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Existence of solutions and monotone iterative method
for infinite systems of

parabolic differential-functional equations

by Stanis law Brzychczy (Kraków)

Abstract. We consider the Fourier first boundary value problem for an infinite system
of weakly coupled nonlinear differential-functional equations. To prove the existence and
uniqueness of solution, we apply a monotone iterative method using J. Szarski’s results
on differential-functional inequalities and a comparison theorem for infinite systems.

1. Introduction. We consider an infinite system of weakly coupled
differential-functional equations of the form

(1) F i[zi](t, x) = f i(t, x, z(t, ·)), i ∈ S,
where

F i :=
∂

∂t
−Ai, Ai :=

m∑
j,k=1

aijk(t, x)
∂2

∂xj∂xk
,

x = (x1, . . . , xm), (t, x) ∈ (0, T ) × G := D, T < ∞, G ⊂ Rm and G is an
open bounded domain with C2+α (0 < α ≤ 1) boundary.

Let B(S) be the Banach space of mappings

v : S 3 i→ vi ∈ R,

with the finite norm

‖v‖B(S) := sup{|vi| : i ∈ S},
where S is a denumerable set of indices (finite or infinite). The case of finite
systems (B(S) = Rr) was treated in [3, 4]. For infinite countable S we have
B(S) = l∞ and we now focus on such infinite systems. Thus,

‖v‖B(S) = ‖v‖l∞ .
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Denote by CS(G) the real Banach space of mappings

w : G 3 x→ (w(x) : S 3 i→ wi(x) ∈ R) ∈ l∞,

where wi are continuous in G, with the finite norm

‖w‖ := sup{|wi(x)| : x ∈ G, i ∈ S}.

For any fixed t ∈ [0, T ), we denote by z(t, ·) = (z1(t, ·), z2(t, ·), . . .) the
function

z(t, ·) : G 3 x→ z(t, x) ∈ l∞

which is an element of the space CS(G). We denote the space of these
functions by CS(D).

For system (1) we consider the following Fourier first boundary value
problem:

Find a regular solution z = z(t, x) of (1) in D satisfying the boundary
condition

(2) z(t, x) = g(t, x) for (t, x) ∈ Σ,

where σ := (0, T ) × ∂G, D0 := {(t, x) : t = 0, x ∈ G}, Σ := D0 ∪ σ,
D := D ∪Σ and g = (g1, g2, . . .).

To prove the existence and uniqueness of the solution, we apply an it-
erative successive approximations method (see [3, 4]). We use J. Szarski’s
results [9, 10] on differential-functional inequalities and a comparison theo-
rem for infinite systems and parabolic differential inequalities [8].

Infinite systems of parabolic differential and differential-integral equa-
tions are used to describe polymerization-type chemical reaction phenom-
ena (coagulation and fragmentation of clusters) [2], [6]. An infinite system
of ordinary differential equations was introduced by M. Smoluchowski ([7],
1917) as a model for coagulation of colloids moving according to a Brownian
motion.

2. Notations, definitions and assumptions. A mapping z ∈ CS(D)
will be called regular if the functions zi (i ∈ S) are continuous in D and
have continuous derivatives ∂zi/∂t, ∂2zi/∂xi∂xk in D for j, k = 1, . . . ,m.
We write briefly z ∈ Creg

S (D).
A regular mapping will be called a regular solution of problem (1), (2)

in D if the above equations are satisfied in D and the boundary condition
(2) is satisfied.

