
Ricerche di Matematica
https://doi.org/10.1007/s11587-022-00730-4

Existence result and approximation of an optimal control
problem for the Perona–Malik equation

Peter Kogut1,2 · Yaroslav Kohut3 · Rosanna Manzo4

Received: 29 June 2022 / Revised: 2 August 2022 / Accepted: 16 August 2022
© The Author(s) 2022

Abstract
Wediscuss someoptimal control problem for the evolutionaryPerona–Malik equations
with the Neumann boundary condition. The control variable v is taken as a distributed
control. The optimal control problem is to minimize the discrepancy between a given
distribution ud ∈ L2(�) and the current system state. Since we cannot expect to have
a solution of the original boundary value problem for each admissible control, we
make use of a variant of its approximation using the model with fictitious control
in coefficients of the principle elliptic operator. We introduce a special family of
regularized optimization problems for linear parabolic equations and show that each
of these problems is consistent, well-posed, and their solutions allow to attain (in the
limit) an optimal solution of the original problem as the parameter of regularization
tends to zero.
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1 Introduction

Recently, in the context of time interpolation of satellite multi-spectral images, the
following model has been proposed (see [1])

ut − div ( f (|∇u|)∇u) + (∇u, b) = v in Q = (0, T ) × �, (1)

u(0, x) = u0(x) in �, (2)

∂νu(t, x) = 0 on � = (0, T ) × ∂�, (3)

where � ⊂ R
2 is a Lipschitz domain, b ∈ Bad and v ∈ Vad are the control functions

with

Bad =
{
b ∈ L∞(Q)2 ∩ BV (Q)2 : ‖b‖L∞(Q)2 ≤ κ

}
, (4)

Vad =
{
v ∈ L2(0, T ; L2(�))

}
, (5)

∂ν stands for the outward normal derivative, f ∈ C1,1(R+) is a non-increasing real
function such that f (s) → 0 when s → +∞ and f (s) → 1 when s → +0. In
particular,

f (|∇u|) = 1

1 + |∇u|2 . (6)

In fact, the Cauchy–Neumann problem (1)–(3) can be viewed as some improvement
of the Perona–Malik model [2] that was proposed in order to avoid the blurring in
images and to reduce the diffusivity at those locations which have a larger likelihood
to be edges. This likelihood is measured by |∇u|2.

It is well-known that the model (1) is an ill-posed problem from the mathematical
point of viewand canproducemanyunexpected phenomena (see [3]). Toovercome this
problem, many authors have been looking for some regularizations of the equation (1)
which inherit its usefulness in image restoration but have better mathematical behavior
(see, for instance, [4–9] and the references therein). In particular, in order to guarantee
the existence and uniqueness of solution to the initial-boundary value problem (1)–(3),
the authors in [1] proposed to specify the equation (1) as follows

ut − div (K (t, x)∇u) + (∇u, b) = v in Q = (0, T ) × � (7)

with K (t, x) = f
(|∇Y ∗

σ |), where ∇Y ∗
σ = ∇Gσ ∗ Y ∗ is the spatially regularized

gradient of Y ∗, Gσ denotes the two-dimensional Gaussian filter kernel, and Y ∗ ∈
C([0, T ]; L2(�)) is a special function which describes the simplest model of image
evolution over the interval [0, T ].

However, it is well-known that the Perona–Malik model with the spatially regular-
ized gradient has several serious practical and theoretical difficulties. The first one is
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that the spatial regularization of gradient in the form f (|∇Gσ ∗ u|) leads to the loss
of accuracy in the case when the signal is noisy, with white noise (see for instance [6]).
The second drawback of the Perona–Malik model with the regularized gradient (see
also the model (7), (2), (3)) is the fact that the space-invariant Gaussian smoothing
inside the divergent term tends to push the edges in u away from their original loca-
tions. We refer to [10] where this issue is studied in details. This effect, known as edge
dislocation, can be detrimental especially in the context of the boundary detection
problem and its application to the remote sensing and monitoring.

In view of this, our prime interest in this paper is to study the equation (1) and
the corresponding PDE-constrained optimization problem without the space-invariant
Gaussian smoothing inside the divergent term. With that in mind we consider the
following optimal control problem

(R) Minimize J (v, u) =
∫

QT

∣∣∣∣D

(
1

1 + |∇u|2
)∣∣∣∣ + 1

2

∫

�

|u(T ) − ud |2 dx

+ λ

2

∫ T

0

∫

�

|∇u|2 dxdt + γ

2

∫ T

0

∫

ω

|v|2 dxdt (8)

subject to the constraints

ut − div

( ∇u

1 + |∇u|2
)

= vχω in QT := (0, T ) × �, (9)

∂νu = 0 on (0, T ) × ∂�, (10)

u(0, ·) = u0 in �, (11)

v ∈ Vad := L2(0, T ; L2(ω)), (12)

where T > 0,� is a bounded open subset ofRN with a Lipschitz boundary, N ≥ 2, ω

is an open nonempty subset of�, χω =
{
1, x ∈ ω,

0, x ∈ � \ ω

}
is the characteristic function

of the set ω, ∂ν stands for the outward normal derivative, u0, ud ∈ L2(�) are given
functions, λ, γ are given positive constants, and v : ω → R is a control.

