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Abstract

In this paper, we prove the existence of solutions for a boundary value problem

involving both left Riemann-Liouville and right Caputo-type fractional derivatives. For

this, we convert the posed problem to a sum of two integral operators, then we apply

Krasnoselskii’s fixed point theorem to conclude the existence of nontrivial solutions.
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1 Introduction

The study of differential equations with forward and backward fractional derivatives is

interesting since they can model some physical phenomena such as the fractional oscil-

lator equations and the fractional Euler-Lagrange equations. Recently, a linear boundary

value problem involving both the right Caputo and the left Riemann-Liouville fractional

derivatives have been studied bymany authors [–]. Blaszczyk andCiesielski [–] solved

numerically a class of fractional Euler-Lagrange equations by transforming them into in-

tegral equations. Guezane-Lakoud, Khaldi and Torres [] used an upper and lower solu-

tions method combined with the monotonicity of the right Caputo derivative to prove the

existence of solutions for a nonlinear fractional oscillator equation and the unbounded

solutions were studied in [] by Guezane-Lakoud and Kılıçman.

The aim of this work is to study of existence of solutions for a nonlinear boundary value

problem involving both the right Caputo and the left Riemann-Liouville fractional deriva-

tives:

–CDα
–D

β

+u(t) + f
(

t,u(t)
)

= ,  < t < , ()

u() = u′() = u() = , ()

where  < α ≤ ,  < β ≤ , CDα
– denotes the right Caputo derivative, D

β

+ denotes the left

Riemann-Liouville, u is the unknown function and f : [, ]× R → R satisfies some condi-

tions that will be specified later. For this end, we transform problem ()-() to an integral

equation that we write as a sum of a contraction and a completely continuous operator;

then we use Krasnoselskii’s fixed point theorem to prove the existence of nontrivial solu-

tions.
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Note that, according to boundary conditions (), the Caputo derivatives CD
β

+ and
CDα

–

coincide respectively with the Riemann-Liouville derivatives D
β

+ and Dα
– . So, equation

() is reduced to the one containing only Caputo derivatives or only Riemann-Liouville

derivatives, i.e.,

–CDαC
– D

β

+u(t) + f
(

t,u(t)
)

= ,  < t < ,

or

–Dα
–D

β

+u(t) + f
(

t,u(t)
)

= ,  < t < .

Note that this study can be extended to a similar boundary value problem as follows:

CDαC
+ D

β

–u(t) + f
(

t,u(t)
)

= ,

u() = u′() = u() = ,

see Remark ..

Let us mention some interesting papers where fractional boundary value problems have

been studied by different methods such as the upper and lower solutions method, fixed

point theorems, successive approximations method, Mawhin coincidence degree theory

and many more; see, for example, [, –].

We recall some essential definitions on fractional calculus, we refer the reader to [, ,

] for more details.

Let p > , then the left and right Riemann-Liouville fractional integral of a function g

are defined, respectively, by

I
p
+g(t) =



Ŵ(p)

∫ t



g(s)

(t – s)–p
ds,

I
p
–g(t) =



Ŵ(p)

∫ 

t

g(s)

(s – t)–p
ds.

The left Riemann-Liouville fractional derivative and the right Caputo fractional deriva-

tive of order p > , of a function g are, respectively,

D
p
+g(t) =

dn

dtn

(

I
n–p
+ g

)

(t),

CD
p
–g(t) = (–)nI

n–p
– g(n)(t),

where n– < p < n. For the properties of Riemann-Liouville and Caputo fractional deriva-

tives, we mention the following.

Let n –  < p < n and f ∈ L[, ]. Then

() I
pC
+ D

p
+ f (t) = f (t) –

∑n–
k=

f (k)()
k!

tk ;

() I
pC
– D

p
– f (t) = f (t) –

∑n–
k=

(–)k f (k)()
k!

( – t)k .

