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Abstract

This paper is concerned with developing some conditions that reveal existing and stability analysis for solutions to a class
of differential equations with fractional order. The required conditions are obtained by applying the technique of degree theory
of topological type. The concerned problem is converted to the integral equation and then to operator equation, where the
operator is defined by T : C[0, 1] → C[0, 1]. It should be noted that the assumptions on nonlinear function f(t,u(t)) does not
usually ascertain that the operator T being compact. Moreover, in this paper we also establish some conditions under which the
solution of the considered class is Hyers-Ulam stable and also satisfies the conditions of Hyers-Ulam-Rassias and generalized
Hyers-Ulam stability. Proper example is provided for the illustration of main results. c©2017 All rights reserved.
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1. Introduction and preliminaries

Arbitrary order differential equations have attracted the attentions very well in last few decades.
Because, non-integer order differential equations have many applications in various branches of science
and engineering such as signal processing, viscoelasticity, biology, physics, chemistry, control theory and
stability of networking and modeling of biological phenomenons, etc., for detail see [6, 13, 14, 16, 18]. The
qualitative theory devoted to existence of solutions to non-integer order differential equations involving
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boundary conditions has been an active area of research for the last few decades. By using various
tools and method of functional analysis and fixed point theory, the concerned theory has been explored
very well, for detail see [1, 2, 22, 23]. However, in the mentioned papers, the concerned conditions for
existence of solutions required compactness of the operator which restrict the area to some limited classes
of fractional differential equations. To relax the conditions, one needs weaker condition for compactness
of the operator T . One such powerful tool is a topological degree theory which was applied by Mawhin
[15] and established essential conditions for the solutions of a classical differential and integral equation.
Isaia [10] used topological degree method and developed some useful conditions for the existence theory
of solutions to some nonlinear integral equations. In 2013, Wang et al. [29], established an existence theory
for the solutions to a nonlocal Cauchy problems given below by applying topological degree method{

cDqu(t) − f(t,u(t)) = 0, t ∈ [0, T ],
u(0) − u0 = g(u),

where cDq represents the Caputo fractional derivative of order q ∈ (0, 1], u0 ∈ R and f : I×R → R

is continuous. In 2015, Khan and Shah [12], extended the topological degree method for the following
multi-point boundary value problems given as

cDqu(t) − f(t,u(t)) = 0, q ∈ (1, 2], t ∈ [0, 1],

u(0) − g(u) = 0,u(1) −
m−2∑
i=1

λiu(ηi) − h(u) = 0, λi,ηi ∈ (0, 1),

where g,h : ([0, 1], R) and f ∈ ([0, 1]×R, R).
Another aspect of the qualitative theory which is very important from optimization and numerical

point of view is devoted to stability analysis of the solutions to differential equations of fractional order.
In this regard, Hyers-Ulam type stability for the solutions of differential equations of non-integer order
has been introduced in many articles. In 1940, Ulam [26] raised a question that “Under what conditions
does there exist an additive mapping near an approximately additive mapping?” This question gave birth
to the initiation of the area to investigate stability for functional, integral and differential equations. In
this regard Hyers [8] was the first mathematician who answered the Ulam’s question for the additive
mapping in complete normed spaces. Latter on, from 1982 to 1998, Rassias [19] developed the conditions
under which linear and nonlinear mappings are Hyers-Ulam stable. Jung [11], established Hyers-Ulam
stability for nonlinear mapping on a restricted domains. The first author who investigated the Hyers-
Ulam stability for linear differential equation in 1997 was Obloza [17]. Now enough literature can be
found about the aforesaid area. For classical order differential equations the area has been well studied
and plenty of paper can be found on it, few of them we refer in [20, 21, 28, 30]. However for non-integer
order differential equations, the area has not yet properly explored and required further exploration.
Recently very few articles on Hyers-Ulam stability for the solutions of differential equations of arbitrary
order have been published which we refer in [3, 4, 7, 24, 25, 27, 31]. Motivated by the aforesaid work, this
article is concerned to investigate existence and stability of solutions for fractional differential equations
of arbitrary order which have boundary conditions involving fractional order derivative in the following
form 

cDqu(t) = f(t,u(t)), q ∈ (1, 2], t ∈ J = [0, 1],
u(0) = δ cDpu(η) + g(u),
u(1) = λ cDpu(ξ) + h(u), δ, λ,η, ξ ∈ R such that δ > λ, η > ξ,

(1.1)

where p ∈ (0, 1) and f : J×R → R is nonlinear continuous function. Further, the nonlocal function
defined by g,h : [0, 1]→ R are also continuous.

