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Existence and convergence results are proved for a regularized model of dynamic brittle

fracture based on the Ambrosio–Tortorelli approximation. We show that the sequence of

solutions to the time-discrete elastodynamics, proposed by Bourdin, Larsen & Richardson
as a semidiscrete numerical model for dynamic fracture, converges, as the time-step

approaches zero, to a solution of the natural time-continuous elastodynamics model, and

that this solution satisfies an energy balance. We emphasize that these models do not
specify crack-paths a priori, but predict them, including such complicated behavior as

kinking, crack branching, and so forth, in any spatial dimension.
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1. Introduction

The starting point for models predicting fracture is Griffith’s criterion14, originally
formulated in the quasi-static setting. It supposes that, as a crack grows, the dis-
placement field is instantly in a new equilibrium (new, since the displacement may
be discontinuous across the crack increment). The resulting decrease in stored elastic
energy can then be balanced with the work required to create the crack increment,
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postulated to be proportional to the newly created area. The constant of propor-
tionality is usually labelled fracture toughness. In other words, the rate of elastic
energy decrease per unit area, the (quasi-static) energy release rate, is proportional
to the fracture toughness. Griffith’s criterion stipulates that the crack grows only if
the energy release rate equals the fracture toughness. The crack is stable, if the en-
ergy release rate does not exceed the fracture toughness, and it is labelled unstable
if it does exceed the fracture toughness (Sections 1.2 and 4 in Lawn 17).

Traditionally, these ideas could be formalized only for relatively simple crack
topologies, often only for a pre-defined crack path. Only recently was the theory of
brittle fracture freed from this restriction1,12. Ambrosio & Braides1 propose min-
imizing the sum of stored elastic energy and surface energy of discontinuity sets,
to obtain displacements that are stable in the sense of Griffith. That is, for dis-
placements u ∈ SBV(Ω), the space of special functions of bounded variation, with Ω
representing the reference configuration of a body (u taking real values, modeling
antiplane displacement), they consider energy functionals of the form

E(u) :=
µ

2

∫
Ω

|∇u|2 dx+GcHN−1(S(u)). (1.1)

We usually refer to µ
2

∫
Ω
|∇u|2 dx as the elastic energy and to GcHN−1(S(u)) as the

surface energy. Here, and throughout, µ denotes the stiffness and Gc the fracture
toughness, S(u) denotes the discontinuity set of u, HN−1 the (N − 1)-dimensional
Hausdorff measure, and the minimization is performed subject to a Dirichlet con-
dition. (For the time being, we ignore the problem of a crack forming along ∂Ω,
releasing u from the Dirichlet data there; we will address this issue in Section 2.1).
The idea is that, if u is a minimizer of E, then adding any increment to its crack
set S(u) cannot reduce the elastic energy by more than the cost of the increment
in surface energy. Therefore, the ‘crack’ S(u) is stable in the sense of Griffith.

The first well-posed (by which we mean, throughout the paper, that existence
can be shown) mathematical models of quasi-static fracture can be found in Dal
Maso, Francfort & Toader9, Francfort & Larsen11, and Francfort & Marigo12. In
these references, the Dirichlet data uD is varying in time and an evolution u is
sought such that, at each time t, u(t) minimizes E subject to the Dirichlet bound-
ary condition, and subject to an irreversibility constraint on the crack set. More
precisely, it is required that

µ

2

∫
Ω

|∇u(t)|2 dx ≤ µ

2

∫
Ω

|∇w|2 dx+GcHN−1
(
S(w) \ C(t)

)
(1.2)

∀w ∈ SBV(Ω) s.t. w|∂Ω = uD(t)|∂Ω,

where C(t) denotes the crack set at time t, which is essentially the union of discon-
tinuity sets S(u(τ)), τ ≤ t. Additionally, an energy balance formula is stipulated so
that a suitably defined energy functional, including the work done by the boundary
condition, is constant in time.

The strategy for proving existence of solutions to this model, proposed in the
paper of Francfort & Marigo12, is based on a time discretization. At step tni = i/n,
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the solution un(tni ) is a minimizer of

w 7→ µ

2

∫
Ω

|∇w|2 dx+GcHN−1
(
S(w) \ ∪j<iS(un(tnj ))

)
,

subject to w = uD(tni ) on ∂Ω, i = 1, . . . , n, n ≥ 1. It was hoped that limits of these
sequences of discrete trajectories (un(tn1 ), . . . , un(tnn)), as n → ∞, would satisfy,
among other things, the unilateral minimality condition (1.2) and the correct energy
balance.

Proving the unilateral minimality was not straightforward (see Dal Maso &
Toader9), but a method was introduced and shown to work in the anti-plane case in
Francfort & Larsen11, and then generalized in Dal Maso, Francfort & Toader8 to the
case of nonlinear elasticity. We emphasize that the main achievement of Ambrosio
& Braides1, Dal Maso, Francfort & Toader8, Dal Maso & Toader9, Francfort &
Larsen11, and Francfort & Marigo12 was to formulate and establish well-posedness of
a model able to predict crack paths. In particular, crack kinking, crack branching, or
indeed the far more complex three-dimensional situation, do not require additional
modeling, but are naturally included in the formulation. This observation remains
true for the dynamic model, which we propose in the following.

The difficulties in formulating models for dynamic fracture consistent with Grif-
fith’s criterion are readily apparent; indeed, we know of no well-posed models other
than the one formulated herein. The main issue seems to be to find a precise math-
ematical principle corresponding to Griffith’s criterion, which replaces unilateral
minimality in the quasi-static setting. In our view, a dynamic model of fracture
should obey the following three principles:

• Elastodynamics: Away from the crack set C, the governing principle is
elastodynamics, for example, for anti-plane displacements,

ρü− µ∆u = f in Ω \ C,

with traction-free boundary conditions on either side of the crack, or

ρü−∆(µu+ ku̇) = f in Ω \ C,

where the term −k∆u̇ models elastic dissipation.
• Energy Balance: The evolution should satisfy an energy balance formula,

akin to that found in the quasi-static setting, but now including kinetic
energy.

• Maximal Dissipation: If the crack can propagate while balancing energy,
then it should propagate.

The first principle requires no further comment. The principle of energy balance in
dynamic fracture is known as Mott’s extension of Griffith’s energy concept (Section
4 in Lawn17). Finally, the maximal dissipation principle follows a recent formulation
of Larsen16. It further narrows down the set of admissible trajectories, which could
still be very large if only energy balance is imposed (for instance, an elastodynamic
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solution for a stationary crack always conserves energy), and replaces unilateral
minimality in the quasi-static fracture model. Indeed, in the quasi-static setting,
the maximal dissipation principle implies unilateral minimality 16.

In Bourdin, Larsen & Richardson4, a discrete-time candidate for such a model
is proposed, based on the Ambrosio–Tortorelli approximation,

Eε(u, v) :=
µ

2

∫
Ω

(v2 + ηε)|∇u|2 dx+Gc

∫
Ω

[
(4ε)−1(1− v)2 + ε|∇v|2

]
dx,

which Γ-converges, as 0 < ηε � ε → 0, to the Griffith energy E; see Ambrosio &
Tortorelli2. The point is that minimizing Eε results in (uε, vε), where uε approxi-
mates the minimizer u of E and vε provides an approximation of the crack set S(u).
Furthermore, the regularized elastic and surface energies converge independently to
their sharp-interface versions; cf. (1.1). An analysis of this approximation in the
quasi-static setting is provided by Giacomini13. The Ambrosio–Tortorelli approxi-
mation is particularly convenient for numerical implementation and was proposed
in Bourdin, Francfort & Marigo5 and Bourdin3 for the simulation of the quasi-static
model.

The observation which allows for an extension to dynamic fracture is that, for
this approximation, there can be an instant decrease in the elastic energy when v

decreases (i.e., the crack grows), even if u is held fixed. Hence, we will consider a
model in which u follows elastodynamics (with stiffness a(t) := v2(t) + ηε) and v

behaves identically as in the quasi-static setting, i.e., at every time t, v(t) minimizes
v 7→ Eε(u(t), v) subject to an appropriate irreversibility constraint.

Bourdin, Larsen & Richardson4 formulate this idea as a numerical model: given
Tf > 0 and a positive integer Nf , at each discrete time ti = ih, i = 1, . . . , Nf , with
h = Tf/Nf , u(ti) is computed using a time-discrete wave equation (cf. Section 3.1)
with stiffness (vh(ti−1)2 + ηε), followed by the computation of vh(ti) achieved by
minimizing v 7→ Eε(uh(ti), v) subject to v ≤ vh(ti−1). This approach was motivated
by Bourdin3 and Bourdin, Francfort & Marigo5 where an alternate minimization
procedure in the u and v variables was used for the simulation of the quasi-static
problem. Note that, for a given discrete wave equation and time step size h, this al-
gorithm uniquely determines the discrete trajectory (uh(t), vh(t))t∈[0,Tf ], (or, briefly,
(uh, vh)) obtained by continuous piecewise affine interpolation of the sequence of
values (uh(ti), vh(ti))

Nf

i=0. We also remark that several steps in our convergence proof
in Section 3 were inspired by the convergence analysis of the alternate minimization
algorithm in Burke, Ortner & Süli6.

