16], 
Theorem 3. 

We thus have a sequence ( u , ) c S  such that O =  h"(u , )=  

( U, + P,,K ( u,) + Poh;( u n ) ,  h,"( u,,)). Using the compactness of K, we therefore find 
a convergent subsequence u, + u, h( u )  = 0, u E S. 

Finally, if G is infinite-dimensional, one defines as above invariant spaces 
G. c G, dim G, = n ,  and obtains for S,, = {x E X'O G.1 llxll= p }  that yr(Sn) = n 

for all n E N. Hence y , (S)  = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA+a. 

PROPOSITION 2.1 1, MONOTONICITY. 

(i) Pyg = Pv + K ,  with K :A+ Y compact, 

(ii) thereexists4: Eo+Eocontinuoussuchthat+ ZOon Eo\{O} a n d + ( g ( u ) ) =  

Let A,  B E zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA9. Suppose that there exists 
a continuous equivariant map g : A + B such that 

u for all U E  E O n A .  

Then ? , (A)  5 yr(B). 

Proof: It suffices to assume that k = y , ( B )  <a. Let f E Dk(B, R)  and define 

6: Y x E 0 x C k - +  Y x E 0 x C k  

by 

&77, xo, 5 )  = (77 ,  4(xo) ,  5). 
Identifying Y x E o  with X I ,  we have a myp ing  h = 4 0 f 0 g : A +  XL x C k .  It is 
easy to see that OE# h ( A )  and that h is (T, R )  equivariant. Since g is equivariant, 
it maps fixed points into fixed points. Hence if u E Eo, then h( u )  = (u ,  0). Finally, 
P,h = Py($ o f 0  g )  = Py + K, K : A +  Y compact. This shows that h E D k ( A ,  R ) ,  

and hence y , ( A )  S k. 

PROPOSITION 2.12. Let L :  E + E be an equivariant isomorphism with 
LX'=X'.  Let A € %  Then y , ( L A ) = y , ( A ) .  

Proof: Assume y , (LA)  = k. Let f E &(LA, R )  and define g :  X I  x C k +  
X I  x C by g (  u, 5) = ( L -  ' u, 6). Let h = g 0 f : LA + X I  X Ck. It is easy to see that 
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h zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAhas no zero. Now let h' zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= h zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAL : A -+ XA x zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAC '. It is readily verified that satisfies 
(2.7)-(2.10). Hence y , (A )S  k. Replacing L by L-', one obtains y , ( L A ) S  y,(A). 

PROPOSIT~ON 2.13. Letp*beaninuarianrfunctional~: E\{O}+[c,, c,],O<c, < 
c2<m, and set p ( u ) = p * ( u )  - u .  Let A E  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAg. Then 

y r ( p ( A ) )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 yr(A).  

Proof Assume y , ( p ( A ) )  = k .  LetfE D k ( p ( A ) ,  R )  and define g : A +  X I  XCk 

by 

Clearly, gE Dk(A,  R )  and therefore y , ( p ( A ) )  2 y,(A). 

Remark: The. same result holds with A E  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA9 provided one assumes, for 
instance, that p ( u )  = u for all u E Eo. 

PROPOSITION 2.14. SUBADDITIVITY. Let A E  4 and B E  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi5; then 

y r ( A u B ) z  y r ( A ) + y ( B ) *  

Proof It suffices to consider the case k =  y , ( A ) < m ,  m =  y ( B ) < m .  Let 
f~ &(A, R )  and g E M,(B,  S )  for some regular S'-actions R and S on C k  and 
C", respectively. It is straightforward to show that there are continuous and 
equivariant (under (T ,  R )  and (T ,  S ) ,  respectively) extensions off,  g, denoted by 
1 8 :  

J : E + X I x C k ,  

g : E -, C". 

Indeed, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAby Tietze's theorem, g, for instance, has a continuous extension d : E + C". 
Then define 

g(x) =r s-& T ~ X )  de. 
7T I:" 

It is clear that 
above argument, and since B n E o  = 0, one can choose g such that 

(2.14) g(u)=O for all U E  E'. 

is continuous and equivariant. The proof is similar for By the 

Now define h : A u  B - ,  X' x C ~ + ~  = X I  x C k  xC" by setting (with an obvious 
identification) 

h ( u )  = tm, g ( u ) ) .  
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We claim that zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAh zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBADk+,(Au B, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAU ) ,  where the S'-action U on zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBACk+"' is defined 
by U~x=(Rex I ,S~x , )  forx ,ECk,  x ~ E @ " '  andx=(x , ,x , )~Ck ' " .  

Indeed, h is continuous. By the above construction it is seen that h y  = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAPy + K ,  
and for u E A u B either zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf( u )  orAg( u )  is non-zero. It is readily checked that h is 
equivariant with respect to (T, U ) ,  since it is obvious that h satisfies (2.9). The 
proof is thereby complete. 

COROLLARY 2.15. Let A E 8, B E 9 with y (  B )  < zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAW. Then A\B E 8, and 

2 % ( A )  - y ( W .  

Proof A\BE 9 (recall that M E  9 and by definition y r ( 0 )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA=O). Now A c  - 
A\B u B and Propositions 2.14 and 2.1 I yield 

- 
'yr(A) 5 yr(A\B) + y ( B ) *  

3. Critical Points of S'-Invariant Functionals 

We present in this section some abstract critical point theorems based on the 
indices introduced above. The hypotheses and notations are the same as in the 
previous section. In particular, E is an infinite-dimensional complex Hilbert 
space, T is a unitary representation of S' in E, and Eo denotes the space of fixed 
points of T, which is assumed to be finite-dimensional. 

We shall work with real-valued functionals f E C ' ( E ,  52) satisfying 

f is invariant under T :  

f( TBx) = f (x)  for all 8 E [ 0 , 2 ~ ]  and for all x E E, 
(3.1) 

(3.2) f (0) = 0. 

Furthermore, f is required to satisfy the following classical compactness condition 
of Palais-Smale. 

For all a < p, and for any sequence (x,) c E such that a 5 f ( u , )  5 p 
(") and f ' (  u,) + 0 strongly in E ' ,  there is a convergent subsequence of (x,). 

f is said to satisfy (PS)- i f f  satisfies (PS) for all a, p with a < p < 0. 

3.1. Functionals which are essentially bounded from below. Let us now con- 
struct critical values of functionals satisfying the above conditions by a minimax 
principle relying on the index of subsection 2.2. We let 

(3.3) r k  = { A  E 9; Yo(A) 2 k}, 

(3.4) ck = inf max f(x). 
A E r k  X E A  
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Then we have the following 

PROPOSITION 3.1. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAL e t f e  C1(E, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAW) satisfy conditions (3.1), (3.2) and (PS)-. 
Assume furthermore that, for some k, m zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAEN*, r k + m - l  f zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 and that zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

-a< zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAc =ck = c k + l  = * * = Ck+,,-{ <o. 
Let K ,  = {x E zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE ;  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf ( x )  = c, f ’ ( x )  = 0). Then, ifK,n Eo= 0, 

y(K,)  2 m. 

