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EXISTENCE OF SOLUTIONS OF NONLINEAR DIFFERENTIAL
EQUATIONS WITH DEVIATING ARGUMENTS

K. BALACHANDRAN AND S. ILAMARAN

We prove an existence theorem for nonlinear differential equations with deviating
arguments and with implicit derivatives. The proof is based on the notion of
measure of noncompactness and the Darbo fixed point theorem.

1. INTRODUCTION

The theory of differential equations with deviating arguments has been studied by
several authors [1, 2, 3, 5, 7, 8, 9]. Banas [5] has proved an existence theorem for
a differential equation with deviating arguments. Balachandran and Ilamaran [2, 3]
proved existence theorems for nonlinear integral equations with deviating argument. In
this paper we shall derive a set of sumcient conditions for the existence of a solution of
differential equations with deviating arguments by using the measure of noncompact-
ness.

Kuratowski [10] introduced the measure of noncompactness for the family of all
bounded subsets of metric spaces defined by

ot(X) — inf {e > 0 : X can be covered with a finite number

of sets of diameter smaller than e} .

Another measure of noncompactness is the so-called ball measure (or Hausdorff mea-
sure). It is defined by the formula

x(-X") = inf {e > 0 : X can be covered by a finite number of

balls of radii smaller than e} .

There are some other definitions of measure of noncompactness. In this paper we use
the measure of noncompactness defined by Banas and Goebel [6].
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2. NOTATION AND DEFINITIONS

Let (B, ||-||) be a fixed Banach space with the zero element 0. Denote by MB the
family of all nonempty and bounded subsets of the space B, and by MB the family of
all nonempty and relatively compact subsets of B. For a nonempty family Z of subsets
of B, let Zc denote the subfamily of Z consisting of all closed sets in Z. The closure
of a set X and its convex closure will be denoted by X and Conv(X) respectively.

DEFINITION 1: A nonempty family V C MB will be called a kernel of a measure
of noncompactness if it satisfies the following conditions:

1. X6?=>Ie?;
2. X eV,Y CX,Y ^9=>Y eV;
3. X eV=>Conv(X)GV;
4. x, Y £?=). AX + ( i - A ) r e p , Ae [o,i];

5. Vc is a closed subspace of the space M% in the topology generated by
Hausdorff distance.

DEFINITION 2: A function /z: MB —* [0, oo) is said to be measure of noncompact-
ness with kernel V if it satisfies the following conditions:

£i» JA. \̂ _ X

3. y(X)=,
4. ^(Con1

5. /x(AX + (1 — A)y) ^ A t̂(JC) + (1 — A)/x(Y), for all A£ [0,1];

6. if Xn G jVfB, Xn+1 C A"n, for n = 1, 2, . . . and if lim y.(Xn) = 0 then
OO

DEFINITION 3: Let M C B be a given nonempty set and let T: Af -> B be a

continuous transformation such that T-X" G A^B for any X £ MB- Let /x be a measure

of noncompactness on the space B. A transformation T will be called a /x-contraction

if there exists a constant k £ [0, 1) such that p{TX) < kfi(X) for each set X G A I B .

We prove our existence theorem by using the following modified version of the

Darbo fixed point theorem [4].

THEOREM 1 . Let E be a nonempty, closed, convex and bounded subset of the

space B and let T: E —> E be a fi-contraction, where y. is an arbitrary measure of

noncompactness. Then T has at least one fixed point which belongs to kernel of y..

Let p(t) be a given continuous function defined on the interval [0, oo) and taking
real positive values. Let C([0, oo), p(t); Rm) be denoted by Cp, the set of all continuous
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functions from [0, oo) to Rm such that

snp{\x(t)\p(t):t^0}<oo.

Then Cp forms a Banach space with respect to the norm.

\\x\\=sup{\x(t)\p(t):t>0}.

For our convenience, we shall introduce the following notation:
For every z e Cp, x G Mcp, T > 0, and e > 0 we put

wT(x, e) = s u p { | x ( t ) p ( 0 - x(s)p(s)\ :t,se [0, T ] , \t - s\ < e},

wT(X, e) = sup{u,T(s, e) : x G X},
T T r , e),

wo(X) = Jm
T ( * , e) = sup{|x(<) - x(s)\ :\t-a\^e,i,ae [0, T]},

- Um

c(X).

The function /i(X), defined by the last formula, is the measure of noncompactness in
the space Cv [6].

3. BASIC ASSUMPTIONS

Consider the differential equation of the form

(1) x'(t) = f{t, *(JTi(*)), • • •, x(Hn(t)), *•(&!(«)), • • • * ' (M0) )

with the initial condition

(2) «(0) = 0

where x[t) is an unknown function.
Assume the following conditions:

(i) The functions Hi, h{: [0, oo) —> [0, oo) are continuous,
(ii) The function / : [0, oo) x Rmn x Rmn -» Rm is continuous.
If we define x'(t) — y(t), then the equation (1) with condition (2) will be transformed
into the following functional-integral equation:

= f y'y{t) = f y' I y{a)ds' ••-/ y{s)d3> y{hl{t))' • • • •y{hn{t))

t >0.
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(iii) The function f(t, Xi, ..., xn, yiy ..., yn) satisfies the condition