Next, we state Krasnoselskii’s fixed point theorem that can be found with its proof in

[].
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Theorem . (Krasnoselskii) Let M be a closed bounded convex nonempty subset of a Ba-

nach space E. Suppose that A and B map M into E such that

(i) A is completely continuous,

(ii) B is a contraction mapping,

(iii) x, y ∈M implies Ax + By ∈M.

Then there exists z ∈ M with z = Az + Bz.

2 Existence of nontrivial solutions

We begin by solving the following linear problem:

–CDα
–D

β

+u(t) + y(t) = ,  < t < , ()

u() = u′() = u() = . ()

Lemma . Assume that y ∈ L[, ], then u is a solution to the linear boundary value

problem ()-() if and only if u satisfies the integral equation

u(t) =

∫ 



G(t, r)y(r)dr – tβ
∫ 



g(r)y(r)dr, ()

where

G(t, r) =


Ŵ(α)Ŵ(β)

⎧

⎨

⎩

∫ r


(t – s)β–(r – s)α– ds,  ≤ r ≤ t ≤ ,

∫ t


(t – s)β–(r – s)α– ds,  ≤ t ≤ r ≤ .

()

g(r) =


Ŵ(α)Ŵ(β)

∫ r



( – s)β–(r – s)α– ds.

Proof Firstly, we apply the right-hand side fractional integral Iα– to equation (), then

the fractional integral I
β

+ to the resultant equation and take into account that D
β

+u(t) =
CD

β

+u(t) and the properties of Caputo fractional derivatives. We get

u(t) = I
β

+ I
α
–y(t) +

ct
β

Ŵ(β + )
+ u() + u′()t. ()

Using the boundary conditions u() = u′() = , then u() = , we get

c = –Ŵ(β + )I
β

+ I
α
–y(t)|t=.

Substituting c in () yields

u(t) = I
β

+ I
α
–y(t) – tβ

(

I
β

+ I
α
–y(t)|t=

)

=


Ŵ(α)Ŵ(β)

∫ t



(t – s)β–
(∫ 

s

(r – s)α–y(r)dr

)

ds

–
tβ

Ŵ(α)Ŵ(β)

∫ 



( – s)β–
(∫ 

s

(r – s)α–y(r)dr

)

ds.
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Finally, by using the Fubini theorem, we get

u(t) =


Ŵ(α)Ŵ(β)

∫ t



(∫ r



(t – s)β–(r – s)α– ds

)

y(r)dr

+


Ŵ(α)Ŵ(β)

∫ 

t

(∫ t



(t – s)β–(r – s)α– ds

)

y(r)dr

–
tβ

Ŵ(α)Ŵ(β)

∫ 



(∫ r



( – s)β–(r – s)α– ds

)

y(r)dr,

this achieves the proof. �

In the next lemma, we give the properties of the functions G and g .

Lemma . The functions G and g satisfy the following properties:

() The functions G(t, r) and g(r) are nonnegative.

() G(t, r)≤ 
Ŵ(α+)Ŵ(β)

and g(r) ≤ 
Ŵ(α+)Ŵ(β)

for all r, t ∈ [, ].

Proof It is obvious that G(t, r) ≥ . Set

g(t, r) =

∫ r



(t – s)β–(r – s)α– ds,  ≤ r ≤ t ≤ ,

and

g(t, r) =

∫ t



(t – s)β–(r – s)α– ds,  ≤ t ≤ r ≤ .

Then

g(t, r)≤

∫ r



(r – s)α– ds =
rα

α
≤



α
,  ≤ r ≤ t ≤ .

g(t, r) ≤

∫ t



(t – s)β+α– ds =
tβ+α–

β + α – 
≤



α
,  ≤ t ≤ r ≤ .

Consequently,G(t, r) ≤ 
Ŵ(α+)Ŵ(β)

for all r, t ∈ [, ]. Similarly, we prove that g(r) ≤ 
Ŵ(α+)Ŵ(β)

for all r ∈ [, ]. The proof is complete.

