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EXISTENCE OF SETS OF UNIQUENESS OF /#
FOR GENERAL ORTHONORMAL SYSTEMS!

LEONARDO COLZANI

ABSTRACT. It is proved that for every orthonormal complete system in L%(0, 1)
there exists a set 4, of measure arbitrarily close to 1, which carries no nonzero
function with Fourier transform in /7, for every p < 2.

1. Suppose {¢,}., is an orthonormal complete system (ONC) in L0, 1). We
call a Lebesgue measurable set E C (0, 1) a set of uniqueness of /? if no nonzero
function f € L*O, 1), vanishing almost everywhere in the complement of E,
satisfies the condition

o0
2 /)l < +eo,
ne=
where { f(n)}Z_, denotes the Fourier transform of f with respect to the system {¢,},
ie.

fimy = [ fx) 5 (x) dx.

Y. Katznelson [6] first proved that the trigonometric system admits sets of unique-
ness of /7, for every p < 2, of Lebesgue measure arbitrarily close to 1 (see also [3]).
Katznelson’s theorem has been subsequently generalized to the system of char-
acters of a nondiscrete locally compact abelian group by A. Figa-Talamanca and
G. I. Gaudry [4], and to every uniformly bounded ONC by the author [2].

The aim of this paper is to prove a further extension of this result to every ONC.
As a consequence we give a new proof of the generalization (due to W. Orlicz and
A. M. Olevskii) of a well-known theorem of Carleman stating that there exists a
continuous function f such that

|f(n)}P = +o00 foreveryp < 2.

M8

2. For 1 <p < +o00 we use |f], and ||fA||‘P in their usual meanings. The
following lemmas hold.
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LEMMA 1. Suppose &, . . . , o are functions in L*0, 1), and E is an interval
contained in (0, 1). If ¢ > 0 and 8§ > 0, there exists a function ¥ € L¥0, 1) such
that:

() ¥(x)=0if x & E;

(i) [{x € E/¥(x) # 1)| < 8|EJ;

(i) 11, < QIE|/8)"/>

GQv) |fd Y(x)(x) dx| <e,j=1,...,N.

PROOF. Let kK =[1/8]+ 1 and let n be a positive integer. We split £ in k"
intervals E|, . . ., E,. of the same measure. Set

‘Pn(x) =0 if x & E,
=1—-k ifxe El ) Ek+l U E2k+l U= UEk"—k+|’
=1 ifer\ElUEk+lU AR UEk'—k'Fl‘

A direct computation shows that y,,’s satisfy (i)-(iii) for every n; moreover, {y,}r,
tends to O weakly, and putting ¥ = v, with n large enough, (iv) is satisfied too.
O

LEMMA 2. Suppose {¢,} is an ONC. Then, for every 6 >0,q4>2,0<a <,
there exists a function ¥ € L*(0, 1) such that:

() ¥(x) =0if x & (0, a);

(i) |{x € 0 a)/¥(x) = 1)| <8;

(i) ¥, <8.

PROOF. Let € and 1 be positive numbers to be specified later. Divide (0, a) into m
intervals E,, . . ., E,, of measure less than 7. We shall define the required function
V¥ piecewise on every E;.

Let
Yi(x)=1 ifxEE,
=0 ifxegE,

and putn, = 1.
Suppose now ¥,, ..., {;_, have already been defined. Then there exists an
integer n; such that

i—1
M 2 (n)

Jj=1

<e¢ foreveryn > n,

and, via Lemma 1, it is possible to construct a function y;, € L*0, 1) such that:
¥i(x) = 0if x & E;
[{x € E;/yi(x) #* 1}| <S|E,;
%l < |E|/8)'/ and

() [¥;(n)| <e/2' forevery n < n,.
Put ¥ = 37, ¢;. It is easy to see that ¥ satisfies (i) and (ii). Moreover,
3) 1L, < (2/8)"2.
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In order to prove (iii) we observe that for every i and every n,

) ()] < livill < (AEI/8)'* < (2n/8)'/* <e
if n = n(e) is chosen small enough.
Then, if n > n,,, from (1) and (4) it follows that

m—1 R
|¥(n)| < 21 Y(n)| +|Ym(n)] < 2e,
I-
and,if n,_; <n <n,
n i—-2 R . m
|¥(n)| < '21 ¥(n) +|4/,._l(n)| + EI'PJ(")I =1+ L+
Jj= J=i

But, it follows from (1) that I, <e, from (4) that I, <e, and from (2) that
I, < 27, (¢/2) < e. Collecting these results we obtain

©) ¥l < 3e,
and so, from (3) and (5),

¥, < #1379 119279 < (2/8)/9- (3e) /1 < 5

if € is small enough. []

REMARK 1. This lemma was originally proved by Y. Katznelson for the trigono-
metric system, and subsequently extended to any uniformly bounded ONC by A.
Figa-Talamanca and G. I. Gaudry. Our proof, which holds for any, possibly
unbounded, ONC is based on an idea of G. Alexits (see [1, Chapter II, §11]).

THEOREM. For every ONC {(¢,}, and every ¢ > 0, there exists a measurable set
A C (0, 1), with |A| <e, such that if f € L0, 1) vanishes a.e. in A, and |lf||p <
+ oo for some p < 2, then f(x) = 0 a.e. in (0, 1).

The theorem follows from Lemma 2 as in [2].

REMARK 2. I. I. Hirschman and Y. Katznelson [5] proved that the trigonometric
system admits closed sets which are sets of uniqueness of /#, but not of /#, with
p <p’ < 2. For an arbitrary ONC this feature fails to hold, as is shown in [2].

3. It is interesting to notice that, using our theorem, it is possible to prove easily
the extension of a well-known theorem of T. Carleman to every ONC (see [7,
Chapter III, §4] for the original proof of this extension).

THEOREM. For every ONC {¢,} there exists a continuous bounded function f such
that || f||, = + oo for every p < 2.

PRrOOF. See [2].

REMARK 3. The theorems stated for orthonormal systems in L%(0, 1) can be easily
extended to orthonormal systems in L%*(—co0, +00) or to orthonormal systems of
square integrable functions over more general measure spaces.
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