In particular, c zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAis a critical value off:  

First, since K ,  n Eo = 0, and K, is invariant and compact by (PS)-, 
K ,  belongs to 5ZC, and y(K,)  is well defined and finite. Furthermore, there exists 
6>Osuchthat N,(K,)={x~E;dist(x,K,)<6}sat isf ies y(N,(K,))= y ( K , )  (cf. 
Benci [2]). By the deformation lemma of Morse (see e.g. P. H. Rabinowitz [17], 
or more precisely, for the “equivalent deformation lemma”, V. Benci [2]), for 
any O <  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE < E small enough (O< E < E are fixed such that c +  E <O), there exists 
q : E + E with the following properties: 

(3.5) 

(3.6) 

(3.7) 

Proof 

q is a homeomorphism: E + E ;  

q is equivariant under T ;  

q ( x )  = x for all x such that If(x) - c(  5 I ;  

(3.8) ~ [ { ~ ~ c + E } \ N ~ ( K , ) ] c { ~ S C - E } .  

To prove Proposition 3.1 we argue by contradiction and suppose that y (K , )  S 

m - 1 .  By the definition of C k t m - 1  = c  there exists A E ~ ~ + , , , - I  such that 
maxXEAf(x) 5 c +  E, that is A c { f S  c +  E } .  Now let B = q ( A \ N , ( K , ) ) .  By (3.7), 
we know that q(0) = 0 and, since q is an equivariant homeomorphism, it is clear 
that B E  9. By the subadditivity property of yo (property 3 of yo), we know that 

(3.9) Yo(B)Z yo(A) -  y“,(Kc)). 

Hence, since y(N,(K, ) )  = y(K,)  5 m - 1 and A E r k t m - 1 ,  (3.9) yields 

(3.10) yo( B )  2 k. 

On the other hand, from (3.8) we infer that B c { f S  c - E }  which is a contradiction 
to the fact that c = ck as B E  rk. The proof is thereby complete. 

From the viewpoint of applications it is crucial to have conditions which will 
a priori guarantee that the ck constructed by (3.3), (3.4) Satisfy - 03 < c k  < 0. We 
now give some results in this direction. 

PROPOSITION 3.2. Let f e  C ’ ( E ,  W) satisfy (3.1), (3.2) and (PS)-. Assume 

that ( E 0 ) l  = F, + F,, F,  and F2 being invariant and orthogonal subspaces. Assume 
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that zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf is bounded from below on zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAF2 and that dim F, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= p < zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA00. Then, for any k > p, 
ck isfinite ( c k >  -00).  

This is but a consequence of property zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4 of yo: for any A ~ r k  and 
k>p,  A n  F,# 0. Hence, 

Proof: 

ck zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 inf f > - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAco. 
F2 

PROPOSITION 3.3. Let f zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE C ' ( E ,  W) satisfy (3.1), (3.2) and (PS)-. Suppose 
that there exists an invariant subspace G of E such that G c (EO)' and dim G = m. 
Suppose moreover that, for some zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp > 0, f is strictly negative on S = { x  E Eo+ G ;  
11 x 1) = p } .  Then, ck < 0 for all k 5 m. 

By property 5 of yo,  S, E .Fc and yo(Sp)  = m. Hence, S, E r k  for all 
k 5 m, which shows that, for all k S m, 

Proof 

We sum up the results of this subsection in the following statement: 

THEOREM 3.4. Let E be an infinite-dimensional complex Hilbert space, T a n  
S'-action of E with a finite-dimensional fixed point space E'. Let f E C'(E ,  W) be 
an invariant functional such that f (0 )  = 0 and f satisfies (PS)-. We assume that 
there are two invariant subspaces V and W of E such that 

(3.1 1) V c  (EO)'; 

(3.12) 

(3.13) 

(3.14) m=dim W<m, p=codim V<w;  

(3.1 5) 

Assume m Z p .  Then f has at least m - p  distinct critical orbits corresponding to 
negative critical levels. 

f is bounded from below on V ;  

W 3 E o  and, for some p > 0, f ( u )  < O  for all u E W with ( (u ( (  = p ;  

E o  n K,  = { x  E EoI f ( x )  = c , f ' ( x )  = 0) = 0 for  all c < 0. 

Remark 3.5. If x is a critical point of f ;  then, due to the invariance of f; all 
the points in the orbit of x,  { T8x},  are critical points. Thus, we speak of critical 
orbits. Observe that distinct orbits have empty intersection. 

a .  

By Proposition 3.1, ck is a critical value provided -co < ck < 0. By Propositions 
3.2 and 3.3, we have 

(3.16) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA-a< c k < O  for all k, p < k S m .  

Proof Let ck be defined by (3.4). We know that - 0O 5 c, 5 c2 5 * - .5 ck 5 



266 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBABERESTYCKI ET zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAL. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
If cp+l zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA< cP+* < * . * < 
the contrary that 

< c, are all distinct, the theorem is proved. Suppose on 

-a< cj = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcj+, < o  
for some j ,  p < j <  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAm. Then, let c = c, = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAc ~ + ~ ;  by (3.15), K ,  n zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAEo= 0. Hence, by 
Proposition 3.1, y(  K , )  2 2. This implies that K,  contains infinitely many distinct 
critical orbits, and hence the theorem is proved also in this case. 

Results in a similar spirit to Theorem 3.4 have been obtained previously by 
V. Benci [3], Theorem 4.1, by using his pseudo-index theories. 

3.2. In this subsection we consider critical points of 
quadratic functionals restricted to manifolds which are radially diff eomorphic to 
a sphere. 

Let 2 be a complex Hilbert space with scalar product ( , ) and norm I - 1  and 
with an S1-action T,. Let Y :  dom (2) c 2 += 2 be a densely defined, selfadjoint, 
linear, and equivariant (with respect to To) operator with closed range. We let 
N = ker (2) be the kernel of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA9, and we observe that Im (2) = N', which implies 
that 2 - I  = [9 ldom (9) n NI1-I : N'+ NL is a well-defined, continuous, linear 
operator. We assume that 9 - l  is compact and dim N<co. 

It is a consequence of these hypotheses that a(2 ) ,  the spectrum of 2, is a 
pure point spectrum. More precisely, every A E a(Y)\{O} is an eigenvalue of finite 
multiplicity, and a(2)\{0} has no finite cluster point. Hence, a(Y)  is at most 
countable, and we can enumerate it as follows: 

Indefinite functionals. 

Let & be the orthonormal base of eigenfunctions corresponding to the eigenvalues 
hk ,  and define the space E = { u E Z I C ~ ~ ~  I h k l ( U ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAc&k)*<w}. E is endowed with 
the scalar product (u, u )  =Iz ( I h k l +  l ) u k  - ijk, where u k  = (u,  &), and the norm 
11 u I I  = (u ,  u ) ' ' ~ .  E is a Hilbert space which is compactly embedded in 2. We 
now define the operator L on E by 

(Lu, v )  = 1 Akuk f i k  for all u, E E. 
k c Z  

Then L is a bounded selfadjoint operator in E, whose spectrum is a ( L )  = 

Furthermore, let A : 2 + 2 be a selfadjoint, positive, equivariant isomorphism 
such that LA = AL. Note that this implies that ker (9 - A j )  is an invariant subspace 
for A,  and thus we can assume that 4, is an eigenfunction of A. Hence the 4, 
can be assumed to form a complete system of eigenfunctions for the eigenvalue 
problem 

(3.17) 9 u  = pAu. 