As was mentioned before, the operator div ( f (|∇u|) ∇u) with a function f given
by (6) provides an example of a non-linear operator in divergence form with a so-
called degenerate nonlinearity. Moreover, since the function RN � s 
→ s

1+|s|2 ∈ R
N

is neither monotone nor coercive, we have no existence result for the initial-boundary
value problem (IBVP) (9)–(11) and its uniqueness. With that in mind, we say that
(v, u) is a feasible pair to the problem (8)–(12) if

v ∈ Vad := L2(0, T ; L2(ω)), u ∈ L2(0, T ; H1(�)), J (v, u) < +∞, (13)

and the following integral identity
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∫ T

0

∫

�

(
−u

∂ϕ

∂t
+ (∇u,∇ϕ)

1 + |∇u|2
)

dxdt =
∫ T

0

∫

ω

vϕ dxdt +
∫

�

u0(x)ϕ(0, x) dx

(14)

holds for any function ϕ ∈ 
, where


 =
{
ϕ ∈ C1(QT ) : ϕ(T , ·) = 0 in � and ∂νϕ = 0 on (0, T ) × ∂�

}
.

In order to find out in what sense the solution takes the initial value u(0, ·) = u0,
we make use of the following result.

Proposition 1 Let (v, u) be a feasible pair to the problem (8)–(12). Then, for any

η ∈ C∞
0 (�), the scalar function h(t) =

∫

�

u(t, x)η(x) dx belongs to W 1,1(0, T ) and

h(0) =
∫

�

u0(x)η(x) dx.

For further convenience we denote the set of all feasible solutions to the problem
(8)–(12) by�. Because of the degenerate behavior of multiplier f (|∇u|), the structure
of the set � and its main topological properties are unknown in general.

The main focus in this paper consists in providing an approximation framework
which in spite of the technical difficulties leads to an implementable scheme, namely, to
the so-called indirect approach proving the existence of optimal solutions and giving
the procedure of their efficient approximation. We show that the original optimal
control problem (8)–(12) can be approximated efficiently by a special family of optimal
control problems for linear parabolic equations with the fictitious BV -control in the
principle part of elliptic operator div (ρ∇u).

The paper is organized as follows. In the next section, we give some preliminaries
and notions that will be needed in the sequel. Section 3 contains a few technical
results concerning the almost everywhere convergence of the gradients of solutions
to linear parabolic equations with BV -coefficients in the main part of the elliptic
operator. These results were obtained in the spirit of Bocardo andMurat approach (see
Theorems 4.1 and 4.3 in [11]). In Sect. 4 we give a precise statement of the fictitious
optimal control problem for linear parabolic equationwith the constrained BV -control
in the coefficients. The announced approximation framework is the subject of Sect. 5,
where we provide an asymptotic analysis of a family of approximated optimal control
problems and show that some optimal pairs to the original problem (8)–(12) can
be attained (in an appropriate topology) by optimal solutions to the approximated
problems.

2 Preliminaries and basic definitions

We begin with some notation. Let � be a given bounded open subset of RN (N ≥ 2)
with a sufficiently smooth boundary. For any subset D ⊂ � we denote by |D| its
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N -dimensional Lebesgue measure LN (D). We define the characteristic function χD

of D by χD(x) :=
{
1, for x ∈ D,

0, otherwise.
Let X denote a real Banach space with norm ‖ · ‖X , and let X ′ be its dual. Let

〈·, ·〉X ′;X be the duality form on X ′ × X . By ⇀ and
∗
⇀ we denote the weak and weak∗

convergence in normed spaces, respectively.
We denote by C∞

c (RN ) a locally convex space of all infinitely differentiable func-
tions with compact support. We recall here some functional spaces that will be used
throughout this paper. We define the Banach space H1(�) as the closure of C∞

c (RN )

with respect to the norm

‖y‖H1(�) =
(∫

�

(
y2 + |∇ y|2

)
dx

)1/2

.

We denote by
(
H1(�)

)′
the dual space of H1(�).

Let k > 0. We set Tk(s) = max {−k,min {s, k}}.
Theorem 2 Let G : R → R be a Lipschitz continuous function such that G(0) = 0.
If u belongs to H1(�), then G(u) belongs to H1(�), ∇G(u) = G ′(u)∇u almost
everywhere in �, and as a result

∇Tk(u) = ∇uχD{|u| ≤ k} almost everywhere in �. (15)

Weak and strong convergence in L1(�) Let ε be a small parameter which varies
within a strictly decreasing sequence of positive numbers converging to 0. When we
write ε > 0, we consider only the elements of this sequence, in the case ε ≥ 0 we also
consider its limit ε = 0. Let {aε}ε>0 be a sequence in L1(�). We recall that {aε}ε>0
is called equi-integrable if for any δ > 0 there is τ = τ(δ) such that

∫
S|aε| dx < δ for

all aε and for every measurable subset S ⊂ � of Lebesgue measure |S| < τ .

