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Abstract
In this paper we study implicit obstacle problems driven by a nonhomogenous differential
operator, called double phase operator, and amultivalued termwhich is described by Clarke’s
generalized gradient. Based on a surjectivity theorem formultivaluedmappings,Kluge’s fixed
point principle and tools from nonsmooth analysis, we prove the existence of at least one
solution.

Mathematics Subject Classification 35J20 · 35J25 · 35J60

1 Introduction

Given a bounded domain � in R
N , N ≥ 2, with Lipschitz boundary ∂�, we study a double

phase implicit obstacle problem with a multivalued operator given in the form
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−div
(|∇u|p−2∇u + μ(x)|∇u|q−2∇u

) + ∂ j(x, u) � f (x) in �,

u = 0 on ∂�,

T (u) ≤ U (u),

(1.1)

where 1 < p < q < N , μ : � → [0,∞) and T ,U : W 1,H
0 (�) → R are given functions

satisfying appropriate conditions (see Sect. 2). HereW 1,H
0 (�) is a subspace of the Sobolev–

Musielak–Orlicz space W 1,H(�) and j : � × R → R is supposed to be locally Lipschitz
with respect to the second variable.

In this paper we prove the existence of at least one weak solution (see Definition (3.4))
of problem (1.1) by applying a surjectivity theorem for multivalued mappings, Kluge’s fixed
point principle and tools from nonsmooth analysis. In general, problem (1.1) combines sev-
eral interesting phenomena like a double phase operator along with a multivalued mapping
in form of Clarke’s generalized gradient and an implicit obstacle given by the functions
T : W 1,H

0 (�) → R and U : W 1,H
0 (�) → (0,+∞), see H(T ) and H(U ) in Sect. 3 for the

precise conditions. Indeed, a solution u ∈ W 1,H
0 (�) of (1.1) has to belong to K (u) which is

the image of the multivalued map K : W 1,H
0 (�) → 2W

1,H
0 (�) defined by

K (u) :=
{
v ∈ W 1,H

0 (�) | T (v) −U (u) ≤ 0
}

.

To the best of our knowledge, this is the first work which combines a double phase phe-
nomena along with Clarke’s generalized gradient and an implicit obstacle. A main tool in our
treatment will be a surjectivity result of Le [24] for multivalued mappings generated by the
sum of a maximal monotone multivalued operator and a bounded multivalued pseudomono-
tone mapping.

One difficulty in the study of (1.1) is the occurrence of the so-called double phase operator
defined by

−div
(|∇u|p−2∇u + μ(x)|∇u|q−2∇u

)
, u ∈ W 1,H

0 (�),

where 1 < p < q < N . Although this operator looks like the (p, q)-differential operator
the difference is the weight function μ : � → [0,∞) which can have values in zero. That
means we cannot search for weak solutions in the usual Sobolev space W 1,p

0 (�), we need a
certain type of a Sobolev–Musielak–Orlicz space equipped with the Luxemburg norm, see
Sect. 2 for its definition. The idea to treat problems driven by the double phase operators goes
back to the 1980s and the work of Zhikov [36] who introduced such classes of operators to
describe models of strongly anisotropic materials by treating the functional

ω 	→
∫ (|∇ω|p + μ(x)|∇ω|q) dx, (1.2)

see also Zhikov [37,38] and the monograph of Zhikov–Kozlov–Oleinik [39]. Integral func-
tionals of the form (1.2) have been considered by several authors concerning regularity
results and non-standard growth, see for example, Baroni–Colombo–Mingione [4,5,7],
Baroni–Kussi–Mingione [6],Cupini–Marcellini–Mascolo [16],Colombo–Mingione [14,15],
Marcellini [27,28] and the references therein.

In the case of single-valued equations in the whole space we refer to the works
of Colasuonno–Squassina [13], Gasiński–Papageorgiou [17, Proposition 3.4], Gasiński–
Winkert [20,21], Liu–Dai [26], Perera-Squassina [33] concerning existence and multiplicity
results.
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Works which are closely related to our paper dealing with certain types of double
phase problems or multivalued problems can be found in Bahrouni–Rădulescu–Repovš
[1],Bahrouni–Rădulescu–Winkert [2,3],Carl–Le-Motreanu [9],Cencelj–Rădulescu–Repovš
[10], Clarke [12], Gasiński–Papageorgiou [18,19], Papageorgiou–Rădulescu–Repovš [30,
31], Rădulescu [34], Zhang–Rădulescu [35] and the references therein.

The paper is organized as follows. In Sect. 2 we recall the definition of the used function
spaces, some embedding results andwe state the surjectivity results of Le [24] formultivalued
mappings as well as Kluge’s fixed point theorem. In Sect. 3 we present the full assumptions
on the data of problem (1.1), give the definition of the weak solution and consider an auxiliary
problem defined in (3.7). Next, we prove some properties of the solution set of (3.7) stated
as Theorem 3.6 whose proof is mainly based on tools from nonsmooth analysis in terms
of multivalued mappings. Taking these results into account we are able to prove our main
result which says that the solution set of (1.1) is nonempty, bounded and weakly closed in
W 1,H

0 (�), see Theorem 3.5.

2 Preliminaries

In the whole paper we suppose that� is a bounded domain inRN . Given 1 ≤ r ≤ ∞, Lr (�)

and Lr (�;RN ) stand for the usual Lebesgue spaces equipped with the norm ‖ · ‖p while
W 1,r (�) andW 1,r

0 (�) denote the Sobolev spaces endowedwith the norms ‖·‖1,r and ‖·‖1,r ,0,
respectively. By r ′, we denote the conjugate of r ∈ (1,∞), that is, 1

r + 1
r ′ = 1.

For the weight function in (1.1) we suppose the following condition:

H(μ) : μ : � → [0,∞) is Lipschitz continuous and 1 < p < q < N are chosen such that

q

p
< 1 + 1

N
.