Motivated by the aforesaid study, we investigate the concerned stability for the solution of problem
(1.1) under consideration. We study different kinds of stability to the proposed problem like Hyers-Ulam
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stability, generalized Hyers-Ulam Rassias stability and Rassias stability. Here we remark that the aforesaid
stability has not investigated for muti-point boundary value problems involving fractional derivative in
their boundary conditions. The whole results are demonstrated by providing a suitable example in the
last section of this article.

2. auxiliary results and definitions

This section, deal with few basic definitions, lemmas and notations which can be found in [5, 10, 13,
16, 18]. All the continuous functions from J→ R form a Banach space endowed with a topological norm
‖u‖c = sup{|u(t)| : t ∈ [0, 1]}. This space is denoted by B = C(J, R).

Definition 2.1. If φ ∈ L1([0, T ], R), then the fractional order integral of order q ∈ R+ is defined by

Iqφ(t) =

∫t
0

(t− s)q−1

Γ(q)
φ(s)ds,

provided that the integral on the right side is point wise defined on (0,∞).

Definition 2.2. The fractional derivative in the Caputo sense of non-integer order for a function φ(t) on
[0, T ] is defined by

cDqφ(t) =

∫t
0

(t− s)n−q−1

Γ(n− q)
φ(n)(s)ds,

where n− [q] = 1, where [q] is the greatest integer function not greater than q.

Theorem 2.3. The unique solution of the arbitrary order differential equation given below

cDqh(t) = 0, where q ∈ (n− 1,n],

is given by
h(t) = d1 + d2t+ d3t

2 + · · ·+ dntn−1, where dj ∈ R, j = 1, 2, 3, · · · ,n.

Theorem 2.4. The result given below

IqcDqh(t) = h(t) + d1 + d2t+ d3t
2 + · · ·+ dntn−1,

holds for dj ∈ R, where j = 1, 2, 3, . . . ,n.

We recall the following definitions and results needed in this study from Deimling [5]. Taking a family
U ⊂ P(B) of all bounded sets, then the measure of non-compactness of Kuratowski type is recalled below.

Definition 2.5. The mapping α : U→ R+ is introduced by

α(D) = inf{r > 0 : D insert a finite cover by sets of diameter 6 r, D ∈ U}.

We say that if S ⊂ B and F : S → B is a continuous and bounded function, then F is α-Lipschitz if we
have a constant κ > 0 for all bounded sets such that

α(F(S)) 6 κα(S).

Further, if κ < 1, then the function F is called strict α-condensing mapping and we have α(F(S)) < α(S).

For the aforesaid contraction, we recall some properties without proof.

Theorem 2.6. If F,G : S→ B are α-Lipschitz with constants κ, κ ′. The sum of the two operators F+G : S→ B

is also α-Lipschitz with constant κ+ κ ′.
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Theorem 2.7. The mapping G : S→ B will be α-Lipschitz with constant 0, if it is compact.

Theorem 2.8. Let F : S→ B is Lipschitz with constant κ, then it will be α-Lipschitz with constant κ.

Let a family of the admissible triplet defined by

= = {(I−T, S,u) : S ⊂ B be open and bounded, T is α-condensing, u ∈ B \ (I−T)(∂S)}.

Then there exists one degree function deg : =→ B for which we have the following important result given
by Isaia [10].

Theorem 2.9. Let T : B→ B be α-contraction and

U = {u ∈ B : we have 0 6 λ 6 1, which satisfies the eigenvalues problem u(t) = λTu(t)}.

Consider a bounded set U ⊂ B such that there exists ε > 0 with U ⊂ Sε(0), then

deg(I− λF,Sε(0), 0) = 1, ∀ λ ∈ [0, 1].

Therefore T keeps at least one fixed point and the set of the fixed points of T lies in Sε(0).

Definition 2.10. The class of boundary value problem (1.1) is Hyers-Ulam stable if there exists a real
constant Cf > 0, such that for ε > 0, and for every solution u ∈ B of the inequality

|cDqu(t) − f(t,u(t))| 6 ε, t ∈ J, (2.1)

there exists a solution v ∈ B of BVP (1.1) with

|u(t) − v(t)| 6 Cfε, t ∈ J.

