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Abstract In this paper we study a model which describes the relation of
the matter and the electromagnetic field from a unitarian standpoint in the
spirit of the ideas of Born and Infeld. This model, introduced in [1], is based
on a semilinear perturbation of the Maxwell equation (SME). The particles
are described by the finite energy solitary waves of SME whose existence is
due to the presence of the nonlinearity. In the magnetostatic case (i.e. when
the electric field E = 0 and the magnetic field H does not depend on time)
the semilinear Maxwell equations reduce to the following semilinear equation

∇× (∇×A) = f ′(A) (1)

where “∇×” is the curl operator, f ′ is the gradient of a smooth function
f : R3 → R and A : R3 → R3 is the gauge potential related to the magnetic
field H (H = ∇ × A). The presence of the curl operator causes (1) to be
a strongly degenerate elliptic equation. The existence of a nontrivial finite
energy solution of (1) having a kind of cylindrical symmetry is proved. The
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proof is carried out by using a variational approach based on two main ingre-
dients: the Principle of symmetric criticality of Palais, which allows to avoid
the difficulties due to the curl operator, and the concentration-compactness
argument combined with a suitable minimization argument.

Keywords Maxwell equations · natural constraint · minimizing sequence
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1 Introduction

The study of the relation of matter and the electromagnetic field is a classi-
cal, intriguing problem both from physical and mathematical point of view.
In the framework of a classical relativistic theory, particles must be con-
sidered pointwise. However charged pointwise particles have infinite energy
and therefore infinite inertial mass. This fact gives rise to well known diffi-
culties (see for example [4,5,9]). The use of nonlinear equations in classical
electrodynamics permits in some situations to avoid these difficulties. In a
pioneering paper ([3]) Born and Infeld introduced a nonlinear formulation of
the Maxwell equations. This theory avoids the divergences, however it is not
unitarian, i.e. the nonlinearity they introduce does not allow the existence
of a self-induced electromagnetic field and an external source is needed (see
chapter 12 in [10]).

Following these lines of thought, in [1] a unitarian field theory has been
introduced. This theory is based on a semilinear perturbation of the Maxwell
equations. More precisely the usual Maxwell action for the gauge potentials
A : R4 → R3, ϕ : R4 → R

SM (A, ϕ) =
1
2

∫ ∫ ( ∣∣∣∣
∂A
∂t

+∇ϕ

∣∣∣∣
2

− |∇ ×A|2
)

dxdt

is modified as follows:

S (A, ϕ) =
1
2

∫ ∫ ( ∣∣∣∣
∂A
∂t

+∇ϕ

∣∣∣∣
2

− |∇ ×A|2 + W
( |A|2 − ϕ2

))
dxdt (2)

where W : R→ R and “∇×” denotes the curl operator.
The argument of W is |A|2 − |ϕ|2 in order to make the action invariant

for the Poincaré group and the equations consistent with Special Relativity.
Making the variation of S with respect to δA, δϕ respectively, we get the

equations

∂

∂t

(
∂A
∂t

+∇ϕ

)
+∇× (∇×A) = W ′( |A|2 − ϕ2

)
A, (3)

−∇ ·
(

∂A
∂t

+∇ϕ

)
= W ′( |A|2 − ϕ2

)
ϕ. (4)
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If we set
ρ = ρ (A, ϕ) = W ′( |A|2 − ϕ2

)
ϕ, (5)

J = J (A, ϕ) = W ′( |A|2 − ϕ2
)
A, (6)

equations (3) and (4) are formally the Maxwell equations in the presence
of matter if we interpret ρ (A, ϕ) as charge density and J (A, ϕ) as current
density. Notice that ρ and J are not assigned functions representing external
sources: they depend on the gauge potentials, so that we are in the presence
of an unitarian theory. We make the following assumptions on W :

(W1) W ∈ C1(R,R); W (0) = 0;
(W2) there exists ξ > 0 such that W (ξ) > 0;
(W3) there exist positive constants c, p, q with 2 < p < 6 < q such that

|W ′(s)| ≤ c|s|p/2−1 for |s| ≥ 1,

|W ′(s)| ≤ c|s|q/2−1 for |s| ≤ 1.