Set R+ := [0,∞) and consider the modular function H : � × R+ → R+ given by

H(x, t) = t p + μ(x)tq for all (x, t) ∈ � × R+.

The Musielak–Orlicz space LH(�) is defined by

LH(�) =
{
u

∣∣∣ u : � → R is measurable and ρH(u) :=
∫

�

H(x, |u|) dx < +∞
}

equipped with the Luxemburg norm

‖u‖H = inf
{
τ > 0

∣∣ ρH
(u

τ

)
≤ 1

}
.

The space LH(�) is uniformly convex and so a reflexive Banach space. Furthermore, we
introduce the seminormed function space Lq

μ(�)

Lq
μ(�) =

{
u

∣∣∣ u : � → R is measurable and
∫

�

μ(x)|u|q dx < +∞
}

endowed with the seminorm

‖u‖q,μ =
(∫

�

μ(x)|u|q dx
) 1

q

.
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FromColasuonno–Squassina [13, Proposition 2.15 (i), (iv) and (v)] we know that the embed-
dings

Lq(�) ↪→ LH(�) ↪→ L p(�) ∩ Lq
μ(�)

are continuous and so, by a simple calculation, we have

min
{‖u‖p

H, ‖u‖qH
} ≤ ‖u‖p

p + ‖u‖qq,μ ≤ max
{‖u‖p

H, ‖u‖qH
}

(2.1)

for all u ∈ LH(�).
The corresponding Sobolev–Musielak–Orlicz space W 1,H(�) is defined by

W 1,H(�) = {
u ∈ LH(�) : |∇u| ∈ LH(�)

}

and is equipped with the norm

‖u‖1,H = ‖∇u‖H + ‖u‖H,

where ‖∇u‖H = ‖|∇u|‖H.
The Sobolev–Musielak–Orlicz space with zero traces, denoted by W 1,H

0 (�), is the com-
pletion of C∞

0 (�) in W 1,H(�), that is,

W 1,H
0 (�) = C∞

0 (�)
W 1,H(�)

.

From the assumption on μ : � → R+ in H(μ) combined with Colasuonno–Squassina [13,
Proposition 2.18], it is known that

‖u‖1,H,0 = ‖∇u‖H for all u ∈ W 1,H
0 (�),

defines an equivalent norm on W 1,H
0 (�). Based on this we obtain directly from (2.1) that

min
{
‖u‖p

1,H,0, ‖u‖q1,H,0

}
≤ ‖∇u‖p

p + ‖∇u‖qq,μ ≤ max
{
‖u‖p

1,H,0, ‖u‖q1,H,0

}
(2.2)

is true for all u ∈ W 1,H
0 (�). Moreover, both spaces W 1,H(�) and W 1,H

0 (�) are uniformly
convex and so reflexive Banach spaces as well.

From Colasuonno–Squassina [13, Proposition 2.15] we know that the embedding

W 1,H
0 (�) ↪→ Lr (�) (2.3)

is compact for each 1 < r < p∗, where p∗ stands for the critical exponent to p given by

p∗ := Np

N − p
.

Let us recall some properties of the eigenvalue problem for the r -Laplacian (1 < r < ∞)
with homogeneous Dirichlet boundary condition given by

−�r u = λ|u|r−2u in �,

u = 0 on ∂�.
(2.4)

It is known that the set σr has a smallest element λ1,r which is positive, isolated, simple
and it can be variationally characterized through

λ1,r = inf

{‖∇u‖rr
‖u‖rr

: u ∈ W 1,r
0 (�), u �= 0

}
,

see Lê [25].
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Let A : W 1,H
0 (�) → W 1,H

0 (�)∗ be the operator defined by

〈A(u), v〉H :=
∫

�

(|∇u|p−2∇u + μ(x)|∇u|q−2∇u
) · ∇v dx, (2.5)

for u, v ∈ W 1,H
0 (�), where 〈·, ·〉H stands for the duality pairing between W 1,H

0 (�) and its

dual space W 1,H
0 (�)∗. The properties of the operator A : W 1,H

0 (�) → W 1,H
0 (�)∗ can be

summarized as follows, see Liu–Dai [26].

Proposition 2.1 The operator A defined by (2.5) is bounded, continuous, monotone (hence
maximal monotone) and of type (S+).

The notion of pseudomonotonicity for multivalued operators is recalled in the next defi-
nition.

Definition 2.2 Let X be a real reflexive Banach space. The operator A : X → 2X
∗
is called

pseudomonotone if the following conditions hold:

(i) the set A(u) is nonempty, bounded, closed and convex for all u ∈ X ;
(ii) A is upper semicontinuous from each finite-dimensional subspace of X to the weak

topology on X∗;
(iii) if {un} ⊂ X with un⇀u in X and if u∗

n ∈ A(un) is such that

lim sup
n→∞

〈u∗
n, un − u〉X∗×X ≤ 0,

then to each element v ∈ X , exists u∗(v) ∈ A(u) with

〈u∗(v), u − v〉X∗×X ≤ lim inf
n→∞ 〈u∗

n, un − v〉X∗×X .

Let X be a real Banach space with its dual space X∗. A function J : X → R is said to be
locally Lipschitz at u ∈ X if there exist a neighborhood N (u) of u and a constant Lu > 0
such that

|J (w) − J (v)| ≤ Lu‖w − v‖X for all w, v ∈ N (u).

Definition 2.3 Let J : X → R be a locally Lipschitz function and let u, v ∈ X . The gener-
alized directional derivative J ◦(u; v) of J at the point u in the direction v is defined by

J ◦(u; v) := lim sup
w→u, t↓0

J (w + tv) − J (w)

t
.

The generalized gradient ∂ J : X → 2X
∗
of J : X → R is defined by

∂ J (u) := {
ξ ∈ X∗ | J ◦(u; v) ≥ 〈ξ, v〉X∗×X for all v ∈ X

}
for all u ∈ X .