Theorem 3 (Dunford–Pettis, [12]) Let {aε}ε>0 be a sequence in L1(�). Then this
sequence is relatively compact with respect to the weak convergence in L1(�) if and
only if {aε}ε>0 is uniformly bounded in L1(�), i.e., supε>0 ‖uε‖L1(�) < +∞, and
{aε}ε>0 is equi-integrable.

Theorem 4 (Lebesgue–Vitali, [12]) If a sequence {aε}ε>0 ⊂ L1(�) is equi-integrable
and there exists a function a ∈ L1(�) such that aε(x) → a(x) almost everywhere in
� then aε → a in L1(�).

A typical application of Vitali’s theorem is provided by the next simple lemmas.

Lemma 1 [12] Let {aε}ε>0 be a sequence in L1(�) such that aε(x) → a(x) almost
everywhere in �, and this sequence is uniformly bounded in L p(�) for some p > 1.
Then

aε → a in Lr (�) for all 1 ≤ r < p. (16)
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Lemma 2 [12] Let {aε}ε>0, {bε}ε>0, a, and b be a measurable functions such that

aε(x) → a(x) a.e. in �, sup
ε>0

‖aε‖L∞(�) < ∞, (17)

bε⇀b in L1(�). (18)

Then

ab ∈ L1(�) and aεbε⇀ab in L1(�). (19)

Functions with bounded variation Let f : � → R be a function of L1(�). Define

∫

�

|D f | = sup
{ ∫

�

f div ϕ dx :

ϕ = (ϕ1, . . . , ϕN ) ∈ C1
0(�;RN ), |ϕ(x)| ≤ 1 for x ∈ �

}
,

where div ϕ = ∑N
i=1

∂ϕi
∂xi

.

Definition 1 A function f ∈ L1(�) is said to have a bounded variation in � if∫
�
|D f | < +∞. By BV (�) we denote the space of all functions in L1(�) with

bounded variation.

Under the norm ‖ f ‖BV (�) = ‖ f ‖L1(�) + ∫
�
|D f |, BV (�) is a Banach space. The

following compactness result for BV -functions is well-known:

Proposition 5 The uniformly bounded sets in BV -norm are relatively compact in
L1(�).

Definition 2 A sequence { fk}∞k=1 ⊂ BV (�) weakly-∗ converges to some f ∈
BV (�), andwewrite fk

∗
⇀ f if andonly if the two following conditions hold: fk → f

strongly in L1(�), and D fk⇀D f weakly-∗ inM(�;RN ), whereM(�;RN ) stands
for the space of all vector-valued Borel measures which is, according to the Riesz
theory, the dual of the space C(�;RN ) of all continuous vector-valued functions ϕ

vanishing at infinity.

In the proposition below we give a compactness result related to this convergence,
together with the lower semicontinuity property (see [13]):

Proposition 6 Let { fk}∞k=1 be a sequence in BV (�) strongly converging to some f in
L1(�) and satisfying supk∈N

∫
�
|D fk | < +∞. Then

(i) f ∈ BV (�) and
∫
�
|D f | ≤ lim infk→∞

∫
�
|D fk |;

(ii) fk
∗
⇀ f in BV (�).
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3 Some auxiliaries

In this section we give a few technical results that can be viewed as some specification
of the well-known results of Bocardo and Murat (see Theorems 4.1 and 4.3 in [11]).
For the proof we refer to the recent paper [14].

Proposition 7 Let {uk}k∈N be a weakly convergennt sequence in L2(0, T ; H1(�)),
and

uk⇀u weakly in L2(0, T ; H1(�)). (20)

Assume that

∂uk

∂t
= hk in D′((0, T ) × �) ∀ k ∈ N, (21)

where {hk}k∈N is a bounded sequence in L2(0, T ; H−1(�)). Then

uk → u strongly in L2
loc(0, T ; L2

loc(�)). (22)

Proposition 8 Let ε ∈ (0, 1) and K ∈ (0,∞) be given values. Assume that the
sequences

{uk}∞k=1 ⊂ L2(0, T ; H1(�)), {vk}∞k=1 ⊂ L2(0, T ; L2(�)),

and {ρk}∞k=1 ⊂ BV (QT ) ∩ L∞(QT ) (23)

are bounded and such that

uk ⇀ u weakly in L2(0, T ; H1(�)), (24)

vk ⇀ v weakly in L2(0, T ; L2(�)), (25)

ρk ⇀ ρ weakly- ∗ in BV (QT ) and a.e. in QT , (26)

ρk ≥ ε a.e. in QT , ∀ k ∈ N, (27)

∂uk

∂t
− div (ρk∇uk) = vk in D′(QT ), ∀ k ∈ N. (28)

Then

∇TK (uk) → ∇TK (u) strongly in L2
loc(0, T ; L2

loc(�))N , (29)

where TK : R → R is the truncation at height K .

