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EXISTENCE OF SINGULAR HARMONIC FUNCTIONS1

Mitsuru Nakai and Shigeo Segawa

Abstract

An a¤orested surface W :¼ hP; ðTnÞn AN; ðsnÞn ANi, N being the set of positive

integers, is an open Riemann surface consisting of three ingredients: a hyperbolic

Riemann surface P called a plantation, a sequence ðTnÞn AN of hyperbolic Riemann

surfaces Tn each of which is called a tree, and a sequence ðsnÞn AN of slits sn called

the roots of Tn contained commonly in P and Tn which are mutually disjoint and

not accumulating in P. Then the surface W is formed by foresting trees Tn on the

plantation P at the roots for all n A N, or more precisely, by pasting surfaces Tn to P

crosswise along slits sn for all n A N. Let Os be the family of hyperbolic Riemann

surfaces on which there are no nonzero singular harmonic functions. One might feel

that any a¤orested surface W :¼ hP; ðTnÞn AN; ðsnÞn ANi belongs to the family Os as far as

its plantation P and all its trees Tn belong to Os. The aim of this paper is, contrary to

this feeling, to maintain that this is not the case.

1. Introduction

We denote by HPðRÞ the vector subspace of the vector space HðRÞ of
harmonic functions on a Riemann surface R consisting of essentially positive
harmonic functions on R, where u is essentially positive if u is expressed as
u ¼ u1 � u2 with uj A HðRÞþ :¼ fv A HðRÞ : vf 0g ð j ¼ 1; 2Þ, or equivalently, u is
essentially positive if juj admits a harmonic majorant on R. We denote by u4v
(u5v, resp.) the least (greatest, resp.) harmonic majorant (minorant, resp.) of u
and v on R for u and v in HPðRÞ so that u4v and u5v also belong to HPðRÞ
and u5v ¼ �ðð�uÞ4ð�vÞÞ. With respect to these lattice operations of the join
4 and the meet 5, the vector space HPðRÞ forms a vector lattice. Then the
Jordan decomposition

u ¼ uþ � u� ðuþ :¼ u40; u� :¼ �ðu50ÞÞð1:1Þ
of u A HPðRÞ gives the canonical way of expressing u as a function in
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HPðRÞ ¼ HPðRÞþ �HPðRÞþ:ð1:2Þ

In view of the fact that the vector space HBðRÞ of bounded harmonic functions
on R is an important vector sublattice of HPðRÞ, we say that a u A HPðRÞ is
quasibounded if

u ¼ lim
s; t ARþ; s; t"þy

ðu5sÞ4ð�tÞð1:3Þ

locally uniformly on R, where R is the real number field and Rþ :¼ ft A R :
tf 0g, so that every u A HBðRÞ is trivially quasibounded on R. On the other
hand, a u A HPðRÞ is said to be singular if

ðu5sÞ4ð�tÞ ¼ 0ð1:4Þ

identically on R for every s and t in Rþ. We denote by HPqðRÞ (HPsðRÞ, resp.)
the vector subspace of HPðRÞ consisting of quasibounded (singular, resp.) har-
monic functions on R and we have the Parreau decomposition of HPðRÞ:

HPðRÞ ¼ HPqðRÞlHPsðRÞ ðthe direct sum decompositionÞ:ð1:5Þ

It can happen that HPqðRÞ ¼ HPðRÞ, or equivalently, HPsðRÞ ¼ f0g. We
denote by Os the class of hyperbolic Riemann surfaces R with HPsðRÞ ¼ f0g.
The examples of R in the null class Os is furnished by the following inclusion
relation:

OHPnOG < Os ðthe strict inclusionÞ;ð1:6Þ

where OHP is the family of open Riemann surfaces R with HPðRÞ ¼ R and OG

is the family of parabolic Riemann surfaces R so that R B OG means that R is
hyperbolic in the sense that R carries the Green function gð�; z;RÞ on R with its
pole at any point z in R characterized as the minimal positive harmonic function
on Rnfzg with

�Dgð�; z;RÞ ¼ 2pdz ðthe Dirac measure supported at zÞ:ð1:7Þ

We denote by dim R the harmonic dimension of R that is given by the
cardinal number of the Martin minimal boundary of R if R B OG and the cardinal
number of the Martin minimal boundary of R less arbitrary fixed parametric disc
lying over the ideal boundary of R if R A OG. At this point we must recall the
strict inclusion relation OG < OHP (cf. e.g. [8]). In connection with the result [4]
of Masaoka and the second named author of the present paper that

sup
R AOs

dim Re@0 :¼ card N ðthe cardinal number of NÞ;ð1:8Þ

there arose the question whether the relatione is in fact the genuine inequality <
or the equality ¼ in the above (1.8). We have settled the question in [5] that the
equality holds in (1.8) and in fact we have shown that

fdim R : R A Osg ¼ ½1;@0� :¼ NU f@0g:ð1:9Þ
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In the course of the proof of (1.9) we introduced a notion of, what we call,
a¤orested surfaces, by the aid of which we succeeded in showing the existence of
an R A Os with dim R ¼ @0.

