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Existence of Strong Solutions for a Class
of Nonlinear Partial Differential Equations
Satisfying Nonlinear Boundary Conditions.

H. BEIRAO DA VEIGA (*)

dedicated to Hans Lewy
1. - Introduction.

We denote by SZ an open bounded set in the N-dimensional euclidean
space RN and by T the boundary of Q. We assume that .1~ is aC2 manifold
and that locally SZ is only on one side of .r (see § 5).

Let fl be a maximal monotone graph (see § 2) on R x R verifying 0 E 
let f E L2(Q) and let p &#x3E; 0 be a fixed constant. Our aim is to study the fol-
lowing boundary value problem: We seek strong solutions of

where g(x, y) is a real function defined on a subset ll of 92 X R, monotone in y
for any x (1). For the meaning of boundary conditions in the form used
in (1.1) refer to [6], 1.2.1; we recall that this formulation includes as parti-
cular cases the Dirichlet and Neumann conditions and the third boundary
value problem.

Similar problems have been studied by several authors. For the existence
of strong solutions when 9 depends only on y we refer the reader to [7];
see also [11]. If g depends also on x the existence of weak solutions for
some related problems is known (see [9, 10]). Other interesting results

related with our problem were obtained in [1, 2] and references.
In this paper we prove the existence of strong solutions in the last case.

More precisely, y under suitable conditions on g(x, y) (2) we prove that there
exists a unique strong solution u(x) EW2.2(!J) of the problem (1.1). To prove

(*) Instituto de Fisica e Matematica (Lisbon).
(~) See condition (4.4).
(2) See theorem 7.2; see also [4].
Pervenuto alla Redazione il 7 Luglio 1975.
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this result we assume that g(x, y) is differentiable on xi, 1 c i c N; how-
ever this condition is used in a very weak form (see 4.10) which is usefull in

applications.
The results obtained in our paper, in particular the theorem 7.2 and

the corollary 7.3, are usefull for the study of the bifurcation points p for
equation (1.1); see [5].

Finally we refer the reader to the remark 7.5 (added in proofs) at the
end of the § 7.

We shall use the notation c to denote a constant which may change from
case to case.

2. - Some definitions and known results on maximal monotone operators
on Hilbert spaces.

For the reader’s convenience some known results on maximal monotone

operators are summarized in this section. Let H be a real Hilbert space
and A : .H -~ 2$ a multivalued operator on H ; to any u E H the operator A
associates the set AucH. We put and R(A) _
= U Au. A is said to be monotone if for any D(A) we have 

uEH

2013~2?~i"’~2)&#x3E;~ VV2 E A U2. A monotone operator is maximal

monotone (m.m.) if it is maximal in the sense of graph’s inclusion. The fol-
lowing result holds (see for instance [16]):

THEOREM 2.1. Let A be monotone. Then A is m.m. i f and only if
+ H) = H f or all 1 &#x3E; 0 (or equivalently for one ~, &#x3E; 0).

Let now 0: H ---&#x3E; I- oo, + 00], ø:¡é -~- ooy be a convex lower semicon-

tinuous (I.s.c.) functional and put D(Ø) = 0(u)  + The sub-

differential 8W(uo) of 0 at a point uo e D(O) is by definition the set

We have the following result (see [17]):

THEOREM 2.2. The operator is m.m. on H.

If A is m.m. the resolvent of A is the operator A(") = (I + AA)-31, I &#x3E; 0.
The resolvent is a contraction defined on all of H. The Yosida approximation
is by definition
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The Yosida approximation is a univalued operator defined on all of H;
moreover ÅA is m.m. and Lipschitz continuous with constant 

The following theorem is a particular case of a result of H. Brezis, M.
Crandall and A. Pazy (see [8]) :

THEOREM 2.3. Let A and B be univalued m.m. operators on H. Let f E H -
and Iz &#x3E; 0. Then for any I &#x3E; 0 the equation

has a unique solution ua. Moreover the equation

has a solution u i f and only i f is bounded as Â ~ 0. In this case

ua, - U, .ÅA UA --&#x3E; A u and Bu.

From the theorems 2.1 and 2.3 we obtain a necessary and sufficient con-

dition for the maximal monotony of the sum A -~-- B.
Finally, notice that if A is a univalued m.m. operator then

3. - The B operator.