If this numerical model is reasonable, then the pairs (uh, vh) it produces should
balance energy (up to numerical errors) and converge to the solution of a corre-
sponding time-continuous model. In the present paper, we will prove that this is
indeed the case: any accumulation point (u, v) of the family {(uh, vh) : h > 0} of
discrete trajectories is a solution to the time-continuous crack propagation problem:
u solves the continuous-time wave equation, v is minimal, and the trajectory (u, v)
balances energy. We were unable to prove our third postulate (maximal dissipation),
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and therefore believe that the formulation of our model might be underconstrained.
We will return to this point in the conclusion of the article.

We also note that, while there are other models for fracture based on crack
regularization (see, e.g., Hakim & Karma15), they are typically based on phase-field
models whose connection to the Griffith model is at best unclear. While we do
not prove convergence of our model to a dynamic Griffith model, such a rigorous
connection has been shown in the static and quasistatic settings by Giacomini13. We
refer to section 4 of Bourdin, Larsen & Richardson4 for a more complete discussion.

We conclude the introduction by noting that, in our analysis below, we add
an elastic dissipation term, which helps in the analysis. Furthermore, we consider
a more general, vector-valued case, instead of the anti-plane situation. Note also
that, for simplicity of exposition, we take all physical constants (i.e., all constants
except for ε and ηε) to be 1.

2. Formulation of the model

Suppose that Ω is a bounded open set in R3 with Lipschitz continuous boundary
∂Ω = ΓD∪ΓN , where ΓD,ΓN are disjoint measurable sets and H2(ΓD) > 0. We use
the usual notation for Lebesgue and Sobolev spaces, omitting the domain Ω when-
ever it is obvious from the context what we mean. For example, we shall write H1

instead of H1(Ω), and so forth. The space of displacements obeying the homogeneous
Dirichlet boundary condition is denoted H1

D(Ω; R3) := {u ∈ H1(Ω; R3) : u|ΓD = 0}
(or simply H1

D). Its dual is denoted H−1(Ω; R3) = H1
D(Ω; R3)∗ (or simply H−1).

Spaces of trajectories are denoted, as usual, by Lp((0, Tf );X),Wk,p((0, Tf );X),
Ck([0, Tf ];X), and so forth, where X is (a subset of) a Banach space. To sim-
plify the notation, we shall usually write Lp(X),Wk,p(X), C(X) instead. If, e.g.,
u ∈ Lp(H1), then we will usually write u(t) := u(·, t). Throughout, the symbol ‖ · ‖
denotes the L2-norm on Ω. We shall denote by 1 + H1

D the affine variety in H1

containing all functions u ∈ H1 such that u|ΓD
= 1.

We remark that the Arzelá–Ascoli Theorem for metric spaces (see Section IV.6.7
in Dunford & Schwartz10) implies that H1(H1) is compactly embedded in C(L2).
That is, if a sequence (uj)∞j=1 ⊂ H1(H1) is uniformly bounded in H1(H1), then
there exists a subsequence (not relabelled) and u ∈ H1(H1) such that

uj → u in C(L2). (2.1)

Let A ∈ L∞(Ω; R34
) be the elastic modulus tensor, with Aαβij (x) = Aβαji (x) for

a.e. x ∈ Ω, satisfying the following ellipticity condition: there exists c0 > 0 such
that A(x)ζ : ζ ≥ c0|ζ|2 for all ζ ∈ R3×3

sym = {ζ ∈ R3×3 : ζ = ζT} and for a.e. x ∈ Ω;
equivalently,

3∑
i,j=1

3∑
α,β=1

Aα,βij (x)ζiαζ
j
β ≥ c0

3∑
i=1

3∑
α=1

|ζiα|2 ∀ζ ∈ R3×3
sym for a.e. x ∈ Ω.
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For ζ ∈ R3×3
sym, and x ∈ Ω, we define |ζ|2A(x) := A(x)ζ : ζ. Further, for u ∈

H1(Ω; R3), let

e(u) := 1
2 (∇u+∇uT) and ‖e(u)‖2A :=

∫
Ω
|e(u)|2A dx.

For η > 0 and ε > 0, we define the elastic energy E : H1×H1 → R∪{+∞}, and
the (phase-field) surface energy H : H1 → R, respectively, as

E(u, v) :=
1
2

∫
Ω

(v2 + η)|e(u)|2A dx and H(v) :=
∫

Ω

[
(4ε)−1(1− v)2 + ε|∇v|2

]
dx.

We define the functional K : L2 → R by

K(w) =
1
2

∫
Ω

|w|2 dx,

and note that, for u ∈ H1(L2), K(u̇(t)) denotes the kinetic energy of u at time t.
The external forces at time t ∈ [0, Tf ] are collected into a functional `(t) ∈ H−1,
where we recall that H−1 = H−1(Ω; R3) denotes the dual of H1

D(Ω; R3),

〈`(t), ϕ〉 :=
∫

Ω

f(t) · ϕdx+
∫

ΓN

g(t) · ϕds ∀ϕ ∈ H1
D,

where f(t) ∈ L2(Ω; R3) and g(t) ∈ L2(ΓN ; R3). We assume that ` ∈ C1(H−1); a
sufficient condition for this would be f ∈ C1(L2) and g ∈ C1(L2(ΓN ; R3)). Finally,
the total energy is given by

F(t;u,w, v) := K(w) + E(u, v)− 〈`(t), u〉+H(v).

In order to model a crack at the Dirichlet boundary, it is common to extend
the domain, and to impose the ‘Dirichlet condition’ on a set of finite measure. In
order to avoid distraction from the main issues (dynamics and energy balance),
we chose to impose the boundary condition v = 1 on ΓD. Intuitively, with this
boundary condition, the Ambrosio–Tortorelli functional should still give a good
approximation to the Griffith functional, however, we stress that we do not know
of a rigorous justification for this.

We seek a solution (u, v) of the system

ü− div
(
a(t)Ae(u+ u̇)

)
= f(t) in Ω,

νTa(t)Ae(u+ u̇) = g(t) on ΓN, (2.2)

(u, v) = (0, 1) on ΓD,

for t ∈ (0, Tf ], where a(t) = [v(t)]2 + η, with initial conditions u(0) = u0 ∈ H1
D and

u̇(0) = u1 ∈ H1
D, and satisfying the crack stability condition

E(u(t), v(t)) +H(v(t)) = inf
v−1∈H1

D
v≤v(t)

E(u(t), v) +H(v). (2.3)

Note that we require (2.3) to hold for every t ∈ [0, Tf ]. As initial condition for v
we prescribe an arbitrary v0 ∈ 1 + H1

D, 0 ≤ v0 ≤ 1 a.e. in Ω, that satisfies the
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unilateral minimality condition (2.3). Stated in this way the system may still be
severely under-constrained (see the discussion in the introduction); hence we also
impose the energy balance formula

F(T ;u(T ), u̇(T ), v(T )) = F(0;u0, u̇0, v0)−
∫ T

0

‖a1/2e(u̇)‖2A dt−
∫ T

0

〈 ˙̀, u〉dt

∀T ∈ [0, Tf ]. (2.4)

The additional term −
∫ T

0
‖a1/2e(u̇)‖2A dt which is not contained in the total ener-

gies describes elastic dissipation. In section 2.1 we give a brief formal argument to
motivate this energy balance formula.

The main result of this paper is the following theorem, which is deduced as a
direct consequence of Theorem 3.1 below.

Theorem 2.1. Under the above conditions there exists at least one trajectory
(u, v) ∈ (H2(L2) ∩W1,∞(H1

D))×W1,∞(1 + H1
D) satisfying (2.2) in the weak sense,

i.e.,

(ü, ϕ)+
(
aAe(u+u̇), e(ϕ)

)
= 〈`(t), ϕ〉 ∀ϕ ∈ H1

D(Ω; R3) for a.e. t ∈ (0, Tf ], (2.5)

with u(0) = u0, u̇(0) = u1, v(0) = v0. The unilateral minimality condition (2.3)
and the energy balance condition (2.4) are satisfied for all times t ∈ (0, Tf ].

Remark 2.1 (Boundary conditions). In order to avoid an overly cluttered no-
tation, we restricted the generality of the boundary conditions in Theorem 2.1. As
a matter of fact, our proof extends without major changes to the cases of (i) a
time-dependent Dirichlet condition u(t) = uD(t) on ΓD; and (ii) a pure traction
problem (i.e., ΓD = ∅).