By a slit g in a Riemann surface X we mean a simple arc g in X such that
there exists a parametric disc U :¼ fjzj < 1g on X in which g is represented as
g ¼ ½�r; r� :¼ fz A U : Im z ¼ 0; jRe zje rg ð0 < r < 1Þ. We now state what we
mean by an a¤orested surface. Let X and Y be two Riemann surfaces. We say
that g is a common slit in X and Y if there exists a simply connected Jordan
region VX (VY , resp.) contained in X and C (Y and C, resp.) such that
g ¼ ½�r; r� ¼ ft A R : �re te rgHVX VVY . We denote by

ðXngÞU�g ðYngÞ

the Riemann surface obtained by pasting Xng to Yng crosswise along g. As
above N stands for the class of positive integers. For each n A N we set Nn :¼
fi A N : i < nþ 1g and N@0

:¼ N so that Nx ¼ fi A N : i < xþ 1g for x A NU f@0g.
An a¤orested surface W :¼ hP; ðTiÞi ANx

; ðsiÞi ANx
i consists of three ingredients: an

open Riemann surface P B OG called a plantation, a finite or infinite sequence
(according to x A N or x ¼ @0) ðTiÞi ANx

of mutually disjoint open Riemann sur-
faces Ti B OG for i A Nx called trees, and a finite or infinite sequence ðsiÞi ANx

of
common slits si in P and Ti for i A Nx called roots of trees Ti. Here si are
assumed to be mutually disjoint, isolated, and not accumulating in P. To de-
termine W we define a sequence ðWiÞi ANx

inductively as follows. First let

W1 :¼
�
P

�
6
i ANx

si

�
U�s1 ðT1ns1Þ

and if W1; . . . ;Wi�1 (i A Nx, if 2) have been defined, then let

Wi :¼ Wi�1 U�si ðTinsiÞ

for every i A Nx, and we define an a¤orested surface W :¼ Wx for x A N and
W :¼ limi"y Wi for x ¼ @0. In fact,

W :¼ � � �
���

P

�
6
i ANx

si

�
U�s1 ðT1ns1Þ

�
U�s2 ðT2ns2Þ

�
� � � ;ð1:10Þ

and the Riemann surface W :¼ hP; ðTiÞi ANx
; ðsiÞi ANx

i is called the a¤orested
surface formed by foresting each tree Ti to P at its root si for every i A Nx. We
can see that W B OG along with P and Ti.

For an a¤orested surface W :¼ hP; ðTiÞi AN; ðsiÞi ANi we consider the follow-
ing condition

X
i AN

ð4Mi þ 1Þ
supPnVi

gð�; zi;PÞ
infsi gð�; zi;PÞ

< 1;ð1:11Þ
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where zi A P corresponds to the center 0 of si ¼ ½�si; si� ðsi > 0Þ with respect to a
parametric disc Vi at zi such that Vi ¼ fjzje 1gHP and Vi VVj ¼ j ði0 jÞ for
every i and j in N, gð�; z;PÞ is the Green function on P, and Mi is the Harnack
constant of fogU qVi with a reference point o A Pn6

i ANð1=2ÞVi with respect to
the family HðPn6

i ANð1=2ÞViÞþ. We have obtained the following result from
which the conclusion (1.9) was derived ([5]):

Theorem A. Suppose that P and Ti belong to Os for every i A Nx. If the
sequence ðsiÞi ANx

is finite or else shrinks so rapidly as to satisfy (1.11), then the
a¤orested surface W :¼ hP; ðTiÞi ANx

; ðsiÞi ANx
i also belongs to Os and

dim W ¼ xþ 1ð1:12Þ

when in particular P and all the trees Ti ði A NxÞ belong to OHPnOG.

Concerning the above result we observe the following two points. First, if x A N,
then W A Os without any additional condition such as (1.11) no matter how x A N
is large. Second, the condition (1.11) seems to be too technical. Even in the
case of x A N the corresponding condition to (1.11) may not be valid, i.e.P

i ANx
ð4Mi þ 1Þ supPnVi

gð�; zi;PÞ=infsi gð�; zi;PÞf 1 can happen for x A N. In
view of these observations one might be tempted to say that W is always a
member of Os for all xe@0 without any further restriction such as (1.11). As
a matter of fact we got several inquiries including one from the (of course
unknown) referee of our former paper [5] in his/her referee report whether W A Os

is always true without any additional condition even if x ¼ @0. We took it for
granted that some additional requirement on the size of ðsiÞi ANx

for x ¼ @0 is

in order to conclude that W A Os without giving any deeper consideration when
we completed the paper [5]. After starting the trial to give such an example of
an a¤orested surface W B Os, we recognized that the work is even harder than
the original work [5] but fortunately we have been successful in constructing the
required one, to exhibit which is the purpose of the present paper. Namely, we
will prove the following result.

The Main Theorem. There exists an a¤orested surface W :¼ hP; ðTiÞi AN;
ðsiÞi ANi such that P and Ti ði A NÞ are all in the class Os and yet W does not
belong to the class Os.

The proof of this main theorem will be divided into four parts and given as
consecutive 4 sections in the sequel. The basic material of our construction is the
special surface in OHPnOG, called the Sario-Tôki disc, and therefore it is essential
to understand the structure of these kind of surfaces. This will be described in
the next §2 to an extent we really need in our construction. The plantation and
holes in it to forest trees are prepared in §3 together with the prototype of the
singular function on it to be constructed. Trees and the extension of the above
preparatory function to trees are given in §4. In the final §5, the fact that the
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a¤orested surface and the singular function on it constructed based upon the
preparations in §§2–4 really satisfy the required properties in the main theorem
will be proven.