Definition 2.11. The class of boundary value problem (1.1) is generalized Hyers-Ulam stable if one has a
function Φf ∈ (R+, R+), with Φf(0) = 0 such that for every solution u ∈ B of equation (2.1), there exists
a solution v ∈ B of BVP (1.1) which satisfies the following inequality:

|u(t) − v(t)| 6 Φf(ε), t ∈ J.

Definition 2.12. The class of boundary value problem (1.1) is Hyers-Ulam-Rassias stable with respect to
ψ : J → R+, if there exists a real constant Cf > 0, such that for every ε > 0, and for every solution u ∈ B

of the inequality
|cDqu(t) − f(t,u(t))| 6 εψ(t), t ∈ J, (2.2)

there exists a solution v ∈ B of BVP (1.1) with

|u(t) − v(t)| 6 Cfεψ(t), t ∈ J.

Definition 2.13. The class of boundary value problem (1.1) is generalized Hyers-Ulam-Rassias stable with
respect to ψ : J→ R+, if there exists a real constant Cf,ψ > 0 such that for every ε > 0 and for every u ∈ B

of the inequality
|cDqu(t) − f(t,u(t))| 6 ψ(t), t ∈ J,

there exists a solution v ∈ B of BVP (1.1) with

|u(t) − v(t)| 6 Cf,φψ(t), t ∈ J.

3. Existence and uniqueness results to BVP (1.1)

Theorem 3.1. Assume that y ∈ ([0, 1], R), δ > λ, η > ξ are positive real numbers, then the general solution of
the boundary value problem

cDqu(t) − y(t) = 0, q ∈ (0, 1], t ∈ J = [0, 1],
u(0) = δ cDpu(η) + g(u),
u(1) = λ cDpu(ξ) + h(u), δ > λ, η > ξ, 0 < p < 1,
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is given by

u(t) = l(t+m)h(u) + (1 − l(t+m))g(u) +

∫ 1

0
H(t, s)y(s)ds, (3.1)

such that the Green’s function H(t, s) is given by

H(t, s) =



−
l(m+t)
Γq (1 − s)q−1 +

(1−(m+t)l)
Γ(q−p) δ(η− s)q−p−1

+ (m+ t) lλ
Γ(q−p)(ξ− s)

q−p−1 + 1
Γq(t− s)

q−1, 0 < s 6 min{t, ξ} 6 η,

−
l(m+t)
Γq (1 − s)q−1 +

(1−(m+t)l)
Γ(q−p) δ(η− s)q−p−1

+ (m+ t) lλ
Γ(q−p)(ξ− s)

q−p−1, 0 6 t < s 6 ξ < η,

−
l(m+t)
Γq (1 − s)q−1 +

(1−(m+t)l)
Γ(q−p) δ(η− s)q−p−1, 0 6 max{t, ξ} < s 6 η,

−
l(m+t)
Γq (1 − s)q−1 +

(1−(m+t)l)
Γ(q−p) δ(η− s)q−p−1 + 1

Γq(t− s)
q−1, ξ < s 6 min{t,η},

l(m+t)
Γq (1 − s)q−1 + 1

Γq(t− s)
q−1, ξ < η < s 6 t < 1,

−
l(m+t)
Γq (1 − s)q−1, ξ < max{η, t} < s 6 1.

Proof. Consider cDqu(t) = y(t). By the application of Theorem 2.4, we obtain

u(t) = d1 + d2t+ I
qy(t), and cDqu(t) =

d2t
1−p

Γ(2 − p)
+ Iq−py(t).

Using
u(0) = δ cDpu(η) + g(u),

we get

d1 =
δη1−p

Γ(2 − p)
d2 + δI

q−py(η) + g(u),

and
u(1) = λ cDpu(ξ) + h(u),

we have

d1 + d2 + I
qy(1) =

λξ1−p

Γ(2 − p)
d2 + λI

q−py(ξ) + h(u).

Solving for d1 and d2, we obtain

d2 = l
(
− Iqy(1) − δIq−py(η) + λIq−py(ξ) + h(u) − g(u)

)
,

d1 = mlIqy(1) + δ(1 −ml)Iq−py(η) + λmlIq−py(ξ) +mlh(u) + (1 −ml)g(u),

where

0 < l =
1[

1 + δη1−p−λξ1−p

Γ(2−p)

] < 1, and 0 < m =
δη1−p

Γ(2 − p)
< 1.