The next proposition collects some basic results, see for example, Migórski–Ochal–
Sofonea [29, Proposition 3.23].

Proposition 2.4 Let J : X → R be locally Lipschitz with Lipschitz constant Lu > 0 at
u ∈ X. Then we have the following:

(i) The function v 	→ J ◦(u; v) is positively homogeneous, subadditive, and satisfies

|J ◦(u; v)| ≤ Lu‖v‖X for all v ∈ X .

(ii) The function (u, v) 	→ J ◦(u; v) is upper semicontinuous.
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(iii) For each u ∈ X , ∂ J (u) is a nonempty, convex, and weak∗ compact subset of X∗ with
‖ξ‖X∗ ≤ Lu for all ξ ∈ ∂ J (u).

(iv) J ◦(u; v) = max {〈ξ, v〉X∗×X | ξ ∈ ∂ J (u)} for all v ∈ X.
(v) The multivalued function X � u 	→ ∂ J (u) ⊂ X∗ is upper semicontinuous from X into

w∗-X∗.

Since our results are based on fixed point results, so we now recall the fixed point theorem
of Kluge [23].

Theorem 2.5 Let Z be a real reflexive Banach space and let C ⊂ Z be nonempty, closed and
convex. Assume that  : C → 2C is a multivalued mapping such that for every u ∈ C, the
set (u) is nonempty, closed, and convex and the graph of  is sequentially weakly closed.
If either C is bounded or (C) is bounded, then the map  has at least one fixed point in C.

Finally, we end this section by recalling the following surjectivity theorem for multivalued
mappings which was proved by Le [24, Theorem 2.2]. We use the notation BR(0) := {u ∈
X : ‖u‖X < R}.
Theorem 2.6 Let X be a real reflexive Banach space, let F : D(F) ⊂ X → 2X

∗
be amaximal

monotone operator, let G : D(G) = X → 2X
∗
be a bounded multivalued pseudomonotone

operator and let L ∈ X∗. Assume that there exist u0 ∈ X and R ≥ ‖u0‖X such that
D(F) ∩ BR(0) �= ∅ and

〈ξ + η − L, u − u0〉X∗×X > 0

for all u ∈ D(F) with ‖u‖X = R, for all ξ ∈ F(u) and for all η ∈ G(u). Then the inclusion

F(u) + G(u) � L

has a solution in D(F).

3 Main results

We impose the following assumptions for the data of problem (1.1).

H( f ) : f ∈ L p′
(�).

H( j) : j : � × R → R is such that

(i) x 	→ j(x, s) is measurable for all s ∈ R and there exists a function l ∈ Lq1(�) with
q1 ∈ (1, p∗) such that the function x 	→ j(x, l(x)) belongs to L1(�);

(ii) s 	→ j(x, s) is locally Lipschitz continuous for a. a. x ∈ �.
(iii) there exist θ ≥ 1 with θ ≤ min{q1, p}, α j ≥ 0 with α j < λ−1

1,pδθ and β j ∈ L1+(�)

such that

j◦(x, s;−s) ≤ α j |s|θ + β j (x)

for a. a. x ∈ � and for all s ∈ R, where δθ is defined by

δθ =
{
1 if θ = p,

+∞ otherwise,

and λ1,p denotes the first eigenvalue of the Dirichlet eigenvalue problem for the
p-Laplacian, see (2.4);
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(iv) there exist c j ≥ 0 and γ j ∈ L
q1

q1−1
+ (�) satisfying

|ξ | ≤ c j |r |q1−1 + γ j (x)

for a. a. x ∈ �, for all ξ ∈ ∂ j(x, s) and for all s ∈ R, where ∂ j(x, s) stands for the
generalized gradient of j with respect to the variable s and q1 is given in (i);

(v) there exists a constant m j ≥ 0 such that

(ξ1 − ξ2)(s1 − s2) ≥ −m j |s1 − s2|p
for a. a. x ∈ � and for all s1, s2 ∈ R whenever ξ1 ∈ ∂ j(x, s1) and ξ2 ∈ ∂ j(x, s2).

H(T ): T : W 1,H
0 (�) → R is positively homogeneous and subadditive such that

T (u) ≤ lim sup
n→∞

T (un) (3.1)

whenever {un} ⊂ W 1,H
0 (�) is such that un⇀u inW 1,H

0 (�) for some u ∈ W 1,H
0 (�).

H(U ) : U : W 1,H
0 (�) → (0,+∞) is weakly continuous, that is, for any sequence {un} ⊂

W 1,H
0 (�) such that un⇀u for some u ∈ W 1,H

0 (�), we have

U (un) → U (u).

Remark 3.1 (a) Assumption H( j)(v) is usually called the relaxed monotone condition for
the locally Lipschitz function s 	→ j(x, s), see for example, Migórski–Ochal–Sofonea [29].
It is equivalent to the inequality

j◦ (x, s1; s2 − s1) + j◦ (x, s2; s1 − s2) ≤ m j |s1 − s2|p
for a. a. x ∈ � and for all s1, s2 ∈ R.

(b) Positive homogeneity and subadditivity of T imply that T is also a convex function.
On the other hand, it is not difficult to see that if T : W 1,H

0 (�) → R is lower semicontinuous,
then inequality (3.1) holds automatically.

We introduce the following multivalued map K : W 1,H
0 (�) → 2W

1,H
0 (�) defined by

K (u) :=
{
v ∈ W 1,H

0 (�) | T (v) −U (u) ≤ 0
}

(3.2)

for all u ∈ W 1,H
0 (�).

Lemma 3.2 Let U : W 1,H
0 (�) → (0,+∞) and T : W 1,H

0 (�) → R be such that H(T ) holds.

Then, for each u ∈ W 1,H
0 (�), the set K (u) is nonempty, closed and convex in W 1,H

0 (�).

