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Abstract: We are concerned with the solvablity of certain nonlinear partial differential

equation (PDE), which is derived from the optimal investment problem under the random risk

process. The equation describes the evolution of the Arrow-Pratt coefficient of absolute risk

aversion with respect to the optimal value function. Employing the fixed point approach

combined with the convergence argument we show the existence of solutions.
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1. Introduction. We deal with the exis-

tence of solutions for the singular parabolic partial

differential equation (PDE) of the form

@r

@t
¼ @

@x
1þ 1

r2

� �
@r

@x
� r2

� �
;ð1:1Þ

r ¼ rðx; tÞ in ðx; tÞ 2 �T :¼ Rþ � ð0; T Þ

where T > 0 and Rþ ¼ fx > 0g. The unknown

function r is related to the Arrow-Pratt coefficient

of absolute risk aversion [11] for the optimal value

function; it is natural to assume that r is positive

and non-increasing. We thus impose the next

condition for r.

r � 0;
@r

@x
ð0; tÞ ¼ 0;ð1:2Þ

rðx; tÞ ! � as x ! 1;

where � denotes non-negative constant. The deri-

vation of (1.1) and other properties are recalled in

§2.

The problem (1.1)(1.2) is supplemented by the

initial condition.

rðx; 0Þ ¼ r0ðxÞ on x 2 Rþ;ð1:3Þ

where the non-increasing initial datum r0 belongs to

H1ðRþÞ and satisfies the compatibility condition

(1.2).

The aim of the current article is to solve

(1.1)(1.2)(1.3) in a weak sense. To begin with we

clarify the notion of weak solutions (see for instance

[4]).

Definition 1. We say r a weak solution of

(1.1)(1.2)(1.3) if the following conditions are ful-

filled.

(1) r� � 2 L1ð0; T ;L2ðRþÞÞ \ L2ð0; T ;H1ðRþÞÞ,
@r=@t 2 L2ð0; T ;H�1ðRþÞÞ.

(2) There hold for each ’ 2 H1ðRþÞ and almost

every 0 � t � TZ
Rþ

@r

@t
ðx; tÞ’ðxÞdxð1:4Þ

¼ �
Z
Rþ

1þ
1

r2

� �
@r

@x

@’

@x
þ 2r

@r

@x
’

� �
dx:

(3) rðx; 0Þ ¼ r0ðxÞ in L2ðRþÞ.
The main result of this paper is then stated as

follows:

Theorem 2. For any positive and non-in-

creasing r0 2 H1ðRþÞ satisfying ð@r0=@xÞð0Þ ¼ 0

and r0ðxÞ ! � as x ! 1 with � > 0, there corre-

sponds T ¼ T ðr0Þ > 0 such that there exists a posi-

tive solution r for (1.1)(1.2)(1.3), which is non-

increasing in x, in the sense of Definition 1.

The proof of Theorem, which is performed in

§3, is based on an approximation argument with

the combination of fixed point approach. §4 is

devoted to the classification of steady state solu-

tions of (1.1). We conclude by Discussions in

§5 with a comment on the interpretation in

economics.

2. Model equation. Here we briefly sketch

the derivation and survey the background issues

of (1.1).

The basic model we follow is due to Browne [2].
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It is assumed that there is only one risky stock

available for investment, whose price Pt at time t is

governed by the stochastic differential equation of

Black-Scholes-Merton type [3,10]

dPt ¼ Ptð�dtþ �dW
ð1Þ
t Þ;

where � and � are constants and fW ð1Þ
t gt�0 is a

standard Brownian motion. There is also a risk

process, which is denoted by Yt and assumed to be

modeled as

dYt ¼ �dtþ �dW
ð2Þ
t ;

where � and � (� > 0) are constants and fW ð2Þ
t gt�0

is another standard Brownian motion. It is allowed

these two Brownian motions to be correlated with

the correlation coefficient �. We prescribe 0 � �2 <

1 in the sequel.

