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Abstract. We construct traveling waves in the Burgers equation with the
fractional laplacian (D2)α, for α ∈ (1/2, 1). This is done with first constructing

odd solutions uε of uu′ = Kε1 ∗ u − kε1u + ε2u′′, u(−∞) = uc > 0, with
Kε1 ∗ u − kε1u nonsingular, and then passing to the limit ε1, ε2 → 0, where
we get Kε1 ∗uε−kε1uε → (D2)αu0 pointwise from an operator splitting trick

estimates, that we discovered and used in a simpler way earlier.

1. Introduction

We study the equation

(1.1) ut + uux − (∂xx)
αu = 0,

in which the fractional power of the laplacian in one dimension for α ∈ (0, 1] can
be represented as

(1.2) (D2)αu(x) = − 1

2Γ(−2α)cos(πα)
p.v.

∫
R

u(y)− u(x)

|x− y|1+2α
dy,

where p.v. denotes the Cauchy principal value. (D2)α is also a pseudo-differential
operator of symbol −|ξ|2α:

(D2)αu = F−1(−|ξ|2α(Fu)) ∀u ∈ S,

where S is the Schwartz class.
The simplest Cauchy problem for the classical Burgers equation

(1.3)

{
ut + uux = 0,
u(x, 0) = (1−H(x))u− +H(x)u+,

where H is the Heaviside function, has two types of solutions. If u− > u+, the

shock wave u(x, t) = (1 − H(x − st))u− + H(x − st)u+, with s = u−+u+

2 , is the
unique weak solution of (1.3). If u− < u+, the rarefaction wave

(1.4) u(x, t) =

 u−, x < u−t,
x/t, u−t ≤ x ≤ u+t,
u+, x > u+t,

is the unique weak solution of (1.3) with the entropy condition.
Here we are interested in the first type of solutions of (1.1), i.e., traveling waves

U(x− st), such that U(−∞) = u− and U(∞) = u+, where u− > u+. U satisfies

U ′(U − s) = (D2)αU.
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If we let u = U − s, then

(1.5) uu′ = (D2)αu.

Integrating (1.5) over R shows that uc = u(−∞) = −u(∞), thus uc = 1
2 (u− −

u+) and s = 1
2 (u− + u+) (the Rankine-Hugoniot condition). These solutions are

expected to be globally stable, i.e., the solution of the Cauchy problem with initial
value having tails asymptotic to u− and u+, u− > u+, should converge to a translate
of the traveling wave asymptotic to u− and u+.

The only result in the literature in this direction is the formal nonexistence of
smooth traveling waves of (1.1) in the case α ∈ (0, 1/2] in [5, Proposition 5.1].
Solutions of the Cauchy problem with initial value having tails asymptotic to u−
and u+, u− < u+, were shown to converge to the rarefaction wave (1.4) in the
case α ∈ (1/2, 1) [11], to a self-similar solution in the case α = 1/2 [4] and to the
solution of the linear part of (1.1) with (1 − H(x))u− + H(x)u+ initial condition
in the case α ∈ (0, 1/2) [4]. Solutions of the Cauchy problem were shown to always
remain smooth in the case α ∈ (1/2, 1) [10] and α = 1/2 [12], and to possibly
become discontinuous in the case α ∈ (0, 1/2) [3]. A weak such solution was shown
to eventually become smooth for α a little less than 1/2 [6]. Some other papers on
the subject are [1, 2].

Existence of traveling waves was a longstanding problem for the nonlocal Burgers
equation

(1.6) ut + uux −K ∗ u+ u = 0,

where K is nonsingular. It was solved in [8] and in more generality in [7]. There
the traveling wave can be a shock wave, i.e., discontinuous, if uc is large enough.
Traveling waves of (1.6) are the starting point of our construction, which uses the
idea from [9] of getting traveling waves of (1.1) from an appropriate limit. In [9]
we constructed traveling waves of

