## Annales de l'I. H. P., section C

## Weifue Ding JÜrgen Jost

## Jiay Li

## Guofang Wang

Existence results for mean field equations

Annales de l'I. H. P., section C, tome 16, n ${ }^{\circ} 5$ (1999), p. 653-666<br>[http://www.numdam.org/item?id=AIHPC_1999__16_5_653_0](http://www.numdam.org/item?id=AIHPC_1999__16_5_653_0)

© Gauthier-Villars, 1999, tous droits réservés.
L'accès aux archives de la revue « Annales de l'I. H. P., section C » (http://www.elsevier.com/locate/anihpc) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

## Numdam

# Existence results for mean field equations 

by<br>Weiyue DING ${ }^{\mathbf{1}}$, Jürgen JOST ${ }^{2}$, Jiayu LI ${ }^{\mathbf{3}}$ and Guofang WANG ${ }^{4}$

AbStract. - Let $\Omega$ be an annulus. We prove that the mean field equation

$$
\begin{aligned}
-\Delta \psi & =\frac{e^{-\beta \psi}}{\int_{\Omega} e^{-\beta \psi}} & & \text { in } \Omega \\
\psi & =0 & & \text { on } \partial \Omega
\end{aligned}
$$

admits a solution for $\beta \in(-16 \pi,-8 \pi)$. This is a supercritical case for the Moser-Trudinger inequality. © Elsevier, Paris

Résumé. - On montre que l'équation de champ moyen

$$
\begin{aligned}
-\Delta \psi & =\frac{e^{-\beta \psi}}{\int_{\Omega} e^{-\beta \psi}} & & \text { dans } \Omega \\
\psi & =0 & & \operatorname{sur} \partial \Omega
\end{aligned}
$$

pour $\Omega$ étant un anneau, admet une solution pour $\beta \in(-16 \pi,-8 \pi)$. Celà represente un cas supercritique pour l'inegalité de Moser-Trudinger. (C) Elsevier, Paris

[^0]
## 1. INTRODUCTION

Let $\Omega$ be a smooth bounded domain in $\mathbb{R}^{2}$. In this paper, we consider the following mean field equation

$$
\begin{align*}
-\Delta \psi & =\frac{e^{-\beta \psi}}{\int_{\Omega} e^{-\beta \psi}}, & & \text { in } \Omega  \tag{1.1}\\
\psi & =0, & & \text { on } \partial \Omega
\end{align*}
$$

for $\beta \in(-\infty,+\infty)$. (1.1) is the Euler-Lagrange equation of the following functional

$$
\begin{equation*}
J_{\beta}(\psi)=\frac{1}{2} \int_{\Omega}|\nabla \psi|^{2}+\frac{1}{\beta} \log \int_{\Omega} e^{-\beta \psi} \tag{1.2}
\end{equation*}
$$

in $H_{0}^{1,2}(\Omega)$. This variational problem arises from Onsager's vortex model for turbulent Euler flows. In that interpretation, $\psi$ is the stream function in the infinite vortex limit, see [12,p256ff]. The corresponding canonical Gibbs measure and partition function are finite precisely if $\beta>-8 \pi$. In that situation, Caglioti et al. [4] and Kiessling [9] showed the existence of a minimizer of $J_{\beta}$. This is based on the Moser-Trudinger inequality

$$
\begin{equation*}
\frac{1}{2} \int_{\Omega}|\nabla \psi|^{2} \geq \frac{1}{8 \pi} \log \int_{\Omega} e^{-8 \pi \psi}, \quad \text { for any } \psi \in H_{0}^{1,2}(\Omega) \tag{1.3}
\end{equation*}
$$

which implies the relevant compactness and coercivity condition for $J_{\beta}$ in case $\beta>-8 \pi$. For $\beta \leq-8 \pi$, the situation becomes different as described in [4]. On the unit disk, solutions blow up if one approaches $\beta=-8 \pi$ -the critical case for (1.3)-(see also [5] and [19]), and more generally, on starshaped domains, the Pohozaev identity yields a lower bound on the possible values of $\beta$ for which solutions exist. On the other hand, for an annulus, [4] constructed radially symmetric solutions for any $\beta$, and the construction of Bahri-Coron [2] makes it plausible that solutions on domains with non-trivial topology exist below $-8 \pi$. Thus, for $\beta \leq-8 \pi$, $J_{\beta}$ is no longer compact and coercive in general, and the existence of solution depends on the geometry of the domain.