<, xx, . . . , xn, yu . . . , yn) - f(t, xi, . . . , xn, ziy . . . , zn)\

t=i

(iv) \f{t, xu . . . . x», 0, . . . . 0)| < ioW + e ^ O £) |x,-|, where Lo: [0, oo) -» [0, oo) is
i=i

a continuous function such that lim Lo(t)exp (— L Lo{s)ds) = 0 and L\: [0, oo) —* R

is a continuous decreasing function such that lim teLl ^ = 0.
1—»oo

(v) Hi(t) ^ t , Mm. (Hi(t) -t) = 0 and
t—>OO
t—>O

f
sup{ / Lo(s)ds : t ^ 0} < oo for t = 1, . . . , n .

id lim (< -

For every t ^ 0 define

(vi) /u(t) ^ 1 and lim {t - hi(t)) = 0 for t = 1, . . . , n.
t—»OO

L(t) =
/o

Take an arbitrary number M > 1 and consider the space Cp with p(t) =
i(t)-t

From (iv) and (v) the number

< oo .

e-ML(t)-t

i = sup j L™ f"i{t) eML^ds] e-
ML<A

n

(vii) assume that k = nfcj + k2 + (n/M) < 1 where k2 = X) m» •
•=i

4. EXISTENCE THEOREM

THEOREM 2 . Assume that tiie hypotheses (i) to (vii) hold; then the equation (3)
has at least one solution y(t) in Cp such that \y(t)\ ^ reMLW where r = (1 - Jb)"1

sup{L0(t)e-MLW : t > 0}

PROOF: Define a transformation F in the space Cp by

(4)

j y(3)ds,y{h1{t)),...,y(hn(t))\,t>0

and a set JE? by
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where r = (1 - k)'1 sup{jDo(Oe~M1(t) : < ̂  °>-
Clearly E is nonempty, bounded, convex and closed in Cp. Now we prove that F

maps the set E into itself. Take y £ £ . Then from our assumptions we have

»i(«) «»(«)
y(s)ds,y(h1(t)),...,y(hn(t))

( /-
fV'Jo

( f
fit, J y { s ) d s , . . . ,

y(s)d ,0,...,0\ e-ML(t)

«(.)<(., 0 0 e-M'«>

E /
» = i J o

Jbj | da] e-
J

[+»>±r™*{

t = 1
- Jb) + r{n/M) + rk2

= r.

From this we observe that FE C E.
Now we prove that F is continuous on the set E. For this let us fix e > 0 and

y, z £ E such that ||y — z\\ < e. From our assumptions we have

\(Fy)(t)-(Fz)(t)\e

/ *.
-ML(t)-t

*„(«)
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(4)

- , ( . , -ML(t)-t

+ Ujf " y(s)ds,...,j"nt y(3)ds,z(h1{t)),...,z(hn(t))\

«!(*)

)
z(s)dS,z(h1(t)),...,z(hn(t))

-ML(t)-t

y(s)dS,z(h1(t)),...,z(hn(t))

Z(s)d3,z(h1(t)),...,z(hn(i)) -M L(t)-t

y(s)ds,z(h1(t)),...,z(hn(t))

Hn(t)
z(s)dS,z(h1(t)),...,z(hn(t))

\

)

„-«(<)-<

Take an arbitrary fixed T > 0. In view of (ii) / is uniformly continuous on the compact
set

[0, T] x [-

x [-

where Nt = max{Hi(t): t e [0, T}} and D = l-r
every < 6 [0, T] we have

(5)

, reM1<T)j. Therefore for

y(s)ds,...,

(
Jy(s)ds,z(h1(t)),...,z(hn(t))

(<)
z(s)ds,z(h1(t)),...,z(hn(t))
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Further, let us take t^T. Then we have

- (Fz){t)\ ^ \(Fy){t)\ + \{Fz)(t)\

\{Fy)(t)-(Fz)(t)\p(t)<2re-*.

Hence for sufficiently large T we have

(6) \(Fy)(t)-(Fz)(t)\p(t)Ze.

Prom (4), (5) and (6) we observe that F is continuous on E.

Take an arbitrary fixed T > 0, Y C E and y G F . From our assumptions, for an

arbitrary t ^ T w e have

t = i

t = i

/ *

t = i

sup{|y(<)|

(n/M)

t = i

* i +

(n/M) sup{|y(<)|
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t = l

+ (n/M)] sup {|y(t)| e-ML«-*} +

+ r

From our assumptions we have

Urn
* - » o o

= Urn = 0

and lim A(t) = oo.

Therefore

(7) a(FY) < (nkx + {n/M))a(Y)

Fix e > 0 and T > 0. Take t , i E [0, T] such that |< - s\
C E and for every y € Y", we have

e. Then for every

1 ,...,y(hn(t))\

+

+

(

it,

t,

«!(«)

y(a)d3,y(hi(t))

)
y(t)dt, 0,...,0

W
y(s)da,0,...,0

)
y{s)ds,y(h1(t)),...,y{hn(t))
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~fV'Jo
()

y{r)dT,y(h1(3)),...,y(hn(s))

+sup{£0(<) : * < T}+

: t < T}\ + AT(/, e)
J

where

AT(i,e) =

*,* e [0,T], \t

Thus wj ( fy ) = 0 and consequently,

(8) wo(Fy) = 0.

Combining (7) and (8) we get

for any Y" C E so that F is a /t-contraction. Applying Theorem (1), we get a fixed
point for F. This completes our existence theorem. U
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