ut − (∂xx)
α + f(u) = 0,

where f is bistable, with passing to the limit of traveling wave solutions of

(1.7) ut − bα(Jε ∗ u− jεu) + f(u) = 0,

where bα = − 1
2Γ(−2α)cos(πα) ,

(1.8) Jε(x) =

{ 1
|x|1+2α , |x| ≥ ε,

1
ε1+2α , |x| < ε,

and jε =
∫
R
Jε = ( 1

α +2) 1
ε2α , so that formally bα(Jε ∗u−jεu) → (D2)αu. Traveling

waves of (1.7) are guaranteed to be smooth (not discontinuous), if jε is large enough.
This should also be the case for (1.6) if the nonlocal operator is as in (1.7), however,
it is not known how to show it. Since members of the limiting sequence need to be
smooth, we overcome this difficulty by constructing first from (1.6) odd solutions
of

(1.9) uu′ = bα(Kε1 ∗ u− kε1u) + ε2u
′′,

with uc = u(−∞) and Kε1 = Jε in (1.8). If ε2 > 0 is appropriately chosen, we can
then pass to the limit ε1, ε2 → 0 to obtain in Section 2

Theorem 1.1. Let α ∈ (1/2, 1). There exists an odd and smooth solution of (1.5)
such that u(−∞) = uc and u′ < 0.
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It should be noted that getting the needed estimates for this passage to the limit
is harder than in [9], even though we use the same operator splitting trick.

2. Existence

In [8] we showed

Proposition 1. Let
∫
R
K = 1, K even, K ≥ 0, K ∈ W 1,1(R), K nonincreasing

on (0,∞), K(y) = o( 1
y4 ) as y → ∞. There exists an odd solution u of

(2.1) uu′ = K ∗ u− u,

such that u′ < 0 and u(−∞) = uc. Moreover, if uc > 2
∫
R
|x|K(x)dx, u is discon-

tinuous at 0.

It follows that there is such a solution uδ of the equation

(2.2) uu′ = bα(Kε1,δ ∗ u− kε1,δu) +
1

δ2
(Lδ ∗ u− u),

where Kε1,δ ↗ Kε1 and 1
δ2 (Lδ ∗ ϕ − ϕ) → ε2ϕ

′′ for smooth enough ϕ as δ → 0.

Here Lδ(x) =
1
δL(

x
δ ), L ≥ 0,

∫
R
L = 1 and ε2 = 1

2

∫
R
x2L(x)dx. Since each uδ is

monotone, from Helly’s Theorem there is a subsequence of uδ, denoted again by
uδ, such that uδ → u0 as δ → 0. We need to show that u0 satisfies (1.9) and that
u0(−∞) = uc. For the first we use weak formulation, for the second strong. Let
S ≥ 0 be such that

∫
R
S = 1, S ∈ W 2,1(R) and vδ = S ∗ uδ. Apply S to (2.2) and

integrate from −∞ to x:

1

2
u2
c − S ∗ (1

2
u2
δ) =

∫ x

−∞

[
bα(Kε1,δ ∗ vδ − kε1,δvδ) +

1

δ2
(Lδ ∗ vδ − vδ)

]
.

Passing to the limit δ → 0 and integrating from 0 to x we get

(2.3)

∫ x

0

(1
2
u2
c − S ∗ (1

2
u2
0)
)
=

∫ x

0

∫
R

ybαKε1(y)

∫ 1

0

v0(s+ ty)dtdyds+ ε2v0(x),

where v0 = S ∗ u0. This is from∫ x

−∞

[
bα(Kε1,δ ∗ vδ − kε1,δvδ) = lim

r→−∞

∫ x

r

∫
R

ybαKε1,δ(y)

∫ 1

0

v′δ(s+ ty)dtdyds

=

∫
R

ybαKε1,δ(y)

∫ 1

0

[vδ(x+ ty)− uc]dtdy

→
∫
R

ybαKε1(y)

∫ 1

0

v0(x+ ty)dtdy as δ → 0.

where we used Fubini’s Theorem and Dominated Convergence twice, and∫ x

−∞

1

δ2
(Lδ ∗ vδ − vδ) = ε2v

′
δ +

∫
R

L(y)

∫ y

0

(y − t)[v′δ(x+ δt)− v′δ(x)]dtdy,

where v′δ → v′0 from
∫
R
|S′| < ∞ with Dominated Convergence and∣∣∫

R

L(y)