To see this, note that case (i) can be reduced to our problem, provided uD ∈
C2(H1)∩C3(L2). In case (ii), we face the potential difficulty that the Korn inequality

(Ae(w), e(w)) ≥ c0‖∇w‖2 ∀w ∈ H1(Ω)3

(where c0 > 0) fails. However, the slightly weaker G̊arding inequality,

(Ae(w), e(w)) ≥ c0‖∇w‖2 − c1‖w‖2 ∀w ∈ H1(Ω)3,

still holds. Since the terms involving time-derivatives can be used to control the
negative contribution, this is sufficient to extend our proofs.

Remark 2.2 (More general models). Furthermore, we note that our proofs
apply verbatim to more general wave equations, including in particular the case
of anti-plane strain, in-plane strain, and in-plane stress, as well as more general
coefficients. For example, the wave equation

ρü− div
(
aA
(
e(u) + ke(u̇)

))
= f,

where ρ, k ∈ L∞(Ω) are uniformly positive can also be treated by the same analysis.
We also point out that k, the dissipation, can be taken arbitrarily small.
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The dissipation term is not only crucial for our analysis, but also opens up
interesting modelling questions. For example, it may allow us to investigate whether
time-rescaled limits of dynamic solutions converge to a quasi-static solution.

2.1. A formal argument for energy balance

In this section we review a heuristic argument for the energy balance formula (2.4),
which was the original motivation for pursuing the analysis in the present paper.

Suppose that (u, v) is a solution to the model introduced above. Let us assume,
furthermore, that u ∈ C2(H1), that v ∈ C1(H1), and, for simplicity, that ` ≡ 0.
Setting a := v2 + η, and omitting for ease of writing the t-dependence from our
notation on the right-hand side in the chain of equalities below, we obtain

d
dt
F(t;u(t), u̇(t), v(t)) = 1

2

(
ȧAe(u), e(u)

)
+
(
aAe(u), e(u̇)

)
+ (ü, u̇) +H′(v)[v̇]

=
{

(ü, u̇) +
(
aA(e(u+ u̇)), e(u̇)

)}
−
(
aAe(u̇), e(u̇)

)
+
[(
v|e(u)|2A, v̇

)
+ (2ε)−1

(
(v − 1), v̇

)
+ 2ε(∇v,∇v̇)

]
.

Since u̇(t) ∈ H1
D, t ∈ (0, Tf ), the group of terms enclosed in curly brackets van-

ishes. Suppose, furthermore, that, at t ∈ (0, Tf ), v(t) is a global minimizer of
E(u(t), ·) + H(·) (ignoring the inequality constraint); then, the group in square
brackets represents the first-order criticality condition for this minimization prob-
lem (tested with v̇(t)), and thus vanishes as well. Hence, we would obtain the desired
energy balance formula

d
dt
F(t;u(t), u̇(t), v(t)) = −

(
aAe(u̇), e(u̇)

)
.

This formal argument is made rigorous in Section 3.8 below.

3. Proof of the Existence Theorem

3.1. Time discretization

We set v0
h = v0, u0

h = u0, u0
h − u−1

h = hu1 and, for n = 1, 2, . . . , Nf , Nf ≥ 2,
h = Tf/Nf , solve(

δ2unh, ϕ
)

+
(
an−1
h Ae(unh + δunh), e(ϕ)) = 〈`(tn), ϕ〉 ∀ϕ ∈ H1

D(Ω; R3), (3.1)

vnh := argmin
v−1∈H1

D,v≤v
n−1
h

{
v 7→ E(unh, v) +H(v)

}
, (3.2)

where

δ2unh :=
δunh − δu

n−1
h

h
, n ≥ 1, δunh :=

unh − u
n−1
h

h
, n ≥ 0.

Due to the positivity of an−1
h := [vn−1

h ]2 + η and the uniform convexity of
E(u, ·) +H(·) it is obvious that (3.1) and (3.2) are well-defined, i.e., there exists a
unique family (unh, v

n
h)Nf

n=1 that solves the time-discrete problem.
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In the remainder of this section we shall prove that, upon defining suitable
interpolants and extracting a subsequence, the family (unh, v

n
h)Nf

n=0 converges to a
solution of (2.5), (2.3) and (2.4), as h→ 0.

Theorem 3.1. For Nf ∈ N let (unh, v
n
h)Nf

n=0 be the solution of the time-discretization
defined by (3.1) and (3.2). Then, there exists a subsequence hk ↘ 0 (Nk

f ↗∞, with
Tf = Nk

f hk fixed) and a trajectory (u, v) ∈ (H2(L2) ∩W1,∞(H1
D))×W1,∞(1 + H1

D)
such that

(uhk
, vhk

)→ (u, v) strongly in H1(H1 ×H1) as k →∞,

where uhk
, vhk

denote the piecewise affine interpolants as defined in (3.22) below.
Moreover, the trajectory (u, v) is a solution of (2.3)–(2.5).

3.2. Preliminary Remarks

We begin by stating some simple facts about the phase field variable. First, we note
that, for given unh ∈ H1

D(Ω; R3), the function vnh is equivalently characterized as the
solution in 1 + H1

D of the variational inequality

∂vE(unh, v
n
h)[ψ − vnh ] +H′(vnh)[ψ − vnh ] ≥ 0 ∀ψ ≤ vn−1

h , ψ − 1 ∈ H1
D(Ω; R). (3.3)

Lemma 3.1. The phase field variables satisfy the maximum principle

0 ≤ vnh ≤ vn−1
h a.e. in Ω ∀n = 1, . . . , Nf . (3.4)

Proof. The upper bound in (3.4) holds by definition, while the lower bound follows
from a simple truncation argument. It can be readily seen from the definition of E
and H that, if we had vnh ≤ δ < 0 on a set of positive measure, then the admissible
trial function ψ = max(0, vnh) would strictly lower the energy.

Our second lemma, even though it is elementary, lies at the heart of many of
the calculations that we carry out below. At least formally, it can be thought of
as a time-discrete counterpart of Griffith’s second criterion (see also Section 2.1).
In the same manner as Griffith’s second criterion, it follows immediately from the
stationarity of vnh , n = 1, . . . , Nf .

Lemma 3.2. For all n = 1, . . . , Nf , we have that

∂vE(unh, v
n
h)[δvnh ] +H′(vnh)[δvnh ] = 0. (3.5)

Equivalently,(
|e(unh)|2Avnh , δvnh

)
+ (2ε)−1

(
vnh − 1, δvnh

)
+ 2ε

(
∇vnh ,∇δvnh

)
= 0. (3.6)

Proof. The test functions ψ1 = vn−1
h and ψ2 = 2vnh − v

n−1
h are both admissible for

(3.3). Testing (3.3) with ψ1 gives

∂vE(unh, v
n
h)[δvnh ] +H′(vnh)[δvnh ] ≤ 0,
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while testing with ψ2 gives the opposite inequality. This establishes (3.5). The iden-
tity (3.6) is simply an explicit form of (3.5).

3.3. A priori estimates

In this section, we will collect a number of a priori estimates on the discrete family
(unh, v

n
h)Nf

n=1, which will then allow us to extract weakly convergent subsequences.
Constants appearing in this analysis may depend on ε > 0, η > 0, Ω, the initial and
boundary data, and on the applied loads, but are independent of h.

The first, and in some sense “natural”, a priori bounds for the discrete evolution
law (3.1), (3.2) are given in the following lemma.

Lemma 3.3. There exists a constant C1, independent of h, such that

max
1≤n≤Nf

{
‖δunh‖2 + ‖e(unh)‖2A + ‖vnh‖2 + ‖∇vnh‖2

}
+

Nf∑
n=1

h‖e(δunh)‖2A + h

Nf∑
n=1

hDn
h ≤ C1,

(3.7)

where the numerical dissipation terms Dn
h , n = 1, . . . , Nf , are non-negative and are

defined as follows:

Dn
h := 1

2‖δ
2unh‖2 + 1

2

∥∥(an−1
h )1/2 |e(δunh)|A

∥∥2

+ 1
2‖(δv

n
h) |e(unh)|A‖2 + (4ε)−1‖δvnh‖2 + ε‖∇δvnh‖2.