2. Sario-Tôki discs

We will make an essential use of special type of Riemann surfaces in the
class OHPnOG, which we call Sario-Tôki discs. We state the structure of such
surfaces to an extent we need in our construction of an a¤orested surface carrying
singular harmonic functions.

Let g1 and g2 be two radial slits of the unit disc D : jzj < 1 formed by the

points reiy1 and reiy2 respectively with 0 < ae re b < 1. Each slit gj ð j ¼ 1; 2Þ
has a left edge gþj corresponding to y ¼ yj þ 0 and a right edge g�j corresponding

to y ¼ yj � 0. We then identify gþ1 with g�2 and gþ2 with g�1 , i.e. we paste a small
slitted neighborhood of g1 to that of g2 crosswise along identified g1 ¼ g2, which
defines a Riemann surface as usual.

More generally we can consider a cyclic identification of any finite number of
radial slits g1; . . . ; gk, all extending between jzj ¼ a and jzj ¼ b. In this case gþ1 is
identified with g�2 , g

þ
2 with g�3 , etc. and finally gþk with g�1 . The identified end

points will have neighborhoods consisting of k full discs. Such identifications
may be performed simultaneously for several pairs or cycles, even for infinitely
many, under the assumption that they do not intersect or accumulate inside D.
To be complete in formality, we even identify a slit with itself, i.e. a cyclic
identification with k ¼ 1. Needles to say, this trivial identification produces no
change at all.

We denote by G the union of all radial slits in D which are isolated in D.
The identified slits from slits in G form a set ĜG which is a union of isolated simple
arcs with only end points in common. Let D̂D be the resulting Riemann surface
obtained from the above identifying process. It is seen that D̂DnĜG ¼ DnG not
only as sets but also as Riemann surfaces. The coordinate function z for D is
thus a well defined holomorphic function on D̂DnĜG but not continuous on ĜG or not
even defined on ĜG. However logjzj is well defined on all of D̂D by understanding
logjzj ¼ �y for z ¼ 0 and harmonic on D̂Dnf0g. In other words there is a
harmonic function ĝg on D̂Dnf0g such that logjzj ¼ �ĝgðzÞ for z A D̂DnĜG ¼ DnG and
ĝg ¼ gð�; 0; D̂DÞ, which is the Green function on D̂D with its pole at z ¼ 0. Thus
regardless of the choice of G and hence of ĜG, D̂D is of hyperbolic, i.e.

D̂D B OG:ð2:1Þ
We now give a specific rule for constructing the required D̂D. It will be

determined by two sequences ðrnÞn AN of strictly increasing sequence in the open
interval ð0; 1Þ converging to 1 and ðnnÞn AN from N. By a suitable choice of these
sequences it is seen that HPðD̂DÞ consists of only constants so that with (2.1) we
have

D̂D A OHPnOG:ð2:2Þ
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As for the concrete indication of ðrnÞn AN and ðnnÞn AN for (2.2) and the detailed
proof for it we refer the reader to any one of e.g. the following monographs [1],
[8], and [9].

Observe that every natural number n has a unique representation n ¼
nðh; kÞ ¼ ð2hþ 1Þ2k with h and k in Zþ ¼ fm A Z : mf 0g with Z the set of
integers. With each n ¼ nðh; kÞ we associate 2kþnn radial slits with end points on
jzj ¼ r2n and jzj ¼ r2nþ1. These slits are equally spaced one of which is on the
positive real axis. Each of the above slits is said to be rank n and type k. To
complete the description of the constructing rule of D̂D, we write yk ¼ 2p=2k. The
sectors jyk e ye ð j þ 1Þyk ð0e je 2kÞ are denoted by Sjk. The slits of type k
which lie on the rays y ¼ jyk are identified cyclically. The remaining slits of the
same type will be identified pairwise within each sector Sjk symmetrically about
its bisecting ray.

A Riemann surface D̂D constructed as described above is referred to as a
Sario-Tôki disc since it is originally constructed by Sario [7] and also by Tôki [10]
independently. Since (2.2) is a property of ideal boundary (cf. [8]) in the sense
that if a Riemann surface R1 A OHPnOG and if another Riemann surface R2 gives
the complement in R2 of a compact subset of R2 coincident with the complement
in R1 of a compact subset of R1, then R2 A OHPnOG, we can always replace
ðrnÞn AN by any its end part subsequence ðrnÞnfn0

for any n0 A N. Hence we can
say that there exists a Sario-Tôki disc D̂D such that

D̂DIDðaÞð2:3Þ

for any given a A ð0; 1Þ, where DðaÞ :¼ fjzj < ag. From the construction of D̂D
it follows the existence of an exhaustion ðD̂DnÞnf0 of D̂D such that D̂D0 ¼ DðaÞH
DðaÞH D̂D and qD̂Dn is a concentric circle in D with

qD̂Dn ¼ fjzj ¼ tngH fr2n�1 < jzj < r2ngH D̂DnĜG ðtn A ðr2n�1; r2nÞ; n A NÞ:ð2:4Þ

Once more we restate (2.1) as

gðz; 0; D̂DÞ ¼ �logjzj ðz A D̂DnĜG ¼ DnGÞ;ð2:5Þ

where gð�; 0; D̂DÞ is the Green function on D̂D with its pole at z ¼ 0 A D̂DVD.