The company invests in the risky stock under

an investment policy f , where f ¼ fftg0�t�T is a

suitable, admissible adapted control process. T

stands for the maturity date. Let Xf
t denote the

wealth of the company at time t with X0 ¼ x,

whose evolution process is given by

dXf
t ¼ ft

dPt

Pt

þ dYt; X0 ¼ x:

The generator Af of this wealth process is then

expressed as

ðAfgÞðx; tÞ ¼
@g

@t
þ ðf�þ �Þ

@g

@x

þ
1

2
ðf2�2 þ �2 þ 2���fÞ

@2g

@x2
:

Suppose that the investor wants to maximize

the utility uðxÞ from his terminal wealth. The

utility function uðxÞ is customarily assumed to

satisfy u0 > 0 and u00 < 0. Let V ðx; tÞ ¼
supf E½uðXf

T Þ jX
f
t ¼ x�. Then the Hamilton-Jacobi-

Bellman equation becomes

sup
f
fAfV ðx; tÞg ¼ 0; V ðx; T Þ ¼ uðxÞ:ð2:1Þ

Suppose that (2.1) has a classical solution V with

@V =@x > 0, @2V =@x2 < 0. We then infer that

f�
t ¼ �

�

�2

@V =@x

@2V =@x2
�

��

�
;ð2:2Þ

where ff�
t g0�t�T denotes the optimal policy.

Placing (2.2) back into (2.1) we obtain

@V

@t
þ ��

���

�

� �
@V

@x
�

1

2

�

�

� �2ð@V =@xÞ2

@2V =@x2
ð2:3Þ

þ
1

2
�2ð1� �2Þ

@2V

@x2
¼ 0 for 0 < t < T

V ðT; xÞ ¼ uðxÞ:
Browne [2] shows that (2.3) possesses a solution in

the case uðxÞ ¼ �� ð�=�Þe��x with positive con-

stants �, �, �. This utility has constant absolute risk

aversion parameter �; precisely stated, �u00ðxÞ=
u0ðxÞ ¼ �. Abe [1] made a preliminary research

whether (2.3) has other solutions. Here we proceed

further in the analysis of (2.3).

Let vðx; tÞ be defined by V ðx; T � tÞ ¼
vðEðxþ FtÞ; GtÞ, where

E ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2

ð1� �2Þ�2�2

s
; F ¼ ��

���

�
; G ¼

1

2

�

�

� �2

:

It follows that after a calculation

@v

@t
¼ @2v

@x2
�

ð@v=@xÞ2

@2v=@x2
; vðx; 0Þ ¼ uðE�1xÞ:ð2:4Þ

The study of this singular parabolic PDE (2.4)

seems interesting. Here we additionally introduce

rðx; tÞ :¼ �
@2v=@x2

@v=@x
¼ �

@

@x
log
��� @v
@x

ðx; tÞ
���:ð2:5Þ

A little tedious computation then finally leads us to

the equation (1.1). It should be noted that (2.5) is

related to the coefficient of absolute risk aversion.

3. Proof of Theorem. Now we prove

Theorem 2. Since we seek for a solution r which

tends to � ð> 0Þ as x ! 1, we make a translation

r 7! rþ � so that we consider the next problem.

@r

@t
¼

@

@x
1þ

1

ðrþ �Þ2

 !
@r

@x
� ðrþ �Þ2

( )
;ð3:1Þ

r ¼ rðx; tÞ in ðx; tÞ 2 �T

@r

@x
ð0; tÞ ¼ 0;

@r

@x
ðx; tÞ � 0 for ðx; tÞ 2 �T

r ! 0 as x ! 1 for 0 < t < T

rðx; 0Þ ¼ r0ðxÞ � � for x 2 Rþ:

Fix L > 1 and let �L
T :¼ ð0; LÞ � ð0; T Þ. We

approximate r0 � � 2 H1ðRþÞ by rL0 � � 2 C1½0; L�
with @rL0 =@xð0Þ ¼ 0 and rL0 ðLÞ � � ¼ 0. We intro-

duce the convex set EL defined as

EL :¼ fr 2 C1ð�L
T Þ j 0 � r � K;