The Hölder space Cl+α(D) := C(l+α)/2,l+α(D) (l = 0, 1, 2, . . .; 0 < α
≤ 1) is the space of continuous functions f whose derivatives ∂r+sf/∂tr∂xs

:= Dr
tD

s
xf(t, x) (0 ≤ 2r + s ≤ l) all exist and are Hölder continuous with
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exponent α (0 < α ≤ 1) in D, with the finite norm

|f |l+α := sup
(t,x)∈D

0≤2r+s≤l

|Dr
tD

s
xf(t, x)|+ sup

P,P ′∈D
2r+s=l
P 6=P ′

|Dr
tD

s
xf(t, x)−Dr

tD
s
xf(t′, x′)|

[d(P, P ′)]α
,

where P = (t, x), P ′ = (t′, x′) and d(P, P ′) is the parabolic distance defined
by

d(P, P ′) := (|t− t′|+ ‖x− x′‖2Rm)1/2,
and ‖x‖Rm := (

∑m
j=1 x

2
j )

1/2.
We denote by Cl+αS (D) the Banach space of mappings z such that zi ∈

Cl+α(D) for all i ∈ S.
In the space CS(D) the following order is introduced: for z, z̃ ∈ CS(D)

the inequality z ≤ z̃ means that zi(t, x) ≤ z̃i(t, x) for all (t, x) ∈ D, i ∈ S.
We assume that the operators Ai (i ∈ S) are uniformly elliptic in D,

i.e., there exists a constant µ > 0 such that
m∑

j,k=1

aijk(t, x)ξjξk ≥ µ
m∑
j=1

ξ2j

for all ξ = (ξ1, . . . , ξm) ∈ Rm, (t, x) ∈ D, i ∈ S.
We say that the operators F i = ∂/∂t−Ai (i ∈ S) are uniformly parabolic

in D when the operators Ai are uniformly elliptic in D.
Functions u = u(t, x) and v = v(t, x) ∈ CregS (D) satisfying the systems

of inequalities

(3)
{
F i[ui](t, x) ≤ f i(t, x, u(t, ·)) for (t, x) ∈ D, i ∈ S,
u(t, x) ≤ g(t, x) for (t, x) ∈ Σ,

(4)
{
F i[vi](t, x) ≥ f i(t, x, v(t, ·)) for (t, x) ∈ D, i ∈ S,
v(t, x) ≥ g(t, x) for (t, x) ∈ Σ

are called, respectively, a lower and an upper function for problem (1), (2)
in D.

We assume that the functions

f i : D × CS(G) 3 (t, x, s)→ f i(t, x, s) ∈ R, i ∈ S,
satisfy the following assumptions:

(Hf ) f i(·, ·, s) ∈ C0+α(D) (i ∈ S);
(L) f i (i ∈ S) satisfy the Lipschitz condition with respect to s, i.e., for

all s, s̃ we have

|f i(t, x, s)− f i(t, x, s̃)| ≤ L‖s− s̃‖ for (t, x) ∈ D,
where L > 0 is constant;

(W ) f i (i ∈ S) are increasing with respect to s.
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(Ha) The coefficients aijk = aijk(t, x), aijk = aikj (j, k = 1, . . . ,m, i ∈ S)
in (1) are Hölder continuous with respect to t and x in D, i.e., aijk ∈
C0+α(D).

(Hg) gi ∈ C2+α(Σ) for i ∈ S.
We remark that if gi ∈ C2+α(Σ) and ∂G ∈ C2+α then, without loss of

generality, we can consider the homogeneous boundary condition

(5) z(t, x) = 0 for (t, x) ∈ Σ.

Accordingly, in what follows we confine ourselves to considering the homo-
geneous problem (1), (5) in D only.

Assumption (A). There exists at least one pair u0 = u0(t, x), v0 =
v0(t, x) of a lower and an upper function for problem (1), (5) in D.