Define the Banach space E = C([, ],R) and the operators A and B on E by

Au(t) =

∫ 



G(t, r)f
(

r,u(r)
)

dr,

Bu(t) = –tβ
∫ 



g(r)f
(

r,u(r)
)

dr.

Obviously, problem ()-() has a solution if and only if A + B has a fixed point, i.e.,

Au(t) + Bu(t) = u(t), t ∈ [, ].

To prove this end, we make the following hypothesis:
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(H) The function f (·, ) is continuous and not identically null on [, ], and there exists

a nonnegative function k ∈ L([, ],R+) such that

∣

∣f (t,x) – f (t, y)
∣

∣ ≤ k(t)|x – y|,  ≤ t ≤ ,x, y ∈ R,

‖k‖L <
Ŵ(α + )Ŵ(β)


.

Let

M =
{

u ∈ E,‖u‖ ≤ R
}

,

where R is chosen such that

R ≥
L

Ŵ(α + )Ŵ(β) – ‖k‖L
, ()

with L = max{|f (t, )|, ≤ t ≤ }. Clearly,M is a nonempty, bounded and convex subset of

the Banach space E. �

Theorem . Under the hypothesis (H), problem ()-() has nontrivial solutions in M.

To prove Theorem , we have to prove that all the assumptions of Krasnoselskii’s fixed

point theorem are satisfied, for this we need the following lemmas.

Lemma . Under the hypothesis (H), the mapping A is completely continuous on M.

Proof The proof will be done in three steps.

Step . The mapping A is continuous onM. Consider the sequence (un)n ∈ M such that

un → u inM, then from Lemma  and the hypothesis (H) we get

∣

∣Aun(t) –Au(t)
∣

∣ ≤

∫ 



G(t, r)
∣

∣f
(

r,un(r)
)

– f
(

r,u(r)
)
∣

∣dr

≤
‖k‖L‖un – u‖

Ŵ(α + )Ŵ(β)
≤

‖un – u‖


.

Consequently, ‖Aun –Au‖ → , when n tends to ∞.

Step . (Au) is uniformly bounded onM. Let u ∈M, then by condition (H) it yields

∣

∣Au(t)
∣

∣ ≤

∫ 



G(t, r)
∣

∣f
(

r,u(r)
)
∣

∣dr

≤

∫ 



G(t, r)
[
∣

∣f
(

r,u(r)
)

– f (r, )
∣

∣ +
∣

∣f (r, )
∣

∣

]

dr

≤
‖k‖L‖u‖

Ŵ(α + )Ŵ(β)
+

L

Ŵ(α + )Ŵ(β)
≤

R‖k‖L + L

Ŵ(α + )Ŵ(β)
. ()

Step . (Au) is equicontinuous onM. We have, for u ∈M, ≤ t < t ≤ ,

∣

∣Au(t) –Au(t)
∣

∣ ≤

∫ t



∣

∣G(t, r) –G(t, r)
∣

∣

∣

∣f
(

r,u(r)
)
∣

∣dr

+

∫ t

t

∣

∣G(t, r) –G(t, r)
∣

∣

∣

∣f
(

r,u(r)
)
∣

∣dr
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+

∫ 

t

∣

∣G(t, r) –G(t, r)
∣

∣

∣

∣f
(

r,u(r)
)
∣

∣dr

≤
(R‖k‖L + L)

Ŵ(α)Ŵ(β)

(∫ t



(∫ r



(

(t – s)β– – (t – s)β–
)

(r – s)α– ds

)

dr

+

(∫ 

t

∫ t



(

(t – s)β– – (t – s)β–
)

(r – s)α– ds

)

dr

+

∫ t

t

(∫ r

t

(t – s)β–(r – s)α– ds

)

dr

+

∫ 

t

(∫ t

t

(t – s)β–(r – s)α– ds

)

dr

)

≤
(R‖k‖L + L)

Ŵ(α)Ŵ(β)

[

(β – )(t – t)

(

 – ( – t)
α+

α(α + )

)

+

(

( – t)
α+ – ( – t)

α+

α(α + )

)]

.