3. A plantation P with root holes sn and a basic function h

Choose an arbitrary but then fixed Sario-Tôki disc D̂D given by ðrnÞn AN and
ðnnÞn AN (cf. §2) which we afresh denote by P. The Riemann surface P will
play the role of the plantation for the a¤orested surface W with required prop-
erties in the main theorem that will be constructed in the sequel. Let ðPnÞnf0
be an exhaustion of P such that P0 ¼ DðaÞHDðaÞHP and qPn ¼ fjzj ¼ tngH
fr2n�1 < jzj < r2ng ðn A NÞ. We choose a decreasing sequence ðenÞn AN of positive
numbers en A ð0; p=4Þ, which will be a bit more specified below. We denote by

an :¼ qPn ¼ ftneiy : 0e ye 2pg ðn A NÞð3:1Þ
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and we take a subarc bn of an given by

bn ¼ ftneiy : jyje eng ðn A NÞ:ð3:2Þ

For a compact subset K of P such that PnK is connected, the function

wðz;K ;PÞ ¼ inf
s

sðzÞ;

where s runs over continuous positive superharmonic functions on P with
sjKf 1, is referred to as the harmonic measure of K on P. If K is a non-
degenerate continuum with connected PnK , then wð�;K ;PÞ A CðPÞVHðPnKÞþ,
0 < wð�;K ;PÞ < 1 on PnK , and wð�;K ;PÞ jK ¼ 1. For any fixed n A N,
wð�; bn;PÞ # 0 as en # 0 and therefore we can choose the sequence ðenÞn AN so
rapidly decreasingly convergent as to satisfy

X
n AN

wð0; bn;PÞ < þy:ð3:3Þ

Since each wð�; bn;PÞ is a potential, (3.3) assures that

w :¼
X
n AN

wð�; bn;PÞ

is locally uniformly convergent on P and hence w is a potential on P (cf. e.g. [3]).
Finally we set

sn :¼ annbn ðn A NÞ;ð3:4Þ

each of which is a simple arc in P. Of course, sn V sm ¼ j ðn0mÞ, and
fsn : n A Ng does not accumulate in P. Pick a suitable parametric disc Un :¼
fjzj < 1g such that sn HUn and

sn :¼ ½�sn; sn� ¼ fz A Un : jRe zje sn; Im z ¼ 0g ðsn A ð0; 1ÞÞð3:5Þ

in terms of local parameter z in Un for every n A N. Here we moreover choose
fUn : n A Ng in such a fashion that Un VUm ¼ j ðn0mÞ. Each sn in P plays
the role of the hole into which the root sn of the tree Tn will be put to forest Tn

to P in the a¤orested surface W to be constructed. We set

S :¼ 6
n AN

sn:

We denote by d ¼ dP the Wiener harmonic boundary of P (cf. e.g. [2], [8]).
In view of P A OHPnOG, d ¼ dP is a one point set. The closure of a subset X of
the Wiener compactification P� of P will also be denoted by X . We maintain
the following result.

Claim 3.6. The set S accumulates to d:

dHS:ð3:7Þ
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Proof. Since d is a one point set, (3.7) is equivalent to that dVS0j.
Hence, by assuming dVS ¼ j, we only have to derive a contradiction. Take
a j A CðP�Þ with jjd ¼ 0 and jjS ¼ 1, the existence of which is assured by the

fact dVS ¼ j. By applying the Wiener decomposition (cf. e.g. [8]) to j, we
obtain, as the harmonic part of j, the function c A HBðPnSÞ such that cjS ¼ 1
and cjd ¼ 0. By the maximum principle (cf. e.g. [8]), cf 0 on P�. Based upon
the fact (cf. e.g. [8]) that a nonnegative superharmonic function vanishes on d if
and only if it is a potential, we see that c is a potential on P. Recall that w is
also a potential on P. Hence the function

s :¼ cþ w

is a potential on P and

sjan f 1 ðn A NÞ:

Let ðan; anþ1Þ be the subregion of P bounded by an and anþ1 and also ða1Þ the
subregion of P bounded by a1. By the usual minimum principle for super-
harmonic functions

s j ðan; anþ1Þf 1 and sjða1Þf 1:

In view of

P ¼ ða1ÞU
�

6
n AN

ðan; anþ1Þ
�
;

we conclude that sf 1 on P. Hence, by the fact that s is a potential on one
hand and sf 1 on P on the other hand, we deduce

0 ¼ lim
z AP; z!d

sðzÞf lim inf
z AP; z!d

sðzÞf 1;

which is clearly a contradiction and we have shown dVS0j so that (3.7).
r

Recall that SOHB is the family of bordered Riemann surfaces ðR;GÞ, R is a
Riemann surface and G a specific part of the border qR of R including the case
G ¼ qR but not G ¼ j, such that the class

HBðR;GÞ :¼ fu A HBðRÞVCðRUGÞ : ujG ¼ 0g

reduces to f0g (cf. e.g. [8]). If R is a subsurface of a Riemann surface S, every
point of whose nonempty relative boundary qR relative to S is regular with
respect to the Dirichlet problem, then ðR; qRÞ A SOHB if and only if ðRnqRÞV
dS ¼ j (cf. e.g. [8]). Thus (3.7) implies (and in fact is equivalent to) that

ðPnS;SÞ A SOHB:ð3:8Þ

Based upon these properties we can obtain the following result on the existence of
a basic function h which plays an essential role in the proof of our main theorem.
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Claim 3.9. There exists a continuous function h on P such that h A
HðPnSÞþnf0g and

hjS ¼ 0; lim inf
z AP; z!dP

hðzÞ ¼ 0ð3:10Þ
so that h A HPsðPnSÞ.