Theorem 9 Let ε ∈ (0, 1) be a given value and let

{uk}∞k=1 ⊂ L2(0, T ; H1(�)), {vk}∞k=1 ⊂ L2(0, T ; L2(�)),

and {ρk}∞k=1 ⊂ BV (QT ) ∩ L∞(QT ) (30)
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be bounded sequences satisfying conditions (24)–(28). Then

∇uk → ∇u strongly in Lq(0, T ; Lq(�))N for any q ∈ [1, 2). (31)

4 Regularization of the original optimal control problem

We introduce the following family of approximating control problems

(Rε) Minimize Jε(ρ, v, u) = 1

2

∫

�

|u(T ) − ud |2 dx

+ λ

2

∫ T

0

∫

�

|∇u|2 dxdt + γ

2

∫ T

0

∫

ω

|v|2 dxdt

+
∫

QT

|Dρ| + 1

ε

∫ T

0

∫

�

|ρ − 1

1 + |∇u|2 |2 dxdt

(32)

subject to the constraints

ut − div (ρ∇u) = vχω in QT := (0, T ) × �, (33)

∂u

∂ν
= 0 on (0, T ) × ∂�, (34)

u(0, ·) = u0 in �, (35)

v ∈ Vad := L2(0, T ; L2(ω)), (36)

ρ ∈ Rad := {
h ∈ BV (QT ) ∩ L∞(QT ) : 0 ≤ h(t, x) ≤ 1 a.e. in QT

}
. (37)

We say that a tuple (ρ, v, u) is a feasible solution to the problem (32)–(37) if

ρ ∈ Rad , v ∈ Vad , u ∈ L2(0, T ; H1(�)), (38)

ρ(t, x) ≥ max

{
ε2

1 + ε2
,

1

1 + |∇u(t, x)|2
}

a.e. in QT , (39)

and this triplet satisfies the following integral identity

∫ T

0

∫

�

(−ϕt u + ρ (∇u,∇ϕ)) dxdt =
∫ T

0

∫

ω

vϕ dxdt +
∫

�

u0ϕ(0, x) dx (40)

for each ϕ ∈ �, where

� =
{
ϕ ∈ C1(QT ) : ϕ(T , ·) = 0 in � and ∂νϕ = 0 on (0, T ) × ∂�

}
.

The set of all feasible solution is denoted by �ε.

123



Existence result and approximation of an optimal control...

Remark 1 Arguing as in [15], it can be shown that the original IBVP has a unique
solution for each ρ ∈ Rad and v ∈ Vad . Moreover, in this case the integral identity
(40) holds for any function ϕ ∈ � and the energy equality

∫

�

u2(t, x) dx + 2
∫ t

0

∫

�

ρ|∇u|2 dxdt = 2
∫ t

0

∫

ω

vu dxdt +
∫

�

u2
0 dx (41)

is valid for all 0 ≤ t ≤ T .

Definition 3 A sequence {(ρk, vk, uk) ∈ �ε}k∈N is called bounded if

sup
k∈N

[‖ρk‖BV (QT ) + ‖vk‖L2(0,T ;L2(ω)) + ‖uk‖L2(0,T ;H1(�))

]
< +∞.

Definition 4 We say that a bounded sequence {(ρk, vk, uk) ∈ �ε}k∈N of feasible
solutions τ -converges to a triplet (ρ, v, u) ∈ BV (QT ) × L2(0, T ; L2(ω)) ×
L2(0, T ; H1(�)) if conditions

uk ⇀ u weakly in L2(0, T ; H1(�)), (42)

vk ⇀ v weakly in L2(0, T ; L2(ω)), (43)

ρk ⇀ ρ weakly − ∗ in BV (QT ) and a.e. in QT (44)

hold true.

Remark 2 As follows from Theorem 9, if {(ρk, vk, uk) ∈ �ε}k∈N is a τ -convergent

sequence of feasible solutions and (ρk, vk, uk)
τ→ (ρ, v, u), then∇uk → ∇u strongly

in Lq(0, T ; Lq(�))N for any q ∈ [1, 2) and, passing to a subsequence if necessary,
we can assert that ∇uk(t, x) → ∇u(t, x) a.e. in QT = (0, T ) × �.

Remark 3 From (40) we deduce: if (ρ, v, u) is a feasible solution to the problem
(32)–(37), then the equality

∂uk

∂t
− div (ρk∇uk) = χωvk in D′(QT )

holds in the sense of distributions for each k ∈ N. Moreover, if a sequence
{(ρk, vk, uk) ∈ �ε}k∈N is bounded in the sense of Definition 3, then div (ρk∇uk) +
χωvk ∈ L2(0, T ; H−1(�)). Therefore, uk ∈ C([0, T ]; L2(�)) for all k ∈ N (see [16,
Proposition III.1.2]) and due to J.L. Lions [17, Chapitre 1, Theorem 5.1] (we refer
also to [18] for some generalizations), the Banach space

W =
{
ϕ : ϕ ∈ L2(0, T ; H1(�)),

∂ϕ

∂t
∈ L2(0, T ; H−1(�))

}

is compactly embedded into L2(0, T ; L2(�)).
Thus, the first term in the objective functional (32) is well defined onto the set of

feasible solutions. So, if {uk}k∈N is a bounded sequence in W and uk ⇀ u weakly in
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L2(0, T ; H1(�)), then uk → u strongly in L2(0, T ; L2(�)) and, as a consequence,
uk(T , ·) → u(T , ·) strongly in L2(�).