{ A k / ( I A k l +  11, k E Z } .  
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For later purposes we normalize the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA+j as follows: (A+, ,  + j )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 6,, i, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAj zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAH. Let us 
denote by 

. .  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA. ~ p - 2 g p L - l ~ c L 0 = 0 < c L I g p * ~ .  * * 

the sequence of eigenvalues of (3.17), each repeated according to multiplicity. 
We are interested in finding a minimax characterization of the positive eigen- 

values of (3.17). A suitable tool for this is given by the relative index y r ( - I E + )  

introduced in subsection 2.3, where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE+ denotes the positive eigenspace of L 
(here we assume for simplicity that E o c  (I?+)'). Denoting by p : E\{O}+ S = 

{ u  E E ;  llull = 1) the radial projection, and setting yr( .) = yr ( . IE+) ,  let 

~ ~ ( G I ) = { B E ~ I B C  GI, y r ( p B ) z k l ,  

where 

GI = { u  E EIi(Au, u )  = I}, 

and set I (  u )  = $( Lu, u).  

PROPOSITION 3.6. 
multiplicity) are given by 

The positive eigenvalues of (3.17) (repeated according to 

(3.18) 

Proof First note that u = CisE  E GI if and only if 1 = ; ( A  &+i, 1 = 
I 
5 cisz Sf. Hence, for u E Bk = GI n span { & i l  j 5 k} we have 

k 

=$  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 cfpispk. 
-00 

By Proposition 2.10, yr(pBk)  = k.  Hence we see from the above inequality that 

On the other hand, any set B E Tk(Gl) has, by Corollary 2.9, a nonempty inter- 
section with span { dili 2 k } .  Let v E B n span {+ili 2 k } .  Then 

m 

sup I ( u )  2 I( v )  =; c Iui12(L+i, +i)  

=$civil 2 p izpk .  

B k 

m 

k 

In a similar fashion we obtain solutions for the nonlinear problem 

(3.19) 27.4 = hVf(  u) ,  
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where 
(3.20) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf E  C'Jb zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Z, being the real Hilbert space zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(2, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( a ,  .), = %ee( -, -)), 

(3.21) 
f is homogeneous of degree 2. 

Letting E, = ( E ,  ( .  , a ) ,  = $528 (. , - )), we then see that G = { zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAu E zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE,lf( u )  = 1) is a 
C'-manifold which is radially diffeomorphic to the unit sphere S in E,. Further- 
more, G E %. Also note that there exist c, d > 0 such that 

(3.22) c2 lu l  r d ,  and (V f (u ) ,u ) ,=2  for all U E G .  

(Zr, R), 

f(0) = 0, Vf(0) = 0, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf( u )  > 0, u z 0, 

2 

The solutions of (3.19) can be obtained by solving the constrained variational 
problem 

VZ(u)lG=O in E,. 

In fact, if we define the operator N in E by ( N (  u ) ,  u) ,  = (Vf( u ) ,  u ) ,  for all u E E, 
then N E Co*'(E, E )  and is compact. Also, N is the gradient of f  in E,. Now, if 
u is a critical point of IIG in E,, then 

(b u>r = A(Nu, u) r ,  

for some A E R and for all u E E, i.e., 

(3.23) Lu = A Nu. 

Before stating our result, let us first show 

LEMMA 3.1. 

Proof: 

ZIG satisjes the Palais-Smale condition (PS). 

We first note that the assumption VIIG( u,) + 0 implies the existence 
of A, E R such that 

(3.24) z, = Lu, - A,N( u,) + 0 in E, 

while, writing u = u++ uo+ u - ,  U * = C k > O ( U ,  &)&, U - = C ~ ~ < ~ ( U ,  @ k ) ( $ k ,  U O E  

ker L, the boundedness of (Lu,, u,) implies the existence of constants cI ,  c2> 0 
such that 

(3.25) - d + C, 11 U ; I I  5 11 U ~ I ~ S  ~ 2 1 1  u : I I  + d. 

Now, in view of (3.24), using (3.22), we obtain 

(3.26) 
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Then, multiplying (3.24) by zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAu: and using (3.20), (3.22) and (3.26) we get zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

A,Ilu;ll*S(Lu;, u;)  

zs zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIIzflII 11.;11 + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAlAnl I f ' (~? l ) l  lu;l zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
5 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAc+ d 11 u, 11 ; 

that is IIu,II 5 c for all nEN,  in view of (3.25) and the fact that IIuzl[= luzl is 
bounded. Since E is compactly embedded in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2, we obtain therefore convergent 
subsequences u, + u in Z for some u E E, and A, + A. Relation (3.24) now yields 
the convergence of u: in E, while ( u z )  contains a convergent subsequence since 
I uzl is bounded and dim ker L < zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa. 

Our aim is to prove that ZIG has infinitely many distinct positive critical levels. 
Letting p : E\{O}+ S and E +  be as above, and setting yr( .) = yr( . IE+),  set 

Furthermore, let K ,  = { u  E GI VZIG( U )  = 0, Z( u )  = c } ,  the set of critical points of 
Z at level c. 

THEOREM 3.8. Let 

(3.27) k E N .  

Then Kck # 0. Furthermore, i f c k  = c k + l =  - - * = c k + p - I ,  then y ( K , , )  Z p .  

Remark 3.9. Since yr(  p B )  2 1 implies B n E +  # 0 and hence 

we get 0 < c I  5 c2 5 * -, and therefore K., n E o  = 0 for all j E M, since E o c  (E+) I .  
Thus, the multiplicity statement implies that if two minimax levels coincide, 

then there are in fact infinitely many critical points at that level. 

Proof of Theorem 3.8: The proof follows the same pattern as that of Proposi- 
tion 3.1, and we use the same notations. The only difference from Proposition 
3.1 is that here we require the deformation 7 to be of the form 

(3.28) 77 ( u ) = Mu + K ( u ), 

where M : E + E is an equivariant isomorphism with M (  E + ) l =  ( E + ) I ,  and 
P - K  : G+ E -  = ( E o +  E+)* is compact. In fact the deformation is constructed 
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following the trajectories of 

(3.29) 
((0) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAu E zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE\{O}. 

The flow (( zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt, u )  (which is globally defined, since the vector field has linear growth) 
leaves invariant the level sets off and the map zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT (  u )  = (( F, u )  satisfies (3.5), (3.6) 
and (3.8) for some t> 0. Furthermore, [( t, u )  is of the form 

( ( t , u ) = e - % + K ( t , u ) ,  

with K ( t ,  - )  compact (cf. Benci [3]), and K ( t ,  p u ) = p K ( t ,  u ) ,  P E R + ,  since 
N ( p u )  = p N ( u ) ,  p E R+, and in view of the unique solvability of (3.29). 

We claim that A E  T k ( G )  implies that q ( A )  E T k ( G ) .  In fact, we have 

p zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 7 0 p-I : zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAs + s, 

p 0 77 o p - ’ ( u )  = p ( u ) ( e - “ +  ~ ) u ,  

where K is compact, and p ( u )  = IJp-’uJJ/IJe-’L+K)p-’ulJ.  It is easily checked 
that 0 < c 5 p ( u )  S d < zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAco, and hence we have by Propositions 2.1 1,2.12 and 2.13 

with 

y , ( p d A ) )  = rr(PTP-l(PA)) 2 Y J P A ) .  

The remaining arguments are the same as in Proposition 3.1. 

Finally, we give a comparison of the eigenvalues p k  of the linear problem 
(3.17) with the critical levels c k  of the nonlinear problem (3.19). 

 LEMMA^.^^. Assumethat ; ( l / / ? * ) ( A u ,  u ) S f ( u ) S f ( A u ,  u ) f o r a l l  U E  Eand 
some /3> 1. Then 

(3.30) pk 5 Ck 5 p2pk for all k E N. 