The set
Ωt =

{
x ∈ R3 : 1 ≤ ∣∣ |A(x, t)|2 − |ϕ(x, t)|2 ∣∣

}

is interpreted as the region of the space filled with matter at time t (see
section 2 of [1]). Observe that the above assumptions allow to take W (s) = 0
for |s| ≤ 1− ε (ε > 0), so that ρ and J vanish outside a neighbourhood of Ωt

and in this region equations (3) and (4) reduce to the Maxwell equations in
the empty space.

Equations (3) and (4) have been extensively studied in [1] where, among
other things, the existence of a finite energy (magnetostatic) solution (A, 0),
with A depending only on the space variable x, has been stated. However
the proof contains a gap, which will be overcome by Theorem 1 below.

In the magnetostatic case, equations (3) and (4) reduce to

∇× (∇×A) = W ′( |A|2 )
A. (7)

In this paper we study equation (7) and we prove the existence of a
nontrivial, finite energy solution A = (A1, A2, A3) whose components are
related to each others by some kind of cylindrical symmetry. More precisely
the following theorem holds:

Theorem 1 Assume that hypotheses (W1), (W2), (W3) hold. Then equation
(7) has a nontrivial, weak solution A having the following form:

A(x) = A
(√

x2
1 + x2

2, x3

)
(−x2, x1, 0)

where A : (0,+∞)× R→ R. Moreover A has finite energy, i.e.
∫

R3
|∇A|2 dx < +∞.
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The main difficulty in dealing with the equation (7) lies in the fact that
the energy functional related to it

E [A] =
1
2

∫

R3
|∇ ×A|2 dx−

∫

R3
W (|A|2)dx (8)

is, in general, strongly indefinite in the sense that it is not bounded from
below or from above and any possible critical point has infinite Morse in-
dex; namely the second variation of (8) is negative definite (if W is strongly
convex) on the infinite dimensional space

{
A = ∇ϕ : ϕ ∈ C∞0 (R3,R)

}
.

To overcome this difficulty, in section 2 we introduce a suitable space D1
F

whose elements are divergence free, so that for A ∈ D1
F we have

∫

R3
|∇ ×A|2 dx =

∫

R3
|∇A|2 dx.

It can be shown that D1
F is a natural constraint for (8), so that we are reduced

to look for critical points of E|D1
F
. Furthermore the maps in D1

F have a sort
of cylindrical symmetry and the functional E|D1

F
has a lack of compactness

due to its invariance under the translations along the x3 axis. The proof of
the existence of critical points for E|D1

F
is carried out in section 4 combining

a concentration-compactness type result, proved in section 3, with a suitable
minimization argument.

2 The Variational Setting

In this section we collect some preliminary results concerning the variational
structure of the system (7). Let C∞0 (R3,R3) be the set of the C∞ vector
fields A : R3 → R3 having compact support. Then let D1(R3,R3) denote the
completion of C∞0 (R3,R3) with respect to the norm

‖A‖2D1 =
∫

R3
|∇A|2dx, A ∈ D1(R3,R3).

D1(R3,R3) is a Hilbert space with the scalar product
∫

R3
(∇A|∇B)dx, A, B ∈ D1(R3,R3),

where A = (A1, A2, A3), B = (B1, B2, B3) and (∇A|∇B) =
∑3

i=1∇Ai ·∇Bi,
being “ · ” the scalar product in R3. By the Sobolev inequalities, D1(R3,R3)
is continuously embedded into L6(R3,R3):

D1(R3,R3) ↪→ L6(R3,R3). (9)

Consequently, for every Ω ⊂ R3 open and bounded we have

D1(R3,R3) ↪→ H1(Ω,R3) (10)
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with continuous embedding.
The functional associated to (7) is

E [A] =
1
2

∫

R3
|∇ ×A|2dx− 1

2

∫

R3
W (|A|2)dx.

Observe that, according to assumption (W3), we have

|W (s2)| ≤ c

3
|s|6, |W ′(s2)| ≤ c|s|4. (11)

Then, by (9), it is easy to prove that E is well defined on D1(R3,R3) and
belongs to the class C1(D1(R3,R3),R). Hence critical points of E correspond
to solutions of (7).

The main difficulty in dealing with the functional E lies in its strongly
indefinite nature: indeed, if W is positive, it is negatively definite on the
infinite-dimensional subspace

{A = ∇φ |φ ∈ C∞0 (R3,R)}.
Hence it does not exhibit a mountain pass geometry. In order to remove this
indefiniteness, we are going to restrict our functional to a suitable subspace
of D1(R3,R3). More precisely consider the following space

F =

{
A : R3 → R3

∣∣∣∣∣
∃A : (0,+∞)×R→ R s.t.