We assume that the spaces (p E [1, + oo]) and the Sobolev spaces
(1~ positive integer and p E [1, + oo [) are familiar to the reader (3) ;

we denote by ]] ]], and 11 the usual norms in these spaces and we put
and ]] ~~ _ II 112. We consider also the spaces and the frac-

tionary Sobolev spaces W1-~1 ~p~~~(h) (3) with the usual norms. If u(x) is a

function defined on Q we denote by u() (or by u only) the trace of u(x) on 1.
Consider now a m.m. graph fl on R X R, so that and define an

operator B on H as follows:

with

(3) See for instance [18].
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The B operator is m.m. on I~ and furthermore, 0, we have

as follows from theorem I. 10 of [6]. Note that B is the sub differential of the
convex l.s.c. functional 0: H -* ]- oo, + oo] defined by

otherwise, y

where j : R -~ ]- oo, + 00] is convex and j(0) = 0 (see [7],
theorem 12).

REMARK 3.1. For some particular boundary conditions the maximal

monotony of B and the estimate (3.2) follows from classical results. This

is the case when the boundary condition is linear and also when the boundary
condition is the well known condition u &#x3E; 0, = 0 on I’

(this boundary condition corresponds in (1.1) to the m.m. graph p(r) = 0
if r &#x3E; 0, fl(0) = {t: t  0}, /3(r) = ~6 if r  0). In the last case (see [4]) the
maximal monotony of B follows from the existence results proved in [20],
[15], from the W2’2 regularity result proved in [14] and from theorem 2.1.

REMARK 3.2. The condition &#x3E; 0 in equation (1.1) can be weakened in
some cases. Consider for instance the operator B = - d - Âo with JD(~) =
= W2.2(.Q): u(~) = 0 a.e. on h~ (4). On the other hand let c, be the smal-
lest constant verifying

Then if we put Âo =1/eo the operator B is m.m. in H and, fixed p &#x3E; 0,
the estimate ]] holds on D(B). Consequently
for the Dirichlet problem we can put - d - Âo instead of - d in theorem 7.2;
analogous remarks hold for other boundary value problems.

(4) The Dirichlet condition u = 0 on .1~ corresponds to the graph fl(0) = R,
= 0 if r ~ 0.
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4. - The g operator.

Let 1p: oo, + be a convex, l.s.c. functional in the second

variable y for almost all x E S~ and measurable in the first variable x for

all y E R. Moreover suppose for convenience that for almost all x E S~ we have
0) = 0 and also y) &#x3E; 0, Vy E R.
Then for almost all x E Q the functional y - y) admits a subdiffe-

rential which will be denoted by y).
Now define a functional ~: ~ ~ [0, + 00] in the following way:

This functional is convex and l.s.c. (see appendix I, proposition 2) and
his subdifferential at a point u E D(T) is (see appendix I, corollary 2)

In the following we put xi = (xl, ..., xi-1, xi+,, ..., XN) and x = (xi, xi),
1  i  N. Furthermore the expression «for almost all zi » means «for all

xi E where Q§ is a subset of Si such that i is a set of (N -1 )-
dimensional measure zero and SZi is the orthogonal projection of S into
the hyperplane xi = 0}.

We consider now two measurable functions a(x) and b(x) defined on S~
with range in [- oo, + oo]. We suppose that for almost all xi the function

is l.s.c. and the function is upper semicontinuous (1 
We suppose also that for all 

Let now g(x, y) be a real function defined on

and assume that g(x, y) verifies the following conditions:

(4.4) For any fixed x E SZ the function y --~ g(x, y), defined on ]a(x), b (x) [, is

continuous and nondecreasing. If - 00  a(x) then lim g(x, ~/) == 2013 oo ;

(5) Putting g(x, y) = 0 if y ff ]a(x), b(x)[ the hypothesis (4.4) becomes equivalent
to the maximal monotonicity of the graph y --&#x3E; g(x, y) in R x R (for each 
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(4.5) For almost all xz, and for all y E R, g(x, y) is a continuous

function of the single coordinate xi (6).

This last condition implies that for each y E R the function x -* g(x, y)
is measurable in its domain S2: a(z)  y  b(x)l (for, apply proposition 1
of appendix II with B = (z E s2: a(x)  y  and g(x) = g(x, y), Vz E B).

Consider now the function y: SZ X R -~ ]- 00, + o] defined as follows:

otherwise .

The integral on the right hand side of (4.6) may be equal to + oo ; fur-
thermore y) &#x3E; 0. It is easy to see that y) satisfies all the conditions
listed at the beginning of this section (1). Furthermore for all x E S2

being implicit in (4.7) that if y ~ ]a (x ), b (x ) [. Therefore the

functional Vf defined by (4.1) is convex and l.s.c. Moreover, from (4.2) and

(4.7), it follows that

where g is the multivalued operator

Notice that u(x) E H and g(x, ~c(x)) E H imply that T(u)  + oo. More-

over on writing g(x, u(x)) E H it is implicit that u(x) E ]a(x), b(x)[ a.e. in S~.
Finafly g is univalued on D(g) = g(x, u(x)) E H} and is m.m. (by
theorem 2.2).