3. Existence and uniqueness theorem

Theorem. Let all the above assumptions hold. Consider the following
infinite systems of linear equations:

F i[uin](t, x) = f i(t, x, un−1(t, ·)),(6)
F i[vin](t, x) = f i(t, x, vn−1(t, ·)), i ∈ S,(7)

for n = 1, 2, . . . with boundary condition (5). Then

(i) there exist unique regular solutions un and vn (n = 1, 2, . . .) of sys-
tems (6) and (7) with boundary condition (5) in D;

(ii) the inequalities

(8) un−1(t, x) ≤ un(t, x), vn(t, x) ≤ vn−1(t, x)

hold for (t, x) ∈ D (n = 1, 2, . . .);
(iii) the functions un and vn (n = 1, 2, . . .) are lower and upper functions

for problem (1), (5) in D, respectively ;
(iv) limn→∞[vn(t, x)− un(t, x)] = 0 uniformly in D;
(v) the function

z(t, x) = lim
n→∞

un(t, x)

is a unique regular solution of problem (1), (5) in D and z ∈ C2+α
S (D).

Before going into the proof we introduce the Nemytskĭı operator and
prove some lemmas. Nemytskĭı operators play an important role in the
theory of nonlinear equations. For more information see [1].

Remark 1. If u and v are lower and upper functions for problem (1), (5)
in D, respectively, and z is a regular solution of this problem, then by the
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Szarski theorem on differential-functional inequalities for infinite systems of
parabolic type [10] we have

(9) u(t, x) ≤ z(t, x) ≤ v(t, x) for (t, x) ∈ D.

In particular we have

(10) u0(t, x) ≤ z(t, x) ≤ v0(t, x) for (t, x) ∈ D.

Let β∈CS(D) be a sufficiently regular function. Denote by P the oper-
ator

P : β → γ = Pβ,
where γ is the (supposedly unique) solution of the boundary value problem

(11)
{
F i[γi](t, x) = f i(t, x, β(t, ·)) for (t, x) ∈ D, i ∈ S,
γ(t, x) = 0 for (t, x) ∈ Σ.

The operator P is the composition of the nonlinear Nemytskĭı operator
F = (F1,F2, . . .),

F : β → δ = Fβ,

where

Fiβ(t, x) := f i(t, x, β1(t, ·), β2(t, ·), . . .) = δi(t, x), i ∈ S,

and δ = (δ1, δ2, . . .), and the linear operator

G : δ → γ,

where γ is the (supposedly unique) solution of the linear problem

(12)
{
F i[γi](t, x) = δi(t, x) in D, i ∈ S,
γ(t, x) = 0 on Σ.

Hence P = G ◦ F.

Lemma 1. If β ∈ C0+α
S (D) and the function f = (f1, f2, . . .) generating

the Nemytskĭı operator F satisfies conditions (Hf ) and (L), then

δ = Fβ ∈ C0+α
S (D).

P r o o f. Since β ∈ C0+α
S (D), we have

|βi(t, x)− βi(t′, x′)| ≤ K(|t− t′|+ ‖x− x′‖2Rm)α/2

for all (t, x), (t′, x′) ∈ D and i ∈ S, where K is some nonnegative constant.
Hence

‖β(t, ·)− β(t′, ·)‖ = sup
i∈S
x∈G

{|βi(t, x)− βi(t′, x)|} ≤ K|t− t′|α/2.

From (Hf ) and (L) it follows that



20 S. Brzychczy

|δi(t, x)− δi(t′, x′)|
= |Fiβ(t, x)− Fiβ(t′, x′)|

= |f i(t, x, β(t, ·))− f i(t′, x′, β(t′, ·))|

≤ |f i(t, x, β(t, ·))− f i(t′, x′, β(t, ·))|+ |f i(t′, x′, β(t, ·))− f i(t′, x′, β(t′, ·))|

≤ K1(|t− t′|+ ‖x− x′‖2Rm)α/2 + L‖β(t, ·)− β(t′, ·)‖

≤ K1(|t− t′|+ ‖x− x′‖2Rm)α/2 + LK|t− t′|α/2

≤ K∗(|t− t′|+ ‖x− x′‖2Rm)α/2,

where K∗ = K1 + LK for all (t, x), (t′, x′) ∈ D, i ∈ S. Therefore δ ∈
C0+α
S (D).