Proof: As before, let G I  = {u  E EI$(Au, u )  = I}, and G = { u  E Elf(u) = l}, 
and let p ,  : G +  G I  be the radial projection onto G I .  We first show that 

(3.31) sup Z ( u ) d ~ u p I ( u ) ~ / 3 ~ s u p  Z ( u )  foral l  A E ~ , A C G .  

To see this, let u E G and tu E GI, t > 0. Then 

P l ( A )  A P I ( A )  

(3.32) 1 
--Sf51. 
P 

In fact, for u E G we get 

1 =;(A&, t u )  = t 2  f(Au, u )  2 t2f( u )  = t’. 
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From zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf ( u ) Z  (1/2P2)(Au, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAu )  we derive the other inequality. 

Now, let A zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA9, A zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAc G. If u E A and tu epl (A) ,  we have 

I( u )  = (1/  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAr’)Z( t u )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 P’I(  tu )  5 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp’ sup I( u ) ,  
PIW)  

and hence the right inequality in (3.31) follows. From the inequality on the right 
in (3.32) we obtain the left inequality in (3.31). 

Since A E T,(G) if and only if pl(A) E Tk(Gl), (3.30) follows from (3.31). 

4. Estimates for the Minimal Period of Solutions of 
Differential Equations . 

In this section we derive lower bounds for the length of some closed curves 
and for the period of solutions of some differential equations, collecting in the 
same simple framework various known and new results. These bounds are 
obtained from an inequality of PoincarC- Wirtinger type. 

LEMMA 4.1. Let x E Hi(&, W p )  with ST = W /  T h  and y E L2(0, T ;  Wp) such 

that 

(4.1) u(t) dt = 0. 

(4.2) ~ l ~ l r 2 ~ l Y l L 2 ~ 2 % - l ( x , Y ) L 2 l ,  

Then 

where 

(x, y)L2 = x(t)y( t )  dt and lxlZL2 = (x, x ) ~ z .  loT 
Proof Fourier expansion and the Plancherel equality yield the Wirtinger 

inequality for z E H ’ ( s ~ ,  RP) satisfying JOT z ( t )  dt = 0: 

(4.3) 2%-IZJL25 T l i l L Z .  

(4.3), 
Now let c E zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAR be such that (x - c )  dt = 0. Then, by the Schwarz inequality and 

I(& Y)L2l = I(x - c, Y )L21 

5 Ix - CIL21 Y I L2 

T 

T 
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Remark 4.2. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAActually, equation (4.3) is a special case of (4.2). In fact, by zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

(0' zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAz dt = 0, there exists zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx E zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAH'(S , ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAR p )  such that J = z. Then (4.2) with y = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi can 
be written in the form 

T I z I L ~ ~ ~ ( ~ ~  2 27rl(x, i ) L 2 1  

=24(J, Z ) L 2 )  =27T)z):2. 

Let us now derive some consequences of inequality (4.2) (or the special case 
(4.3)). In particular, we shall give simple proofs of results of J. Yorke (Theorem 
4.3) and C. B. Croke and A. Weinstein (Theorem 4.1 1). 

THEOREM 4.3. (J. Yorke [22]). Let x be a nontrivial (i.e., x # constant) 
T-periodic solution of the diflerential equation 

(4.4) 1 =f  ( X I ,  

where f 1 lwp -+ Rp zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAis a k-Lipschitz continuous map. Then one has T 2 2rr/ k. 

This result was pointed out to us by M. Willem, and the following proof was 
derived together with him. 

Proof By (4.4) one has, for all t, s, 

Ig(t+ s) - i ( t ) l =  If(x(t+ s)) -f ( x ( t ) ) l  

5 klx( t + S)  - X (  t ) l .  

Hence, J is differentiable for almost all t with 

(4.5) la( t ) l 5  k ( k (  t)l. 

From (4.5) and (4.3) with z = J one gets 

2 ~ ( l ( ~ - . Z  T(2IL2S 77cIJ[,2. 

Hence, TkZ27r. 

The proof shows that the differential equation was just used to prove that 

(4.6) I fl Lz 5 klil L 2 .  

This argument works also for differential equations with memory. For example, 

THEOREM 4.4. Let x be a nontrivial T-periodic solution of the differential 
equation with delay 

(4.7) J ( t )  = f  ( x ( t  - T ) ) ,  

where f :  Rp + Rp is a k-Lipschitz continuous map and T a real constant (the delay). 
Then one has T 2 27r/ k. 
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Proof As in the proof of Theorem 4.3, one shows that, for almost all zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

(4.8) 

Thus 

loT la( t)12 dt S zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAk2 loT I i ( t  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- 7)12 dt. 

But from the T-periodicity of x one derives 

loT l i (  t - T)[’ dt = loT zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAlk( t ) I2  dt. 

We are back to (4.6). 

Remark 4.5. This lower bound T Z zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2n-1 k does not depend on the delay T. 
If more is known about f one could get (sharper) bounds depending on the 
delay. But in the general case this bound is reached: For example, the linear 
system in R’=C, with the 1-Lipschitz continuous f defined by 

f ( z ) = i e i T z  for all Z E C ,  

has a 2~-per iodic solution ( t  + eir) .  

Let us now turn to differential equations with other types of conditions on 
the map f: 

THEOREM 4.6. Let x E HI(&, W p )  be a nontrivial T-periodic solution of 

(4.9) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx =f (x), 

where the map f :  Rp + Rp satisjes 

(4.10) f ( z ) - A z Z l f ( z ) 1 ’  f o r d l  Z E W ~ ,  

for some p x p  matrix A. Then 

(4.1 1)  TIi(A -A*) /  2 2 ~ ,  

where A* is the adjoint of A. 

Proof Let us first remark that integration by parts yields 

joT A*x(t)x(  t )  dt = x (  t )Ax(  t )  dt zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAloT 
= - joT x( t)Ax( t )  dt. 
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Hence, (i, (A -A* )x )Lz  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 ( i ,  A x ) L ~ .  Relations (4.9) and (4.10) together establish 

r T  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
z 2 J I f (x( t ) )12  dt = 2121~2. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

0 

Let us now write (4.2) with y = ( A  - A*)J:  

(4.13) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBATI zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi I  L21 yl L2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI 2 ~ 1 (  X ,  ( A  - A*)  i) L 2 J .  

Using IylL251A-A*IL21.tIZ~ and (4.3) and (4.12) one gets 

T ( A  -A*IL21il:2 2 4 ~ 1 i 1 3 .  

Hence we have obtained the result. 

Remark 4.7. I f f :  R” -+ R” is invertible, then condition (4.10) is equivalent to 

( A * y , f ’ ( y ) ) 2 I y l 2  for all ~ E R ” .  

This will be satisfied if A f ’  is a 1-monotone function and f ’ (0)  = 0. 

Remark 4.8. If A is selfadjoint, then (4.1 1 )  cannot be satisfied: in this case 
there are no nontrivial periodic solutions, as is well known. 

THEOREM 4.9. Let H E  C1(RZN, R) be such that 

(4.14) ( W Y ) ,  Y )  2 Y l H ‘ ( Y ) 1 2  for  all Y E  R2? 

(4.15) .t= J H ’ ( x ) ,  

for some constant y > 0. Let x be a nontrivial T-periodic solution of 

( J  as before). Then, 

(4.16) TZ2rry. 

Proof Let us apply Theorem 4.6 with f( y )  = JH’( y )  for all y E Rp, and 
A = J /  y. From (4.14) one gets (4.10) ( J 2 =  - I d ) .  Hence, we establish (4.16) from 
(4.1 1 )  and IA - A*( = 2/ y. 