(g) Notice that the domain of this function is with xi

and y fixed, and hence is an open subset of R.
(7) In order to verify the measurability of z- y) in Q notice that (sup-

pose y &#x3E; 0) for all we have

(8) Obviously all definitions are coherent with the fact that elements of Hare
equivalence classes of functions.
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In the sequel we shall also need the following hypothesis:

(4.10) For almost all xi, and for all y E R the function g(x, y)
is differentiable as a function of the single coordinate xa except
eventually in points which belong to a (at most) denumerable set
E(xi) c (z; = (xi, 5~~. We put by definition

5. - Preliminary results.

In the sequel, for each fixed z E Q, we denote by y) and y)
the resolvent and the Yosida approximation of the m.m. graph y - g(x, y) ;
it is implicit in this definition the convention referred in note (b).

By using (4.9) we easily verify that for any u E H

LEMMA 5.1. Let y E R be fixed and put

PROOF. We have y and con-

sequently a straightforward computation yields

therefore

since the resolvent is a contraction.

From this last estimate and from the identity
- the thesis follows.

LEMMA 5.2. Let U E H and put
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Suppose that xo, x E Q and that v(xo) E ]a(x), b(x)[. Then we have

PROOF. We have

and therefore

Multiplying both sides of the last equation by v(x) - v(xo) and recalling that

y - g(x, y) is nondecreasing we obtain

thus

and in particular the first estimate (5.3) follows, as desired.
On the other hand recalling that the Yosida approximation is Lipschitz

continuous with constant lfl we obtain easily

From this estimate and from lemma 5.1 the second estimate (5.3) follows.
To prove the next theorem we need some results which we recall. Let

be a real function defined on [a, The upper bound and the lower

bound of when h - 0 are denoted by D f (x) and D f (x)
respectively and are called the upper derivate and the lower derivate of t
at the point x. Obviously the derivative f’ (x) exists if and only if and

are finite and equal. The following result holds (cf. [19], chapter I,
n. 9): .

THEOREM 5.1 If and are finite a.e. on [a, ~8] then =

a.e. on [a, fl].
This theorem is a particular case of a result due to Saks. If we assume

the continuity of f, the result is due to Denjoy and G. C. Young independently.
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We need also the following result:

THEOREM 5.2. Let f (x) be a continuous f unction on [a, ,8] and suppose that
the following conditions are fulfilled:

. (i) D f (x) and D f (x) are finite on [ex, fl] except at most on a f inite or denu-
merable subset E;

(ii) the derivative f’(x) (9) is summable over [ex, ,8].

Then

and consequently f (x) is absolutely continuous (a.c.) on [0153, fl] (10).

This result is proved on [12], theorem 264, by assuming that f’ (x) exists
if x 0 E. The proof given in [12] is easily adapted to the weaker condition (i).

Now let u(x) be a function defined on Q and let w be a straight line such
that c~ r1 SZ ~ 0. u(x) is said to be a.c. on c~ if u(x) is a.c. on any closed inter-
val contained in w n Q.

In the sequel we denote by aulaxi and u’ the derivative in the distribu-
tion’s sense and the derivative in the classical sense respectively. The fol-

lowing result is well known (see for instance [18], chapter 2, theorem 2.2) :

THEOREM 5.3. Let u(x) E L’(S2). If ayaxi E LI(S2) then u(x), eventually
modi f ied on a set of zero measure, is a.c. on almost all the parallels to the xi
axis ; moreover aulaxi = u’ a.e. in Q.

Reciprocally, if u(x) E is a.c. on almost all the parallels to the xi
axis and i f ui (x) E the3n u’ = aulaxi a.e. in Q.

Our purpose is now to prove the following result:

THEOREM 5.4. Let u(x) E H and let v(x) and be defined by (5.2). Assume
that u(x) E (11) and that

(9) Which exists a.e. by theorem 5.1.
(lo) Since (5.5) holds on any subinterval.
(11) This condition can be weakened.
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a. e. in Q.

Notice that, independently from (5.6), the function gi(x, v(x)) is defined

a.e. in S~ and measurable in ,~. Notice also that the theorem 5.4 holds for

any index i separately.