Lemma 2. If δ ∈ C0+α
S (D) and the coefficients satisfy assumption (Hα),

then problem (1), (5) has a unique regular solution γ ∈ C2+α
S (D).

P r o o f. Observe that system (12) has the following property: the ith
equation depends on the ith unknown function only. Therefore, applying
the theorem on the existence and uniqueness of solution of Fourier’s first
problem for a linear parabolic equation (see A. Friedman [5], Theorems 6
and 7, p. 65), the statement of the lemma follows immediately.

Lemmas 1 and 2 yield

Corollary. P = G ◦ F : C0+α
S (D) 3 β → γ = Pβ ∈ C2+α

S (D).

Lemma 3. If β is an upper function (resp. a lower function) for problem
(1), (5) in D, then Pβ(t, x) ≤ β(t, x) (resp. Pβ(t, x) ≥ β(t, x)) in D.

P r o o f. If β is an upper function, then by (4) we have

F i[βi](t, x) ≥ f i(t, x, β(t, ·)) in D, i ∈ S.
From the definition of the operator P (see (12)) it follows that

F i[γi](t, x) = f i(t, x, β(t, ·)) in D, i ∈ S.
Therefore

F i[γi − βi](t, x) ≤ 0 in D, i ∈ S.
and

γ(t, x)− β(t, x) ≤ 0 on Σ.

Hence, by the Szarski theorem [10], we have γ(t, x)− β(t, x) ≤ 0 in D so

(13) Pβ(t, x) = γ(t, x) ≤ β(t, x) in D.

Lemma 4. If β is an upper (resp. a lower) function for problem (1), (5)
in D, then γ = Pβ is also an upper (resp. a lower) function for problem
(1), (5) in D.
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P r o o f. From (11), (13) and condition (W ),

F i[γi](t, x)− f i(t, x, γ(t, ·)) = f i(t, x, β(t, ·))− f i(t, x, γ(t, ·)) ≥ 0

in D, i ∈ S, and γ(t, x) = 0 on Σ. From the Corollary it follows that γ is a
regular function, so it is an upper function for problem (1), (5) in D.

Proof of Theorem. Starting from a lower function u0 and an upper
function v0, we define by induction

u1 = Pu0, un = Pun−1,

v1 = Pv0, vn = Pvn−1, n = 1, 2, . . .

From Lemmas 1, 2 and 4 it follows that un and vn (n = 1, 2, . . .) are
respectively a lower and an upper function for problem (1), (5) in D.

By induction, from Lemma 3 we have

un−1(t, x) ≤ Pun−1(t, x) = un(t, x),

vn(t, x) = Pvn−1(t, x) ≤ vn−1(t, x) (n = 1, 2, . . .) for (t, x) ∈ D.
Therefore

u0(t, x) ≤ u1(t, x) ≤ . . . ≤ un(t, x)
≤ . . . ≤ vn(t, x) ≤ . . . ≤ v1(t, x) ≤ v0(t, x)

for (t, x) ∈ D.
We now show by induction that

(14) win(t, x) ≤ N0
(Lt)n

n!
, n = 0, 1, 2, . . . , for (t, x) ∈ D, i ∈ S,

where by (9) and (10),

(15) win(t, x) = vin(t, x)− uin(t, x) ≥ 0 in D

and
N0 = max

i∈S
max

(t,x)∈D
[vi0(t, x)− ui0(t, x)] ≥ 0;

owing to the regularity of u0 and v0 we have N0 <∞.
It is obvious that (14) holds for w0. Suppose it holds for wn. Since the

functions f i (i ∈ S) satisfy the Lipschitz condition (L), by (6), (7), (8), (14)
and (15), we get

F i[win+1](t, x) = f i(t, x, vn(t, x))− f i(t, x, un(t, ·)) ≤ L‖wn(t, ·)‖.