A(x)=A(r, x3)(−x2, x1, 0) a.e. in R3

}

where
r = rx = |(x1, x2)| =

√
x2

1 + x2
2, (12)

and set
D1
F = D1(R3,R3) ∩ F .

It is obvious that D1
F is a closed subspace of D1(R3,R3). Furthermore, for

all A ∈ D1
F we have that div A = 0, by which

∇× (∇×A) = −∆A ∀A ∈ D1
F ; (13)

hence the restricted functional E|D1
F

has the following form

E|D1
F
[A] =

1
2

∫

R3
|∇A|2dx− 1

2

∫

R3
W (|A|2)dx. (14)

The first object is to prove that D1
F is a natural constraint for E , i.e. a

suitable subspace where to find solutions of (7). To this aim we recall the
following Principle of symmetric criticality of Palais ([8]):

Principle of symmetric criticality. Assume that there exists a topological group
of transformations G which acts isometrically on a Hilbert space X and define

FixG := {A ∈ X |GA = A ∀G ∈ G}. (15)
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If J ∈ C1(X,R) is invariant under G, i.e.

J (GA) = J (A) ∀G ∈ G, ∀A ∈ X, (16)

and if A is a critical point of J|FixG, then A is a critical point of J .

We are going to apply the above principle to our functional E .
Indeed, let O(N) denote the orthogonal group of the rotation matrices in

RN ; in particular consider

O(2) =
{( cosα − sinα

sin α cosα

)∣∣∣α ∈ [0, 2π)
}

.

For any g ∈ O(2) define the following action Tg on D1(R3,R3):

TgA(x) = g̃−1A(g̃x) ∈ D1(R3,R3), g̃ =
(

g 0
0 1

)
∈ O(3).

Now we set

FixO(2) = {A ∈ D1(R3,R3) | TgA = A ∀g ∈ O(2)}.
It is immediate that the action of O(2) on D1(R3,R3) is isometric. Further-
more ∇×TgA(x) = g̃−1(∇×A)(g̃x) and |TgA(x)| = |A(g̃x)|, then it is easily
deduced that E is invariant with respect to O(2). According to the Princi-
ple of symmetric criticality every critical point A of E|FixO(2) is a critical
point of E , and, consequently, a weak solution to equation (7). Observe that
D1
F ⊂ FixO(2).

Next we will introduce a new group G acting on FixO(2) and we will
apply again the Principle of symmetric criticality to the functional E|FixO(2).
Since, as we will show, FixG = D1

F , to solve equation (7) it will be sufficient
to look directly for critical points of E|D1

F
.

In order to define G we have to use a decomposition of the functions in
FixO(2) provided by the following Lemma.

Lemma 1 For every A ∈ FixO(2) there exist three functions Aρ, Aτ , Aζ ∈
FixO(2) such that A = Aρ + Aτ + Aζ and

Aρ = Aρ(r, x3)(x1, x2, 0),
Aτ = Aτ (r, x3)(−x2, x1, 0),
Aζ = Aζ(r, x3)(0, 0, 1)

for some Aρ, Aτ , Aζ : (0,+∞)× R→ R. Furthermore for a.e. x ∈ R3:
(∇Aρ(x)|∇Aτ (x)

)
=

(∇Aρ(x)|∇Aζ(x)
)

=
(∇Aτ (x)|∇Aζ(x)

)
= 0. (17)

Proof. Set A = (A1, A2, A3) ∈ FixO(2) and set

Rx3 := {(x1, x2, x3) ∈ R3 |x1 = x2 = 0}.
Denote by Aρ, Aτ Aζ the vector fields such that, for every x = (x1, x2, x3) ∈
R3\Rx3 , Aρ(x), Aτ (x) and Aζ(x) are the projections of the vector A(x) along
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the directions ρ(x) = (x1, x2, 0), τ (x) = (−x2, x1, 0) and ζ(x) = (0, 0, 1). By
some computations we get Aρ = Aρρ, Aτ = Aττ , Aζ = Aζζ where

Aρ(x) =
A1x1 + A2x2

r2
, Aτ (x) =

−A1x2 + A2x1

r2
, Aζ = A3. (18)

By construction we have A = Aρ +Aτ +Aζ . We are going to prove that Aρ,
Aτ , Aζ have cylindrical symmetry, i.e. Aρ = Aρ(r, x3), Aτ = Aτ (r, x3), Aζ =
Aζ(r, x3). For every x ∈ R3 \ Rx3 consider

θx =
1
r2

(
x1 x2

−x2 x1

)
∈ O(2).