∫ y

0

(y − t)[v′δ(x+ δt)− v′δ(x)]dtdy
∣∣ ≤ δmax |v′′δ |

∫
R

L(y)
∣∣∫ y

0

(y − t)tdt
∣∣dy

→ 0 as δ → 0,

from
∫
R
|S′′| < ∞ and an addition assumption that

∫
R
|y3|L(y)dy < ∞.
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It is clear that u0 ̸≡ 0. We would now like to take Sε(x) =
1
εS(

x
ε ) in (2.3) and

pass to the limit ε → 0. However, we do not know if u0 is continuous, and if it is
not at xdc, v0(xdc) → 1

2 (u0(xdc−) + u0(xdc+)) as ε → 0. Before we return to (2.3),
we use weak formulation in particular to show that u0 is continuous.

Multiplying (2.2) by ϕ ∈ C∞
0 , integrating over R and passing to the limit δ → 0,

we get

(2.4)

∫
R

[1
2
u2
0ϕ

′ + bα(Kε1 ∗ u0 − kε1u0)ϕ+ ε2u0ϕ
′′] = 0.

For any finite a, b, with integration in (2.4) over (a, b) we get∫ b

a

fϕ′′ = 0,

where

f(x) = −
∫ x

0

1

2
u2
0 +

∫ x

0

ds

∫ s

0

bα(Kε1 ∗ u0 − kε1u0) + ε2u0(x).

It is standard that

(2.5) f(x) = c1 + c2x a.e.,

where c1, c2 satisfy the system F1(b) = 0, F2(b) = 0, with

F1(x) =

∫ x

a

(f(s)− c1 − c2s)ds, F2(x) =

∫ x

a

F1.

If xdc is a point of discontinuity of u0, then let a, b be such that xdc ∈ (a, b).
There is sequence of points tending to xdc from the left, and another tending to xdc

from the right, at which (2.5) is satisfied. Since in (2.5) only u0 is potentially not
continuous, we pass to the limit getting

u0(xdc−) = u0(xdc+),

where we used that u0 is monotone. We can now differentiate (2.5) twice to get
that u0 is a solution of (1.9).

With Sε we pass to the limit ε → 0 in (2.3) and differentiate it to get

1

2
u2
c −

1

2
u2
0(x) =

∫
R

ybαKε1(y)

∫ 1

0

u0(x+ ty)dtdy + ε2u
′
0(x).

On the other hand, we integrate (1.9) with u0 from −∞ to x to get

(2.6)
1

2
u2
0(−∞)− 1

2
u2
0(x) =

∫
R

ybαKε1(y)

∫ 1

0

u0(x+ ty)dtdy + ε2u
′
0(x).

Thus u0(−∞) = uc.
In passing to the limit ε1, ε2 → 0, if we can show that the three first derivatives of

the solution uε1,ε2 of (1.9) are uniformly bounded, then from Arzelà-Ascoli Theorem
there is a subsequence of uε1,ε2 , also denoted by uε1,ε2 , such that uε1,ε2 → u0 as
ε1, ε2 → 0 pointwise on R and

bα(Kε1 ∗ uε1,ε2 − kε1uε1,ε2) + ε2u
′′
ε1,ε2 → (D2)αu0 as ε1, ε2 → 0

pointwise on R, shown e.g., in [9], so that u0 satisfies (1.5). The idea is to split

bαKε1 = Pε1 +Rε1 ,
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with Rε1 ≥ 0, Pε1 ∈ W 1,1(R) and pε1 =
∫
R
Pε1 = 2|minx∈Ru

′
ε1,ε2(x)|, namely

(2.7) Pε1(x) =

{
bαKε1(x), x ∈ R\[−e, e],
bαKε1(−e), x ∈ (e, e),

where e = 1

p
1/2α
ε1

(2 + 1
α )

1/2α. Note that the min is attained, since u′
ε1,ε2(x) → 0 as

x → −∞ from (2.6). Let rε1 =
∫
R
Rε1 . After differentiating (1.9), at the min we

get

−
p2ε1
4

= P ′
ε1 ∗ uε1,ε2 +Rε1 ∗ u′

ε1,ε2 − rε1u
′
ε1,ε2 + ε2u

′′′
ε1,ε2 ≥ P ′

ε1 ∗ uε1,ε2 .