Proof. We denote by zn the center of the arc bn, i.e. the point correspond-
ing to tn in (3.2). Using the Green function gð�; zn;PnSÞ on PnS with its pole at
zn for every n A N, we consider the function

gn :¼
gð�; zn;PnSÞ
gð0; zn;PnSÞ

on P by understanding gnðznÞ ¼ þy and gnjS ¼ 0 for every n A N. By gnð0Þ ¼ 1
and gn > 0 on PnS, the Harnack inequality assures that the family fgn : n A Ng
forms a normal family on PnS and thus we can find a subsequence ðnðnÞÞn AN of N
such that ðgnðnÞÞn AN is convergent to an h A HðPnSÞþ locally uniformly on PnS.
Hence, on setting hn :¼ gnðnÞ A HððPnSÞnfznðnÞgÞþ, we have

hnð0Þ ¼ 1 ðn A NÞ;ð3:11Þ
hn A CðPnfznðnÞgÞ ðn A N) and

hnjS ¼ 0 ðn A NÞ;ð3:12Þ
and we see that

h ¼ lim
n!y

hn A HðPnSÞþð3:13Þ

locally uniformly on PnS. By the above (3.13) and (3.11) we trivially deduce

hð0Þ ¼ 1:ð3:14Þ
Again by (3.13) and (3.12) we can conclude that h A CðPÞ and

hjS ¼ 0:ð3:15Þ
This can be seen as follows. For each i A N, by the maximum principle, since
jhm � hnj ¼ 0 on si, we have

sup
Ui

jhm � hnj ¼ sup
qUi

jhm � hnj ! 0 ðm; n ! yÞ

because qUi is compact in PnS and hm � hn ! h� h ¼ 0 (m; n ! y) uniformly
on qUi. Thus supUi

jhm � hj ! 0 ðm ! yÞ assures that h A CðUiÞ along with

hm A CðUiÞ and (3.15) is deduced as a consequence of (3.12). By (3.7) and (3.15)
it is clear that the second equality in (3.10) holds.

For any t A Rþ, as functions on PnS, h5t A HBðPnSÞVCðPÞ and therefore
h5t, as a bounded subharmonic function on P, is continuous on P�. Hence
(3.10) assures that

ðh5tÞ jSU dP ¼ 0:
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By the maximum principle (cf. e.g. [8]), h5t ¼ 0. This shows that h is singular
on PnS, i.e. h A HPsðPnSÞ. r

4. Superharmonic extension of the basic function

Starting from the plantation P and the basic function h on it given in §3, we
will forest with suitable trees Tn in the class OHPnOG at their roots sn to the root
holes sn in P and construct the harmonic function kn on Tnnsn with vanishing
boundary values on sn and �1 on the harmonic boundary dTn of Tn such that
the new function given by h on Pn6

n AN sn and kn on each Tn ðn A NÞ is super-
harmonic on the a¤orested surface W :¼ hP; ðTnÞn AN; ðsnÞn ANi. For the purpose
we prepare the following extension result both for the domain of definition and
the function on it.

Let U :¼ D the unit disc in the complex plane C and s ¼ ½�s; s� the slit in
U on the real line so that 0 < s < 1. Let h A CðUÞVHðUnsÞþ vanishing on s.
Let T be an open Riemann surface with T B OG. We say that the slit s in U
is contained in T if there is a simply connected region D in T such that there is
a parametric disc ðV ; zÞ in T satisfying sHDHV with s ¼ fz A V : jRe zj < s;
Im z ¼ 0g. Then we can form a new Riemann surface ðUnsÞU�s ðTnsÞ, which
we call the surface formed from U by foresting the tree T with root s at the root
hole s in U . Let k A CðT �ÞVHðTnsÞ be such that kjs ¼ 0 and k j dT ¼ �1 so
that �k is the harmonic measure of the Wiener harmonic boundary dT on Tns,
where T � is, as before, the Wiener compactification of T . For convenience the
function k will be referred to as the associated function with T . To consider
h and k on ðUnsÞU�s ðTnsÞ we understand that h j ðTnsÞ ¼ 0 and k j ðUnsÞ ¼ 0 so
that hþ k can be considered on ðUnsÞU�s ðTnsÞ with ðhþ kÞ jU ¼ h and
ðhþ kÞ jT ¼ k. We wish to have the situation where the hybridized function
hþ k is superharmonic.

Lemma 4.1 (Hybridizing Lemma). For any triple ðU ; s; hÞ of the unit disc U ,
a slit s of length 2s on the real line symmetric about the origin of U , and a positive
harmonic function h on Uns with vanishing (continuous, resp.) boundary values on
s (qU , resp.), there is a Riemann surface T belonging to the class OHPnOG with the
slit s in T identified with the above s in U and the associated function k with T
such that hþ k is superharmonic on the a¤orested surface ðUnsÞU�s ðTnsÞ.