Before proceeding further, we establish the following important property.

Proposition 10 For every ε ∈ (0, 1) the set �ε is sequentially closed with respect to
the τ -convergence.

Proof Let {(ρk, vk, uk)}k∈N ⊂ �ε be a τ -convergent sequence of feasible solutions to
the optimal control problem (32)–(37). Let (ρ, v, u) be its τ -limit. Our aim is to show
that (ρ, v, u) ∈ �ε.

Since the inclusions χωv ∈ Vad := L2(0, T ; L2(�)) and u ∈ L2(0, T ; H1(�))

are obvious, let us show that the condition (27) is valid for some ε > 0. Indeed, in
view of Remark 2, we can suppose that, up to a subsequence,

uk(t, x) → u(t, x) and
1

1 + |∇uk(t, x)|2 → 1

1 + |∇u(t, x)|2 a.e. in QT .

Hence, in view of the definition of τ -convergence, the limit passage in the relation

ρk(t, x) ≥ max

{
ε2

1 + ε2
,

1

1 + |∇uk(t, x)|2
}

a.e. in QT

immediately leads us to the inequality (27) with ε̂ = ε2

1+ε2
. As for the inclusion

ρ ∈ Rad , it is a direct consequence of the weak-∗ compactness of bounded set Rad

in BV (QT ).
It remains to show that the limit triplet (ρ, v, u) is related by the integral identity

(40). To do so, it is enough to fix an arbitrary test function ϕ ∈ � and pass to the limit
in relation

∫ T

0

∫

�

(−ϕt uk + ρk (∇uk,∇ϕ)) dxdt =
∫ T

0

∫

ω

vkϕ dxdt +
∫

�

u0ϕ(0, x) dx .

(45)

Since ρk∇uk → ρ∇u strongly in Lq(QT ) for q ∈ [1, 2) by Lemma 1, it follows that
the limit passage in (45) leads to the integral identity (40). Thus, (ρ, v, u) is a feasible
solution to optimal control problem (32)–(37). ��
Theorem 11 Let ud ∈ L∞(�) be a given function, and let λ and γ be given constants.
Then, for each ε ∈ (0, 1), the optimal control problem (32)–(37) admits at least one
solution (ρ0

ε , v0ε , u0
ε) ∈ �ε.

Proof Let ε ∈ (0, 1) be a fixed value. Then, as it was indicated in Remark 1, the
optimal control problem (32)–(37) is consistent, that is, �ε �= ∅.

Let {(ρk, vk, uk) ∈ �ε}k∈N be a minimizing sequence to the problem (32)–(37).
Then the relation
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inf
(ρ,v,u)∈�ε

Jε(ρ, v, u) = lim
k→∞

[1
2

∫

�

|uk(T ) − ud |2 dx + λ

2

∫ T

0

∫

�

|∇uk |2 dxdt

+ γ

2

∫ T

0

∫

ω

|vk |2 dxdt +
∫

QT

|Dρk | + 1

ε

∫ T

0

∫

�

|ρk

− 1

1 + |∇uk |2 |2 dxdt
]

< +∞

and definition of the set Rad implies existence of a constant C > 0 such that

sup
k∈N

‖∇uk‖L2(0,T ;L2(�)N ) ≤ C, sup
k∈N

‖vk‖L2(0,T ;L2(ω)) ≤ C,

and sup
k∈N

‖ρk‖BV (QT ) ≤ C .
(46)

Then, from the energy equality (41), we deduce that

∫ T

0

∫

�

u2
k(t, x) dxdt ≤ 2T

∫ T

0

∫

ω

vkuk dxdt + T
∫

�

u2
0 dx

≤ 2T 2
∫ T

0

∫

ω

v2k dxdt + 1

2

∫ T

0

∫

�

u2
k dxdt + T

∫

�

u2
0 dx .

Hence,

sup
k∈N

‖uk‖L2(0,T ;L2(�)) ≤ 4T 2C2 + 2T ‖u0‖2L2(�)
.

Utilizing this fact together with (46), we see that the sequence {(ρk, vk, uk)

∈ �ε}k∈N is bounded in the sense of Definition 3. As a result, there exist functions
ρ0

ε ∈ BV (QT ), v0ε ∈ L2(0, T ; L2(ω)), and u0
ε ∈ L2(0, T ; H1(�)) such that, up to a

subsequence, (ρk, vk, uk)
τ→ (ρ0

ε , v0ε , u0
ε) as k → ∞. Since the set �ε is sequentially

closed with respect to the τ -convergence (see Proposition 10), it follows that the τ -
limit tuple (ρ0

ε , v0ε , u0
ε) is a feasible solution to optimal control problem (32)–(37) (i.e.,

(ρ0
ε , v0ε , u0

ε) ∈ �ε). To conclude the proof, we observe that ∇uk(t, x) → ∇u0
ε(t, x)

a.e. in QT (see Remark 2) and, therefore,

ρk(t, x) − 1

1 + |∇uk(t, x)|2 → ρ0
ε (t, x) − 1

1 + |∇u0
ε(t, x)|2 a.e. in QT .