With (2.7) this becomes

p2ε1
4

≤ 2uc(
2 + 1

α

) 1+2α
2α

p
1+2α
2α

ε1 .

Since α > 1/2, pε1 is bounded. We need to show though that such a splitting exists.
Note that here we are adjusting it to the solution, whereas in [9] the splitting in
(1.7) was adjusting to the nonlinearity, i.e., we had Jε = K +Sε with bαk+ f ′ > 0.
We show that |minx∈Ru

′
ε1,ε2(x)| is of order lower than bαkε1 . From (2.6) we get

ε2|u′| ≤ 1

2
u2
c + ucbαk

1− 1
2α

ε1

[ 2(2α− 1)(
2 + 1

α

)1− 1
2α

+
(
2 +

1

α

) 1
α−1

]
.

It now suffices to take ε2 = 1

kβ
ε1

, where β < 1
2α .

To estimate maxx∈Ru
′′
ε1,ε2 , first note that this max is attained, since u′′

ε1,ε2 → 0
as x → −∞ from (1.9) and u′

ε1,ε2(x) → 0 as x → −∞. Using another splitting

(2.8) bαKε1 = P +Rε1 ,

after differentiating (1.9) twice, at the max we get

(p+ 3u′
ε1,ε2)u

′′
ε1,ε2 ≤ P ′ ∗ u′

ε1,ε2 .

Since |u′
ε1,ε2 | is uniformly bounded, so is |u′′

ε1,ε2 | after taking P such that p +
3u′

ε1,ε2 > 0.
To estimate maxx∈Ru

′′′
ε1,ε2 , use another splitting as in (2.8). After differentiating

(1.9) three times, at the max we get

(p+ 4u′
ε1,ε2)u

′′′
ε1,ε2 = K ′ ∗ u′′

ε1,ε2 ,

so as before |u′′′
ε1,ε2 | is uniformly bounded.

To show that u0(−∞) = uc, we argue as before. Integrate (1.9) from −∞ to x,
pass to the limit ε1, ε2 → 0, then integrate (1.5) from −∞ to x and compare the
two. The only difficulty is in showing that∫ x

−∞
(Kε1 ∗ uε1,ε2 − kε1uε1,ε2) →

∫ x

−∞
(D2)αu0 as ε1 → 0.

To manage the singularity it is standard that we consider separately integration on
R\(−1, 1) and (−1, 1), i.e.,∫ x

−∞
(Kε1 ∗ uε1,ε2 − kε1uε1,ε2) = I1 + I2,
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where

I1 = lim
r→−∞

∫ x

r

∫
R\(−1,1)

yKε1(y)

∫ 1

0

u′
ε1,ε2(s+ ty)dtdyds

=

∫
R\(−1,1)

yKε1(y)

∫ 1

0

uε1,ε2(x+ ty)dtdy

and

I2 = lim
r→−∞

∫ x

r

∫ 1

−1

y2Kε1(y)

∫ 1

0

(1− t)u′′
ε1,ε2(s+ ty)dtdyds

=

∫ 1

−1

y2Kε1(y)

∫ 1

0

(1− t)u′
ε1,ε2(x+ ty)dtdy.

Passing to the limit ε1, ε2 → 0 in I1 and I2 and doing the same integrations in∫ x

−∞(D2)αu0 we get

I1 + I2 →
∫ x

−∞
(D2)αu0.

Note that we can show that I1 is finite only for α > 1/2.
To show that u′

0 < 0, differentiate (1.5). If u′
0(xmax) = 0 at a point xmax, then

also u′′
0(xmax) = 0. On the other hand, ((D2)αu0)(xmax) < 0, a contradiction.

To justify ((D2)αu0)
′ = (D2)αu′

0, it suffices that |u′′′
0 | is bounded, which is after

additionally showing that |u′′′′
ε1,ε2 | is uniformly bounded, as above.
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