Proof. Since hf 0 is continuous on U with hjs ¼ 0 and harmonic on Uns,
we can deduce that

M :¼ max
U

h ¼ max
qU

h A ð0;þyÞ:

We choose arbitrary but then fixed numbers r and r1 in ð0; 1Þ satisfying

s

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� s2

p
� �1=M

< r < r1 < 1:ð4:2Þ
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The number r plays the lead and r1 the support. Let w ¼ jðzÞ be the Joukowski

mapping of the extended z-plane ĈCz :¼ ĈC onto the extended w-plane ĈCw :¼ ĈC
given by

w ¼ jðzÞ :¼ s

2

z

r
þ r

z

� �
:

Then the circle Cr : jzj ¼ r in the z-plane ĈCz is mapped onto the slit s ¼ ½�s; s�.
Let sþ (s�, resp.) be the upper (lower, resp.) edge of s. If we view sþ U s� a
Jordan curve in the Carathéodory compactification of ĈCns, then w ¼ jðzÞ maps
Cr homeomorphically onto sþ U s�. We denote by Dr the disc bounded by
Cr. We set j0 :¼ jjDr and jy :¼ j j ðĈCnDrÞ with j0jCr ¼ jyjCr ¼ jjCr. Then

w ¼ j0ðzÞ (w ¼ jyðzÞ, resp.) maps Dr (ĈCnDr, resp.) onto ĈCns conformally and Dr

(ĈCnDr, resp.) onto ðĈCnsÞU ðsþ U s�Þ homeomorphically. Actually w ¼ jðzÞ is a

conformal mapping of ĈCz onto the Riemann surface ðĈCwnsÞU�s ðĈCwnsÞ so that

w ¼ j0ðzÞ (w ¼ jyðzÞ, resp.) is the conformal mapping of Dr (ĈCnDr, resp.) onto
ðĈCnsÞU ðsþ U s�Þ. Observe that the circle Cr : jzj ¼ r ð0 < r < rÞ is mapped by
w ¼ j0ðzÞ onto the ellipse Er with the major axis ½�sðr2 þ r2Þ=2rr; sðr2 þ r2Þ=2rr�
on the real axis and minor axis ½�sðr2 � r2Þ=2rr; sðr2 � r2Þ=2rr�i on the imag-
inary axis. Since the circle family fCr : 0 < r < rg covers Drnf0g, i.e.

6
0<r<r

Cr ¼ Drnf0g;ð4:3Þ

we have the corresponding situation for Cns via w ¼ j0ðzÞ that the ellipse family
fEr : 0 < r < rg covers Cns, i.e.

6
0<r<r

Er ¼ Cns:ð4:4Þ

We next consider the annulus j�1
0 ðUnsÞ bounded by two Jordan curves.

One is the circle Cr corresponding to s and the other cr corresponds to the unit
circle qU . Observe that

cr :¼ j�1
0 ðqUÞ ¼ j�1

0 ðjwj ¼ 1Þ
is an analytic Jordan curve in Dr. By (4.3) and (4.4) there is a unique ellipse
Etr ð0 < t < 1Þ touching qU at 1 (and also at �1) so that Ctr is enclosing cr
touching at tr (and also at �tr). Then j0ðtrÞ ¼ 1, from which we deduce

t ¼ s

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� s2

p :ð4:5Þ

We denote by ÛU the annulus bounded by the outer boundary circle Cr and the
inner boundary analytic Jordan curve cr:

ÛU :¼ j�1
0 ðUnsÞ and qÛU ¼ Cr � cr:

The function h on U can be harmonically transplanted to ÛU as a function ĥh in
the class CðÛU UCr U crÞVHðÛUÞþ with vanishing boundary values on Cr and the
continuous boundary values on cr:
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ĥh ¼ h � j0:

By the definition of t in (4.5) we see that

ÛU ¼ DrnðcrÞI ftr < jzj < rg;
where ðcrÞ is the region bounded by cr. In view of the above inclusion relation
we see, by the maximum principle, that

ĥhðreiyÞe M

logðr=trÞ logðr=rÞ

for tre re r and therefore we deduce, keeping the fact that two functions on
the both sides of the above inequality vanishing on Cr : jzj ¼ r can be harmon-
ically continued across Cr in mind,

q

qr
ĥhðreiyÞ

� �
r¼r

f
M

r log t
:ð4:6Þ

By (2.3) we can find a Sario-Tôki disc D̂D with

DðrÞHDðr1ÞHDðr1ÞH D̂D

and using this D̂D we consider

V̂V :¼ D̂DnDðrÞ:
Weld ÛU to V̂V by identifying Cr ¼ fjzj ¼ rg with qV̂V ¼ fjzj ¼ rg, which amounts
to the same that we are identifying Dr with DðrÞ. The resulting surface is just

ÛU UCr U V̂V ¼ D̂DnðcrÞ:
Consider the function

k̂k :¼ 1

logð1=rÞ gð�; 0; D̂DÞ � 1

on V̂V UCr, where gð�; 0; D̂DÞ is the Green function on D̂D with its pole at 0.
Clearly k̂k j dD̂D ¼ �1, where dD̂D is the Wiener harmonic boundary of D̂D, and
k̂kjCr ¼ 0. Since, by (2.5), we have

k̂kðreiyÞ ¼ 1

log r
log r� 1

for re re r1, we see that

q

qr
k̂kðreiyÞ

� �
r¼r

¼ 1

r log r
:ð4:7Þ

By (4.2) and (4.5), we can deduce from (4.6) and (4.7) that

q

qr� ĥhðreiyÞ
� �

r¼r

>
q

qrþ k̂kðreiyÞ
� �

r¼r

:ð4:8Þ
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Here it is essentially important that we are computing the left (right, resp.)