Observe that, since θ̃xA(x) = (Aρ(x), Aτ (x), Aζ(x)), it is enough to show
that the vector field x ∈ R3 → θ̃xA(x) is cylindrically symmetric, that is
θ̃g̃xA(g̃x) = θ̃xA(x) for every g ∈ O(2). Indeed, since θ̃g̃x = θ̃xg̃−1 for every
g ∈ O(2), then we get

θ̃g̃xA(g̃x) = θ̃xg̃−1A(g̃x) = θ̃xTgA(x) = θ̃xA(x).

It remains to prove that

Aρ, Aτ , Aζ ∈ D1(R3,R3), (19)

which is not immediate because of the presence of the singular term 1
r2 in the

definitions (18). Notice that, once we have proved (19), the conclusion follows
immediately since Aρ, Aτ , Aζ are fixed points for the action O(2). By the
definition of Aρ, Aτ , Aζ we immediately have Aρ, Aτ , Aζ ∈ L6(R3,R3) ∩
H1

loc(R3 \Rx3 ,R3). Denote by ∇Aρ

∣∣
R3\Rx3

, ∇Aτ

∣∣
R3\Rx3

and ∇Aζ

∣∣
R3\Rx3

the

gradient in the sense of the distributions of Aρ, Aτ , Aζ in R3 \Rx3 , and let
∇Aρ, ∇Aτ and ∇Aζ be the functions defined a.e. in R3 representing such
distributions. A direct computation shows that for a.e. x ∈ R3:

(∇Aρ(x)|∇Aτ (x)) = (∇Aρ(x)|∇Aζ(x)) = (∇Aτ (x)|∇Aζ(x)) = 0.

Indeed the equalities (∇Aρ(x)|∇Aζ(x)) = (∇Aτ (x)|∇Aζ(x)) = 0 are im-
mediate and

(∇Aρ(x)|∇Aτ (x)) = −∇(Aρx1) · ∇(Aτx2) +∇(Aρx2) · ∇(Aτx1)

= −(
x1∇Aρ + (Aρ, 0, 0)

) · (x2∇Aτ + (0, Aτ , 0)
)

+
(
x2∇Aρ + (0, Aρ, 0)

) · (x1∇Aτ + (Aτ , 0, 0)
)

= −x1Aτ
∂Aρ

∂x2
− x2Aρ

∂Aτ

∂x1
+ x2Aτ

∂Aρ

∂x1
+ x1Aρ

∂Aτ

∂x2
= 0

since Aρ and Aτ have a cylindrical symmetry. This implies

|∇A|2 = |∇Aρ|2 + |∇Aτ |2 + |∇Aζ |2 a.e. in R3 (20)

and then

∇Aρ

∣∣
R3\Rx3

,∇Aτ

∣∣
R3\Rx3

,∇Aζ

∣∣
R3\Rx3

∈ L2(R3,R3). (21)
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Denoting by ∂
∂xi

∣∣
R3\Rx3

the distributional derivative in R3 \ Rx3 , from
(20) we deduce that

∂Aρ

∂xi

∣∣
R3\Rx3

,
∂Aτ

∂xi

∣∣
R3\Rx3

,
∂Aζ

∂xi

∣∣
R3\Rx3

∈ L2(R3,R3), (22)

so (19) will follow if we show that ∂Aρ

∂xi

∣∣
R3\Rx3

, ∂Aτ

∂xi

∣∣
R3\Rx3

, ∂Aζ

∂xi

∣∣
R3\Rx3

actu-
ally coincide with the distributional derivatives of Aρ,Aτ , Aζ in the whole
R3: in other words, considering the component Aρ (the computations for
the other components are similar), we have to show that, for any B ∈
C∞0 (R3,R3), it results

∫

R3

∂Aρ

∂xi

∣∣∣
R3\Rx3

·B dx = −
∫

R3
Aρ · ∂B

∂xi
dx. (23)

Observe that, since Aρ ∈ L6(R3,R3) and ∂Aρ

∂xi

∣∣
R3\Rx3

∈ L2(R3,R3), then
the above integrals are both finite. Now for all ε > 0 consider a function
ηε ∈ C∞(R3,R) such that

ηε = 0 for |r| ≤ ε

2
, ηε = 1 for |r| ≥ ε, 0 ≤ ηε ≤ 1, |∇ηε| ≤ 4

ε
.