(3.8)

Proof. Testing (3.1) with ϕ = h δunh, we obtain(
δunh − δun−1

h , δunh
)

+ h
(
an−1
h Ae(δunh), e(δunh)

)
+
(
an−1
h Ae(unh), e(unh)− e(un−1

h )
)

= 〈`(tn), unh − un−1
h 〉. (3.9)

The first term on the left-hand side is rewritten as follows:(
δunh − δun−1

h , δunh
)

= 1
2‖δu

n
h‖2 + 1

2‖δu
n
h‖2 −

(
δunh, δu

n−1
h

)
+ 1

2‖δu
n−1
h ‖2 − 1

2‖δu
n−1
h ‖2

=K(δunh)−K(δun−1
h ) + 1

2h
2‖δ2unh‖2. (3.10)

A similar computation yields(
an−1
h Ae(unh), e(unh)− e(un−1

h )
)

= E(unh, v
n
h)− E(un−1

h , vn−1
h )

+ 1
2h

2
∥∥(an−1

h )1/2 |e(δunh)|A
∥∥2 − 1

2

∫
Ω

(
anh − an−1

h

)
|e(unh)|2A dx. (3.11)

The last term on the right-hand side of (3.11) is further re-expressed, first by writing

anh − an−1
h = (vnh)2 − (vn−1

h )2 = h(vnh + vn−1
h ) δvnh = 2h vnh δv

n
h − h2

∣∣δvnh ∣∣2,
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and then employing (3.6), as follows:

− 1
2

∫
Ω

(
anh − an−1

h

)
|e(unh)|2A dx

=
{

(2ε)−1
(
vnh − 1, vnh − vn−1

h

)
+ 2ε

(
∇vnh ,∇vnh −∇vn−1

h

)}
+ 1

2h
2
∥∥(δvnh) |e(unh)|A

∥∥2
.

Upon replacing vnh−v
n−1
h = (vnh−1)−(vn−1

h −1) in the first term on the right-hand
side, the combined term in the curly brackets can be manipulated, with the same
algebraic manipulations as in (3.10), so that we arrive at

− 1
2

∫
Ω

(
anh − an−1

h

)
|e(unh)|2A dx =H(vnh)−H(vn−1

h )

+ h2
(

(4ε)−1‖δvnh‖2 + ε‖∇δvnh‖2
)

+ 1
2h

2‖(δvnh) |e(unh)|A‖2. (3.12)

Thus, summing (3.9) over n, and using (3.10)–(3.12) to replace the left-hand side,
we obtain[
K(δuNh ) + E(uNh , v

N
h ) +H(vNh )

]
−
[
K(δu0) + E(u0, v0) +H(v0)

]
+

N∑
n=1

h
∥∥(an−1

h )1/2 |e(δunh)|A
∥∥2 + h

N∑
n=1

hDn
h =

N∑
n=1

〈`(tn), unh − un−1
h 〉, (3.13)

where N ∈ {1, 2, . . . , Nf}, and where

Dn
h := 1

2‖δ
2unh‖2 + 1

2

∥∥(an−1
h )1/2 |e(δunh)|A

∥∥2

+ 1
2‖(δv

n
h) |e(unh)|A‖2 + (4ε)−1‖δvnh‖2 + ε‖∇δvnh‖2.

We estimate the right-hand side in (3.13), using Korn’s inequality and a weighted
Cauchy inequality, as follows:

N∑
n=1

h〈`(tn), δunh〉 ≤
( N∑
n=1

h‖`(tn)‖2H−1

)1/2( N∑
n=1

h‖∇δunh‖2
)1/2

≤ C
( N∑
n=1

h‖`(tn)‖2H−1

)1/2( N∑
n=1

h‖e(δunh)‖2A
)1/2

≤ C

2η

N∑
n=1

h‖`(tn)‖2H−1 +
η

2

N∑
n=1

h‖e(δunh)‖2A.

Inserting this estimate into (3.13), and noting that an−1
h ≥ η, we obtain[

K(δuNh ) + E(uNh , v
N
h ) +H(vNh )

]
−
[
K(δu0) + E(u0, v0) +H(v0)

]
+
η

2

N∑
n=1

h
∥∥e(δunh)

∥∥2

A
+ h

N∑
n=1

hDn
h ≤

C

2η

N∑
n=1

h‖`(tn)‖2H−1 .

Using the coercivity of the different energies, and the fact that the terms Dn
h are

non-negative, we obtain the desired result.
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Lemma 3.3 does not yet furnish a bound on ∇δvnh . This can be achieved by
exploiting the strong coupling between ∇δunh and ∇δvnh in the variational inequality
(3.3), as in the following lemma.

Lemma 3.4. There exists a constant C2, independent of h, such that
Nf∑
n=1

h‖δvnh‖2H1 ≤ C2, (3.14)

Proof. Since vnh ≤ v
n−1
h , we obtain from (3.3), with indices shifted by 1, that(

|e(un−1
h )|2Avn−1

h , δvnh
)

+ (2ε)−1
(
vn−1
h − 1, δvnh

)
+ (2ε)

(
∇vn−1

h ,∇δvnh
)
≥ 0. (3.15)

Subtracting (3.15) from (3.6) gives

‖(δvnh) |e(unh)|A‖2 + (2ε)−1‖δvnh‖2 + (2ε)‖∇δvnh‖2

≤ 1
h

∫
Ω

(
|e(un−1

h )|2A − |e(unh)|2A
)
vn−1
h δvnh dx.

(3.16)

The fact that 0 ≤ vnh ≤ vn−1
h ≤ 1 (cf. Lemma 3.1), and thereby |vnh − v

n−1
h | ≤ 1,

gives |δvnh | ≤ 1/h. With this in mind, we can rewrite and estimate the right-hand
side of (3.16), using also the fact that δvnh ≤ 0, by

1
h

∫
Ω

A
(
e(un−1

h )− e(unh)
)

:
(
e(un−1

h ) + e(unh)
)
vn−1
h δvnh dx

=
1
h

∫
Ω

∣∣(e(un−1
h )− e(unh)

)∣∣2
A
vn−1
h δvnh dx

+
2
h

∫
Ω

A
(
e(un−1

h )− e(unh)
)

: e(unh)vn−1
h δvnh dx

≤ 2
h

∫
Ω

(
|e(unh)|A |δvnh |

) (
|vn−1
h | |e(unh)− e(un−1

h )|A
)

dx

≤ 2
∥∥(δvnh)|e(unh)|A

∥∥∥∥(vn−1
h )|e(δunh)|A

∥∥.
Through an application of Cauchy’s inequality we obtain from (3.16) that

(2ε)−1‖δvnh‖2 + 2ε‖∇δvnh‖2 ≤ ‖(vn−1
h )e(δunh)‖2A, n = 1, . . . , Nf . (3.17)

The stated a priori bound (3.14) now follows from Lemma 3.3 and the fact that
0 ≤ vnh ≤ 1 for all n.

As we remarked above, the bound (3.7) is, in some sense, the natural a priori
bound for (2.2). However, the structure of the coefficient a admits additional reg-
ularity in time for the family (unh)Nf

n=1, and, as in Lemma 3.4, also for the family
(vnh)Nf

n=1.

Lemma 3.5. There exists a constant C3, independent of h, such that
Nf∑
n=1

h‖δ2unh‖2 + max
n=1,...,Nf

(
‖e(δunh)‖2A + ‖∇δvnh‖2

)
≤ C3. (3.18)
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Proof. Testing (3.1) with ϕ = h δwnh , where wnh = unh + δunh, gives

h‖δ2unh‖2 + (δunh − δun−1
h , δunh) +

(
an−1
h Ae(wnh), e(wnh)− e(wn−1

h )
)

= 〈`(tn), wnh − wn−1
h 〉.

(3.19)

Using (3.11), but with unh replaced by wnh , the third term on the left-hand side can
be estimated by

(
an−1
h Ae(wnh), e(wnh)− e(wn−1

h )
)

≥ 1
2

∥∥(anh)1/2 |e(wnh)|A
∥∥2 − 1

2

∥∥(an−1
h )1/2 |e(wn−1

h )|A
∥∥2

+ 1
2

∥∥(an−1
h )1/2 |e(wnh − wn−1

h )|A
∥∥2 + 1

2

∫
Ω

(an−1
h − anh)|e(wnh)|2A dx.

Since vnh ≤ v
n−1
h , we have an−1

h − anh ≥ 0, and therefore

(
an−1
h Ae(wnh), e(wnh)− e(wn−1

h )
)

≥ 1
2

∥∥(anh)1/2 |e(wnh)|A
∥∥2 − 1

2

∥∥(an−1
h )1/2 |e(wn−1

h )|A
∥∥2

+ 1
2η
∥∥e(wnh − wn−1

h )
∥∥2

A
+ 1

2h

∫
Ω

|δanh||e(wnh)|2A dx.

(3.20)

Inserting (3.10) and (3.20) into (3.19), and discarding the non-negative numerical
dissipation terms, yields

h‖δ2unn‖2 + 1
2‖δu

n
h‖2 − 1

2‖δu
n−1
h ‖2 + 1

2

∥∥(anh)1/2 |e(wnh)|A
∥∥2

− 1
2

∥∥(an−1
h )1/2 |e(wn−1

h )|A
∥∥2 + 1

2η
∥∥e(wnh − wn−1

h )
∥∥2

A

+ 1
2h

∫
Ω

|δanh||e(wnh)|2A dx ≤ 〈`(tn), wnh − wn−1
h 〉.