PROOF OF THEOREM 5.4. Let i be fixed and assume u(x) modified on a
set of measure zero so that the property described on the first part of theo-
rem 5.3 holds. Then u~(x) E and consequently modified on

a subset of S2 of measure zero is a.c. (hence continuous) on almost all the

parallels to xi . Then on almost all this parallels u(z) is a.c. and u~ (x), modi-
fied on a set of linear measure zero, is continuous. But then this last property
holds without modify 

On the other hand, by Fubini’s theorem, the function xi - gi(x, v(x))
is summable on almost all the parallels to the xi axis.

Now let to be a parallel in which the described properties and the condi-
tions (4.5) and (4.10) hold. Furthermore let roo be a closed interval contained
in co r1 S~. We will prove that is a.c. on a), and that the derivative 

verifies the first estimate (5.7) a.e. in coo.
Let xo E coo and put x = xo -E- hi where hi is an increment in the xi direc-

tion. By (5.3) we have

if ihil is sufficiently small. This implies that the derivatives Dv(xo) and Dv(xo)
are finite except at most on a finite or denumerable set E cwo. Consequently
the derivative exists a.e. in ccy (by theorem 5.1) and verify the first rela-
tion (5.7) a.e. in coo. In particular is summable on ccy and by theorem 5.2
it follows that v(x) is a.c. in coo . Therefore, by the second part of theorem 5.3,

exists in S2 and verifies (5.7) since it coincides a.e. in Q with 
Finally the existence of aw/axi in follows directly from the existence

of in and from the identity w = (u - v)IA. Under these cir-

cumstances (5.3) implies trivialy the second relation (5.7). We can also prove
the statement concerning w(x) directly, y as for 
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PROPOSITION 5.1. Suppose that the assumptions of theorem 5.4 hold. Then

for all index i

in S~.

PROOF. From (2.1) it follows that Âw = u - v and therefore

By using the first estimate (5.7) we obtain easily

Multiplying by - 1/A we obtain (5.9), as desired.
Suppose that the conditions of theorem 5.4 hold. Then w(x) E Wl.l(Q)

and thus w(x) has a trace on .1~; it is well known that this trace w(~) belongs
to L1 (1-’).

THEOREM 5.5. Suppose that the assumptions of theorem 5.4 hold. Then
we have a.e. on T

Obviously it is sufficient to prove that for any xo E 7" there exists a neigh-
bourhood of xo on which (5.10) holds. Let and choose an index i so

that the normal to h at xo is not orthogonal to the xi direction. Then the
boundary 1~ has a representation in a neighbourhood of xo .
More precisely: There exists a neighbourhood (in ZTo of a C2 real

function y defined on Z7o and a real constant 6 &#x3E; 0 such that for xi E l70
we have if and only if x$ = y(xi). Furthermore, for any xi E Uo,
the points (xi, z;) such that xi E ]y(xi), y(xi) + ð] are in Q and the points
(z, xa) such that xi E [y(xi) - ð, are in - (Q u r), or reciprocally,
the first points are in ~ (,~ and the last points are in S~; in the sequel
we suppose, without loss of generality, that the first case holds. We put
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The following result holds (cf. by instance [18], chapter 2, theorem 4.3):

PROPOSITION 5.2. Let E Then n(x), eventually modified on
a set of measure zero contained in Q, verifies the following property : The func-
tion u(x) (extended to F,,,) is a.c. on the closed intervals x2 E [y(xi), y(xi) + 6]
for almost all xa E Uo. Furthermore the trace of on To and the pointwise
value of u(x) on To coincides a. e. on roe

PROOF OF THEOREM 5.5. Assume u(x) modified as indicated in propo-
sition 5.2. Then w(x) = ga,(x, ~c(x)~ verifies the property described in propo-
sition 5.2, without modification on S2. For, if u(x) is continuous in a segment
[y(xi), y(xi) + ~], with xi n Uo, it follows from (5.3) and (4.5) that w(x)
is continuous on the segment ]y(xi), y(xi) + ~]. From this result and from
the proposition 5.2 (recall that w(x) E desired statement follows.

Fix now xi E Ilo in order to have u(x) and w(x) a.c. in the corresponding
interval. If u(xi, y(xi)) &#x3E; 0 then xi) &#x3E; 0 for all z; in a neighbourhood
of y(xi) and consequently w(xi, xi) = ga,(x, u(xi, in this neighbour-
hood. Hence

The proof of the second statement (5.10) is similar.
Suppose now that u(xi, y(xi)) = 0. Let xi E ]y(xi), y(xi) + ~[. Putting

x = (xi, xi) it follows that

because 0) = 0. Since the Yosida approximation is Lipschitz conti-
tinuous we obtain

and consequently

as desired.

6. - The g operator (continued).