Set Bε(x) = B(x)ηε(x) ∈ C∞0 (R3 \ Rx3). For all ε > 0 we have
∫

R3

∂Aρ

∂xi
·Bε dx = −

∫

R3
Aρ · ∂Bε

∂xi
dx

= −
∫

R3
ηεAρ · ∂B

∂xi
dx−

∫

R3

∂ηε

∂xi
Aρ ·B dx. (24)

Now, by Lebesgue’s Theorem

lim
ε→0+

∫

R3

∂Aρ

∂xi
·Bε dx =

∫

R3

∂Aρ

∂xi

∣∣∣
R3\Rx3

·B dx,

lim
ε→0+

∫

R3
ηεAρ · ∂B

∂xi
dx =

∫

R3
Aρ · ∂B

∂xi
dx.

(25)

Let R > 0 be such that B = 0 for |x| ≥ R and set Ωε := B(0, R) ∩ {r ≤ ε}.
Observe that meas(Ωε) ≤ 2πRε2, so

∣∣∣∣
∫

R3

∂ηε

∂xi
Aρ ·B dx

∣∣∣∣ ≤ ‖B‖L∞
4
ε

∫

Ωε

|Aρ| dx

≤ ‖B‖L∞
4
ε

(
meas(Ωε)

) 5
6

( ∫

Ωε

|Aρ|6 dx

)1/6

→ 0 (26)

as ε goes to 0. Letting ε go to 0 in (24) and using (25) and (26), the equality
(23) follows.

Now we are ready to prove the following proposition, which is the key
result of this section: it shows how the introduction of the functional set D1

F
has a crucial role in dealing with the strong-indefiniteness of the functional
E .
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Proposition 1 Let A ∈ D1
F be a critical point of E|D1

F
. Then A is a weak

solution to (7).

According to Lemma 1 let S be the action on FixO(2) defined by:

SA = S(Aρ + Aτ + Aζ) = −Aρ + Aτ −Aζ .

We set G the group generated by S; since S2 = id, we have G ≈ Z2. According
to (17) we get

∫

R3
|∇A|2 dx

=
∫

R3
|∇Aρ|2 dx +

∫

R3
|∇Aτ |2 dx +

∫

R3
|∇Aζ |2 dx =

∫

R3
|∇SA|2dx,

then the action of G on FixO(2) is isometric. It results D1
F = FixG := {A ∈

FixO(2) | SA = A}: indeed the inclusion D1
F ⊂ FixG is obvious; on the

other hand, if A ∈ FixG, then the invariance under S implies Aρ = Aζ = 0
and, consequently, A = Aτ ∈ D1

F .
The conclusion will follow from the principle of symmetric criticality just

taking X = FixO(2) and J = E|FixO(2) and proving that (16) holds with
respect to the group G generated by S. If A ∈ FixO(2), then Aτ ∈ D1

F ,
which implies by (13) ∇× (∇×Aτ ) = −∆Aτ and consequently by (17)

∫

R3

(∇×Aτ |∇ × (Aρ + Aζ)
)
dx =

∫

R3

(∇× (∇×Aτ )|Aρ + Aζ

)
dx

=
∫

R3

(∇Aτ |∇(Aρ + Aζ)
)
dx = 0.

Then
∫

R3
|∇ × (SA)|2dx =

∫

R3
|∇ ×Aτ |2dx +

∫

R3
|∇ × (Aρ + Aζ)|2dx

=
∫

R3
|∇ ×A|2dx.

Therefore the functional A ∈ FixO(2) 7→ ∫
R3 |∇ ×A|2dx is invariant with

respect to G. Finally we immediately compute that |A|2 = |Aρ|2 + |Aτ |2 +
|Aζ |2 which leads to

∫
R3 W (|SA|2) dx =

∫
R3 W (|A|2) dx and this concludes

the proof of (16).

According to the previous proposition we can solve equation (7) by look-
ing directly for critical points of E|D1

F
; in this way we have avoided the strong

indefiniteness of E and we will deal with the functional E|D1
F

which has the
form (14) and then it can be treated with standard methods of nonlinear
analysis.
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3 A Compactness Result

Because of the action of the translations the Sobolev embeddings for the
space D1(R3,R3) are non compact. In order to recover some compactness,
following the ideas of P.L. Lions (see [6]-[7]), we will show that if a sequence
of functions is such that the nonlinear term

∫
R3 W (|A|2)dx does not vanish,

then it keeps away from zero in some suitable sense.