Summing this estimate over n = 1, . . . , N , and using the fact that u0
h = u0 and

δu0
h = u1, gives, for any N ∈ {1, . . . , Nf},

N∑
n=1

h‖δ2unh‖2 + 1
2‖δu

N
h ‖2 + 1

2

∥∥(anh)1/2e(wNh )
∥∥2

A
+ 1

2

N∑
n=1

h

∫
Ω

|δanh||e(wnh)|2A dt

≤ 1
2‖u1‖2 + 1

2

∥∥(a0
h)1/2e(u0 + u1)

∥∥2

A
+

N∑
n=1

〈`(tn), wnh − wn−1
h 〉.

To bound the final term on the right-hand side we use summation by parts to
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reorder the sum as follows:
N∑
n=1

〈`(tn), wnh − wn−1
h 〉 = −

N−1∑
n=0

〈`(tn+1)− `(tn), wnh〉+ 〈`(tN ), wNh 〉 − 〈`(t0), w0
h〉

≤
N−1∑
n=0

h
∥∥h−1(`(tn+1)− `(tn))

∥∥
H−1‖∇wnh‖

+ ‖`(tN )‖H−1‖∇wNh ‖+ ‖`(t0)‖H−1‖∇w0
h‖

≤C
N−1∑
n=0

h
∥∥h−1(`(tn+1)− `(tn))

∥∥
H−1‖e(wnh)‖A

+ C‖`(tN )‖H−1‖e(wNh )‖A + C‖`(t0)‖H−1‖e(w0
h)‖A,

where, in the transition to the last line, we used Korn’s inequality. Using the as-
sumption that ` ∈ C1(H−1) and w0

h = u0 + u1, we obtain the stated result.

3.4. Discrete energy inequality

Starting from (3.13), we deduce an energy inequality for the time-discretization
(3.1), (3.2).

We remark that (3.21) is in fact an equality up to the numerical dissipation
h
∑N
n=1 hD

n
h , which we would expect to be of order O(h). However, we will not

require this in our analysis, and only use the fact that the terms Dn
h are non-

negative.

Lemma 3.6. For all N ∈ {1, . . . , Nf}, the following discrete energy inequality
holds:

F(tN ;uNh , δu
N
h , v

N
h ) ≤ F(0;u0, δu0, v0)

−
N∑
n=1

h
{
‖(an−1

h )1/2|e(δunh)|A‖2 + 〈δ`nh, un−1
h 〉

}
.

(3.21)

Proof. Identity (3.13) gives, for 1 ≤ N ≤ Nf ,

F(tN ;uNh , δu
N
h , v

N
h )−F(0;u0, δu0, v0)

= −〈`(tN ), uNh 〉+ 〈`(0), u0〉+
N∑
n=1

〈`(tn), unh − un−1
h 〉

−
N∑
n=1

h
∥∥(an−1

h )1/2 |e(δunh)|A
∥∥2 − h

N∑
n=1

hDn
h .

We reorder the sum over the forcing terms as follows,

−〈`(tN ), uNh 〉+ 〈`(0), u0〉+
N∑
n=1

〈`(tn), unh − un−1
h 〉 = −

N∑
n=1

〈`(tn)− `(tn−1), un−1
h 〉.

Hence, we obtain the discrete energy inequality (3.21).
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3.5. Passage to the limit

The purpose of the present section is to show that, as h → 0, weakly convergent
sequences of the families (unh, v

n
h)Nf

n=1, h > 0, can be extracted. To this end, we
will first define a number of useful interpolants of these families and then apply
the a priori estimates from Section 3.3 to extract convergent subsequences of these
interpolants.

Let uh denote the piecewise affine interpolant of the sequence (unh)Nf

n=0, defined
as

uh(t) = unh + (t− tn)δunh, t ∈ [tn−1, tn], n = 1, . . . , Nf . (3.22)

In the same way, we define vh to be the piecewise affine interpolant of (vnh)Nf

n=0

and u′h that of (δunh)Nf

n=0. Let ah = v2
h + η. Furthermore, we define the backward

interpolant u+
h and the forward interpolant a−h :

u+
h (t) = unh, t ∈ (tn−1, tn],

a−h (t) = an−1
h , t ∈ [tn−1, tn),

with analogous definitions of v+
h , v−h , `+h . Finally, we define u′′h to be the backward

interpolant of (δ2unh)Nf

n=1. We emphasize that, while u′′h = u̇′h, u′h is not the derivative
of uh. Instead, u̇h is the backward interpolant of (δunh)Nf

n=1.
With this notation, (3.1) reads

(u′′h(t), ϕ) +
(
a−h (t)Ae(u+

h (t) + u̇h(t)), e(ϕ)
)

= 〈`+h (t), ϕ〉
∀ϕ ∈ H1

D ∀t ∈ (0, Tf ].
(3.23)

We will pass to the limit in this formulation. As a first step, we extract a weakly
convergent subsequence of the interpolants.

Lemma 3.7. There exists a subsequence hj ↘ 0 (not relabelled; we write h instead
of hj throughout) and u ∈ H2(L2) ∩W1,∞(H1

D) and v ∈ W1,∞(1 + H1
D), such that

0 ≤ v(·, t) ≤ 1 and v̇(·, t) ≤ 0 a.e. in Ω, and for all t ∈ (0, Tf ], and such that

uh
∗
⇀ u in W1,∞(H1), and (3.24)

vh
∗
⇀ v in W1,∞(H1). (3.25)

Moreover, the following convergence results hold:

uh(t) ⇀ u(t) and vh(t) ⇀ v(t) in H1 ∀t ∈ [0, Tf ], (3.26)

u+
h
∗
⇀ u in L∞(H1) and u+

h (t) ⇀ u(t) in H1 ∀t ∈ (0, Tf ], (3.27)

u′′h ⇀ ü in L2(L2). (3.28)

Proof. Since u̇h, v̇h, and u′′h are the backward interpolants of, respectively,
(δunh)Nf

n=0, (δvnh)Nf

n=0 and (δ2unh)Nf

n=0, the a priori bound (3.18) and Korn’s inequality
imply that

‖uh‖W1,∞(H1) + ‖vh‖W1,∞(H1) + ‖u′′h‖L2(L2) ≤ C. (3.29)
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(We remark that only the bounds on ‖u̇h‖L∞(H1) and on ‖v̇h‖L∞(H1) are required
to deduce this.) Furthermore 0 ≤ vh(·, t) ≤ 1 and v̇h(·, t) ≤ 0 a.e. on Ω and for
all t ∈ (0, Tf ]. This ensures weak-* pre-compactness of the family (uh, vh)h>0 in
W1,∞(H1)×W1,∞(H1) and thus gives (3.24) and (3.25).

To prove (3.26), we note that (2.1) implies that uh(t) → u(t) in L2, for every
t ∈ [0, Tf ]. Since the sequences (uh(t))h>0 and (vh(t))h>0 (for fixed t) are bounded
in H1, the convergence is also weak in H1, for every t ∈ [0, Tf ]. This also shows that
the pointwise bounds on vh stated in the lemma hold for all t.

The convergence (3.27) follows from the fact that uh(t) = u+
h (t) + (t − tn)u̇h,

which implies

‖uh − u+
h ‖L∞(H1) ≤ h‖u̇h‖L∞(H1) ≤ hC. (3.30)

Combining (3.26) and (3.30), we deduce (3.27).
Next, we show that u ∈ H2(L2). Similarly as in the previous paragraph we obtain

(note that u′h is the piecewise affine interpolant and u̇h is the backward interpolant
of (δunh)Nf

n=1)

‖u′h(t)− u̇h(t)‖ ≤ h‖u′′h(t)‖ ∀t ∈ (0, Tf ].

The estimate (3.29) gives an a priori bound on ‖u′′h‖L2(L2), which implies, using also
(3.24) to deduce that u̇h ⇀ u̇ weakly in L2(L2), that

u′h ⇀ u̇ in L2(L2).

Furthermore, it implies that ‖u′h‖H1(L2) is bounded, which shows that, in fact,

u′h ⇀ u̇ in H1(L2).

Hence, we deduce that u ∈ H2(L2) and that (3.28) holds.

Using the various convergence results stated in Lemma 3.7, it is not too difficult
now to pass to the limit in (3.23), and obtain the following result.

Lemma 3.8. The accumulation point (u, v) from the statement of Lemma 3.7 sat-
isfies the wave equation (2.5).

Proof. Since vh is uniformly bounded in W1,∞(H1), (2.1) implies that vh → v in
C(L2). Since 0 ≤ vh(t) ≤ 1 a.e. in Ω, for all t, this convergence also implies that

ah → a in C(L2) and a±h → a in L∞(L2), (3.31)

were a = v2 + η. The latter convergence follows from estimate (3.18) and an argu-
ment similar to the one given in (3.30).
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We are now in a position to take the limit h ↘ 0 in (3.23). For any fixed
t1, t2 ∈ [0, Tf ], and ϕ ∈ H1

D, we have that∫ t2

t1

[
(u′′h, ϕ) +

(
a−h Ae(u

+
h + u̇h), e(ϕ)

)
− 〈`+h , ϕ〉

]
dt

=
∫ t2

t1

[
(u′′h, ϕ) +

(
aAe(u+

h + u̇h), e(ϕ)
)
− 〈`, ϕ〉

]
dt (3.32)

+
∫ t2

t1

(
(a−h − a)Ae(u+

h + u̇h), e(ϕ)
)

dt+
∫ t2

t1

〈`+h − `, ϕ〉dt.