�K � @r=@x � 0 in �L
T ;
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@rð0; tÞ=@x ¼ 0; rðL; tÞ ¼ 0 for 0 < t < T;

rðx; 0Þ ¼ rL0 ðxÞ � � for 0 � x � Lg;

where K :¼ 2ðkr0 � �kC1½0;L� þ 1Þ.
Take s 2 EL and try to find a solution r 2 EL of

the problem

@r

@t
¼ 1þ

1

ðsþ �Þ2

 !
@2r

@x2
�

2

ðsþ �Þ3
@r

@x

� �2

ð3:2Þ

� 2ðrþ �Þ
@r

@x
in ðx; tÞ 2 �L

T :

A standard theory of PDE tells us that an a-priori

bound of r and @r=@x implies the existence of

solutions [5]. We first see that a simple application

of the maximum principle yields 0 � r �
krL0 � �kL1ð0;LÞ.

Moreover we derive that the equation for q :¼
@r=@x becomes

@q

@t
¼ 1þ

1

ðsþ �Þ2

 !
@2q

@x2
�

2

ðsþ �Þ3
@s

@x
þ 2q

� �
@q

@x

� 2ðrþ �Þ
@q

@x
� 2

�3

ðsþ �Þ3
@s

@x
þ 1

 !
q2

in ðx; tÞ 2 �L
T :

Since N :¼ 3��3K þ 1 � �3ðsþ �Þ�3ð@s=@xÞ þ 1 �
0, it follows that �K � @r=@x � 0 in �L

T with T :¼
ð4NKÞ�1 by virture that �2NK2t� 2�1K gives a

lower barrier. Gradient bound at x ¼ L is provided

by a supersolution �2�1Kðx� Lþ 1Þ2 þ 2�1K for

(3.2) on L� 1 < x < L. Thus we deduce that

krð�; tÞkC1½0;L� � K for every 0 � t � T , which en-

sures the existence of a solution to (3.2).

We define an operator B : EL ! EL by s 7!
r ¼ Bs is a solution of (3.2). Parabolic regularity

shows that B is compact. Since EL is a closed

convex set in a Banach space C1ð�L
T Þ we infer that

there exists a fixed point rL of B in EL thanks

to the Leray-Schauder fixed point theorem. See

Corollary 11.2 of [6].

Now that we have found a non-increasing

solution rL for the equation (1.1) on �L
T with

rLðLÞ ¼ �, we want to take a limit of L ! 1.

To do so we first extend rL to be defined on Rþ

by setting rLðx; tÞ ¼ � for x � L. Take any mono-

tone increasing sequence 0 < L1 < L2 < � � � < Ln <

� � � ! 1 and we write rnðx; tÞ ¼ rLnðx; tÞ for sim-

plicity. Plugging ’ ¼ rn � rm 2 H1ðRþÞ ðn > mÞ
into (1.4) for the equations of rn and rm respec-

tively, and subtracting term by term, we compute

1

2

d

dt
kðrn � rmÞðtÞk2L2ðRþÞ þ

@

@x
ðrn � rmÞðtÞ

����
����
2

L2ðRþÞ

¼ �
Z
Rþ

@rn=@x

r2n
�

@rm=@x

r2m
� r2n þ r2m

� �

�
@ðrn � rmÞ

@x
dx

þ � 1þ
1

r2m

� �
@rm

@x
þ r2m

� �
ðrn � rmÞ

���
x¼Lm

� 2ðK þ �Þ
K

�4
þ 1

� �
kðrn � rmÞðtÞkL2ðRþÞ�

�
@

@x
ðrn � rmÞðtÞ

����
����
L2ðRþÞ

þ 1þ
1

�2

� �
K þ �2

� �
jðrn � �ÞðLm; tÞj

� 1

2

@

@x
ðrn � rmÞðtÞ

����
����
2

L2ðRþÞ

þ 2ðK þ �Þ2
K

�4
þ 1

� �2

kðrn � rmÞðtÞk2L2ðRþÞ

þ 1þ
1

�2

� �
K þ �2

� �
jðrn � �ÞðLm; tÞj:

Gronwall lemma implies immediately that

kðrn � rmÞðtÞk2L2ðRþÞ

þ
Z t

0

eCðt�	Þ @

@x
ðrn � rmÞð	Þ

����
����
2

L2ðRþÞ
d	

� eCtkðr0Þn � ðr0Þmk
2
L2ðRþÞ

þ 1þ
1

�2

� �
K þ �2

� �Z t

0

eCðt�	Þjðrn � �ÞðLm; 	Þjd	;

where C :¼ 4ðK þ �Þ2ð��4K þ 1Þ2.
Since kðr0Þn � ðr0Þmk

2
L2ðRþÞ ! 0 as well as jðrn �

�ÞðLm; �Þj ! 0 as n;m ! 1, we see that frng
is a Cauchy sequence in L1ð0; T ;L2ðRþÞÞ \
L2ð0; T ;H1ðRþÞÞ. The limiting function r is seen

to verify (1.4) for each ’ 2 H1ðRþÞ and almost

every 0 � t � T . The existence of solution r claimed

in Theorem 2 is thereby established.

4. Steady state solutions. In this section

we analyze the structure of steady state solutions of

(1.1); that is, we determine the set of solutions for

1þ 1

r2

� �
@r

@x
� r2 ¼ C; r ¼ rðxÞ;

where C denotes a constant independent of x and t.

There are three possibilities according to the sign of

C. We note that, however, the first two cases are
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meaningless for the economics because r takes a

negative value.

If C > 0 then we write C ¼ M2 to obtain

�
1=M2

rðxÞ þ
1

M
�

1

M3

� �
tan�1 rðxÞ

M
ð4:1Þ

¼ x�
1=M2

rð0Þ þ
1

M
�

1

M3

� �
tan�1 rð0Þ

M
:

It follows that rðxÞ � �M�2x�1 as x ! 1.

If C ¼ 0 then we have

�
1

rðxÞ �
1

3rðxÞ3
¼ x�

1

rð0Þ �
1

3rð0Þ3
:ð4:2Þ

It follows that rðxÞ � �ð3xÞ�1=3 as x ! 1.

Consequently if C � 0 then there is no steady

state solution suitable to the finance. Only the next

last case fits into our requirement.

If C < 0 then we write C ¼ �M2 to obtain

1=M2

rðxÞ
þ

1þM2

2M3
log
��� rðxÞ �M

rðxÞ þM

���ð4:3Þ

¼ xþ
1=M2

rð0Þ þ
1þM2

2M3
log
��� rð0Þ �M

rð0Þ þM

���;
provided rðxÞ 6¼ M. In this case rðxÞ � M�2x�1 as

x ! 1. It is also clear that rðxÞ 	 M gives one of

steady state solutions, which has a character of

constant absolute risk aversion. It should be noted

that the last steady state solutions correspond to

those presented in [2].

5. Discussions. The solvability is discussed

for certain singular parabolic partial differential

equation (PDE), which is related to the Arrow-

Pratt coefficient of absolute risk aversion for the

optimal value function. We prove the existence of

solutions, which tend to a positive constant �.

However, the analysis of steady state solutions

exhibited in §4 indicates that the case � ¼ 0 may be

possible. The problem whether the equation admit a

solution which tends to zero or not is worth further

investigation. We will return to this topic from the

computational standpoint in the next paper [8].

The singular parabolic PDE of the form (2.3) or

(2.4) has been often observed in the stochastic

control theory. Indeed as mentioned in Hipp [7] the

achievement of Browne [2] is one of first papers on

this basis appeared in insurance mathematics,

which is now an important area of applications of

the stochastic control. We therefore believe that the

advanced qualitative study of such singular PDEs is

indispensable from the viewpoint of applications.

For more details on stochastic control applied

in insurance mathematics, see for instance a nice

review of Hipp [7] and the references cited therein.

We should point out, however, that the analysis of

these singular equations is much more challenging

than that of usual possible nonlinear Black-Scholes

equations (see for example [9,12]). We hope that

our paper has made a first step toward the better

understanding of these PDEs.
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