Lemma 2 Suppose that (An)n is bounded in D1(R3,R3) and there is R > 0
such that

lim
n→+∞

sup
x∈R3

∫

B(x,R)

|An|2 dx = 0.

Then ∫

R3
W (|An|2)dx → 0.

Proof. During this proof we will often use the symbol C for denoting a positive
constant independent on n. The value of C is allowed to vary from line to
line (and also in the same formula).

Fix ε ∈ (0, 1) and for every n consider the new sequence of functions

wn :=

{
|An| if |An| ≥ ε,

|An|3ε−2 if |An| ≤ ε.

It is immediate that

|wn|2 ≤ ε−4|An|6, |wn|2 ≤ |An|2, (27)

|∇wn|2 ≤ 9|∇|An||2 ≤ 9|∇An|2.
In particular wn ∈ H1(R3,R) and, using (9),

‖wn‖2H1(R3) ≤ ε−4

∫

R3
|An|6dx + 9

∫

R3
|∇An|2dx ≤ Cε−4. (28)

The object is to prove that

wn → 0 in Ls(R3,R) ∀ 2 < s < 6. (29)

Indeed first assume s ≥ 10
3 . By using Hölder’s inequality, since s = 2 6−s

4 +
6 s−2

4 , for every x ∈ R3 we get

∫

B(x,R)

|wn|sdx ≤
( ∫

B(x,R)

|wn|2dx
) 6−s

4
( ∫

B(x,R)

|wn|6dx
) s−2

4

≤ C
( ∫

B(x,R)

|wn|2dx
) 6−s

4
( ∫

B(x,R)

(|wn|2 + |∇wn|2)dx
)3 s−2

4
,
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where C is independent on x and n. Since 3 s−2
4 ≥ 1, then

∫

B(x,R)

|wn|sdx ≤ C‖wn‖
6−s
2

L2(B(x,R))‖wn‖3
s−2
2 −2

H1(R3)

∫

B(x,R)

(|wn|2 + |∇wn|2)dx.

(30)
Choosing a family of balls {B(x,R)} whose union covers R3 such that each
point in R3 is contained in at most k such balls, summing (30) over this
family and using (27) and (28) we deduce

∫

R3
|wn|sdx ≤ Ck sup

x∈R3

( ∫

B(x,R)

|wn|2 dx
) 6−s

4 ‖wn‖3
s−2
2

H1(R3)

≤ Ckε−3(s−2) sup
x∈R3

( ∫

B(x,R)

|An|2 dx
) 6−s

4 → 0

by the hypotheses of the lemma. If 2 < s < 10
3 , then s = 2 10−3s

4 + 10
3

3(s−2)
4

and from Hölder’s inequality and from (28)
∫

R3
|wn|sdx ≤

( ∫

R3
|wn|2dx

) 10−3s
4

(∫

R3
|wn|10/3dx

) 3(s−2)
4

≤ Cε3s−10
(∫

R3
|wn|10/3dx

) 3(s−2)
4

;

since by the case already established
∫
R3 |wn|10/3dx → 0, we obtain

∫

R3
|wn|sdx → 0.

Then (29) holds. Hence using assumption (W3) we conclude
∫

R3
|W (|An|2)|dx ≤ C

∫

{|An|≥1}
|An|pdx + C

∫

{|An|≤1}
|An|qdx

≤ C

∫

{|An|≥ε}
|An|pdx + C

∫

{|An|≤ε}
|An|qdx

≤ C

∫

{|An|≥ε}
|wn|pdx + Cεq−6

∫

{|An|≤ε}
|An|6dx

≤ C‖wn‖p
Lp(R3) + Cεq−6‖An‖6L6(R3)

by which, since ‖wn‖Lp(R3) → 0, lim supn

∫
R3 |W (|An|2)|dx ≤ Cεq−6. By the

arbitrariness of ε we get the conclusion.