We bound the third term on the right-hand side of (3.32) by∫ t2

t1

〈`+h − `, ϕ〉dt ≤ h(t2 − t1)‖ ˙̀‖C(H−1)‖ϕ‖H1 .

For the second term on the right-hand side we use the Cauchy–Schwarz inequality
to obtain∫ t2

t1

(
(a−h − a)Ae(wh), e(ϕ)

)
dt ≤ ‖(a−h − a)|e(ϕ)|A‖L2(L2)‖|e(wh)|A‖L2(L2),

where wh = u+
h + u̇h. Since (a−h − a)→ 0 a.e. in Ω× (0, Tf ), and |a−h − a|2 ≤ 1, and

since |∇ϕ|2 ∈ L1(Ω× (0, Tf )), Lebesgue’s dominated convergence theorem implies

lim
h↘0

∫ t2

t1

∣∣((a−h − a)Ae(wh), e(ϕ)
)∣∣dt

≤C lim
h↘0
‖wh‖L2(H1)

(∫ t2

t1

∫
Ω

|a−h − a|
2|∇ϕ|2 dxdt

)1/2

= 0.

Finally, noting that a ∈ L∞(L∞), we can simply take the (weak) limits as h ↘ 0
in each component of the first term on the right-hand side of (3.32), using (3.28),
(3.27), and (3.24), to deduce that∫ t2

t1

[
(ü, ϕ) +

(
aAe(u+ u̇), e(ϕ)

)
− 〈`, ϕ〉

]
dt = 0 ∀t1, t2 ∈ [0, Tf ].

The wave equation (2.5) follows immediately from this identity and from Lebesgue’s
differentiation theorem.

3.6. Strong convergence

To obtain strong convergence of uh to u, we bound the truncation error and then
use a discrete stability estimate followed by an application of a discrete Gronwall
inequality.

For h = Tf/Nf and for n = 1, 2, . . . , we define Unh = u(nh), U0
h = u0, and

U−1
h = u0 − hu1. Furthermore, let Uh denote the piecewise affine interpolant and

U+
h the backward piecewise constant interpolant of the samples (Unh )Nf

n=0, and let
U ′′h denote the backward piecewise constant interpolant of (δ2Unh )Nf

n=1. The same
notation is used for interpolants of other discrete functions.
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With this notation, and recalling from Theorem 3.1 that u ∈ H2(L2) ∩
W1,∞(H1

D), we have the following result.

Lemma 3.9. The following convergence results hold:

Uh → u in H1(H1), (3.33)

U+
h → u in L2(H1), and (3.34)

U ′′h → ü in L2(L2). (3.35)

Proof. We begin by showing (3.33). Since u ∈ H1(H1) ⊂ C(H1), it follows that
Ihu := Uh is correctly defined as an element of H1(H1). If we had u ∈ C2(H1)
then (3.33) would trivially follow. However, we can approximate u by a sequence
(uδ)δ>0 ⊂ C2(H1) of such smooth functions and use the uniform boundedness of
the linear operator Ih − I : H1(H1)→ H1(H1), where I is the identity operator, to
deduce (3.33).

The uniform boundedness of Ih − I : H1(H1) → H1(H1) is shown as follows.
First, observe that

|Ihw|H1(H1) ≤ |w|H1(H1), and thus |Ihw − w|H1(H1) ≤ 2|w|H1(H1) ∀w ∈ H1(H1).

Furthermore,

‖Ihw − w‖L2(H1) ≤ π−1h|w|H1(H1) ∀w ∈ H1(H1),

and therefore, for any w ∈ H1(H1),

‖Ihw − w‖H1(H1) ≤ (4 + π−2h2)1/2|w|H1(H1) ≤ (4 + π−2T 2
f )1/2‖w‖H1(H1). (3.36)

Hence, we have that

‖Uh − u‖H1(H1) = ‖Ihu− u‖H1(H1) ≤ ‖Ihuδ − uδ‖H1(H1) + ‖(Ih − I)(u− uδ)‖H1(H1).

For δ > 0 fixed, the first term on the right-hand side tends to zero as h↘ 0, while
the second term, by (3.36) with w = u − uδ, is bounded by a constant multiple of
‖u− uδ‖H1(H1), which, in turn, can be made arbitrarily small by letting δ ↘ 0; this
implies (3.33). The convergence result (3.34) can be deduced exactly as in (3.30).

The same argument can be employed for proving (3.35). One proves, first, that
the interpolation operator u 7→ U ′′h is bounded from H2(L2) to L2(L2), and then
repeats the regularization argument.

To simplify the notation, we define enh := Unh − unh. From the definition of enh
and from (3.1) it follows that

(δ2enh, ϕ) + (an−1
h Ae(enh + δenh), e(ϕ)) = Tnh (ϕ) ∀ϕ ∈ H1

D, (3.37)

where

Tnh (ϕ) := (δ2Unh , ϕ) + (an−1
h Ae(Unh + δUnh ), e(ϕ))− 〈`(tn), ϕ〉. (3.38)
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It is obvious from the definition that Tnh ∈ H−1 for n = 1, . . . , Nf . In the next step,
we use Lemma 3.9 to estimate the truncation error (Tnh )Nf

n=1.

Lemma 3.10. Let Tnh , n = 1, . . . , Nf , be defined by (3.38), and let (ϕnh)Nf

n=1 ⊂ H1,
then ∣∣∣∣∣

Nf∑
n=1

hTnh (ϕnh)

∣∣∣∣∣ ≤ T̃h
( Nf∑
n=1

h
∥∥e(ϕnh)

∥∥2

A

)1/2

,

where T̃h is defined as follows:

T̃h = C

(∫ Tf

0

{
‖U ′′h − ü‖2L2 + ‖e(U+

h )− e(u)‖2A + ‖e(U̇h)− e(u̇)‖2A

+ ‖`− `+h ‖
2
−1 +

∥∥(a−h − a) |e(u+ u̇)|A
∥∥2
}

dt

)1/2

.

(3.39)

In particular, we have that T̃h → 0 as h→ 0.

Proof. The sum
∑Nf

n=1 h|Tnh (ϕnh)| can be rewritten as

N∑
n=1

h
∣∣Tnh (ϕnh)

∣∣ =
∫ T

0

∣∣∣(U ′′h , ϕ+
h ) +

(
a−h Ae(U

+
h + U̇h), e(ϕ+

h )
)
− 〈`+h , ϕ

+
h 〉
∣∣∣ dt.

Testing (2.5) with ϕ = ϕ+
h (t), and applying Korn’s inequality, we obtain

N∑
n=1

h
∣∣Tnh (ϕnh)

∣∣ =
∫ T

0

∣∣∣(U ′′h − ü, ϕ+
h ) + (a−h Ae(U

+
h − u+ U̇h − u̇), e(ϕ+

h ))

+ 〈`− `+h , ϕ
+
h 〉+

(
(a−h − a)Ae(u+ u̇), e(ϕ+

h )
)∣∣∣ dt

≤ C
(∫ Tf

0

{
‖U ′′h − ü‖2L2 + ‖e(U+

h )− e(u)‖2A + ‖e(U̇h)− e(u̇)‖2A

+ ‖`− `+h ‖
2
−1 +

∥∥(a−h − a) |e(u+ u̇)|A
∥∥2
}

dt
)1/2 ( N∑

n=1

h‖e(ϕnh)‖2A
)1/2

=: T̃h
( N∑
n=1

h‖e(ϕnh)‖2A
)1/2

,

where T̃h is defined by (3.39).
Using (3.33)–(3.35) and the assumption that ` ∈ C1(H−1), it follows that all

terms in (3.39), except for the term ‖(a−h − a) |e(u+ u̇)|A‖, tend to zero as h→ 0.
To treat the last term, we first extract a further subsequence for which the upper

limit

lim sup
h→0

∫ T

0

∥∥(a−h − a)|e(u+ u̇)|A
∥∥2 dt
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is attained and for which a−h → a pointwise a.e. in Ω× (0, Tf ). Since |a−h − a|2 ≤ 4
and |e(u+ u̇)|2A ∈ L1, Lebesgue’s dominated convergence theorem implies that∥∥(a−h − a) |e(u+ u̇)|A

∥∥2

L2(L2)
→ 0 as h→ 0. (3.40)

This concludes the proof of the lemma.

Using stability arguments similar to those in Section 3.3 and applying the trun-
cation error estimate of the previous lemma, we obtain the following strong conver-
gence result.