Let y) be a real function defined X R, measurable on x for all y
and continuous on y for almost all x. If u(x) is a real measurable function
defined on ~2 it is well known that u(x)~ is measurable. Put B[u](x) =
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= 8(x, ~c(x)). It is said that 6 acts from into L(Q), p, q E [1, + 00[,
if 6 transforms every function in EP(D) into a function in The follow-

ing result holds (cf. Krasnosel’skii [13], chapter 1, § 2, theorems 2.1 and 2.2) :

THEOREM 6.1. If 0 acts f rom EP(D) into then 0 is bounded and con-
tinuous.

On the other hand the following necessary condition holds (cf. Kra-
snosel’skii [13], chapter I, § 2, theorem 2.3) :

THEOREM 6.2. I f 0 acts from EP(S2) into LQ(lli) then

where c is a positive constant and d(x) E Lq(S2).
It is obvious that this condition is also a sufficient condition. Another

sufficient condition is the following (cf. [13], chapter I, § 2, n. 4):

PROPOSITION 6.1. If

with q  qj  + oo and acts from LP (0)
into 

Let + oo] and define s’ by Furthermore if 1 :
 s  N define s* by (11N). It is well known (Sobolev’s em-
bedding theorem) that W,8(Q) -* L"*(92).

We introduce now two exponents p and q related to the dimension N.
We suppose p and q fixed as follows:

Notice that p = (2*)* if N &#x3E; 4 and q = (2*)’ if N &#x3E; 2. Furthermore

’~2.2(~1 ~, and Wl,2(Q) 4- for all N. If N c 4 in the first inclu-
sion or N c 2 in the second one these embedding results are not the best
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possible and we can utilize the embedding on spaces of Holder continuous
functions to generalize our results.

We suppose finally that g(x, y) verifies the following condition:

(6.4) For all index i, and for almost all x E Q, y) I  8(x, y) +
+ y) I, Vy E ]a(x), b(x) [, where c is a positive constant and 8(x, y)
acts from into 

The following Green’s formulae will be useful in the sequel: If u(x) E
E ~V2’2(SZ) and E then

The integrands in (6.5) are summable functions over the corresponding
domain of integration. For the reader’s convenience we verify the validity
of (6.5) in appendix III.

7. - The existence theorem.

From theorem 2.3 and from the results of sections 3 and 4 it follows that

for every f E H the problem

has a unique solution ui and the problem

has a solution u if and only if is bounded in H as 1 ~ 0. In this

section we utilize the preliminary results of section 5 to prove this last pro-
perty.

Notice that (7.1) is equivalent to

with ua, E W2.2(,Q), and (7.2) is equivalent to (1.1) plus u E W2.2(Q).
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In the sequel we put

The following result holds:

THEOREM 7.1. Assume that

Then

PROOF. From theorem 5.4 and from (7.3) it follows that wi E 

Multiplying both sides of the first equation (7.1’) by and integrating
in .~ it follows that

Applying now the Green’s formulae (6.5) to the first integral we obtain

since a.e. in S~. On the other hand

For, from the second relation ( 7.1’ ) it follows that - if

u,a($) &#x3E; 0 and - 0 if ~c~,(~)  0 (a.e. in .1~) and consequently the
integrand in (7.6) is almost everywhere nonnegative in .h, by theorem 5.5.

Finally from (7.5), (7.6) and proposition 5.1 we obtain (7.4), as desired.

LEMMA 7.1. Let u and u,, be solutions o f (7.2) with data f and II respecti-
vely. Then
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The same result holds for equation (7.1 ) and in particular

The proof is an easy exercise.

PROPOSITION 7.1. Let u and ul be solutions of (7.2 ) with data f and f 1 respec-
tively. Then the following estimate holds:

REMARK 7.1. We shall see later (theorem 7.2) that the problem (1.1 )
has a unique solution U E W2’2(S~) for each data f E L2(Q) . Therefore the pro-

position 7.1 says that the operator f - u is Lipschitz continuous from L2(Q)
into L1’(Q) (It is also Lipschitz continuous from L2(,~) into W1~2(S~), by lem-
ma 7.1).