Proof For any fixed u ∈ W 1,H
0 (�) it is clear that U (u) > 0. Since T is positively homoge-

neous, we have T (0) = 0. This implies T (0) = 0 < U (u), that is, 0 ∈ K (u) and so, K (u)

is nonempty.
Let {vn} ⊂ K (u) be a sequence such that vn → v in W 1,H

0 (�) for some v ∈ W 1,H
0 (�).

Hence, for each n ∈ N, one has

T (vn) ≤ U (u).

Passing to the upper limit as n → ∞ and taking inequality (3.1) into account, we obtain

T (v) ≤ lim sup
n→∞

T (vn) ≤ U (u).

123
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Hence, v ∈ K (u) which shows that K (u) is closed.
Let v1, v2 ∈ K (u) and t ∈ (0, 1) be arbitrary. We set vt = tv1 + (1− t)v2. Then, we have

T (vi ) ≤ U (u) for i = 1, 2. By the convexity of T , see Remark 3.1, it follows that

T (vt ) ≤ tT (v1) + (1 − t)T (v2) ≤ tU (u) + (1 − t)U (u) = U (u).

Thus vt ∈ K (u). Therefore, we conclude that K (u) is a convex set in W 1,H
0 (�). ��

Let us introduce the functional J : Lq1(�) → R defined by

J (u) :=
∫

�

j(x, u(x)) dx for all u ∈ Lq1(�). (3.3)

From hypotheses H( j) and the definition of J in (3.3), the next lemma is a direct consequence
of Migórski–Ochal–Sofonea [29, Theorem 3.47].

Lemma 3.3 Under the assumptions H( j)(i) − (iv), the following hold:

(i) J : Lq1(�) → R is locally Lipschitz continuous;
(ii) there hold

J ◦(u; v) ≤
∫

�

j◦(x, u(x); v(x)) dx,

J ◦(u;−u) ≤ α j‖u‖θ
θ + ‖β j‖1

for all u, v ∈ Lq1(�);
(iii) for each u ∈ Lq1(�), one has

∂ J (u) ⊂
∫

�

∂ j(x, u(x)) dx,

‖ξ‖q ′
1

≤ cJ (1 + ‖u‖q1−1
q1 ) for all ξ ∈ ∂ J (u)

with some cJ > 0.

Moreover, if condition H( j)(v) holds, then the inequality

J ◦(u; v − u) + J ◦(v; u − v) ≤ m j‖u − v‖p
p (3.4)

is satisfied for all u, v ∈ W 1,H
0 (�).

The weak solutions for problem (1.1) are understood in the following sense.

Definition 3.4 We say that u ∈ W 1,H
0 (�) is a weak solution of problem (1.1) if u ∈ K (u)

and
∫

�

(|∇u|p−2∇u · ∇(v − u) + μ(x)|∇u|q−2∇u · ∇(v − u)
)
dx

+
∫

�

j◦(x, u; v − u) dx ≥
∫

�

f (x) (v − u) dx

for all v ∈ K (u), where the multivalued function K is given by (3.2).

Our main results read as follows.

123
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Theorem 3.5 Assume thatH(μ),H( f ),H( j),H(T ) and H(U ) are satisfied. If p ≥ 2 and the
smallness condition

m jλ
−1
1,p < c(p), (3.5)

holds, then the set of solutions for problem (1.1), denoted by S, is nonempty, bounded and
weakly closed in W 1,H

0 (�), where c(p) > 0 is the largest constant such that

(|x |p−2x − |y|p−2y
) · (x − y) ≥ c(p)|x − y|p for all x, y ∈ R

N .

From Lemma 3.3(ii) we see that if u ∈ W 1,H
0 (�) solves the following problem:

Find u ∈ W 1,H
0 (�) such that u ∈ K (u) and
∫

�

(|∇u|p−2∇u · ∇(v − u) + μ(x)|∇u|q−2∇u · ∇(v − u)
)
dx

+ J ◦(u; v − u) ≥
∫

�

f (x) (v − u) dx
(3.6)

for all v ∈ K (u), then u is also a weak solution of problem (1.1). Based on this fact, in the
sequel, we are going to explore the existence of solutions for problem (3.6).

To this end, we now introduce the following auxiliary problem:
For given w ∈ W 1,H

0 (�), find u ∈ K (w) such that
∫

�

(|∇u|p−2∇u · ∇(v − u) + μ(x)|∇u|q−2∇u · ∇(v − u)
)
dx

+ J ◦(u; v − u) ≥
∫

�

f (x) (v − u) dx
(3.7)

for all v ∈ K (w). Setting the multivalued � : W 1,H
0 (�) → 2W

1,H
0 (�) by

�(w) :=
{
u ∈ W 1,H

0 (�) | u solves problem (3.7)corresponding tow
}

for allw ∈ W 1,H
0 (�), it is not difficult to verify that u ∈ W 1,H

0 (�) is a fixed point of � if and
only if u solves problem (3.6). Motivated by this fact, we shall employ Kluge’s fixed point
principle, see Theorem 2.5, in order to show that � has at least one fixed point in W 1,H

0 (�).

Theorem 3.6 LetU : W 1,H
0 (�) → (0,+∞).Under theassumptionsH(μ),H( f ),H( j)(i)–(iv)

and H(T ), the following hold:

(i) for each w ∈ W 1,H
0 (�), the set of solutions to problem (3.7) is nonempty, bounded and

closed in W 1,H
0 (�), that is, � has nonempty, bounded and closed values.

(ii) if, in addition, p ≥ 2, H( j)(v) and the smallness condition (3.5) are fulfilled, then for
each w ∈ W 1,H

0 (�), problem (3.7) has a unique solution uw ∈ W 1,H
0 (�), namely,

�(w) = {uw}.
Proof (i) For anyfixedw ∈ W 1,H

0 (�),we consider the indicator function IK (w) : W 1,H
0 (�) →

R := R ∪ {+∞} of K (w) defined by

IK (w)(u) :=
{
0 if u ∈ K (w),

+∞ otherwise.