So, |Au(t) – Au(t)| tends to zero when t → t, thus (Au) is equicontinuous. Finally, by

Arzela-Ascoli’s theorem, it follows that A is a completely continuous mapping onM. The

proof is complete. �

Lemma . Under the hypothesis (H), the mapping B is a contraction on M.

Proof Let u, v ∈M, then

∣

∣Bu(t) – Bv(t)
∣

∣ ≤

∫ 



g(r)
∣

∣f
(

r,u(r)
)

– f
(

r, v(r)
)
∣

∣dr

≤
‖k‖L‖u – v‖

Ŵ(α + )Ŵ(β)
≤

‖u – v‖


,

thus B is a contraction onM. The proof is complete. �

Lemma . Under the hypothesis (H), Au + Bv ∈M for all u, v ∈ M.

Proof From () and (), we get

∣

∣Au(t)
∣

∣ ≤
(R‖k‖L + L)

Ŵ(α + )Ŵ(β)
≤

R


, u ∈M.

Proceeding as in Step  of the proof of Lemma ., we get

∣

∣Bv(t)
∣

∣ ≤
(R‖k‖L + L)

Ŵ(α + )Ŵ(β)
≤

R


, v ∈M,

thus

‖Au + Bv‖ ≤ ‖Au‖ + ‖Bv‖ ≤ R,

so, Au + Bv ∈M. The proof is complete. �
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Proof of Theorem  Since the mapping A is completely continuous by Lemma ., the

mapping B is a contraction by Lemma . and Au+Bv ∈M for all u, v ∈ M by Lemma ..

Then all the hypotheses of Theorem  are satisfied. Thus there exists a nontrivial solution

u∗ ∈M for problem ()-() such that u∗ = Au∗ + Bu∗. The proof is complete. �

Remark . The present study can be extended to similar problems. For example, we can

prove the existence of solutions for the following boundary value problem:

CDαC
+ D

β

–u(t) + f
(

t,u(t)
)

= , ()

u() = u′() = u() = . ()

In fact, let Q be the reflection operator (Qf )(t) = f ( – t). Since (QQu)(t) = u(t), CD
β

–Q =

QCD
β

+ and
CDα

+Q =QCDα
– (see []), then the boundary value problem ()-() is equiv-

alent to the following one:

QCDαC
– D

β

+Qu(t) + f
(

t,QQu(t)
)

= ,

u() = u′() = u() = .

Set v(t) = Qu(t), then applying the operator Q, the boundary value problem ()-() be-

comes

–CDαC
– D

β

+v(t) + F
(

t, v(t)
)

= ,

v() = v′() = v() = ,

where F(t,x) = –f ((–t),x). Thus both f and F satisfy condition (H). Thanks toTheorem,

we conclude that problem ()-() has a nontrivial solution.

Example . If we consider problem ()-() with α = 

, β = 


and

f (t,x) =
sin t



(

x –
t

( + x)

)

,

then it has a solution u∗ such that ‖u∗‖ ≤ . Indeed, the hypothesis (H) holds:

∣

∣f (t,x) – f (t, y)
∣

∣ =
sin t



∣

∣

∣

∣

x – y –
t



(



 + x
–



 + y

)∣

∣

∣

∣

=
sin t


|x – y|

∣

∣

∣

∣

 +
t



(

x + y

( + x)( + y)

)∣

∣

∣

∣

≤



sin t|x – y| = k(t)|x – y|,  ≤ t ≤ ,x, y ∈ R.

Moreover, we have

‖k‖L =

∫ 






sin t dt = . < . =

Ŵ(α + )Ŵ(β)


.
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Since

L = sup
{
∣

∣f (t, )
∣

∣,  ≤ t ≤ 
}

=
sin 


= .

and

L

Ŵ(α + )Ŵ(β) – ‖k‖L
= .,

then R can be chosen as R =  ≥ .. Thus, by Theorem , this problem has a non-

trivial solution

u∗ ∈M =
{

u ∈ E,‖u‖ ≤ 
}

.
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