PROOF OF PROPOSITION 7.1. (See also [6]). If N c 2 the estimate (7.8)
follows directly from lemma 7.1. Hence we suppose that N &#x3E; 2. Put z =

=u - ui and h = f - f 1. The real function = 0, is continuo-

usly differentiable on R and = (s Put s = 2plN and consider
the function = ((z(z)). We have

and consequently E Wl.q(Q). For, Izi 2vlN and az/axi are integrable with
exponents N12 and 2* respectively and consequently its product belongs
exactly to Hence applying (6.5) with w replaced by and u replaced
by z we obtain

a.e. in .,T’. In fact

furthermore

a.e. in rand

On the other hand from the first equation (1.1) written for u, f and u1, /i
it follows that



393

Multiplying both terms by ~[z](x), integrating on S~ and applying (7.9) we
obtain

Consider now the function We have

and from (7.10) it follows that

Next we will prove the estimate

It is easy to see that (equality holds if N &#x3E; 4)

Since J!~M!2*~!)~M!!i,2 it follows that

From this estimate and from (7.13) we obtain

Finally (7.12) follows from (7.11) and (7.14).
Now (7.8) coincides with (7.12) if N &#x3E; 4, since 2(2p/N + 1) = p. If

N c 4 then p  2(2p/N + 1) and (7.8) follows from (7.12).

COROLLARY 7.1. If ut is the solution of (7.1) we have

PROOF. Since c I the first estimate is obvious. Applying the
proposition 7.1 with g replaced by ga and f, = 0 the second estimate
follows.
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COROLLARY 7.2 (see also [6] proposition 1.4). Let Bu + yu = f and
Bul + pui = fl. Then

PROOF. Apply proposition 7.1 with g = 0.

LEMMA 7.2. Let ux be the solution of (7.1). Then the following estimate
holds :

PROOF. From (2.4) it follows that = g(x, and consequently
we deduce from (6.4) that

for any index i. Consequently condition (7.3) holds and by theorem 7.1

From this estimate and from lemma 7.1 we obtain ( 7 .17 ) .

THEOREM 7.2. Assume that g(x, y) verifies the conditions (4.3), (4.4), (4.5),
(4.10) and (6.4). Then for every f E H there is a unique solution u E ~ 2 ~ 2 ( S~ )
of (1.1 )..M~oreover the following estimate hold:

and

PROOF. - From (7.15) it follows that is bounded as A -~ 0. There-

fore applying theorem 6.1 we obtain

On the other hand
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since Wl.2(Q) ~ Lq~(S~). This last estimate, (3.2) and (7.1) yield

Finally from (7.17), (7.20) and (7.21) it follows that wi is bounded in H
as 1 ~ 0 and therefore, by theorem 2.3, the problem (7.2) has a unique solu-
tion u. Moreover

In order to prove (7.19) we shall see that

From (7.1), (7.2) and corollary 7.2 it follows that 

Hence by (7.22) UA-7U in LP(D) as 1 - 0. Therefore

On the other hand va, --~ ~c in H as 1 - 0 since vi = UA + Therefore

by the reflexivity of 

Since [] ]] , is lower semicontinuous for the weak convergence, (7.25) and
(7.24) yield

Finally from (7.25) and (7.26) we obtain (7.23) (see by instance [19], p. 78)
and consequently, by theorem 6.1, - 6(x, u(x)) in as 1 - 0.

On the other hand it follows from (7.17) and (7.21) that

Passing to the limit in this inequality we obtain
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Consequently (7.19) holds since - uO) ) 1/ as follows from

(7.2) and (3.2).

COROLLARY 7.3. Assume that the hypothesis of theorem 7.2 hold and that

8(x, y) verifies (6.1). Then the solution u of (1.1) verifies the estimate

PROOF. - Using Holder’s inequality we obtain easily the estimate

From this estimate and from (7.19’) the estimate (7.28) follows.

THEOREM 7.3. Suppose that the assumptions of theorem 7.2 hold. Let 0

be defined by (3.3) and tp be defined by (4.1), (4.6). Then the functional 0 + tp
is convex and Z. s. c. in Hand f urthermore

PROOF. Since and a(O + T) is monotone (by theo-
rem 2.2) it suffices to prove that B -)- ~ is m.m. But this statement fol-

lows from theorem 2.1 since + g + pI) = H as proved in theorem 7.2.

REMARK 7.2. The proposition 7.1 and the related corollaries are not

necessary if N  2. In this case the lemma 7.1 suffices since 4-Lp(Q).
The same remark would hold also for N &#x3E; 2 if we had assumed the stronger
condition p = 2*.

On the other hand, for small values of N, the proposition 7.1 is not the
best possible one and the results can be generalized as remarked in section 6.

REMARK 7.3. Let be a set such that the projections Ei, 
are sets of (N-1)-dimensional measure zero. Then in theorem 7.2 the con-
ditions a(x)  0  b(x), (4.3) and (4.4) may fail on E (g(x, y) can be arbitrarily
given for x E E). The proof is obvious.

