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EXISTENCE OF SOLUTIONS IN A CONE

FOR NONLINEAR ALTERNATIVE PROBLEMS

JUAN J. NIETO

Abstract. Using the alternative method we present sufficient conditions for the

existence of positive solutions to nonlinear equations at resonance and extend a

well-known result of Cesari and Kannan.

Introduction. Cesari and Kannan [2] proved an abstract result in terms of the

alternative method. Their result and some of its ramifications (see [1]) have been

applied to a large class of problems at resonance to prove the existence of solutions.

Let E be a Banach space. We say that C is a cone in E if C is a nonempty, convex

subset of E such that XC C C for every X 3* 0.

Here we prove the existence of solutions in a cone for equations at resonance of

the form Lu = Nu, where L is a linear operator and N is a (nonlinear) operator. In

the case when the cone is E, we obtain the well-known result of Cesari and Kannan

[2].
In applications, for instance, if L is an elliptic operator on a bounded domain S2 of

R", one usually takes £ as a subspace of L2(Í2) and the cone C = {zz g T : w > 0 a.e.

in fi}.

Also, our result is related to that of Gaines and Santanilla [3] concerning the

existence of solutions in a convex set.

Main result. Let E and F be Banach spaces with norms || ||£- and || ||F,

respectively. Let L: D(L) c E -» Tbe a linear operator and N: E -* Ta continuous

(nonlinear) operator such that N maps bounded sets into bounded sets. Assume that

C is a cone in E and

(1) there exists a continuous map y: E —> C such that y(c) = c

for every c g C, and y maps bounded sets in E into bounded

sets in E.

In addition, suppose that L is a Fredholm map of index 0 and there exist

projections P: E -» E, Q: F -* F, and a linear map 77: (7 - Q)F -» \l - P)E
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satisfying

77(7 - Q)Lu= (7 - P)u for every u g D(L),

(2) QLu = LPu for every iz'ej(l),

L77(7 - Q)Nu = (7 - Q)Nu    for every zz g E.

Thus, it is well known that Lu = Nu is equivalent to the coupled system of equations

QNu = 0 (bifurcation equation),

zz = Pu + 77(7 - Q)Nu    (auxiliary equation).

We can write the spaces E and F as the direct sums E = E0 © £,, £ = £0 © Fx,

where E0 = PE, Ex = (I — P)E, F0 = QF, and Fx = (I - Q)F. Also, we assume

(3) E0 = KerL, Fx = Im L, D(H) = Im L and Im 77 = Ex n 7>(L).

(4) dim E0 = dim F0 < + oo.

(5) 77 is completely continuous.

(6) There exist continuous maps B: E X F —> R and J: F0 ~* E0 such that B is

bilinear, J is one-to-one and onto, and

(i) for v0 g £0, v0 = 0 iff 5(zz0, v0) = 0 for all u0 g £0,

(ii) B(Jv0, v0) > 0 for every v0 g £0 and B(Jv0, v0) = 0 iff zj0 = 0,

(iii) Jv0 = 0 iff v0 = 0,

(iv)B(uo,J-luo) = 0iffu0 = 0,

(v) 5(z/0, zj0) = B(Jv0, J^Uo) for every zz0 G E0, v0 g £0.

Remark. If E c £ and £ is a Hubert space with inner product (u, v), then one

can define B(u0, v0) = (u0, v0). Thus, if F = L2(ß),

B(u0,v0) = ( uo(x) ■ vo(x) dx.

For zz g £ we write zz = z<0 + zz,, with u0 g £0, «j g £,. With this, the auxiliary

and bifurcation equations become QN(u0 + zz,) = Oandzz, = 77(7 - Q)N(u0 + ux),

respectively. We are now in a position to prove our result.

Theorem. Let conditions (l)-(6) hold. In addition, assume there exists

(7) J0 > 0 such that \\Nu\\ < J0for every u G C,

(8) 7?0 > 0 such that B(u0, QN(u)) < Ofor every u = u0 + ux g C, vvz'zTz ||m0|| = 7\0

and ux = 77(7 — Q)N(u0 + zz,), azzc7

(9) r0 > ||77(7 - 0)11 • ̂ o such that (p + JQN)yu g C zzzzz/ 77(7 - Q)Ny(u) G C

/o/* ezjery «eS, w/zere

5 = {« = "o + "i e £:ll«oll < Po^\\ui\\ < ro)-

Then Lu = Nu has at least one solution u G S C\ C.

Proof. The set S is closed, bounded, and convex. Define the homotopy T:

[0,l]XS-»£ by T(X, u) = XPy(u) + 77(7 - Q)Ny(u) + XJQNy(u). Note that

T(X, •) is compact for every À g [0,1] since P and Q are projections with finite-

dimensional range and 77 is compact. For X = 0, T(0, zz) = 77(7 — Q)Ny(u) g Ex.
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Thus, by (9),

\\T(0,u)\\*\\H(l - Q)\\-\\Ny(u)\\< r0,

which shows that T(0, 35) c S.

We shall now prove that T(X, zz) # zz for every (X, u) g [0,1) X dS. Indeed, let

T(X,u) = u and, consequently,

(10) zz0 = A7>y(«)+À./CWy(zz),

(11) ux=H(l-Q)Ny(u).

If zz g dS, then either \\ux\\ = r0 or ||w0|| = R0. In the first case, using (11), we get

r0=\\ux\\ = \\H(l - Q)Ny(u)\\< r0,

which is a contradiction.

In the second case, ||«0|| = 7c0. Hence, by (9), (P + JQN)y(u) g C and zz0 g C

since C is a cone. Also by (9), ux = 77(7 — Q)Ny(u) g C and, consequently,

u = u0 + ux g C. This implies, by the property of y, that y(u) = u and zz0 = XPu +

XJQNu. This last inequality is equivalent to (1 - X)u0 = XJQNu. We assume that

X > 0 since X = 0 implies (1 - X)u0 = 0 and zz0 = 0. Thus, by (8) and (11),

7i(zz0, QNy(u)) < 0. On the other hand,

A7i(zz0, QNu) = XB(JQNu, J~xu0) = B((l - X)u0, J-lu0) > 0,

which is again a contradiction. Therefore, T(X, u) =£ u for every (X, u) g [0,1) X dS,

and we can conclude [4, Theorem 4.4.11] that T(l, •) has a fixed point. Hence, there

exists zz G S satisfying

u = Py(u) + 77(7 - Q)Ny(u) + JQNy(u).

Reasoning as before, u G C and satisfies the auxiliary and bifurcation equations,

that is, zz is a solution of Lu = Nu such that zz g S n C. This completes the proof of

the Theorem.

If C = £ we obtain the result of [2].

Corollary. Let conditions (l)-(6) hold. In addition, assume there exists

(1)' J0 > 0 such that \\Nu\\ < J0for every u G £,

(8)' R0 > 0 such that B(u0, QNu) < 0 for every u = u0 + zz, G £, with \\u0\\ = R0

andux = 77(7 - Q)N(u0 + ux).

Then Lu = Nu has at least one solution.

For some particular cases of our result and applications to nonlinear boundary

value problems, see [5].
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