The next theorem specifies geometric conditions under which (4.14) is satisfied. 

THEOREM 4.10. Let H E C’(R’”\{O}, R), H ( z )  > 0 for all z # 0, and H (  t z )  = 

t 2 H ( z )  for all z and for all t > 0. Set Z = { u  E R2N ; H ( u )  = l}, and assume that, 

for  some p > 0, (1.5) holds, i.e., 

T,C n gp = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 for all x E I;. 
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Then zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(4.14) is satisjied with zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAy zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= &p2 ,  and hence we have for any nontrivial T-periodic 
solution of (4.15): 

(4.17) T zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 r p 2 .  

Proof (1.5) implies [ - V H ( t ) 2 p l V H ( ( ) I  for all zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[EZ.  By homogeneity, 
& . V H ( ( ) = 2 H ( ( ) = 2  for all zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[EX, and thus l V H ( e ) I S 2 / p  for all [EX, by the 
above inequality. Hence 

for all [ER"", 

by homogeneity. Consequently, (4.14) is satisfied with y = ; p 2 ,  and we conclude 
that T 2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAr p 2  by Theorem 4.9. 

We conclude this section by giving a simple proof of a result by C. B. Croke 
and A. Weinstein [9] on the length of certain closed curves on manifolds. 

THEOREM 4.1 1. Let X be a C2-manifold, boundary of an open set R c Rp, 
0 E Q. Assume that (1 S),  

T,X n &, = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 for all x E Z. 

Let N, be the exterior normal at x E X  and y : [ O ,  T]-+Z, and assume 

f T  

(4.18) l ? l=  1, y ( O ) =  y ( T )  and J N y ( r )  d t = 0 .  
0 

Then T 2 2 r p .  

Proof 
for all t, Lemma 4.1 yields 

Take y = N y ( t ) ,  and x = y .  Since (1.5) implies y ( t )  - Ny(r) 2 plNy(r)l 

5. Proof of the Main Theorem 

In this section we give a proof of Theorem 1.1 relying on the relative index 
introduced in subsection 2.3. In the next section we shall give another proof 
which is based on the methods of convex analysis. 

5.1. The gauge function associated with Z. We recall that X = a% and 9 is 
a compact strictly star-shaped region. Let H 2 ( - )  be the square of the gauge 
associated with 9 : 

H 2 ( u )  = inf {A21A E R', u E A%}. 
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Note that zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAH2(0)  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 0 and H 2 e  Cl*"p(R2N, R). H2 is positively homogeneous of 
degree zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2. Since zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA{ u  E zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAR2" ; H2( u )  = 1) = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAX, it is classical that the systems ( l . l ) ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

i = JH'( z ) ,  

(5.1) i = JH;(  z )  

and 

have the same periodic orbits on X (see e.g. Rabinowitz [18] or Ekeland-Lasry 
[ 1 11). Therefore, in what follows, the function appearing in ( 1.1 ) will be assumed 
to be the square of the gauge associated with 3. 

Finally, the geometric assumption ( 1.4) on I;, 22 made in subsection 1.1 implies 
the following inequalities on H :  

1 1 
- ( n u ,  u )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 H (  u )  ST ( n u ,  u )  for all 
2 P 2  2 a  

u E R~~ (5 .2 )  

5.2. The functional framework and a variational principle. For convenience, 
we introduce first the following complex notations. We identify R2" with zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAC" 
through the isomorphism ( p ,  q )  c ) p  + iq, p ,  q E IF!" ; (6, V ) ~ N  = C,"= I tjij, is the usual 
hermitian product with corresponding norm I - I. For a function G E C'(R2N, R), 
V G( p,  q )  denotes the gradient with respect to the real structure, but u + V G( u )  = 
(G,+ iG,)(p, q )  will be thought of as a map in C". Equation (1.1) can now be 
written in complex form (1.1) 

- ii = V H ( z ) ,  z = p +  iq E C'(S', c"). 
Let us now set 2 = L2(S1, C") with scalar product 

(u,  u ) = -  ( u ( t ) ,  O ( t ) ) p d t ,  IuJ=(u ,u)1 /2 ,  
2rr  lo2* 

and let us consider the densely defined selfadjoint linear operator zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA9: 2 3 9(2) + 

2 given by 9 z =  -if. Note that a ( Z ) = Z ,  ker Ze-CN, and the normalized 
eigenvectors corresponding to k E  h are &j = eikfEj, { E ~ ,  . , E" }  canonical basis 
in C". Any z = ( z , ,  , z N )  E 2 has the Fourier expansion 

(5.3) 

and we set, following subsection 3.2, 

The scalar product in E is given by X k e Z  ( 1  +lkl ) (uk ,  U k ) C N .  As in subsection 3.2 
we denote by L the extension of 2 to E and we set I ( u )  =i(Lu,  u) ,  u E E. 
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Furthermore, we set Zr zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(2, (., -), = % (., -)), i.e., 2 equipped with the real 
structure, and denote byfe C1*liP(Zr, R) the functional z + ( 1 1 2 ~ )  J;'' zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAH ( z ) ,  z zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE 2. 
Note that, if z = p + iq E 2, then 

0 
% (Vf( z ) ,  z ) = lo2'' ( H,p + H,q) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 -+ 1 z I * 

27r 

by (5.2), so that G =  { u  E Elf(u) = 1) is a C'-manifold, radially diffeomorphic 
to the unit sphere in E,. 

PROPOSITION 5.1. If U E  G is a critical point of IIG and u =  I ( u ) > O ,  then 

A straightforward application of the Lagrange multiplier rule yields 

z (  t )  = u(  t / a )  is a 2ru-periodic solution of (1.1) lying on H. 

the existence of A E R such that 
Proof: 

(5.4) Lu = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAN( u ) ,  

where N is defined by the relation 

935 (Nu, 0 )  = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5% (Vf(U), v )  = lo2'' H,(P, q)$+ HJP,  q ) i ,  2T 
u = p + i q ,  v = i + i &  

From this it follows by standard regularity arguments that u E C ' ,  and then 
- izi = A V H ( u ) .  

Now, by (5.4) we get I = Af(u), and since u E G, we obtain A = cr. Hence 
z(  t )  = u(  t / u )  is a 27ru-periodic solution of (1.1). Finally, if h = H (  p, q ) ,  u = p + iq, 
it follows from u E G that h = 1, i.e., ( p ,  q )  lies on H. 

5.3. Proof of Theorem 1.1. There is a natural S'-action in the present 
framework: the time shifts. For 0ER/27rZ=S' and U E  E, we denote TBu = 
u( - + 0). Clearly, the operator L introduced in subsection 5.2 is equivariant, while 
G and I are invariant. Also, L and f satisfy the assumptions made in subsection 
3.2 and, defining (Au)( t )  =a( u( t ) ) ,  we obtain a bounded, equivariant, selfadjoint 
linear isomorphism in 2 which commutes with L. Note that in this case the 
positive eigenvalues of (3.17), 

are of the form k / w i ,  k EN, i = 1, * * . , N. 
Applying Proposition 3.6 we obtain the characterization (3.18) for Pk, and 

by Theorem 3.8 we have a sequence of positive critical values for IIG. 
We remark that if u is a critical point of [IG, then U k ( t )  = u ( k t ) ,  k E N ,  is a 

critical point with I(&) = kI(u). But the uk all give rise to the same orbit on Z. 
Similarly, if ti is a critical point having minimal period 27r/k, then u(  t )  = t i ( t / k )  

is a critical point having minimal period 27r and ti = uk. We shall call such a u 
the primitive critical point corresponding to ti. 