4 Proof of the Main Theorem

According to Lemma 1 a natural method to solve (7) would be to look for
critical points of E|D1

F
. Anyway, rather than working directly on E|D1

F
, first

we will consider a constrained minimization method. Then set

Σ :=
{
A ∈ D1

F
∣∣∣
∫

R3
W (|A|2) dx = 1

}
. (31)
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Observe that Σ is not empty. Indeed, as in [2], by (W2) for R > 1 define

vR(x) =





√
ξ if |x| ≤ R,√
ξ(R + 1− |x|) if |x| ∈ [R, R + 1],

0 if |x| ≥ R + 1,

AR(x) = vR(x)η(r),

where η ∈ C∞(R,R) is such that η = 0 for r ≤ 1
2 and η = 1 for r ≥ 1. Thus

A(x) = AR(x)
r (−x2, x1, 0) ∈ D1

F and it is easily checked that
∫

R3
W (|A|2)dx

≥W (ξ)meas (BR ∩ {r ≥ 1})−meas (BR+1 \BR) max
s∈[0,ξ]

|W (s)|

−meas (BR ∩ {r < 1}) max
s∈[0,ξ]

|W (s)| ≥ CR3 − C ′R2 − C ′′R

for some constants C, C ′, C ′′ > 0. For R > 0 large enough this shows that∫
R3 W (|A|2)dx > 0; then, for a suitable rescaling parameter σ > 0, we have

that the function A(σx) belongs to Σ. Now consider the following constrained
minimization problem:

min
{ ∫

R3
|∇A|2 dx

∣∣∣A ∈ Σ
}

. (32)

We will see in the last part of the paper that the solutions of the problem
(32) are, modulo rescaling, critical points of the functional (14).
In particular, analyzing the behaviour of the minimizing sequences for (32)
we obtain the following result.

Proposition 2 There exists a minimizing sequence of (32) which weakly
converges to a function A ∈ D1

F \ {0}.
Proof. Let (An)n be a minimizing sequence of (32), namely

∫

R3
|∇An|2 dx → inf

A∈Σ

∫

R3
|∇A|2dx,

∫

R3
W (|An|2) dx = 1 ∀n. (33)

We claim that for every R > 0

lim inf
n→+∞

sup
z∈R3

∫

B(z,R)

|An|2 dx > 0. (34)

Otherwise, there should exist R̃ > 0 such that, up to a subsequence,

lim
n→+∞

sup
z∈R3

∫

B(z,R̃)

|An|2 dx → 0,
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and then, by Lemma 2,
∫

R3
W (|An|2)dx → 0

that contradicts (33). From (34) we deduce the existence of R > 0, ε > 0
and a sequence (zn)n = ((zn,1, zn,2, zn,3))n in R3 such that

∫

B(zn,R)

|An|2 dx ≥ ε, ∀n.

From Hölder’s inequality we get
∫

B(zn,R)

|An|6 dx ≥ δ, ∀n

for a suitable δ > 0. We claim that (zn) is bounded in the directions x1 and x2.
Indeed the cylindrical symmetry of |An| implies that

∫
B(z,R)

|An|6 dx ≥ δ for

every z = (z1, z2, zn,3) such that, using the notation (12), rz =
√

z2
1 + z2

2 =√
z2
n,1 + z2

n,2 = rzn
. Geometric arguments assure that the number of dis-

joint balls of the kind B(z,R) with rz = rzn grows as rzn grows. Then the
boundedness of (An)n in the L6−norm put an upper bound to the sequence
(rzn)n. If we relabel (An)n the sequence obtained making the translation in
the x3-direction, i.e. An(· + zn,3`3) (being `3 = (0, 0, 1)), we obtain a new
minimizing sequence in D1

F satisfying, possibly increasing the radius R,
∫

B(0,R)

|An|2 dx ≥ ε ∀n ∈ N. (35)

Since (An)n is bounded, certainly there exists A ∈ D1
F such that, up to a

subsequence,
An ⇀ A in D1

F .

On the other hand by (10) we have An ⇀ A in H1(B(0, R),R3) and, by
(35) and the compact embedding H1(B(0, R),R3) ↪→↪→ L2(B(0, R),R3), we
deduce that A 6= 0.

Now we are ready for the following

Proof of Theorem 1 According to Proposition 2 let A ∈ D1
F \ {0} be the

weak limit of a minimizing sequence (An)n for (32). First we introduce the
following notation:

∀C ∈ D1
F , ∀µ > 0 : Cµ(x) = C(µx).