derivative q=qr� (q=qrþ, resp.) with respect to the common local parameter reiy

on ÛU UCr U ðDðr1ÞnDðrÞÞ, on which ĥh, k̂k, and ĥhþ k̂k are defined as follows. The

function ĥh is as it is on ÛU UCr but we set ĥh1 0 on V̂V . The function k̂k is as it is
on Cr U V̂V but we put k̂k1 0 on ÛU . Then ĥhþ k̂k is ĥh on ÛU UCr and k̂k on Cr U V̂V
and anyhow ĥhþ k̂k is well defined on ÛU UCr U V̂V ¼ D̂DnðcrÞ and superharmonic
there by virtue of (4.8).

Observe that Dðr1ÞnDðrÞ is mapped by w ¼ jyðzÞ onto the annulus Vns,
where V is a Jordan region in the w-plane. Since jyðqðĈCnDðr1ÞÞÞ ¼ qV and jy
is a conformal mapping of a vicinity of qðD̂DnDðr1ÞÞ onto a vicinity of qV , we can

weld V to D̂DnDðr1Þ at qV and qðD̂DnDðr1ÞÞ identified by jy (cf. [6]) and we
denote by T the resulting Riemann surface. Since being a member of OHP and
that of OG for a Riemann surface are ideal boundary properties (cf. [8]), we see
that

T A OHPnOG HOsð4:9Þ

along with D̂D because T and D̂D have the common identical ideal boundary
neighborhood D̂DnDðr1Þ. Since Tns is conformally equivalent to D̂DnDðrÞ and
sþ U s� correspond to qDðrÞ ¼ Cr, k̂k can be conformally transplanted to a
function k on Tns such that k A CðT �ÞVHðTnsÞþ, T � being the Wiener com-
pactification of T , with kjs ¼ 0 and k j dT ¼ �1, dT being the Wiener harmonic
boundary of T . Similarly h is viewed as being conformally transplanted to U
from ĥh on ÛU such that h A CðUÞVHðUnsÞþ with hjs ¼ 0 (in reality, starting
from h, ĥh was given by ĥh ¼ h � j0). Since the part ÛU UCr U ðDðr1ÞnDðrÞÞH
ÛU UCr U V̂V ¼ D̂DnðcrÞ is mapped conformally onto ðUnsÞU�s ðVnsÞH ðUnsÞU�s

ðTnsÞ and ðhþ kÞ � j ¼ ĥhþ k̂k there under the definition hjT ¼ 0 and kjU ¼ 0,
the superharmonicity of ĥhþ k̂k on D̂DnðcrÞ implies that of hþ k on ðUnsÞU�s ðTnsÞ.

r

5. Construction of a nonzero singular function

We take the plantation P adopted in §3 so that, first of all, we have

P A OHPnOG HOs

and hence the Wiener harmonic boundary dP of P in the Wiener compactification
P� of P consists of a single point d, i.e. dP ¼ fdg; there is a sequence ðUnÞn AN
of parametric discs Un ¼ fjzj < 1g such that Un VUm ¼ j ðn0mÞ and ðUnÞn AN
does not accumulate in P, i.e. for any compact subset L of P, the class fi A N :
Ui VL0jg is either empty or at most finite subset of N; there is a sequence
ðsnÞn AN of slits sn ¼ ½�sn; sn�HUn ð0 < sn < 1Þ such that

dPHS

�
S :¼ 6

n AN

sn

�
:
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Moreover we have, what we call, a fundamental function h on P characterized by
h A CðPÞVHðPnSÞþ with hjS ¼ 0 and by the most important property

h A HPsðPnSÞþnf0g:ð5:1Þ

As a consequence, if a v A HBðPnSÞ, the class of bounded harmonic functions on
PnS, satisfies hf v on PnS, then ve 0 on PnS. We now choose an exhaustion
ðQiÞi AN of P consisting of relatively compact subregions Qi of P where relative
boundaries qQi are analytic Jordan curves (cf. §2) such that

Qn I 6
1eien

Ui and PnQn I 6
n<i<y

Ui:

Next we use the result in §4. For each n A N, by the hybridizing lemma 4.1,
we can choose a tree Tn A OHPnOG HOs containing the slit sn identified with that
in Un HP and a kn A CðT �

n ÞVHBðTnnsnÞ with knjsn ¼ 0 and kn j dTn ¼ �1, T �
n

being the Wiener compactification of Tn and dTn the Wiener harmonic boundary
of Tn consisting of a single point dn so that dTn ¼ fdng, such that hþ kn is
superharmonic on ðUnnsnÞU�sn ðTnnsnÞ by extending h to Tn by hjTn ¼ 0 and kn
to P by knjP ¼ 0. Let W be the a¤orested surface hP; ðTnÞn AN; ðsnÞn ANi. Let k
be the function on W such that kjTn ¼ kn ðn A NÞ so that kjP ¼ 0. Similarly h
is extended to W by setting h ¼ 0 on 6

n AN Tn. Then hþ k is a superharmonic
function on W such that hþ kf�1 on W .