3% = P ~ A u ,  
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To complete the proof it is enough to find zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAN distinct primitive critical points. 

The crucial argument relies on the comparison between the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBApk and the ck  which 
was given in Lemma 3.10 (the assumption there easily follows from (5.2)). 

To simplify notation, we assume that zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 1 in what follows. This is in fact 
no loss of generality, since we can always redefine {w,, . . . , wN} to be zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
{ ( w , / a ) ,  . . . , ( w N / a ) }  so that for the new ellipsoid zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

8, = c - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(xf+Xf+N) s 1) (” , = I  2a w i  

one has 

P 8, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAc 92 c - 8a = ps,. 
... 

a 

Consider the critical levels of IIG, given by l /w l ,  * * . , l / w ’  defined as in 
(1.6). In  view of Proposition 3.6, p ,  critical levels of minimax type coincide with 
l / w L ,  i = 1, * , I .  By (3.30) there are at least pi  critical levels of IIG in 9, = [l/w‘, 
p2(l/wi)], i = 1, . . . , 1. Set CJ, = {u zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE Glu is a primitive critical point of I l c ,  
u ( j t )  E .Y, for some j E zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAN}. 

LEMMA 5.2. Assume (1.4) holds for some p’< 1 + 6, ( a = I ) ,  6 given in (1.9). 
Then 

, 1. i =  1,.  . . 7Y u, ZP,, 

Proof: Since the subscript i remains fixed in the subsequent argument, we 
drop it to simplify the notation. As a consequence of the multiplicity statement 
in Theorem 3.8, if two (or more) critical levels coincide, then the corresponding 
critical set has index greater than or equal to 2, so that there are infinitely many 
distinct closed orbits on E. Hence we can assume that there are p distinct critical 
levels in F. Thus, let u, ,  * , up be the corresponding primitive critical points 
u J ( t )  = iiJ(f/h,), 1 S j S p  We recall that to u, there corresponds a 2 ~ r .  I(ii,)/h, 
periodic solution to ( 1  .l ), so that by Theorem 4.10 we have I( ii,)/ h, 2 ip’ in view 
of assumption (1.5). We claim that this implies 

1 
h,<-+ 1, 61 given by (1.7). 

61 

In fact, let c = I ( U )  = I ( i i , )  (dropping subscript j ) .  Since ( l /w)(2/p2) 5 l / S l ,  we 
get from p2 < I + SI that $pz( 1 + 6, ) /S l  > p’/w, while by assumption c d p’/w. 
Hence 

( 5 . 5 )  

We now prove that the primitive critical points u,, j  = 1, . , p ,  are all distinct. 
In fact, otherwise we would have w = u, = u, for some 1 5 j < rn S p ,  i.e., w (  hi t )  = 
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i i j ( t ) ,  w ( h , t ) = U , ( t ) ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAwith, say, h j < h r n <  1/SI+1. Then 

1 h.  h.  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp' zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
-5 Z(ii,) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= h j I ( w )  = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 Z(U,) S=--" - , 
w hrn hrn w 

which implies 

in contradiction to our assumption. 

We have found 1 groups of primitive critical points zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAUi, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi = I ,  - * . , 1, corre- 
sponding to the 1 families [w , ] ,  i = 1 ,  * , 1. Since C f = ,  pi  = N, the following lemma 
will complete the proof of the theorem. 

LEMMA 5.3. Ui n q. = 0, i # j .  

Proof We argue by contradiction, assuming there is a w E U, n U,, i.e., 
there exist U E zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAZ-'( Y,,) and B E  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAZ-'(T,), such that w (  t )  = ii( t /  h )  = U( t /  k ) ,  h, k < 
l / S l + l  (cf. ( 5 . 5 ) ) .  Since I ( w ) = ( l / h ) l ( i i ) E ( l / h ) T , , ,  and also I ( w ) =  
( l / k ) Z ( i i j ) ~ ( I / k ) T , , , ,  we have ( l / h ) T h n ( l / k ) Y r n # O .  On the other hand, 
assuming ( k / h ) ( o " / w " ) >  1 and using the inequality p2< 1 + 62 in (1.3) we see 
by (1.8) that ( k / h ) ( w " / w " ) L  1+S2>p2 ;  this in turn implies 

which contradicts the above statement. 

6. An Alternate Proof of the Main Theorem 

In this section we shall give another proof of Theorem 1.1, which will be 
based on the methods of convex analysis. In order to apply these methods, the 
corresponding functional will have to be suitably modified. The critical points 
will then be found by the use of the index of subsection 2.2 and the abstract 
results of subsection 3.1. 

6.1. A dual variational principle. The variational formulation we use here 
and, in particular, the duality technique without convexity is in the spirit of the 
work of Ekeland and Lasry [ 121. For other works concerning the duality technique 
in related problems the reader is referred to the survey of H. Brezis [8] and the 
bibliography therein. 

For this variational formulation and for some technical reasons which appear 
later on we require an auxiliary function. In the sequel, a function 4 : R, + R, is 
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termed zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAadmissible if it satisfies the conditions 

(6.1) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4 E zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAC2(R+, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAR+), 

(6.3) 4 is strictly concave, 

Given an admissible q5 and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAH as in subsection 5.1 there exists a positive real 
constant K such that zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

G ( Z ) = ~ ~ O H ( Z ) + ; K ~ Z ~ ~  

is strictly convex in RzN. The artificial quadratic term iK (z12 will allow us to use 
“duality arguments” similar to the Clarke-Ekeland duality principle (see more 
comments in [12]). We denote by G* the convex conjugate of G: 

G*(L)= SUP { z * ~ - G ( z ) } .  
Z € W 2 N  

Under our assumptions, G* is finite, of class C ’ ,  strictly convex, and 

Since 

(6.5) G(z )2 ;p Iz ( ’  for all z€[WZN for some p>O, 

we have 
1 

G * ( z )  > G*(O) = 0 for all z # 0. 

G * ( z )  d - Izl’ for all z E W 2 N .  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
2P 

(6.6) 

Furthermore, G* is C ’ ,  and since IG’(z)l P K(z I  we get 

(6.7) JG* ’ ( z )JsK- ’ JzJ  for all Z E W ~ ” .  

2 = L 2 ( S ’ ,  C”)  (cf. subsection 5.2). Now, let 
We again use the complex notation, identifying R2” with C”, and again set 

ikt where zk E @ ”  are the Fourier coefficients z = xksZ  zk e . The Scalar product in 
x is given by (u,  u)=CkeZ  (1 +k’)(uk, U k ) C N .  

For u E X we define the functional 

f (  U )  = Io2T { t % ; ) e  (id - Ku, U ) ~ N  + G*( - iri + K u ) }  dt. 



EXISTENCE OF MULTIPLE PERIODIC ORBITS 28 I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
For simplicity, we choose zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAK zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA> 0 such that K zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBASZ N. By (6.6) and (6.7) it is clear that 

(6.8) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf E C’W,, R), 

where X ,  = (X, ( , ), = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA928 ( , )) is the space X with real structure. 