Therefore

u(t) = l(t+m)h(u) + (1 − l(t+m))g(u) − (t+m)
l

Γ(q)

1∫
0

(1 − s)q−1y(s)ds
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+
(1 − (m+ t)l)δ

Γ(q− p)

η∫
0

(η− s)q−p−1y(s)ds+
(m+ t)lλ

Γ(q− p)

ξ∫
0

(ξ− s)q−p−1y(s)ds

+

t∫
0

(t− s)q−1

Γ(q)
y(s)ds

= l(m+ t)h(u) + (1 − (m+ t)l)g(u) +

∫ 1

0
H(t, s)y(s)ds,

where H is the Green’s function defined in (3.1).

Hence in view of Theorem 3.1, the solution of our considered class (1.1) can be received as

u(t) = l(t+m)h(u) + (1 − l(t+m))g(u) +

∫ 1

0
H(t, s)f(s,u(s))ds,

where, the function t :−→
1∫
0
|H(t, s)|ds is also continuous on J. Denoting H∗ = sup

t∈J

1∫
0
|H(t, s)|ds for onward

computation.
Define the operators

F : B→ B, by (Fu)t = l(t+m)h(u) + (1 − l(t+m))g(u),

G : B→ B, by (Gu)t =

1∫
0

H(t, s)f(s,u(s))ds, (3.2)

T : B→ B, by (Tu)t = (Fu)t+ (Gu)t or u(t) = (Tu)t.

Thus the solutions of the considered BVP (1.1) are the fixed points of the operator equation (3.2).
To get our main results, we assume the following Lipschitz and growth conditions.

(F1) For any u, v ∈ B, with constants κh, κg ∈ [0, 1) which satisfy

|g(u) − g(v)| 6 κg||u− v||c, and |h(u) − h(v)| 6 κh||u− v||c.

(F2) For any u ∈ B there exist Ch,Cg and Mg,Mh > 0 such that

|g(u)| 6 Cg||u||
q1
c +Mg, |h(u)| 6 Ch||u||

q1
c +Mh,

where q1 ∈ [0, 1).

(F3) For every (t,u) ∈ J×R, there exist Cf,Mf > 0,q2 ∈ [0, 1), for which the following relation holds

|f(t,u)| 6 Cf|u|q2 +Mf.

(F4) For any u, v ∈ R, we have some constant Lf > 0 which yields

|f(t,u(t)) − f(t, v(t))| 6 Lf|u− v|.

Theorem 3.2. The operator F is Lipschitz with Λ = max(κh, κg) under the hypothesis (F1). As a result, the
operator F is α-Lipschitz with constant Λ. Furthermore the growth condition ||Fu||c 6 C||u||

q1
c +M holds for each

u ∈ B, where C = max(Ch,Cg) and M = max(Mg,Mh).



P. Kumam, A. Ali, K. Shah, R. A. Khan, J. Nonlinear Sci. Appl., 10 (2017), 2986–2997 2992

Proof. Taking, u, v ∈ B and considering

|Fu(t) − Fv(t)| 6 l(m+ 1)|h(u) − h(v)|+ (1 − l(m+ 1))|g(u) − g(v)|,

which implies that

‖Fu− Fv‖c 6 (m+ 1)lκh||u− v||c + (1 − l(m+ 1))κg||u− v||c

6 Λ||u− v||c.

Showing that F is Lipschitz with constant Λ and also α-Lipschitz with the same constant Λ. Further, for
growth condition, we have

‖ Fu ‖c 6 l(m+ 1)|h(u)|+ (1 − l(m+ 1))|g(u)|
6 l(m+ 1)(Ch||u||q1

c +Mh) + (1 − l(m+ 1))(Cg||u||q1
c +Mg)

6 C||u||q1
c +M.

By this we complete the proof.

Theorem 3.3. The operator G : B → B is compact under the hypotheses (F2), (F3), hence α-Lipschitz with
constant zero. Moreover G fulfills the growth condition given below

||Gu||c 6 H∗(Cf||u||
q2
c +Mf), q2 ∈ [0, 1).