Since

∥∥∥∥ρk − 1

1 + |∇uk |2
∥∥∥∥

L∞(QT )

≤ 2 for all k ∈ N,
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it follows that the sequence

{
ρk − 1

1 + |∇uk |2
}

k∈N
is equi-integrable. Hence,Vitaly’s

theorem implies that

ρk − 1

1 + |∇uk |2 → ρ0
ε − 1

1 + |∇u0
ε |2

strongly in L2(QT ) (47)

(see Lemma 1). Taking this fact into account and observing that

lim inf
k→∞

∫ T

0

∫

�

|ρk − 1

1 + |∇uk |2 |2 dxdt
by (47)=

∫ T

0

∫

�

|ρ0
ε − 1

1 + |∇u0
ε |2

|2 dxdt,

lim
k→∞

∫

�

|uk(T ) − ud |2 dx
by Remark (3)≥

∫

�

|u0
ε(T ) − ud |2 dx,

lim
k→∞

∫ T

0

∫

�

|∇uk |2 dxdt
by (42)=

∫ T

0

∫

�

|∇u0
ε |2 dxdt,

lim inf
k→∞

∫ T

0

∫

ω

|vk |2 dxdt
by(43)≥

∫ T

0

∫

�

|v0ε |2 dxdt,

lim inf
k→∞

∫

QT

|Dρk |
by(44)≥

∫

QT

|Dρ0
ε |,

we see that the cost functional Jε is sequentially lower τ -semicontinuous. Thus

Jε(ρ
0
ε , v0ε , u0

ε) ≤ lim inf
k→∞ Jε(ρk, vk, uk) ≤ lim

k→∞Jε(ρk, vk, uk) = inf
(ρ,v,u)∈�ε

Jε(ρ, v, u),

and, therefore, (ρ0
ε , v0ε , u0

ε) is an optimal triplet. ��

5 Asymptotic analysis of the approximated OCP
(R"

)

The main goal of this section is to show that the original OCP (R) is solvable and
some solutions can be attained (in an appropriate topology) by optimal solutions to
the approximated problems (Rε). With that in mind, we make use of the concept
of variational convergence of constrained minimization problems (see [19–21]) and
study the asymptotic behavior of a family of OCPs (Rε) as ε → 0.

Definition 5 Let {(ρε, vε, uε)}ε>0 ⊂ BV (QT )×L2(0, T ; L2(ω))×L2(0, T ; H1(�))

be an arbitrary sequence. We say that this sequence is bounded if

sup
ε>0

[‖ρε‖BV (QT ) + ‖vε‖L2(0,T ;L2(ω)) + ‖uε‖L2(0,T ;H1(�))

]
< +∞.

Definition 6 We say that a bounded sequence

{(ρε, vε, uε)}ε>0 ⊂ BV (QT ) × L2(0, T ; L2(ω)) × L2(0, T ; H1(�))
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is w-convergent as ε → 0 and (ρε, vε, uε)
w→ (ρ, v, u) if (ρε, vε, uε)

τ→ (ρ, v, u) as
ε → 0, i.e.,

uε ⇀ u weakly in L2(0, T ; H1(�)), (48)

vε ⇀ v weakly in L2(0, T ; L2(ω)), (49)

ρε ⇀ ρ weakly − ∗ in BV (QT ) and a.e. in QT ; (50)

and ∇uε → ∇u strongly in L1(0, T ; L1(�)N ).

The following technical result plays a significant role in the sequel.

Lemma 3 Let {(ρε, vε, uε) ∈ �ε}ε>0 be a τ -convergent sequence of feasible solu-
tions to OCPs (32)–(37), and let (ρ, v, u) ∈ BV (QT ) × L2(0, T ; L2(ω)) ×
L2(0, T ; H1(�)) be its τ -limit.
Then (ρε, vε, uε)

w→ (ρ, v, u) as ε → 0, and (ρ, v, u) is subjected to the constrains

ρ ∈ Rad , v ∈ Vad , u ∈ L2(0, T ; H1(�)), (51)

ρ(t, x) ≥ 1

1 + |∇u(t, x)|2 a.e. in QT , (52)

∫ T

0

∫

�

(−ϕt u + ρ (∇u,∇ϕ)) dxdt

=
∫ T

0

∫

ω

vϕ dxdt +
∫

�

u0(x)ϕ(0, x) dx, ∀ϕ ∈ �. (53)

For the proof, we refer to [14].
Before we go on, we assume that the set of feasible solution � to the prob-

lem (8)–(12) is non-empty. In the case when the initial state u0 is sufficiently
smooth and supp (u0) ⊂ ω, this assumption can be easily verified. Indeed, let
ϕ ∈ C∞([0, T ]; C∞

c (ω)) be an arbitrary function such that ϕ(0, x) = u0(x) in �.
Then it is easy to check that the pair

(v, u) :=
([

ϕt − div

( ∇ϕ

1 + |∇ϕ|2
)] ⌊

x∈ω
, ϕ

)

belongs to the set �. Thus, � �= ∅.
We begin with the following result that can be viewed as a direct consequence of

Lemma 3 and Theorem 11.