PROPOSITION 6.1. Let zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAu E X ,  u # 0, be a critical point o f f  :f‘(u) = 0. Then u 
is of class C1, and setting zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT =  H(u), A = 4’(7)-’ and p = T - ” ~ ,  the function zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
z( t )  = p - u(At) is a solution of (1.1) which is 2v/A periodic. Furthermore, z ( t )  E zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI; 
for all t. 

The Euler-Lagrange equation associated with the functional f reads Proof 

(6.9) 

Since G’ = [( G*)’]-’ (Fenchel’s relation), (6.9) is equivalent to 

u = (G*)’( - iti+ Ku). 

- i t i+Ku = G’(u) = 4’(H(u))H’(u)+Ku, 

that is 

(6.10) - izi= 4’(H(u))H’(u). 

This implies that H ( u )  is constant and the proposition follows. 

6.2. Estimates on f. The purpose of introducing the auxiliary functional f 
is to obtain suitable bounds. In fact we shall show that there exists a finite- 
dimensional space V c  X such that f is bounded from below on V’. We remark 
that IIG of subsection 2.1 does not enjoy any property of this kind. 

Using the expansions (5.3) we have 

(6.1 1) jo2m 928 ( - iri + Ku, u ) C ~  dt = C ( n  + K)IUnkI2, 
n e z  

k=l ; .  . , N 

(6.12) [02m92, (A(- i t i+Ku) ,  -iri+Ku),Ndt= 1 ak(n+K)*IUnk12, 

if A is the diagonal matrix with real coefficients ak.  Using (5.2), the assumptions 
on 4 and standard arguments in convex analysis, one obtains, given 0 < a < 4’(O), 

n t Z  
k - 1  . . .  N . .  

b = 4‘(00), 

(6.13) 

(6.14) 

with IzI 5 6, for some 6 = 6 ( a )  > 0. 
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LEMMA 6.2. f zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi s  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAbounded from below zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAon the subspace V of X dejined as the 

orthogonal of 

V’ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= span {eintekI - K < n < bwk} .  

Proof From the definition of f and (6.13) we derive (in terms of the 
expansion zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(5.3) and using (6.12)) 

(6.1 5 )  f ( u )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf ( n  + K ) [ (  bWk + K ) - ’ (  n + K )  - 11 /Unk1’ - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAC. 
n c z  

k = l , .  . , N 

For u E V, all the coefficients in the right-hand side expansion in (6.15) are positive 
and the lemma is proved. 

LEMMA 6.3. Let W be the subspace of X dejined by 

Then, for some 6 = S ( a )  > 0, 

f ( u ) < O  forall U E  W, liull=S. 

Proof Since W is finite-dimensional, all norms are equivalent. Thus, by 
(6.14), we know that if 6 > 0 is sufficiently small, for all u E W with 1 1  uI( 5 6, 

(6.16) 

For u E W, all the coefficients in the right-hand side of (6.16) are negative, and 
the lemma thus obtains. 

6.3. The case of rational dependence of the frequencies. In order to make 
the argument more transparent, we first prove Theorem 1.1 under the additional 
assumption that the frequencies w , ,  * * , w N  are rationally dependent, that is we 
assume ( 1 . 6 ) f o r j = l ; . * ,  N :  

(6.17) wj = njw, j = 1, . - , N, 

w > 0 being the largest real satisfying (6.17). 
Let us now choose an admissible function 4 (cf. subsection 6.1) by specifying 

4‘(0)andb’(+co).Weassumethat 1 < P ’ <  1+6and le tO<r<( l /w) ( l+6-PZ) .  
Now set 

(6.18) 
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where s E (0, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf r )  is chosen such that zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA-Jli zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= (( I /w )  - s )H' (u)  has no (nontrivial) 
27r-periodic solution zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAu. We can, in fact, assume the existence of such an s zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE (0, fr), 
since otherwise our problem would be solved: if we had a nontrivial 27r-periodic 
solution u, for all S E  (0, fr), we would obtain a continuum of non-constant 
solutions u , ( t )  E B of -Jus = H'(u,),  with corresponding periods (( l /w )  -s)27r, 
given by u, ( t )  = ( l /H"2(u~))us( t ( ( l /~) -s) - ' ) .  

LEMMA 6.4. 
condition (PS). 

If +'( +m) is chosen as aboue, then f satisfies the Palais-Smale 

In what follows we write L 2 = L 2 ( S ' , C N ) ,  H ' = H ' ( S ' , C N ) ,  and Proof 

Let now (u , )  be a sequence in H' such that f'( u,) -* 0 in H-I ,  i.e., 
H-'  = H - ' ( S ' ,  CN). 

Au, - A (  G*)'( - Au,) = t), 3 0 in H - ' ,  

where A : H' + H-' is the linear operator given by Au = Jli - Ku. Since A is 
invertible (recall that A-' : H-' + L2 is bounded), we get 

u, - (G*)'( -Au,) = A-'t), = E, 3 0 in L2. 

Using [( G*)']-'( y) = G'( y) = +' (H(  y ) ) H ' (  y) + K y  we obtain 

+'(H(u, - E , ) ) H ' ( u , - E , ) + J ~ ~ , = K E , .  

We claim that 11 u, 11 p.- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 c for some fixed a E (0, k), for all n E N. We assume 
to the contrary that 11 u, 11 p . a  + + m. Dividing the above equation by 11 u, 11 P.Q and 
setting 

we obtain 

En 
+ ' ( H ( u ,  -E,))H'(w,)+J~,, = K -  

I1 u, II CO*" 

Since 11 w, 11 t2 S c for all n EN, and I+'(s)I S c for all s E R+, we deduce from this 
that 11 6,II Lz S c for all n E N, and hence 11 u, 11 5 c for all n EN. Therefore, (u,) 
contains a strongly convergent subsequence u, -* u in CoVP, llull p.- = 1. Since 
6, -+ 6 weakly in L2 and +'( H (  u, - E,)) = a, + a weakly in L2( S', R), we see that in 
the (weak) limit 

aH'( u) = - J6, u f O ,  a Z 0 .  

Since H'(0)  = 0, we obtain by uniqueness that Iu( t ) l Z  S > 0 for all t E [0, 2 ~ 1 ,  and 
hence l u , ( t ) ( Z f 6 > 0  for all t E [ O ,  27r] and for all n 2  no. Therefore, lu,(t)l= 
11 u, 11 co.aIu,(t)l -* zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA+a uniformly in t, and, since I E , ~  5 IJ E L: for a.e. t E [0,27r] for 
a subsequence, [ (u ,  - ~,)(t) l  + +a for a.e. t E [0,27r]. Since also IH'(u, -&,)I i 
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c( zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA+ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIu,I + IE,,~) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 c'+ c"$ for a.e. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE [0,27r], Lebesgue's dominated convergence 
theorem implies that + ' ( H ( u ,  - &,, )H'(w, )+  +'( +oo)H' (v )  in L2, and hence the 
equation for u has the form 

- Ju' = 4'( + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA00) H'( v ) ,  11 v 11 p." = 1, v 2~-periodic. 

But this contradicts our assumption. 
Hence IIu,II p.0 5 c for all n E zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAN. Therefore, u, + u in L" for a subsequence, 

and one concludes as above that + ' ( H ( u ,  - &,))H'(u,,  -en )+  + ' ( H ( u ) ) H ' ( u )  in 
L2. But then u, 4 in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAL2 by the equation for u,, and hence u, + u in If'. 