Consider B ∈ D1
F , B compactly supported. For every n ∈ N and t > 0 set

µn,t :=
( ∫

R3
W (|An + tB|2) dx

) 1
3
,
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so that (An + tB)µn,t
∈ Σ. Since (An)n is a minimizing sequence, for every

t > 0 we deduce

lim inf
n→+∞

∫

R3
|∇(An + tB)µn,t |2 dx−

∫

R3
|∇An|2 dx

t

=
lim inf
n→+∞

∫

R3
|∇(An + tB)µn,t |2 dx− θ

t ≥ 0

(36)

where θ = infA∈Σ

∫
R3 |∇A|2dx. Consider two sequences tn, εn > 0, tn →

0+, εn ↘ 0+; then for every n ≥ 1 by (36) there exists Akn
such that

∫

R3
|∇(Akn

+ tnB)µkn,tn
|2 dx−

∫

R3
|∇Akn

|2 dx

tn
≥ −εn.

As a consequence we can extract a subsequence (Akn
)n from (An)n, which

we relabel (An)n, such that, setting µn = µkn,tn ,

lim inf
n→+∞

∫

R3
|∇(An + tnB)µn

|2 dx−
∫

R3
|∇An|2 dx

tn
≥ 0.

(37)

On the other hand for every n we have
∫

R3
|∇(An + tnB)µn |2 dx−

∫

R3
|∇An|2 dx

tn

=

∫

R3

1
µn
|∇(An + tnB)|2 dx−

∫

R3
|∇An|2 dx

tn

=
1
µn

[
(1− µn)

tn

∫

R3
|∇An|2dx + tn

∫

R3
|∇B|2 dx + 2

∫

R3
(∇An|∇B) dx

]
.

(38)

Since An ∈ Σ, we have

1− µn

tn
=

1− µ3
n

tn(1 + µn + µ2
n)

=

∫

R3
W (|An|2) dx−

∫

R3
W (|An + tnB|2) dx

tn(1 + µn + µ2
n)

= −
2

∫

R3
W ′(|Cn|2)Cn ·B dx

(1 + µn + µ2
n)

, (39)

where Cn = An + snB for a suitable sn ∈ (0, tn). Hence Cn ⇀ A in
D1(R3,R3); setting U = {x ∈ R3 |B(x) 6= 0}, then U is bounded and, by
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(10), Cn ⇀ A in H1(U,R3); consequently Cn → A in Lp(U,R3). According
to assumption (W3) |W ′(s2)| ≤ c|s|p−2 for every s ∈ R; the continuity of the
Nemytski operators leads to W ′(|Cn|2)Cn → W ′(|A|2)A in Lp/(p−1)(U,R3),
by which we deduce

∫

R3
W ′(|Cn|2)Cn ·B dx →

∫

R3
W ′(|A|2)A ·B dx. (40)

By (39) and (40), since tn → 0+, we have

lim
n→+∞

µn = 1 (41)

and then, again from (39),

lim
n→+∞

1− µn

tn
= −2

3

∫

R3
W ′(|A|2)A ·B dx. (42)

Inserting (41)-(42) in (38) and using (37) we deduce that

∫

R3
(∇A|∇B) dx− θ

3

∫

R3
W ′(|A|2)A ·B dx ≥ 0.

Replacing B by −B and repeating the same arguments as before, we have
that also the opposite inequality holds, and then

∫

R3
(∇A|∇B) dx− θ

3

∫

R3
W ′(|A|2)A ·B dx = 0. (43)

In general, if B ∈ D1
F , we can select f ∈ C∞0 (R3,R) such that f = f(|x|), 0 ≤

f ≤ 1, f = 1 in B(0, 1), f = 0 in R3\B(0, 2), |∇f | ≤ 2 and set fn(x) = f( x
n ).

Then it is easy to prove that fnB ∈ D1
F too, fnB is compactly supported and

fnB → B in D1
F . Hence by density we obtain that (43) holds for every B ∈

D1
F . The constrained minimization method has caused a Lagrange multiplier

θ to appear in (43). We remark that θ > 0, otherwise by (43), taking B = A,
we would have

∫
R3 |∇A|2dx = 0, i.e. A = 0 which is impossible. The Lagrange

multiplier θ can be removed by a rescaling argument: set

Ā(x) = A
(√

3
θ
x

)
∈ D1

F .

By (43) it is easy to verify that

∫

R3
(∇Ā|∇B)dx =

∫

R3
W ′(|Ā2|)Ā ·Bdx ∀B ∈ D1

F ,

which means that Ā is a critical point of E|D1
F

and, consequently, by Lemma
1, a weak solution of (7).
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