Proposition 12 Let ud ∈ L∞(�) be a given function, and λ and γ be given con-
stants. Let

{
(ρ0

ε , v0ε , u0
ε) ∈ �ε

}
ε>0 be a bounded sequence of optimal solutions to

the approximated problems (32)–(37) when the small parameter ε varies within a
strictly decreasing sequence of positive numbers converging to zero. Then there is a
subsequence of

{
(ρ0

ε , v0ε , u0
ε) ∈ �ε

}
ε>0, still denoted by the suffix ε, and distributions

ρ0 ∈ Rad ⊂ BV (QT ), v0 ∈ Vad , and u0 ∈ L2(0, T ; H1(�)) such that they satisfy
conditions (52)–(53), and (ρ0

ε , v0ε , u0
ε)

w→ (ρ0, v0, u0) as ε → 0.
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The key point in Proposition 12 is the assumption that a given sequence of optimal
solutions to the approximated problems (32)–(37) is bounded. Let us show that this
assumption can be omitted if only the original optimal control problem is consistent,
i.e. � �= ∅.
Proposition 13 Assume that � �= ∅. Let

{
(ρ0

ε , v0ε , u0
ε) ∈ �ε

}
ε>0 be a sequence of

optimal solutions to the approximated problems (32)–(37). Then there exists a constant
C > 0 independent of ε > 0 such that

sup
ε>0

[
‖ρ0

ε ‖BV (QT ) + ‖v0ε‖L2(0,T ;L2(ω)) + ‖u0
ε‖L2(0,T ;H1(�))

]
≤ C . (54)

Proof Let (̂v, û) ∈ � be a feasible solution to optimal control problem (8)–(12).
Hence, this pair satisfies conditions (13)–(14). Setting ρ̂ := (1+ |∇û|2)−1 in QT , we
see that

0 ≤ ρ̂(t, x) ≤ 1 a.e. in QT and ρ̂ ∈ BV (QT ) ∩ L∞(QT ),

and the pair (ρ̂, û) satisfies inequalities (39) for ε > 0 small enough. Hence, ρ̂ ∈ Rad

and, as a consequence, we deduce: (ρ̂, v̂, û) ∈ �ε for ε > 0 small enough. Therefore,

inf
(ρ,v,u)∈�ε

Jε(ρ, v, u) = Jε(ρ
0
ε , v0ε , u0

ε) ≤ Jε (ρ̂, v̂, û)

= 1

2

∫

�

|̂u(T ) − ud |2 dx + λ

2

∫ T

0

∫

�

|∇û|2 dxdt

+ γ

2

∫ T

0

∫

ω

|̂v|2 dxdt +
∫

QT

|Dρ̂| = C < +∞.

From this and definition of the set Rad , we deduce that

‖∇u0
ε‖2L2(0,T ;L2(�)N )

≤ 2

λ
C, ‖v0ε‖2L2(0,T ;L2(�))

≤ 2

γ
C, (55)

∫

QT

∣∣∣Dρ0
ε

∣∣∣ ≤ C, ‖ρ0
ε ‖BV (�) ≤ |QT | + C, (56)

∫ T

0

∫

�

∣∣∣∣ρ0
ε − 1

1 + |∇u0
ε |2

∣∣∣∣
2

dxdt ≤ Cε (57)

for all ε > 0 small enough. Then energy equality (41) implies that

∫ T

0

∫

�

[
u0

ε

]2
dxdt ≤ 2T

∫ T

0

∫

ω

v0ε u0
ε dxdt + T

∫

�

u2
0 dx

≤ 2T 2
∫ T

0

∫

ω

[
v0ε

]2
dxdt + 1

2

∫ T

0

∫

�

[
u0

ε

]2
dxdt + T

∫

�

u2
0 dx .
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Therefore,

sup
ε>0

‖u0
ε‖L2(0,T ;L2(�)) ≤ 8T 2 C

γ
+ 2T ‖u0‖2L2(�)

. (58)

Thus, the sequence
{
(ρ0

ε , v0ε , u0
ε) ∈ �ε

}
ε>0 is bounded in BV (QT ) × L2(0, T ;

L2(ω)) × L2(0, T ; H1(�)). ��

The next step of our analysis is to show that the pair (v0, u0) is optimal to the
originalOCP (R) provided (ρ0, v0, u0) is a cluster tuple of a given sequence of optimal
solutions

{
(ρ0

ε , v0ε , u0
ε) ∈ �ε

}
ε>0. To do so, we will utilize some hints from the recent

papers [22, 23] where the so-called indirect approach to the existence problem of
optimal solutions has been proposed.