Proof. In order to prove that G is compact we first prove that G is continuous. To derive the continuity
of G. Let us take a sequence {un} in set Bk = {‖u‖c 6 K : u ∈ B} ⊆ B with un → u, as n → ∞
in BK, where BK is bounded. Then by continuity of f(s,un(s)) → f(s,u(s)), n → ∞ and by (F3),
H(t, s)[f(s,un(s)) − f(s,u(s))] 6 H(t, s)2(CfKq2 +Mf) and the function s → H(t, s)2(CfKq2 +Mf) is
integrable. From Lebesgue Dominated convergence theorem, one has

|(Gnu)t− (Gu)t| 6

1∫
0

|H(t, s)| |f(s,un(s)) − f(s,u(s))|ds→ 0, as n→∞.

To prove G(D) is bounded for every D ⊆ BK, let {un} be a sequence in D then for every un ∈ D, we have

‖Gun‖c 6
1∫
0

|H(t, s)| |f(s,un(s))|ds

6 H∗(CfK
q2 +Mf).

which shows that G(D) is bounded in B. Next, we have to prove that {Gun} is equi-continuous. For
0 6 t0 < t1 6 1, we get

|(Gun)(t0) − (Gun)(t1)| =

1∫
0

|H(t0, s) −H(t1, s))| |f(s,un(s))|ds

6 [Cf‖un‖q2 +Mf]

1∫
0

|H(t0, s) −H(t1, s)|ds

6 [Cf‖un‖q2 +Mf]

{
(t0 − t1)

l

Γ(q)

1∫
0

(1 − s)q−1ds
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+ (t1 − t0)
l

Γ(q− p)

η∫
0

(η− s)q−p−1ds+ (t1 − t0)
lλ

Γ(q− p)

ξ∫
0

(ξ− s)q−p−1ds

+
1
Γ(q)

[ t1∫
0

(t1 − s)
q−1ds−

t0∫
0

(t0 − s)
q−1ds

]}

6 [CfK
q2 +Mf]

{
(t0 − t1)

l

Γ(q+ 1)
+ (t1 − t0)

l

Γ(q− p+ 1)
ηq−p

+
(t1 − t0)λl

Γ(q− p+ 1)
ξq−p

+
1
Γ(q)

t0∫
0

((t0 − s)
q−1 − (t1 − s)

q−1)ds+
1
Γ(q)

t1∫
t0

(t1 − s)
q−1ds

}
,

on simplification, we have

|(Gun)(t0) − (Gun)(t1)| 6
[CfK

q2 +Mf]

Γ(q+ 1)

{
l(t0 − t1) + t

q
0 − tq1 + 2(t1 − t0)

q

}
+ [CfK

q2 +Mf]

{
(t1 − t0)

l

Γ(q− p+ 1)
ηq−p +

(t1 − t0)λl

Γ(q− p+ 1)
ξq−p

}
.

(3.3)

As t0 → t1, then right hand side of above equation (3.3) goes to 0. Therefore in light of Arzelä Ascolli
Theorem, G is equi-continuous, hence G is completely continuous. Thus G is a compact operator. Further
in view of Theorem 2.7, G is α-Lipschitz with constant zero.

Theorem 3.4. Under the validity of assumptions (F1)-(F3) and in view of Theorems 3.2 and 3.3, the operator
T : B → B is α-Lipschitz with constant Λ. Hence T has at least one fixed point and the set of fixed points is
bounded in B.

Proof. Due to continuity of F,G, it is obvious that T is also continuous. Since F,G are α-Lipschitz with
constant Λ and 0 respectively. Therefore T is also α-Lipschitz with the same constant Λ. Further consider
the set

U = {u ∈ B : there exists λ ∈ J such that u(t) = λTu(t)}.

Now to prove that U is bounded subset of B, we consider u ∈ U with u = λTu, for 0 6 λ 6 1, then

‖u‖c = λ‖Tu‖c 6 λ(‖Fu‖c + ‖Gu‖c)
6 λ(C‖u‖q1

c +M+H∗(Cf‖u‖q2
c +Mf)), (3.4)

where q1,q2 ∈ [0, 1), clearly U is bounded if not, let ‖u‖c →∞, then dividing the inequality (3.4) by ‖u‖c
and taking ‖u‖c →∞, we get

1 6 lim
‖u‖→∞

λ(C‖u‖q1
c +M+H∗(Cf‖u‖q2

c +Mf))

‖u‖c
= 0,

which is contradiction. Consequently the operator T has at least one fixed point and the set of the fixed
points of T is bounded in B. Thus BVP (1.1) has at least one solution in U by using Theorem 2.9.