Lemma 3.11. Let (u, v) be the accumulation point from the statement of Lemma
3.7; then

uh → u in H1(H1), and (3.41)

u+
h → u in L∞(H1). (3.42)

(We recall, however, that both (3.41) and (3.42) are understood in the sense of a
subsequence, which we had previously extracted in Lemma 3.7.)

Proof. We test (3.37) with ϕ = wnh = enh + δenh, and sum over n, to obtain, for
1 ≤ N ≤ Nf ,

N∑
n=1

h(δ2enh, w
n
h) +

N∑
n=1

h
(
an−1
h Ae(enh + δenh), e(wnh)

)
=

N∑
n=1

hTnh (wnh). (3.43)

Using summation by parts and the fact that δenh = 0, the first term on the left-hand
side of (3.43) is rewritten in the form

N∑
n=1

h(δ2enh, e
n
h + δenh) = (δeNh , e

N
h + δeNh )−

N∑
n=1

h(δen−1
h , δenh + δ2enh).

Using the same argument as in (3.10) to estimate the first term on the right-hand
side, and a Cauchy inequality to estimate the second term on the left-hand side, we
obtain

N∑
n=1

h(δ2enh, e
n
h + δenh) ≥‖δeNh ‖2 +

1
2h

(
‖eNh ‖2 − ‖eN−1

h ‖2
)

− 1
2

N∑
n=1

h
(
‖δenh‖2 + ‖δen−1

h ‖2
)
−

N∑
n=1

h(δen−1
h , δ2enh).

Using Cauchy’s inequality again, and the fact that δe0
h = 0, we have

−
N∑
n=1

h(δen−1
h , δ2enh) ≥ − 1

2

N∑
n=1

(
‖δenh‖2 − ‖δen−1

h ‖2
)

= − 1
2‖δe

N
h ‖2,
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and hence, we arrive at
N∑
n=1

h(δ2enh, e
n
h + δenh) ≥ 1

2‖δe
N
h ‖2 +

1
2h

(
‖eNh ‖2 − ‖eN−1

h ‖2
)
−

N∑
n=1

h‖δenh‖2. (3.44)

For the second term on the left-hand side of (3.43), we have

N∑
n=1

h
∥∥(an−1

h )1/2 |e(enh + δenh)|A
∥∥2 ≥ η

N∑
n=1

h
∥∥e(enh + δenh)

∥∥2

A

≥ 1
2η

N∑
n=1

h
∥∥e(enh + δenh)

∥∥2

A
+ 1

2η

N∑
n=1

h‖e(δenh)‖2A + η

N∑
n=1

h(Ae(enh), e(δenh)).

Since
N∑
n=1

h(Ae(enh), e(δenh)) ≥
N∑
n=1

(
1
2‖e(e

n
h)‖2A − 1

2‖e(e
n−1
h )‖2A

)
= 1

2‖e(e
N
h )‖2A,

we therefore obtain
N∑
n=1

h
∥∥(an−1

h )1/2 |e(enh + δenh)|A
∥∥2 ≥ 1

2η

N∑
n=1

h
∥∥e(enh + δenh)

∥∥2

A
(3.45)

+ 1
2η

N∑
n=1

h‖e(δenh)‖2A + 1
2η‖e(e

N
h )‖2A.

Combining (3.44) and (3.45), and applying Lemma 3.10 with ϕnh = wnh , we
deduce that

‖δeNh ‖2 +
1
h

(
‖eNh ‖2 − ‖eN−1

h ‖2
)

+
N∑
n=1

h‖e(δenh)‖2A + ‖e(eNh )‖2A

≤ C

{
N∑
n=1

h‖δenh‖2 + T̃ 2
h

}
,

(3.46)

where T̃h is defined in (3.38). Multiplying this inequality by h and summing the
result over N = 1, . . . ,M , where 1 ≤M ≤ Nf , leads to

EM ≤ C

{
M∑
N=1

hEN + T̃ 2
h

}
,

where

EM = ‖eMh ‖2 +
M∑
N=1

h

{
‖δeNh ‖2 + ‖e(eNh )‖2A +

N∑
n=1

h‖e(δenh)‖2A

}
.

An application of a discrete Gronwall inequality, for example Lemma 10.5 in
Thomée18, and recalling from Lemma 3.10 that T̃h → 0, we obtain

max
M=1,...,Nf

EM ≤ CT̃ 2
h → 0 as h↘ 0. (3.47)
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In terms of the piecewise affine and backward interpolants of (enh)Nf

n=1, after applying
Korn’s inequality, this implies

‖e+
h ‖L∞(L2) + ‖ėh‖L2(L2) + ‖∇e+

h ‖L2(L2) → 0 as h↘ 0. (3.48)

Note that, in (3.48), we have neglected the final term in the definition of EM ,
which would have appeared in the form of a double-integral and not have given the
desired result. To obtain convergence of ∇ėh, we first revert to (3.46) from which
we can now deduce, using (3.47),

‖δeNh ‖2 +
N∑
n=1

h‖e(δenh)‖2A ≤ CT̃ 2
h −

1
h

(
‖eNh ‖2 − ‖eN−1

h ‖2
)

≤ CT̃ 2
h −

(
eNh + eN−1

h , δeNh
)

≤ CT̃ 2
h + 1

4‖e
N
h + eN−1

h ‖2 + ‖δeNh ‖2.

Cancelling the first term on the left-hand side and the third term on the right-hand
side of the inequality, and using (3.47) again to estimate ‖eNh + eN−1

h ‖ ≤ CT̃h, we
arrive at

N∑
n=1

h‖e(δenh)‖2A ≤ CT̃ 2
h → 0 as h↘ 0.

After taking the supremum over N , applying Korn’s inequality, and recalling that
eh is the piecewise affine interpolant of (enh)Nf

n=0, this may also be read as

‖∇ėh‖2L2(L2) ≤ CT̃
2
h → 0 as h↘ 0.

Thus, we finally arrive at

eh = Uh − uh → 0 in H1(H1) as h↘ 0.

Using the interpolation error estimate (3.33), and the fact that ‖u+
h (t)−uh(t)‖H1 ≤

h‖u̇h(t)‖H1 for all t ∈ [0, Tf ], we obtain (3.41) and (3.42).

3.7. Minimality of v

We use the strong convergence result (3.42) to establish the unilateral minimality
of v.

Lemma 3.12. Let (u, v) be the accumulation point from the statement of Lemma
3.7; then the unilateral minimality condition (2.3) for v(t) is satisfied for every
t ∈ (0, Tf ].

Proof. Fix t ∈ (0, Tf ] and recall as in (3.3) that the variational inequality associ-
ated with (2.3) is

∂vE(u(t), v(t))[ψ − v(t)] +H′(v(t))[ψ − v(t)] ≥ 0 ∀ψ ∈ 1 + H1
D, ψ ≤ v(t),

(3.49)
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or equivalently, upon substituting χ = ψ − v(t) ≤ 0,

∂vE(u(t), v(t))[χ] +H′(v(t))[χ] ≥ 0 ∀χ ∈ H1
D, χ ≤ 0. (3.50)

Since v+
h (t) is minimal among ψ ≤ v−h (t), it is also minimal among ψ ≤ v+

h (t), which
again gives

∂vE(u+
h (t), v+

h (t))[χ] +H′(v+
h (t))[χ] ≥ 0 ∀χ ∈ H1

D, χ ≤ 0.

Since H′(v)[χ] is linear in v, and since v+
h (t) ⇀ v(t) weakly in H1 for every t, it

follows that

H′(v+
h (t))[χ]→ H′(v(t))[χ],

where χ ∈ H1
D, χ ≤ 0 is held fixed. Furthermore, for every fixed t ∈ [0, Tf ],

∇u+
h (t) → ∇u(t) strongly in L2, which implies that |e(u+

h (t))|2A → |e(u(t))|2A
strongly in L1. After extracting a subsequence h′ ⊂ h for which v+

h′(t) → v(t)
pointwise a.e. in Ω, for all t ∈ [0, Tf ], Lebesgue’s dominated convergence theorem
implies that ∫

Ω

v+
h χ|e(u

+
h )|2A dx→

∫
Ω

vχ|e(u)|2A dx ∀χ ∈ L∞.

Thus, we have shown that (3.50) holds for all χ ∈ L∞ ∩ H1, χ ≤ 0. Since the
only reasonable competitors ψ for the energy satisfy 0 ≤ ψ ≤ v, this is sufficient
to deduce unilateral minimality of v and thus concludes the proof of (3.49), and
equivalently of (2.3), for any t ∈ (0, Tf ].

3.8. Energy balance

Lemmas 3.7, 3.8, 3.11, and 3.12 establish all the results contained in Theorem 3.1
except for the strong convergence of vh in H1, and the claim that the trajectory
(u, v) satisfies the energy balance formula (2.4). Proving this is the purpose of this
section. The following lemma and its corollary below therefore conclude the proof
of Theorem 3.1, which immediately implies Theorem 2.1 as well.