REMARK 7.4 (the evolution case). The study of evolution equations related
to the stationary case (1.1) can be done using well known abstract results
based on the maximal monotony of B -~- g, which was proved in this
paper. To write results in this direction is then an easy exercise, and we
leave it to the reader.
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REMARK 7.5 (added in proofs). In his interesting paper On the solvability
of semilinear elliptic equations with nonlinear boundary conditions, to appear
in the « Mathematische Annales », H. BRILL obtains (independently and by
a different method) a general existence result for related problems. In his

paper the function g depends also on the gradient Vu, moreover, differen-
tiability (and monotonicity) of g, as a function of the variable u, is not

required.
Under these general conditions the existence (unicity and bounds) of

a solution u is not always true and depends on the proof of the existence
of a suitable subsolution and a suitable supersolution (see theorem 2.3 in
the Brill’s paper). A simple condition under which existence holds is

described in the remark 2.4 of that paper. However if one assumes that

all the conditions of theorem 7.2 hold (plus a(x) = oo, b(x) = + 00 in

our notation) the result following from that remark does not, in general,
imply the existence of a solution u for the problem (1.1) since it requires
the existence of two constants Rl c 0 and .~2 ~ o such that g(x, and

g(x, R2) belong to L2(Q) and such that 1~2) a.e. on Q.

Appendix I.

Consider the measure space (B, eAt) where B is a non empty set and A
is a a-algebra in B. The following result holds (see [3], appendix II) :

PROPOSITION 1. Let + 00] be a convex I.s.e. function
in the second variable y for all x E B and measurable on the first variable x for
alt y E R. ,Suppose that there exists at least a measurable function : B - R
such that ~(x))  -~- oo Vx c- B and ~(x)) is measurable. Then

~c(x)) is measurable for any measurable function u: B - R.

LEMMA 1. - Let A e fl and let u: B ~ R be measurable. There exist

measurable simple functions un(x) (n positive integer) vanishing on B - A and
such that the following properties hold:

b) f or any x E A there exists a positive integer N(x) such that
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PROOF. Put for each n

Let X, be the characteristic function of a measurable set E and put

The un are measurable simple functions vanishing on B - A. Fix xo e ~.
and put N(xo) &#x3E; for each n &#x3E; N(xo) the point xo belongs to one and
only one set En,i or En,i (1~~~2"). Since 2-n a)
holds. Moreover b) holds trivialy.

PROOF OF PROPOSITION 1. For each x E B put

Obviously a(x)  ~(x)  b(x) dx E B. Moreover the function

is continuous on [a(x), b(x)].
Consider now the following measurable sets:

From lemma 1 it follows the existence of two sequences of measurable

simple functions in B, and un’ (x), such that:

b) for each x E Bl [resp. B2] there exists N(x) such that

Moreover

Let
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We shall prove that these functions are measurable on B. On Bg this
is obvious. To prove the statement on Bl (on B2 the proof is similar) we shall
see that the sets

are measurable for any open Since 
i 

’

on Bl, with and EinEi=0 if i=f=j, it follows

that the set (4) coincides with the measurable set U 
Finally we shall see that i

If this is obvious. Suppose that x E B2; then

and

In particular

for n sufficiently large. If b(x)  u(x) we have b(x)  for n sufficiently
large and therefore ~c;~2~(x)~ = + 00 = ~c(x)). If the rela-

tion (6) yields  un2~(x) ~  b(x) ; therefore lim un2~(x)) = u(x))
since y - y) is continuous on [a(x), b(x)].

COROLLARY 1. Let be a complete measure on the a-algebra Then the

proposition 1 holds if the conditions « y - y) is and l.s.c.» and

« $(z))  -f- hold only for almost all 
In the following we suppose that

(7) the a-additive measure ,u is complete and positive (..t: fl -[0, + 

Furthermore we assume that the hypothesis of corollary 1 hold and that
for a fixed p, + cxJ,

(8) ~(r) e LP(B), ~(.r)) e and for almost all x e B one has ~/) &#x3E;
~ y~(x, ~(x)), dy E R.

Put for any 
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Since ~c(x)) ~ ~(x)) a.e. in B with ~(x)) E LI(B), the inte-
gral in (9) has a clear meaning.

PROPOSITION 2. Suppose that the conditions of corollary 1 and the condi-
tions (7) and (8) hold. Then the functional T’: ~]- 00, + cxJ] is con-

vex, I.s.c. and f fl + 00.

PROOF. - The first and the last statements are trivially verified. Suppose
now that in Lp(B) and that i = lim inf P(un)  + 00. There exists

n--+oo

a subsequence Un1c such that lim 1J’(un) = i and - u(z) a.e. in B.