Remark 3.5. The following concluding remarks are obvious.

(i) If q1 = 1 the condition of Theorem 3.3 remains applicable provided C < 1.

(ii) If q2 = 1 the result of Theorem 3.3 holds provided that H∗(CfK+Mf) < 1.
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(iii) If q1 = q2 = 1 then the conclusions of Theorem 3.3 remain applicable.

Theorem 3.6. Consider that the hypotheses (F1)-(F4) hold. Then the BVP (1.1) has a unique solution with

Υ = 2mlΛ+ (m+ 1)
lLf

Γ(q+ 1)
+ (1 −ml)

δLf
Γ(q− p+ 1)

+ (m+ 1)
Lfλl

Γ(q− p+ 1)
+

Lf
Γ(q+ 1)

< 1.

Proof. Let v(t) be another solution in B, then

|Tu(t) − Tv(t)| 6 l(m+ 1)|hu(t) − hv(t)|+ (1 −ml)|gu(t) − gv(t)|

+ (m+ 1)
l

Γ(q)

∣∣∣∣
1∫
0

(1 − s)q−1(f(s,u(s)) − f(s, v(s)))ds
∣∣∣∣

+ (1 −ml)
δ

Γ(q− p)

∣∣∣∣
1∫
0

(1 − s)q−p−1[f(s,u(s)) − f(s, v(s))]ds
∣∣∣∣

+ (m+ 1)
λl

Γ(q− p)

∣∣∣∣
1∫
0

(1 − s)q−p−1[f(s,u(s)) − f(s, v(s))]ds
∣∣∣∣

+
1
Γq

∣∣∣∣
t∫
0

(t− s)q−1[f(s,u(s)) − f(s, v(s))]ds
∣∣∣∣,

which implies that

‖Tu− Tv‖ 6 2mlΛ‖u− v‖c

+

[
(m+ 1)lLf
Γ(q+ 1)

+
(1 −ml)δLf
Γ(q− p+ 1)

+
(m+ 1)Lfλl
Γ(q− p+ 1)

+
Lf

Γ(q+ 1)

]
‖u− v‖c

= Υ‖u− v‖c.

Hence, BVP (1.1) has a unique solution.

4. Stability analysis of the solutions to boundary value problem (1.1)

In this section, we study Hyers-Ulam and generalized Hyers-Ulam, Rassias stabilities for the solutions
to the considered class of BVP (1.1) on the same fashion as studied in [9].

Theorem 4.1. Under the continuity of f and assumption (F4) with Lf 6= Γ(q−p+1)
2 , the solution of the class of

BVP (1.1) is Hyers-Ulam stable and consequently, generalized Hyers-Ulam stable.

Proof. Let u ∈ B be a solution of (1.1) and v ∈ B be the unique solution of (1.1){
cDqu(t) = f(t,u(t)), 1 < q 6 2, t ∈ J = [0, 1],
u(0) = v(0), u(1) = v(1),

where 0 < p < 1, f : J×R→ R. The general solution is given by

u(t) = l(t+m)h(v) + (1 − l(t+m))g(v) +

∫ 1

0
H(t, s)f(s, v(s))ds.

From which, we have∣∣∣∣u(t) −(l(t+m)h(u) + (1 − l(t+m))g(u) +

∫ 1

0
H(t, s)f(s,u(s))ds

)∣∣∣∣ 6 ε.
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Hence in view of the aforesaid relation, we have

|u(t) − v(t)| =

∣∣∣∣u(t) −(l(t+m)h(v) + (1 − l(t+m))g(v) +

∫1

0
H(t, s)f(s, v(s))ds

)∣∣∣∣
6

∣∣∣∣u(t) −(l(t+m)h(u) + (1 − l(t+m))g(u) +

∫1

0
H(t, s)f(s,u(s))ds

)∣∣∣∣
+

∣∣∣∣ ∫1

0
H(t, s)f(s,u(s))ds−

∫1

0
H(t, s)f(s, v(s))ds

∣∣∣∣
6 ε+

2Lf|u(t) − v(t)|
Γ(q− p+ 1)

,

|u(t) − v(t)| 6
ε

1 − 2Lf
Γ(q−p+1)

= Cfε,

where Lf 6= Γ(q−p+1)
2 , Cf = 1

1− 2Lf
Γ(q−p+1)

.