Theorem 14 Assume that � �= ∅. Let
{
(ρ0

ε , v0ε , u0
ε) ∈ �ε

}
ε>0 be a sequence of optimal

solutions to the approximated problems (32)–(37). Let (ρ0, v0, u0) ∈ BV (QT ) ×
L2(0, T ; L2(ω))× L2(0, T ; H1(�)) be a w-cluster tuple (in the sense of Definition 6)
of a given sequence of optimal solutions Then

(v0, u0) ∈ �, ρ0(t, x) = 1

1 + |∇u0(t, x)|2 a.e. in QT , (59)

lim
ε→0

inf
(ρ,v,u)∈�ε

Jε(ρ, v, u) = lim
ε→0

Jε(ρ
0
ε , v0ε , u0

ε) = J (v0, u0) = inf
(v,u)∈�

J (v, u).

(60)

Proof Arguing as in the proof of Proposition 13, it can be shown that there exists
a constant C > 0 such that estimates (55)–(58) hold true. Hence, the sequence{
(ρ0

ε , v0ε , u0
ε) ∈ �ε

}
ε>0 is compact with respect to the τ -convergence. Moreover, in

view of Proposition 12 and the Lebesgue Dominated Theorem, we can suppose that,
up to a subsequence,

(ρ0
ε , v0ε , u0

ε)
w→ (ρ0, v0, u0) (61)

1

1 + |∇u0
ε |2

→ 1

1 + |∇u0|2 strongly in L2(QT )as ε → 0, (62)

ρ0
ε (t, x) − 1

1 + |∇u0
ε(t, x)|2 → ρ0(t, x) − 1

1 + |∇u0(t, x)|2 a.e. in QT , (63)

and
(
ρ0

ε − (
1 + |∇u0

ε |2
)−1

)
∈ L∞(�).

Then it follows from Vitaly’s theorem (see Lemma 1) that

ρ0
ε −

(
1 + |∇u0

ε |2
)−1 → ρ0 − 1

1 + |∇u0|2 strongly in L2(�).
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However, as follows from the third estimate in (57), the L2-limit of the sequence{
ρ0

ε − 1
1+|∇u0ε |2

}
ε>0

is equal to zero. Hence, we obtain

ρ0(t, x) = 1

1 + |∇u0(t, x)|2 a.e. in QT .

Thus,

(ρ0
ε , v0ε , u0

ε)
w→

(
1

1 + |∇u0|2 , v0, u0
)

as ε → 0.

Taking into account Proposition 12, we see that (v0, u0) is a feasible solution to the
original OCP (R). Moreover, as a direct consequence of the properties (62), we have
the following estimate

lim inf
ε→0

Jε(ρ
0
ε , v0ε , u0

ε) ≥ 1

2

∫

�

|u0(T ) − ud |2 dx + λ

2

∫ T

0

∫

�

|∇u0|2 dxdt

+ γ

2

∫ T

0

∫

�

|v0|2 dxdt +
∫

QT

∣∣∣∣D

(
1

1 + |∇u0|2
)∣∣∣∣ = J (v0, u0). (64)

Let us assume for a moment that the pair (v0, u0) is not optimal for (R)-problem.
Then there exists another pair (v∗, u∗) ∈ � such that

J (v∗, u∗) < J (v0, u0) < +∞. (65)

Setting ρ∗ = (
1 + |∇u∗|2)−1

, we deduce from condition (v∗, u∗) ∈ � that the tuple
(ρ∗, v∗, u∗) is a feasible solution to each approximate problem (Rε), i.e.,

(
ρ∗, v∗, u∗) ∈ �ε, ∀ ε ∈ (0, 1). (66)

Taking this fact into account, we get

J (v0, u0) = 1

2

∫

�

|u0(T ) − ud |2 dx + λ

2

∫ T

0

∫

�

|∇u0|2 dxdt

+ γ

2

∫ T

0

∫

�

|v0|2 dxdt +
∫

QT

∣∣∣∣D

(
1

1 + |∇u0|2
)∣∣∣∣

by (64)≤ lim inf
ε→0

Jε(ρ
0
ε , v0ε , u0

ε) = lim inf
ε→0

inf
(ρ,v,u)∈�ε

Jε(ρ, v, u)

≤ lim
ε→0

Jε(ρ
∗, v∗, u∗)

= 1

2

∫

�

|u∗(T ) − ud |2 dx + λ

2

∫ T

0

∫

�

|∇u∗|2 dxdt

+ γ

2

∫ T

0

∫

�

|v∗|2 dxdt +
∫

QT

∣∣∣∣D

(
1

1 + |∇u∗|2
)∣∣∣∣
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+ 1

ε

∫ T

0

∫

�

∣∣∣∣ρ∗ − 1

1 + |∇u∗ |2
∣∣∣∣
2

dxdt = J (v∗, u∗).

Thus, J (v0, u0) ≤ J (v∗, u∗) and we come into a conflict with condition (65). Hence,
the limit pair (v0, u0) is optimal for the original OCP (R). ��

As follows from Theorem 14, the optimal solutions to the approximated problems
(ρ0

ε , v0ε , u0
ε) can be considered as a basis for the construction of suboptimal controls

to the original problem (R) (for the details we refer to [19, 24–26])
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