Since y -~ y~(x, y) is l.s.c. for almost all it follows that u(x)) 
a.e. in B. Hence by Fatou’s lemma (recall

that ~c~k(x)) ~ ~(x)) E 
In the sequel we assume that

(10) the measure p is c-finite, i.e.,

The following proposition holds:

PROPOSITION 3. Assume that the hypothesis of corollary 1 and the condi-
tions (7), (8) and (10) hold. Let f E and u E D(Vf). Then the following
conditions are equivalent:

PROOF (12). (i) =&#x3E; (ii): Let E c- A and put

Obviously WE Lp(E). From (i) it follows that

(12) Cf. also the proof of proposition 3, appendix I [6].
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and consequently

Therefore the integrand in (11) is non negative a.e. in B. (ii) =&#x3E; (iii): Fix
a Bi and consider the function

where r2, ...} is the set of all the rational numbers. Since  + m

the functions wn E Lp(B). Applying now (ii) it follows that for each index n

a.e. in Bi. O

Obviously there exists a set of measure zero A c B, such that for all x E Bi - A
the following properties hold: (j) the estimate (12) holds for any index n;
(jj) 1p(x, u(x))  + 00; (jjj ) y - y) is convex, l.s.c. and ~(x))  + 00.
Now define for any x E Bi - A the functions a(x) and b{x) as in (2) and fix
x E Bi - A. If y 0 [a(x), b(x)] the property (iii) holds since y) = + 00.

Suppose now that y E [a(x), b(x)]. Since ~(x) E [a(x), b(x)] there exists a sub-
sequence ~(x) -E- rnk E [a(x), b(x)] such that ~(x) + rnk -~ y (c~(x) = b{x) is not

excluded). Passing to the limit in (12) with this subsequence we obtain (iii).
Finally (iii) =&#x3E; (ii) =&#x3E; (i) is trivially verified.
Let X be a real Banach space and let X’ be the dual space of X The

sub differential of a functional W: X --&#x3E; ]- c&#x3E;o, + oo] at a point is

the set X’ : v’, v - u), Vv 

COROLLARY 2. Assume that the conditions of proposition 3 are fullfiled and
that 1 c p  + oo. Then for each u E D(Vf)

Appendix II.

We shall denote the Lebesgue measure in RN by mN. If BeRN we denote

by Bi the orthogonal projection of B into the hyperplane ~x: xi = 0~.
Moreover we put = = constant}.

PROPOSITION 1. Ze N-measurable set and let g : B ~ R. Let

Bo be a subset of Bi such that Bo) = 0, i = 1, ..., N. Finally as-
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sume that for all 0153i e B~ the sets are open (in R) and the restrictions of g(x)
are continuous (i =1, ..., N). Then g is N-measurable in B.

PROOF. For N = 1 the result is obvious. We suppose that the result holds

for the value N and we shall prove it for the value N +1. Denote by
and the intersections on B, Bi i and Bo with the

hyperplane constant} y For almost all the

sets are N-measurable. Furthermore Bo (xN+1 ) ~ = 0
for almost all since (1~~~). Consequently the con-
ditions of proposition 1 hold for almost all the sections B(xN+1). Let us denote
by A the set of the exceptional values for which the referred conditions

don’t hold. Put

If A the function g(x) is N-measurable in (by the induc-
tion hypothesis) and consequently g(x) is N-measurable on the corresponding
hyperplane (z : = constant}.

For each positive integer m fix a sequence am, j integer, such that A

and put

Obviously gm is (N + 1)-measurable in Fix now x E B such that

BN+’. For m sufficiently large g,,,(xN+’, xN+1) = a’4 +,)) ) since0 N+l , i(xv

cc (xN+1 ) is open. On the other hand since the restriction of g(x) to 
is continuous and lim a’ = x we have9(xN+n ’+1

Therefore (1) holds for almost all x E B.

Appendix III.

We shall verify that (6.5) holds if U E W2’2(S~) and w E Consider
two sequences of regular functions, say functions, um(x) and 
such that um(x) --~ u(x) in W2.2(Q) and wm(x) - w(x) in Obviously
(6.5) holds with u and w replaced by u. and wm respectively; by passing to
the limit when m -* + oo we obtain (6.5) as follows from the following remarks:
In the first integral in L2(S~) and in 4- L2(Q).
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In the second integral awm/axi - awlaxi in and 

in Wl.2(D) - Lq~,(S~). In the third integral in Wl,2(r) and
in If N &#x3E; 2 the embedding theorems for fractionary

Sobolev spaces give Wl,2(F) 4 and yY1-l~q~g(1~) ~ Lr(r) with r =

=2(~20131)/~. If N = 2 the same inclusions hold for r = q. Finally if

N = 1 (6.5) is nothing but the usual integration by parts formulae since w
and du/dx are then a.c. on S~.
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