Lemma 3.13. Let (u, v) be the accumulation point from the statement of Lemma
3.7; then it satisfies the energy balance condition (2.4).

Proof. Testing (2.5) with ϕ = u̇ gives

1
2

d
dt
‖u̇‖2 +

∥∥a1/2|e(u̇)|A
∥∥2 + (aAe(u), e(u̇)) = 〈`, u̇〉. (3.51)

Using the fact that ` ∈ C1(H−1), the left-hand side can be rewritten as

〈`, u̇〉 =
d
dt
〈`, u〉 − 〈 ˙̀, u〉. (3.52)

In what follows, we will find a way to bypass the technically subtle product rule
formula

d
dt

1
2‖a

1/2|e(u)|A‖2 = 1
2 (ȧ Ae(u), e(u)) + (aAe(u), e(u̇)),
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which, formally, would quickly lead to the energy balance condition (2.4).
First, we use the discrete energy inequality (3.21) to deduce a corresponding

result for the limit. Using only the weak convergence of vh and uh and the strong
convergence of a−h in L2(L2), as well as a standard lower-semicontinuity property of
convex integrands (Theorem 3.4 in Dacorogna7), we obtain

F(T, u(T ), u̇(T ), v(T )) +
∫ T

0

∥∥a1/2|e(u̇)|A
∥∥2 dt+

∫ T

0

〈 ˙̀(t), u〉dt

≤ lim inf
h↘0

{
F(T, uh(T ), u̇h(T ), vh(T ))+

∫ T

0

∥∥(a−h )1/2|e(u̇h)|A
∥∥2 dt

+
∫ T

0

〈 ˙̀h(t), uh〉dt

}

≤ lim sup
h↘0

{
F(T, uh(T ), u̇h(T ), vh(T ))+

∫ T

0

∥∥(a−h )1/2|e(u̇h)|A
∥∥2 dt

+
∫ T

0

〈 ˙̀h(t), uh〉dt

}
≤F(0, u0, u̇0, v0),

(3.53)

i.e.,

F(T, u(T ), u̇(T ), v(T )) +
∫ T

0

∥∥a1/2|e(u̇)|A
∥∥2 dt+

∫ T

0

〈 ˙̀(t), u〉dt

≤ F(0, u(0), u̇(0), v(0)).
(3.54)

It remains to prove the reverse inequality,

F(T, u(T ), u̇(T ), v(T )) +
∫ T

0

∥∥a1/2|e(u̇)|A
∥∥2 dt+

∫ T

0

〈 ˙̀(t), u〉dt

≥ F(0, u(0), u̇(0), v(0)). (3.55)

By integrating (3.51) and using (3.52), we find that (3.55) is equivalent to

E(u(T ), v(T )) +H(v(T ))−
∫ T

0

(aAe(u), e(u̇)) dt ≥ E(u(0), v(0)) +H(v(0)),

which can be rearranged as

E(u(T ), v(T ))−E(u(0), v(0)) ≥ −H(v(T ))+H(v(0))+
∫ T

0

(aAe(u), e(u̇)) dt. (3.56)

We prove (3.56) by a time-discretization. In order to avoid confusion with the
earlier time-step discretization, let M ∈ N, let τ = τM = T/M , and set si = iτ ,
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i = 0, . . . ,M . For each i we write

E(u(si), v(si))− E(u(si−1), v(si−1))

=
1
2

∫
Ω

(
a(si)|e(u(si))|2A − a(si−1)|e(u(si−1))|2A

)
dx

=
1
2

∫
Ω

(
a(si)− a(si−1)

)
|e(u(si−1))|2A dx

+
1
2

∫
Ω

a(si)
(
|e(u(si))|2A − |e(u(si−1))|2A

)
dx

=: Ai + Bi. (3.57)

We bound the terms Ai and Bi separately.
Thanks to the unilateral minimality of v(si−1), we have

1
2

∫
Ω

a(si)|e(u(si−1))|2A dx+H(v(si)) ≥
1
2

∫
Ω

a(si−1)|e(u(si−1))|2A dx+H(v(si−1)),

and hence

Ai =
1
2

∫
Ω

(
a(si)− a(si−1)

)
|e(u(si−1))|2A dx ≥ H(v(si−1))−H(v(si)). (3.58)

To bound the term Bi we note first that

Bi =
1
2

∫
Ω

a(si)Ae(u(si) + u(si−1)) : e(u(si)− u(si−1)) dx (3.59)

=
∫ si

si−1

∫
Ω

a−τ (s)Ae(ūτ (s)) : e(u̇(s)) dxds,

where

a−τ (s) = a(si−1) and ūτ (s) = 1
2 (u(si−1)+u(si)) for s ∈ (si−1, si), i = 1, . . . ,M.

Due to the regularity of u and v, it follows that

a−τ → a strongly in L∞(L2), and

ūτ → u strongly in L∞(H1).

Summing (3.59) over i = 1, . . . ,M gives

M∑
i=1

Bi =
∫ T

0

(
a−τ Ae(ūτ ), e(u̇)

)
ds =

∫ T

0

(
aAe(u), e(u̇)) ds

+
∫ T

0

(
a−τ Ae(ūτ − u), e(u̇)

)
ds+

∫ T

0

(
(a−τ − a)Ae(u), e(u̇)

)
ds.

The second term on the right-hand side clearly converges to zero as τ → 0. For the
third term on the right-hand side, we use again Lebesgue’s dominated convergence
theorem to prove that, after extracting a suitable subsequence, so that a−τ (t)→ a(t)
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pointwise a.e. in (0, T ), the third term tends to zero as well. Summing (3.57) and
(3.58) over i = 1, . . . ,M as well, we have shown that

E(u(T ), v(T ))− E(u(0), v(0)) = lim sup
τ↘0

M∑
i=1

(
Ai + Bi

)
≥ H(v(0))−H(v(T )) +

∫ T

0

(
aAe(u), e(u̇)

)
dt,

which, as we have argued above, implies (3.55). Together with (3.54), we have shown
that the limit indeed satisfies the energy conservation condition (2.4).

Corollary 3.1. For every t ∈ [0, Tf ] we have

vh(t)→ v(t) strongly in H1. (3.60)

Proof. We begin by noting that, since (u, v) satisfies (2.4), we have in fact equality
in all inequalities in the chain of estimates in (3.53), that is, for any T ∈ (0, Tf ],

F
(
t, uh(t), u̇h(T ), vh(T )

)
+
∫ T

0

{∥∥(a−h )1/2|e(u̇h)|A
∥∥2 + 〈 ˙̀h(t), uh〉

}
dt

→ F
(
t, u(t), u̇(T ), v(T )

)
+
∫ T

0

{∥∥a1/2|e(u̇)|A
∥∥2 + 〈 ˙̀(t), u〉

}
dt,

as h → 0. Using the strong convergence result from Lemma 3.11, and repeating
the argument used to show (3.40), it is straightforward to show that all terms, ex-
cept for the termH(vh(t)) contained in F(t, uh(t), u̇h(t), vh(t)), converge separately.
However, since their sum converges we obtain also that

H(vh(t))→ H(v(t)) ∀t ∈ (0, Tf ].

Since weak convergence together with convergence of the norm implies strong con-
vergence, this gives the desired result for all t ∈ (0, Tf ]. For t = 0, vh(0) = v0

h =
v0 = v(0), so that the result holds trivially.

4. Conclusions

In this paper, we have developed the first steps of a theory for a regularized model
of dynamic crack propagation based on the time-discrete model put forward in
Bourdin, Larsen & Richardson4. By proving convergence of a time-discretization,
as the time-step tends to zero, we have established existence of solutions to a time-
continuous formulation as well as balance of total energy of the system. We stress,
once again, that this model and our theory do not require any a priori assumptions
on the crack topology and is in particular dimension-independent.

Of course, a number of questions remain open. For example, we were unable
to perform our analysis without the damping term. We believe that it should be
possible to establish existence of solutions in the absence of the damping term,
however, we could not then see the way for ensuring energy balance.
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Second, taking the limit as ε↘ 0 poses a formidable challenge. Note, for exam-
ple, that the unilateral minimality of the v variable has no obvious counterpart in
a sharp-interface model. While some possibilities have been proposed by Larsen16,
proof that any of these is the limiting model is open.

Third, we were unable to establish a sufficiently strong notion of maximal dis-
sipation. Intuitively, it seems reasonable to us that unilateral minimality of v and
energy balance could provide such a condition.

Finally, a fascinating question is to rescale time, and to investigate the quasi-
static limit of our dynamic model. Here, the presence of the damping is crucial. It
would be interesting to see whether one can, at all, recover the model of Francfort &
Marigo12, as well as discover situations in which the model of Francfort & Marigo12

does not give the limiting model.
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