123
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From the fact that f ∈ L p′
(�) ⊂ W 1,H

0 (�)∗, problem (3.7) can be expressed as the

variational-hemivariational inequality: Find u ∈ W 1,H
0 (�) such that

〈Au, v − u〉H + J ◦(u; v − u) + IK (w)(v) − IK (w)(u) ≥ 〈 f , v − u〉H (3.8)

for all v ∈ W 1,H
0 (�), where A : W 1,H

0 (�) → W 1,H
0 (�)∗ is the double phase operator defined

in (2.5). Employing the first separation theorem, see for example, Papageorgiou–Winkert [32,
Theorem 3.1.57], it is not difficult to see that inequality problem (3.8) is equivalent to the
following inclusion problem: Find u ∈ W 1,H

0 (�) such that

Au + ∂ J (u) + ∂C IK (w)(u) � f , (3.9)

where the notation ∂C IK (w) stands for the subdifferential of IK (w) in the sense of convex
analysis.

First, we are going to apply the surjectivity theorem for multivalued mappings, see The-
orem 2.6, in order to prove that problem (3.9) has at least one solution in W 1,H

0 (�). In fact,
we have the following claims.

Claim 1 A+∂ J : W 1,H
0 (�) → 2W

1,H
0 (�)∗ is a bounded pseudomonotone multivalued opera-

tor such that for each u ∈ W 1,H
0 (�), the set A(u)+∂ J (u) is closed and convex in W 1,H

0 (�)∗.

Indeed, Proposition 2.4 and Lemma 3.3 imply that for each u ∈ W 1,H
0 (�), the set A(u)+

∂ J (u) is closed and convex in W 1,H
0 (�)∗. Besides, Proposition 2.1, Lemma 3.3(iii), (2.3)

and the fact that p1 < p∗ guarantee that

W 1,H
0 (�) � u 	→ A(u) + ∂ J (u) ⊂ W 1,H

0 (�)∗ is a bounded map.

Next are going to apply Proposition 3.8 in Migórski–Ochal–Sofonea [29] in order to
conclude that W 1,H

0 (�) � u 	→ A(u) + ∂ J (u) ⊂ W 1,H
0 (�)∗ is upper semicontinuous from

W 1,H
0 (�) toW 1,H

0 (�)∗ equipped with the weak topology. It is sufficient to show that for any

weakly closed subset D in W 1,H
0 (�)∗, the set (A + ∂ J )−(D) is closed in W 1,H

0 (�).
Let {un} ⊂ (A + ∂ J )−(D) be a sequence such that

un → u in W 1,H
0 (�) for some u ∈ W 1,H

0 (�). (3.10)

Hence, for each n ∈ N, we are able to find ξn ∈ ∂ J (un) such that

u∗
n := Aun + ξn ∈ (

A(un) + ∂ J (un)
) ∩ D.

The continuity of A, see Proposition 2.1, implies that A(un) → A(u) inW 1,H
0 (�)∗. Lemma

3.3(iii) and convergence (3.10) imply that the sequence {ξn} is bounded in W 1,H
0 (�)∗. So,

without any loss of generality, we may assume that

ξn⇀ξ in W 1,H
0 (�)∗.

Recall that ∂ J is upper semicontinuous fromW 1,H
0 (�) toW 1,H

0 (�)∗ equippedwith the weak
topology and has bounded, convex, closed values, see Proposition 2.4(iv). Hence, it has a
closed graph in W 1,H

0 (�) × W 1,H
0 (�)∗, see Kamenskii–Obukhovskii–Zecca [22, Theorem

1.1.4]. But, thanks to the weak closedness of D, we derive that A(u)+ξ ∈ D and ξ ∈ ∂ J (u),
which provides that u ∈ (

A + ∂ J
)−

(D). Consequently, A + ∂ J is upper semicontinuous

from W 1,H
0 (�) to W 1,H

0 (�)∗ equipped with the weak topology.
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We now prove that A+ ∂ J is pseudomonotone. Let {un} and {u∗
n} be sequences such that

un⇀u in W 1,H
0 (�), (3.11)

u∗
n ∈ A(un) + ∂ J (un) with lim sup

n→∞
〈u∗

n, un − u〉H ≤ 0. (3.12)

Our goal is to produce for each v ∈ W 1,H
0 (�) an element u∗(v) ∈ A(u) + ∂ J (u) such that

lim inf
n→∞ 〈u∗

n, un − v〉H ≥ 〈u∗(v), u − v〉H. (3.13)

From (3.12), there is a sequence {ξn} ⊂ W 1,H
0 (�)∗ such that for each n ∈ N, ξn ∈ ∂ J (un)

and

u∗
n = A(un) + ξn .

From (3.12), and the above equality it follows that

lim sup
n→∞

〈Aun, un − u〉H + lim inf
n→∞ 〈ξn, un − u〉H ≤ 0. (3.14)

Applying (3.11) and the compact embedding of W 1,H
0 (�) into Lq1(�), see (2.3), we have

un → u in Lq1(�).

By virtue of Theorem 2.2 of Chang [11], we know that

∂
(
J |

W 1,H
0 (�)

)
(u) ⊂ ∂

(
J |Lq1 (�)

)
(u) for all u ∈ W 1,H

0 (�),

which shows that

〈ξn, un − u〉H = 〈ξn, un − u〉Lq1 (�). (3.15)

Additionally, Lemma 3.3(iii) and the boundedness of {un} in W 1,H
0 (�) entail that the

sequence {ξn} is bounded both in Lq1(�) and W 1,H
0 (�)∗. Then, we pass to the limit in

(3.15) as n → ∞, to get

lim
n→∞〈ξn, un − u〉H = lim

n→∞〈ξn, un − u〉Lq1 (�) = 0.