Therefore solution of the BVP (1.1) is Hyers-Ulam stable. Further by using Φf(ε) = Cfε, Φf(0) = 0
implies that solution of (1.1) is generalized Hyers-Ulam stable.

Theorem 4.2. Assume that f is continuous and assumption (F4) satisfies with Lf 6= Γ(q−p+1)
2 . If there exists

φ(t) ∈ C(J, R+) satisfies (2.2), then the solution of BVP (1.1) is Hyers-Ulam Rassias stable and consequently
generalized Hyers-Ulam-Rassias stable.

Proof. Let u ∈ B be any solution of (1.1), then∣∣∣∣u(t) −(l(t+m)h(u) + (1 − l(t+m))g(u) +

∫ 1

0
H(t, s)f(s,u(s))ds

)∣∣∣∣ 6 εφ(t). (4.1)

Therefore in view of relation (4.1), for solution v ∈ B, we impose

|u(t) − v(t)| =

∣∣∣∣u(t) −(l(t+m)h(v) + (1 − l(t+m))g(v) +

∫ 1

0
H(t, s)f(s, v(s))ds

)∣∣∣∣
6

∣∣∣∣u(t) −(l(t+m)h(u) + (1 − l(t+m))g(u) +

∫ 1

0
H(t, s)f(s,u(s))ds

)∣∣∣∣
+

∣∣∣∣ ∫ 1

0
H(t, s)f(s,u(s))ds−

∫ 1

0
H(t, s)f(s, v(s))ds

∣∣∣∣
6 εφ(t) +

2Lf|u(t) − v(t)|
Γ(q− p+ 1)

,

|u(t) − v(t)| 6
εφ(t)

1 − 2Lf
Γ(q−p+1)

= φ(t)ε, Lf 6=
Γ(q− p+ 1)

2
.

So in view of the above result, solution of BVP (1.1) is Hyers-Ulam-Rassias stable. Further on the same
fashion, it can be shown that the solution of BVP (1.1) is generalized Hyers-Ulam-Rassias stable.

5. Example

Example 5.1. 

cD
3
2u(t) =

sin2 t|u(t)|
1
2

(9 + e2t)(1 + |u(t)|
1
2 )

, t ∈ [0, 1]

u(0) =
1
2
D

1
2u

(
3
10

)
+

5∑
i=1

λi|u(ti)|,

u(1) =
1
5
D

1
2u

(
1
5

)
+

10∑
i=1

λi|u(ti)|,
10∑
i=1

λi < 1, λi > 0,

(5.1)
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Define

f(t,u) =
sin2 t|u(t)|

1
2

(9 + e2t)(1 + |u(t)|
1
2 )

, (t,u) ∈ [0, 1]× [0,∞),

g(u) =

5∑
i=1

λi|u(ti)|, h(u) =

10∑
i=1

λi|u(ti)|.

Then

|f(t,u)| 6
1
10

|u(t)|
1
2

1 + |u(t)|
1
2
6

1
10

|u(t)|
1
2

6 Cf|u|
q2 +Mf,

with Cf = 1
10 , q2 = 1

2 , Mf = 0, and

|g(u)| =

5∑
i=1

λi|u(ti)| 6 Cg‖u‖q1 +Mg,

with Cg =
5∑
i=1

λi < 1, q1 = 1, Mg = 0.

Also |h(u)| 6 Ch‖u‖q1 +Mh with Ch =
10∑
i=1

λi < 1, Mh = 0. Further

|g(u) − g(v)| 6
5∑
i=1

λi‖u− v‖ 6 κg‖u− v‖c, κg =

5∑
i=1

λi < 1,

and

|h(u) − h(v)| 6
10∑
i=1

λi‖u− v‖c 6 κh‖u− v‖c, κh =

5∑
i=1

λi < 1.

Here q1 = 1 and C = max(Cg,Ch) =
10∑
i=1

λi < 1.

In view of these quantities and using q = 3
2 , p = 1

2 , Lf = 1
10 , δ = 1

2 , λ = 1
5 , it is easy to prove that

BVP (5.1) has a unique solution by using Theorem 3.6. It is also obvious that the solution of BVP (5.1) is
Hyers-Ulam stable, generalized Hyers-Ulam stable and Hyers-Ulam-Rassias stable by using Theorem 4.1
and 4.2 respectively.
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