By the definition of the norm in CS(D) and by (14) we get

‖wn(t, ·)‖ ≤ (Lt)n

n!
,

so we finally obtain

(16) F i[win+1](t, x) ≤ N0
Ln+1tn

n!
for (t, x) ∈ D, i ∈ S,
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and
wn+1(t, x) = 0 for (t, x) ∈ Σ.

Consider the comparison system

(17) F i[M i
n+1](t, x) = N0

Ln+1tn

n!
for (t, x) ∈ D, i ∈ S,

with the boundary condition

(18) Mn+1(t, x) ≥ 0 on Σ.

It is obvious that the functions

M i
n+1(t, x) = N0

(Lt)n+1

(n+ 1)!
, i ∈ S.

are regular solutions of (17), (18) in D.
Applying a theorem on differential inequalities of parabolic type ([8],

Theorem 64.1, p. 195) to systems (16) and (17) we get

win+1(t, x) ≤M i
n+1(t, x) = N0

(Lt)n+1

(n+ 1)!
for (t, x) ∈ D, i ∈ S,

so the induction step is proved and so is inequality (14).
As a direct consequence of (14) we obtain

(19) lim
n→∞

[vn(t, x)− un(t, x)] = 0 uniformly in D.

The functional sequences {un} and {vn} are monotone and bounded,
and (19) holds, so there exists a continuous function U = U(t, x) in D such
that

(20) lim
n→∞

un(t, x) = U(t, x), lim
n→∞

vn(t, x) = U(t, x) uniformly in D.

Since the functions f i (i ∈ S) are monotone (condition (W )), from (8) it
follows that the functions f i(t, x, un−1(t, ·)) (i ∈ S) are uniformly bounded
in D with respect to n. Hence we conclude by Lemma 2 that all the functions
un ∈ C2+α

S (D) for n = 1, 2, . . . satisfy the Hölder condition with a constant
independent of n. Hence U ∈ C0+α

S (D).
If we now consider the system of equations

(21) F i[zi](t, x) = f i(t, x, U(t, ·)) = FiU(t, x) for (t, x) ∈ D, i ∈ S
with boundary condition (5), then by Lemma 1 we have FiU ∈ C0+α

S (D).
Therefore by Lemma 2 this problem has a unique regular solution z ∈
C2+α
S (D).

Let us now consider systems (6) and (21) together, and apply Szarski’s
theorem ([8], Theorem 51.1, p. 147) on the continuous dependence of solu-
tion of the first problem on initial and boundary values and on the right-hand
sides of the systems.
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Since the f i (i ∈ S) satisfy the Lipschitz condition (L), by (20) we have

lim
n→∞

f i(t, x, un(t, ·)) = f i(t, x, U(t, ·)) uniformly in D.

Hence

(22) lim
n→∞

un(t, x) = z(t, x).

By (20) and (22),

z = z(t, x) = U(t, x) for (t, x) ∈ D
is a regular solution of problem (1), (5) in D and z ∈ C2+α

S (D).
The uniqueness of the solution follows from Szarski’s uniqueness criterion

[9]. It also follows directly from inequality (14).

Remark 2. Instead of Assumption (A), one may use the following
stronger assumption (see [4]):

Assumption (A∗). There exists at least one pair u0 = u0(t, x), v0 =
v0(t, x) of a lower and an upper function for problem (1), (5) in D such that

u0(t, x) ≤ v0(t, x) for (t, x) ∈ D.
Under Assumption (A∗), the other assumptions on the functions f i may

be weakened in such a way that conditions (Hf ), (L) and (W ) hold only
locally in the set K, where K := {(t, x, s) : (t, x) ∈ D, s ∈ 〈u0, v0〉} and
〈u0, v0〉 is the segment defined by

〈u0, v0〉 := {s ∈ CS(D) : u0(t, x) ≤ s(t, x) ≤ v0(t, x) for (t, x) ∈ D}.
The existence and uniqueness of the solution will then be guaranteed in the
set 〈u0, v0〉, though.
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