Combining this with (3.14) leads to

lim sup
n→∞

〈Aun, un − u〉H = lim sup
n→∞

〈Aun, un − u〉H + lim inf
n→∞ 〈ξn, un − u〉H ≤ 0.

Hence, since A is of type (S+), see Proposition 2.1, and (3.11) yields un → u in W 1,H
0 (�).

On the other hand, by the reflexivity ofW 1,H
0 (�)∗ and the boundedness of {ξn} ⊂ W 1,H

0 (�)∗,
we can suppose that

ξn⇀ξ in W 1,H
0 (�)∗ for some ξ ∈ W 1,H

0 (�)∗.

Then, from Kamenskii–Obukhovskii–Zecca [22, Theorem 1.1.4], we can conclude that ξ ∈
∂ J (u). Because of

lim inf
n→∞ 〈u∗

n, un − v〉H = lim inf
n→∞ 〈A(un) + ξn, un − v〉H = 〈A(u) + ξ, u − v〉H,

it is clear that (3.13) holds with u∗ = A(u) + ξ ∈ A(u) + ∂ J (u). We conclude that A + ∂ J
is pseudomonotone. This proves Claim 1.
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Claim 2 There exists R > 0 such that

〈Au + ξ + η − f , u〉H > 0 (3.16)

for all u ∈ K (w) with ‖u‖1,H,0 = R, for all ξ ∈ ∂ J (u) and for all η ∈ ∂C (IK (w))(u).

Let u ∈ W 1,H
0 (�) be fixed. Since 0 ∈ K (w) and f ∈ L p′

(�) ⊂ W 1,H
0 (�)∗, for any

ξ ∈ ∂ J (u) and η ∈ ∂C (IK (w))(u), we can find

〈Au + ξ + η − f , u〉H
≥

∫

�

|∇u|p−2∇u · ∇u dx +
∫

�

μ(x)|∇u|q−2∇u · ∇u dx

+
∫

�

ξu dx + IK (w)(u) − IK (w)(0) − ‖ f ‖
W 1,H

0 (�)∗‖u‖1,H,0

≥ ‖∇u‖p
p + ‖∇u‖qq,μ −

∫

�

ξ [−u] dx + IK (w)(u) − ‖ f ‖
W 1,H

0 (�)∗‖u‖1,H,0

≥ ‖∇u‖p
p + ‖∇u‖qq,μ − J ◦(u;−u) + IK (w)(u) − ‖ f ‖

W 1,H
0 (�)∗‖u‖1,H,0.

(3.17)

Note that IK (w) : W 1,H
0 (�) → R is a proper, convex and lower semicontinuous function.

Hence, we can apply Proposition 1.10 of Brezis [8] to find aK (w), bK (w) > 0 such that

IK (w)(v) ≥ −aK (w)‖v‖1,H,0 − bK (w) for all v ∈ W 1,H
0 (�). (3.18)

In addition, by Lemma 3.3(ii), we have

J ◦(u;−u) ≤ α j‖u‖θ
θ + ‖β j‖1. (3.19)

We consider now the two cases θ < p and θ = p. Suppose first θ < p and let c(θ) > 0
be such that

‖u‖θ ≤ c(θ)‖u‖1,H,0 for all u ∈ W 1,H
0 (�) (3.20)

due to the continuity of the embedding fromW 1,H
0 (�) to Lr (�) for all r ∈ (1, p∗). Applying

(3.18) and (3.19) in (3.17) and using (3.20) we get

〈Au + ξ + η − f , u〉H
≥ ‖∇u‖p

p + ‖∇u‖qq,μ − α j‖u‖θ
θ − ‖β j‖1 − aK (w)‖u‖1,H,0 − bK (w)

− ‖ f ‖
W 1,H

0 (�)∗‖u‖1,H,0

≥ ‖∇u‖p
p + ‖∇u‖qq,μ − α j c(θ)θ‖u‖θ

1,H,0 − ‖β j‖1 − aK (w)‖u‖1,H,0

− bK (w) − ‖ f ‖
W 1,H

0 (�)∗‖u‖1,H,0

≥ min
{‖u‖p

1,H,0, ‖u‖q1,H,0

} − α j c(θ)θ‖u‖θ
1,H,0 − ‖β j‖1

− aK (w)‖u‖1,H,0 − bK (w) − ‖ f ‖
W 1,H

0 (�)∗‖u‖1,H,0,

(3.21)

where the last inequality is obtained via inequality (2.2). Since θ < p < q , it is clear that
we can find a constant R0 > 0 large enough such that Rp

0 < Rq
0 and

Rp
0 − α j c(θ)θ Rθ

0 − ‖β j‖1 − aK (w)R0 − bK (w) − ‖ f ‖
W 1,H

0 (�)∗ R0 > 0.

Therefore, for each R ≥ R0 fixed, the desired inequality (3.16) holds.
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Suppose now θ = p. Then, taking W 1,H
0 (�) ⊂ W 1,p

0 (�) into account and the fact that

‖u‖p
p ≤ λ−1

1,p‖∇u‖p
p for all u ∈ W 1,p

0 (�), (3.22)

we obtain

〈Au + ξ + η − f , u〉H
≥ ‖∇u‖p

p + ‖∇u‖qq,μ − α j‖u‖p
p − ‖β j‖1 − aK (w)‖u‖1,H,0 − bK (w)

− ‖ f ‖
W 1,H

0 (�)∗‖u‖1,H,0

≥
(
1 − α jλ

−1
1,p

)
‖∇u‖p

p + ‖∇u‖qq,μ − ‖β j‖1 − aK (w)‖u‖1,H,0 − bK (w)

− ‖ f ‖
W 1,H

0 (�)∗‖u‖1,H,0

≥ (
1 − α jλ

−1
1,p

)(‖∇u‖p
p + ‖∇u‖qq,μ

) − ‖β j‖1 − aK (w)‖u‖1,H,0 − bK (w)

− ‖ f ‖
W 1,H

0 (�)∗‖u‖1,H,0

≥ (
1 − α jλ

−1
1,p

)
min

{‖u‖p
1,H,0, ‖u‖q1,H,0

} − ‖β j‖1 − aK (w)‖u‖1,H,0 − bK (w)

− ‖ f ‖
W 1,H

0 (�)∗‖u‖1,H,0.