At this point we pause to recall the notion of harmonic measure functions.
A function o on W is referred to as a harmonic measure function if o A HðWÞ
and

o5ð1� oÞ ¼ 0ð5:2Þ

on W . The condition (5.2) implies 0eoe 1 on W so that o A HBðWÞþ and
therefore o A CðW �Þ, where W � is the Wiener compactification of W . Since
f 7! f j dW is a bijective linear mapping of HBðWÞ onto CðdWÞ, where dW is
the Wiener harmonic boundary of W , the compact subset dW of W � is known to
be a Stonean space characterized by the property that the closure of any open
subset of dW is again open so that clopen (i.e. closed and open) subsets of dW
constitute a base of topology of dW . Then the condition (5.2) can be seen to be
equivalent to that o j dW is the characteristic function of some clopen subset of
dW .

We now return to our present work of constructing a function u in the class
HPsðWÞþnf0g. Since dTn ¼ fdng is an isolated one point set in dW and hence is
an open subset of dW for every n A N, the set 6

n AN dTn is an open subset of dW
and thus the set

K :¼ 6
n AN

dTn

is a clopen subset of dW . Then there exists a unique w A CðW �ÞVHBðWÞþ
such that
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w j dW ¼ wK : the characteristic function of K on dW :

Hence w thus constructed is a harmonic measure function on W and thus the
property corresponding to (5.2) for w is valid, i.e. we have

w5ð1� wÞ ¼ 0ð5:3Þ

on W . For each n A N we form an auxiliary a¤orested surface Wn:

Wn :¼ hQn; ðTiÞ1eien; ðsiÞ1eieni;

which may be viewed as a subsurface of W with qWn ¼ qQn. Then ðWnÞn AN
forms an ‘‘exhaustion’’ of W in a generalized sense. Let wn A CðWnÞVHBðWnÞÞþ
with wn j qWn ¼ 0 and wn j ð61eien

dTiÞ ¼ 1, where Wn is the closure of Wn in

W . We set wn j ðWnWnÞ ¼ 0. We maintain the following important relation:

w ¼ lim
n!y

wnð5:4Þ

locally uniformly on W . By the maximum principle, we see on comparing the
boundary values of wn and wnþ1 on qWn U ð6

1eien
dTiÞ that ðwnÞn AN is an

increasing sequence on W with 0ewn e 1 on Wn for every n A N, and hence
we see that ðwnÞn AN converges to a p A HBðWÞþ with 0e pe 1 on W locally
uniformly. In view of wn e pe 1 on Wn for every n A N, we see that
p j ð6

i AN dTiÞ ¼ 1. By the continuity we clearly have pjK ¼ 1, and trivially

p j ðdWnKÞf 0. Since w ¼ p ¼ 1 on K and w ¼ 0e p on dWnK, the maximum
principle assures that we p on W . On the other hand, again by the maximum
principle, we see that wn ew on W by comparing the boundary values of wn and
w on qWn U ð6

1eien
dTiÞ, and a fortiori we deduce limn!y wn ew on W , or

equivalently pew. We have thus shown that we p and pew on W , from
which (5.4) follows.

We are now in the final stage of our proof of the main theorem stated in the
introduction. Observe that k þ wf 0 on W and thus

hþ k þ wf h

on W . Since the term on the left hand side hþ k þ w is superharmonic on W
along with hþ k on W (cf. §4) and the term h on the right hand side of the
above is subharmonic on W , we can find a harmonic majorant u of h satisfying

hþ k þ wf uf hf 0

on W . Hence u A HPðWÞþnf0g and the proof will be over if we can show that
u A HPsðWÞþ. For the purpose we choose any v A HBðWÞþ with uf vf 0 on
W and we are to show that v1 0 on W . Replacing v by ð1=mÞv with suitably
large m A N, if necessary, we can assume without loss of generality not essentially
but technically convenient condition that

0e v < 1ð5:5Þ
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on W in addition to the essential restraint

hþ k þ wf vf 0ð5:6Þ

on v considered on W . Since (5.6) takes the form hþ wf v on PnS or
hf v� w on PnS with v� w A HBðPnSÞ, the fact that h A HPsðPnSÞþ in (5.1)
established at the end of §3 assures that v� we 0 on PnS. Since ke 0 and
h ¼ 0 on 6

i AN Ti, (5.6) shows that wf k þ wf v on 6
i AN Ti. Hence, anyway,

we deduce

wf vð5:7Þ

on W . On dTi, k þ w ¼ �1þ 1 ¼ 0 and hjTi ¼ 0 yield with (5.6) that v ¼ 0,
i.e. v j ð6

1eien
dTiÞ ¼ 0 ¼ ð1� wnÞ j ð61eien

dTiÞ. As an e¤ect of the technical

requirement (5.5) we see that v < 1 ¼ 1� wn on qWn ¼ qQn. Thus the maxi-
mum principle assures that v < 1� wn on Wn. Hence ve limn!yð1� wnÞ on W
and by (5.4) we deduce

1� wf vð5:8Þ

on W . Thus, by (5.3), we conclude that (5.7) and (5.8) yield

0e vew5ð1� wÞ ¼ 0

on W so that v1 0 on W , as required.
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