Note that (6.18) implies that 

(6.19) 

since for n = n,, we have nj = w j / w  < w j / w  + $ r ( w j / P 2 )  = ( a / p 2 ) w j .  Then, in view 
of Lemmas 6.2 and 6.3, we obtain from Theorem 3.4 the existence of at least N 
distinct critical orbits in X. Let us call u,,  - * , uN these orbits: f'( u,) = 0 and 
f( uj)  (0, j = 1, - * , N. By Proposition 6.1 we know that zj( t )  = pjuj(Ajt) is a 
periodic orbit of (5.1) on Z, where 

-112 (6.20) p, = T~ , hj = ~ ' ( T ~ ) - I ,  T~ = H (  uj) .  

orbits zj which are pairwise disjoint. 
We now prove that our construction implies that the uj give rise to periodic 

We first remark that the minimal period T, of uj is of the form 

(6.21) 

In fact, if 2?r/nj is the minimal period of uj, then the solution zj to (5.1) has 
minimal period 27r4'(9)/nj, which is greater or equal to r p 2  by Theorem 4.10. 

Suppose now by way of contradiction that zj and zk are the same orbit for 
j # k This implies that 

(6.22) 

with some constants p > 0, Y E R. Thus (since uj # u k ) ,  h k  # A j ,  and we may assume 
that & < A j .  From (6.22) we conclude that the minimal periods T, and Tk of uj 
and Uk, respectively, satisfy 

(6.23) 
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Whence, by using (6.21) 

(6.24) 

and thus, by (6.20), 

(6.25) 

Since 15 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAnj zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA< n k S d = 2 4 ” ( 0 ) / p 2 ,  we know that nk/nJ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 d / (d  - I ) ,  and therefore 
(6.25) shows that 

(6.26) 

which implies 

(6.27) @(O) - ; p 2 >  4’(co). 

Now, by using (6.181, we derive from (6.27) 

(6.28) P 2  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 
- + r - tp’ > - . 
w w 

By definition (1.71, (6.28) yields 

(6.29) WT> ip’w + 1 - p2= 1 + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA6 -p’.  

But by assumption, 1 W S  - p2 > rw, which contradicts (6.29). 
Therefore the assumphon that zJ and z k  represent the same orbit is false. We 

have thus shown that (5.1) has at least N distinct periodic orbits on zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE. The proof 
of Theorem 1.1 is thereby complete in the case of rational dependence of the 
frequencies. 

6.4. Geoeral In the general case one has, as defined in subsection 1.2, 
1 families of rationally dependent frequencies (0; ;  J = 1 ,  - . . , p , } ,  i = 1 ,  . . . , 1. 
Assuming 6 as in (1.9) we construct an auxiliary function 4,, i = 1,  . . . , 1, for 
each family, with 

where si satisfies a nonmonance condition as in (6.18), and r >  0 satisfies 

(6.31) w = max w i .  
1 

0 , . I  

r < - ( 1 + 6 - p’), 
i=, . . .  

By subsection 6.3 we know that for each i, i = 1 ,  . . . , 1, there exist p i  distinct 
periodic solutions of (5.1) on Z: z f ,  . . . , z f , ,  i = 1, - - . , 1. Each of the zj, j -  
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1, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- - . , zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBApi ,  has a minimal period p j  of the form 

(6.32) 

and hence 

by (6.31), that is 

for all j =  1, - , p i ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi =  1, - .  . , zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 + SI 
l sn !<-  

61 
(6.33) 

Let us now prove that the orbit z j  cannot coinicide with another orbit zfj with 
i # k. Indeed it is sufficient to check that p j  # pfj, for all i # zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAk, for all j ,  q. We 
argue by contradiction and assume that pj = p : .  By (6.32) this means that 

(6.34) 

for some T, u>O, n , r n E N  and l S n ,  m < ( l + S , ) / S , .  Since ( l / w i ) - i r s d ) { S  
p'/w'+{r, (6.34) yields 

Without loss of generality we may assume that l /nw'< l /nwk (since w i / w k  Z 
m/n). Hence (6.35) means 

which implies 

using the assumption (1.8). But this contradicts the choice of r in (6.31). Hence 
the proof of Theorem 1.1 is complete. 

7. Further Comments, 

7.1. 
N, with 

Generalization. As mentioned in Remark 1.2, we can define S,,  1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 p 5 

(7.1) 8 = 8 N 5 S N - I S d '  ' 5 6 , = + a ,  
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and such that if Z satisfies (1.3)-(1.5) for 1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA</?’ /a2< 1 +a,, then (1.1) has at 
least p periodic orbits on X. In fact, if in the definition of 6, and 6, we only use 
say the first p frequencies (instead of N), then it is clear that zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBASN zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 S zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA* * - 5 SI .  
It is easy to see that such a choice of 6, will yield p distinct orbits on zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAX by the 
proofs in Section zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 or 6. Lastly, in the above construction, 6, can be chosen to 
be + a. Indeed, this means that X only satisfies ( 1.3), i.e., I; is strictly star shaped 
with respect to the origin. By Theorem 3.8 (or Theorem 3.4) we still obtain 
infinitely many (or N) distinct critical orbits. Hence, by Proposition 5.1 (or 
Proposition 6.1) we know that (1.1) has at least one periodic orbit on Z, for any 
given star-shaped X. The above construction thus allows one to also recover this 
result of Rabinowitz [18]. 

7.2. Almost commensurable frequencies. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAs seen above, the choice of S => 0 
is made to insure that one finds N distinct periodic orbits on I;. In many cases 
the choice in (1.7)-( 1.9) is satisfactory (within the framework of our method) 
but in other cases it may be poor. The typical example for this is when the m i  
defined in (1.6) are “nearly” rationally dependent. If, say, o ’ / w j ,  i f  j, is very 
near to a rational of the form n / m  with 1 S n, m < 1 + l /& ,  then the constant S2 
in ( 1.8) is near zero, and 6 may thus be arbitrarily small. In this situation a better 
choice of 6 is available. For this purpose we state the following result. 

THEOREM 7.1. Assume that there exist two reals g, (5 > 0 and integers 1 5  
n , ,  . ‘ , n N  5 1 + 1/81 such that 

n .  
(7.2) g<’<O forall  k = l ; * . , N ,  

oj 

and such that 

-1 2 w 

w 
1 + 6 = (1 + 6,) ?> 0, I - 2 P  w* (7.3) 

Then, if I; satisJies (1.3)-( 1.5) with 1 < /?’/ a’ < 1 + 8, ( 1.1 ) has at least N distinct 
orbits. 

Since n j / o J  are critical values of I I ~ , ,  it follows arguing as in 
subsection 5.3 that I [ ,  has at least N (distinct) critical values of minimax type 
in [g, p 2 0 ]  (assuming a = 1). Let t i i ,  j = 1, . - * , N, be the critical points with 
I( z7,) E [g, /?’GI, and let uj( t )  = Gj( t / m j )  be the corresponding primitive critical 
points. As in Lemma 5.2, one can prove that m, < 1 + ] /a l ,  j = 1, - . , N, and this 
in turn implies, again as in Lemma 5.2, that the u,, j = 1, - - , N, are distinct. 

Proof: 

Remark 7.2. Note that if (5 - g becomes small, then S2 (as defined in (1.8)) 
tends to zero. In contrast, S as defined in (7.3) has a positive limit when zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAg/W + 1, 
namely 6 + 6, . 
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From these discussions one can see that the method developed here has a 

certain flexibility. Sharper estimates are to be derived in more particular cases 
involving more structure. 

However, we conjecture that more general results hold. We even conjecture 
that Theorem 1.1 remains valid under the sole assumption (1.3). 
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