(3.23)

Since 1 < p < q and α jλ
−1
1,p < 1, we can take R0 > 0 large enough with Rp

0 < Rq
0 such

that for all R ≥ R0 it holds
(
1 − α jλ

−1
1,p

)
Rp − ‖β j‖1 − aK (w)R − bK (w) − ‖ f ‖

W 1,H
0 (�)∗ R > 0.

Therefore, inequality (3.16) holds and Claim 2 is proved.
Recall that IK (w) : W 1,H

0 (�) → R is a proper, convex and lower semicontinuous function.

Hence ∂C IK (w) : W 1,H
0 (�) → 2W

1,H
0 (�)∗ is maximal monotone. This fact combined with

Claims 1 and 2 allows us to apply Theorem 2.6 which provides uw ∈ W 1,H
0 (�) satisfying

inclusion (3.9). Thus �(w) �= ∅ for each w ∈ W 1,H
0 (�).

Now we want to verify that �(w) is closed in W 1,H
0 (�). Let {un} ⊂ �(w) be a sequence

such that

un → u in W 1,H
0 (�)

for some u ∈ W 1,H
0 (�). So, for each n ∈ N, we have

〈Aun, v − un〉H + J ◦(un; v − un) + IK (w)(v) − IK (w)(un) ≥ 〈 f , v − un〉H
for all v ∈ W 1,H

0 (�). Passing to the upper limit as n → ∞, we get

〈Au, v − u〉H + J ◦(u; v − u) + IK (w)(v) − IK (w)(u)

≥ lim sup
n→∞

[〈Aun, v − un〉H + J ◦(un; v − un) + IK (w)(v) − IK (w)(un)
]

≥ lim sup
n→∞

〈 f , v − un〉H
= 〈 f , v − u〉H

for all v ∈ W 1,H
0 (�), where we have used the continuity of A, see Proposition 2.1, the upper

semicontinuity of (u, v) 	→ J ◦(u; v), see Proposition 2.4(iv), and the lower semicontinuity
of IK (w). This shows that u ∈ �(w). Hence, �(w) is closed.
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Finally, we need to show that �(w) is bounded. Arguing by contradiction, we suppose
that �(w) is unbounded. Then, there exists a sequence {un} in �(w) such that

‖un‖1,H,0 → +∞. (3.24)

By a simple computing, see (3.21) and (3.23) for example, we are able to find N0 ∈ N such
the for all n ≥ N0, one has

0 ≥ 〈Aun, un〉H − J ◦(un;−un) + IK (w)(un) > 0,

where we have used the fact that 0 ∈ K and (3.24) which leads to a contradiction. Therefore,
�(w) is bounded.
(ii) Now assume that H( f )(v) holds. Let u1, u2 ∈ W 1,H

0 (�) be two solutions of problem
(3.7), that is,

〈Aui , v − ui 〉H + J ◦(ui ; v − ui ) + IK (w)(v) − IK (w)(ui ) ≥ 〈 f , v − ui 〉H
for all v ∈ W 1,H

0 (�) and for i = 1, 2. Taking v = u2 and v = u1 into the inequalities above
for i = 1 and i = 2, respectively, and applying (3.4) we obtain

0 ≥ 〈Au1 − Au2, u1 − u2〉H − (
J ◦(u1; u2 − u1) + J ◦(u2; u1 − u2)

)

=
∫

�

(|∇u1|p−2∇u1 − |∇u2|p−2∇u2
) · ∇(u1 − u2) dx

+
∫

�

μ(x)
(|∇u1|q−2∇u1 − |∇u2|q−2∇u2

) · ∇(u1 − u2) dx

− m j‖u1 − u2‖p
p

≥
∫

�

(|∇u1|p−2∇u1 − |∇u2|p−2∇u2
) · ∇(u1 − u2) dx − m j‖u1 − u2‖p

p,

where we have used the fact μ(x) ≥ 0 for a. a. x ∈ �. Taking
∫

�

(|∇u1|p−2∇u1 − |∇u2|p−2∇u2
) · ∇(u1 − u2) dx ≥ c(p)‖∇(u1 − u2)‖p

p,

into account gives

0 ≥ 〈Au1 − Au2, u1 − u2〉H − (
J ◦(u1; u2 − u1) + J ◦(u2; u1 − u2)

)

≥ c(p)‖∇(u1 − u2)‖p
p − m j‖u1 − u2‖p

p

≥ (
c(p) − m jλ

−1
1,p

)‖∇(u1 − u2)‖p
p,

where the last inequality is obtained by using inequality (3.22). SinceW 1,H
0 (�) ⊂ W 1,p

0 (�)

we deduce that u1 = u2. Consequently, problem (3.7) has a unique solution in W 1,H
0 (�). ��

Now we are in the position to prove Theorem 3.5 by applying Theorem 3.6 and Kluge’s
fixed point theorem.

Proof of Theorem 3.5 We have already mentioned that the fixed point set of � is the cor-
responding set of solutions to problem (3.6). Besides, Lemma 3.2 points out that the set of
solutions for problem (3.6) is a subset of the set of solutions for problem (1.1). Consequently,
it suffices to show that the set of fixed points of � is nonempty. ��
Claim 3 The graph of � is sequentially weakly closed.
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Let {wn} ⊂ W 1,H
0 (�) be a sequence such that wn⇀w and un := �(wn)⇀u inW 1,H

0 (�)

for some w, u ∈ W 1,H
0 (�). Then, for each n ∈ N we have un ∈ K (wn), namely T (un) ≤

U (wn), and

〈Aun, v − un〉H + J ◦(un; v − un) ≥ 〈 f , v − un〉H (3.25)

for all v ∈ K (wn). The inequality

〈Au1 − Au2, u1 − u2〉H − (
J ◦(u1; u2 − u1) + J ◦(u2; u1 − u2)

)

≥
(
c(p) − m jλ

−1
1,p

)
‖∇ (u1 − u2) ‖p

p ≥ 0

for all u1, u2 ∈ W 1,H
0 (�) and smallness condition (3.5) indicate that un solves the following

problem

〈Av, v − un〉H + J ◦(v; v − un) ≥ 〈 f , v − un〉H (3.26)

for all v ∈ K (wn).
From hypotheses H(T ) and H(U ) we know that

T (u) ≤ lim sup
n→∞

T (un) ≤ lim sup
n→∞

U (wn) ≤ U (w).

This means that u ∈ K (w).
For any fixed v ∈ K (w), since U (w) > 0, we can consider the sequence {vn} defined by

vn := U (wn)

U (w)
v for all n ∈ N.

The nonnegativity ofU , the positive homogeneity of T and v ∈ K (w), that is, T (v) ≤ U (w),
imply

T (vn) = T

(
U (wn)

U (w)
v

)
= U (wn)

U (w)
T (v) ≤ U (wn)U (w)

U (w)
= U (wn).

Hence vn ∈ K (wn). A simple calculating gives

lim
n→∞ ‖vn − v‖1,H,0 = lim

n→∞ |U (wn) −U (w)| ‖v‖1,H,0

U (w)
= 0.

This shows that vn → v. Taking v = vn in (3.26) and passing to the upper limit as n → ∞
one has

〈Av, v − u〉H + J ◦(v; v − u)

≥ lim sup
n→∞

〈Avn, vn − un〉H + lim sup
n→∞

J ◦(vn; vn − un)

≥ lim sup
n→∞

[〈Avn, vn − un〉H + J ◦(vn; vn − un)
]

≥ lim sup
n→∞

〈 f , vn − un〉H = 〈 f , v − u〉H,

wherewehave used the compact embedding ofW 1,H
0 (�) in Lq1(�) and the fact that Lq1(�)×

Lq1(�) � (v, u) → J ◦(u; v) ∈ R is upper semicontinuous, see (2.3) and Proposition 2.4.
Hence,

〈Av, v − u〉H + J ◦(v; v − u) ≥ 〈 f , v − u〉H (3.27)
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for all v ∈ K (w). Note that u ∈ K (w) and K (w) is closed and convex. Let t ∈ (0, 1) be
arbitrary and set vt := tv+(1− t)u. Taking v = vt in (3.27) and applying Proposition 2.4(i),
we get that

〈Avt , v − u〉H + J ◦(vt ; v − u) ≥ 〈 f , v − u〉H.

Passing to the upper limit in the inequality above as t → 0+ yields

〈Au, v − u〉H + J ◦(u; v − u) ≥ 〈 f , v − u〉H
for all v ∈ K (w) which means u = �(w). Therefore, we conclude that the graph of � is
sequentially weakly closed and so Claim 3 is proved.

Claim 4 The set �(W 1,H
0 (�)) is bounded in W 1,H

0 (�).

Arguing by contradiction and suppose the claim is not true. Then there exists a sequence
{wn} such that

‖un‖1,H,0 → ∞,

where un = �(wn). For every n ∈ N, one has (3.25) for all v ∈ K (wn). Having in mind that
0 ∈ K (w) for each w ∈ W 1,H

0 (�), we take v = 0 as test function in (3.25) to obtain

〈Aun, un〉H − J ◦ (un;−un) ≤ ‖ f ‖
W 1,H

0 (�)∗‖un‖1,H,0.

By using the same arguments as in the proof of Theorem 3.6, see (3.21) and (3.23), we can
find N0 ∈ N large enough with ‖un‖p

1,H,0 < ‖un‖q1,H,0 for all n ≥ N0 such that

0 < 〈Aun, un〉H − J ◦ (un;−un) − ‖ f ‖
W 1,H

0 (�)∗‖un‖1,H,0 ≤ 0

for all n ≥ N0. This is a contradiction. Therefore, we conclude that the set �(W 1,H
0 (�)) is

bounded in W 1,H
0 (�), which proves Claim 4.

Now we can apply Theorem 2.5 for the mapping  = �. This shows that � admits a
fixed point in W 1,H

0 (�) which implies that problem (1.1) has at least one weak solution in

W 1,H
0 (�). We still need to show that the set S is bounded and weakly closed.
The boundedness of S can be obtained directly via using analogous arguments as in the

proof of Claim 4.
It remains to show the weak closedness of S. Let {un} ⊂ S be a sequence such that un⇀u

in W 1,H
0 (�) for some u ∈ W 1,H

0 (�). Hence, for each n ∈ N, we see that un ∈ K (un) and

〈Av, v − un〉H +
∫

�

j◦(v(x); v(x) − un(x)) dx ≥ 〈 f , v − un〉H (3.28)

for all v ∈ K (un). Because the graph of K is sequentially weakly closed, see Claim 3, this
implies u ∈ K (u). For any v ∈ K (u), we set vn := U (un)

U (u)
v. We have vn ∈ K (un) and

vn → v in W 1,H
0 (�). Taking v = vn in (3.28) and passing to the upper limit as n → ∞ we

obtain

〈Av, v − u〉H +
∫

�

j◦(v(x); v(x) − u(x)) dx ≥ 〈 f , v − u〉H

for all v ∈ K (u), where we have applied Fatou’s Lemma. Invoking the Minty approach gives
u ∈ S. Therefore, S is weakly closed in W 1,H

0 (�). ��
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