In the present paper, we thus consider the supercritical case $\beta<-8 \pi$ on domains with non-trivial topology.

Theorem 1.1. - Let $\Omega \subset \mathbb{R}^{2}$ be a smooth, bounded domain whose complement contains a bounded region, e.g. $\Omega$ an annulus. Then (1.1) has a solution for all $\beta \in(-16 \pi,-8 \pi)$.

The solutions we find, however, are not minimizers of $J_{\beta}$-those do not exist in case $\beta<8 \pi$, since $J_{\beta}$ has no lower bound-but unstable critical points. Thus, these solutions might not be relevant to the turbulence problem that was at the basis of [4] and [9].

Certainly we can generalize Theorem 1.1 to the following equation

$$
\begin{aligned}
-\Delta \psi & =\frac{K e^{-\beta \psi}}{\int_{\Omega} K e^{-\beta \psi}}, & \text { in } \Omega \\
\psi & =0, & \text { on } \partial \Omega
\end{aligned}
$$

which was studied in [5]. Here $K$ is a positive function on $\bar{\Omega}$.
With the same method, we may also handle the equation

$$
\begin{equation*}
\Delta u-c+c K e^{u}=0, \quad \text { for } 0 \leq c<\infty \tag{1.4}
\end{equation*}
$$

on a compact Riemann surface $\Sigma$ of genus at least 1 , where $K$ is a positive function. (1.4) can also be considered as a mean field equation because it is the Euler-Lagrange equation of the functional

$$
\begin{equation*}
J_{c}(u)=\frac{1}{2} \int_{\Sigma}|\nabla u|^{2}+c \int_{\Sigma} u-c \log \int_{\Sigma} K e^{u} \tag{1.5}
\end{equation*}
$$

Because of the term $c \int_{\Sigma} u, J_{c}$ remains invariant under adding a constant to $u$, and therefore we may normalize $u$ by the condition

$$
\int_{\Sigma} K e^{u}=1
$$

which explains the absence of the factor $\left(\int K e^{u}\right)^{-1}$ in (1.4). $c<8 \pi$ again is a subcritical case that can easily be handled with the Moser-Trudinger inequality. The critical case $c=8 \pi$ yields the so-called Kazdan-Warner equation [8] and was treated in [7] and [14] by giving sufficient conditions for the existence of a minimizer of $J_{8 \pi}$. Here, we construct again saddle point type critical points to show

Theorem 1.2. - Let $\Sigma$ be a compact Riemann surface of positive genus. Then (1.4) admits a non-minimal solution for $8 \pi<c<16 \pi$.

Now we give a outline of the proof of the Theorems. First from the non-trivial topology of the domain, we can define a minimax value $\alpha_{\beta}$, which is bounded below by an improved Moser-Trudinger inequality, for $\beta \in(-16 \pi,-8 \pi)$. Using a trick introduced by Struwe in [16] and [17], for a certain dense subset $\Lambda \subset(-16 \pi,-8 \pi)$ we can overcome the lack of a
coercivity condition and show that $\alpha_{\beta}$ is achieved by some $u_{\beta}$ for $\beta \in \Lambda$. Next, for any fixed $\bar{\beta} \in(-16 \pi,-8 \pi)$, considering a sequence $\beta_{k} \subset \Lambda$ tending to $\bar{\beta}$, with the help of results in [3] and [11] we show that $u_{\beta_{k}}$ subconverges strongly to some $u_{\bar{\beta}}$ which achieves $\alpha_{\bar{\beta}}$.

After completing our paper, we were informed that Struwe and Tarantello [18] obtained a non-constant solution of (1.4), when $\Sigma$ is a flat torus with fundamental cell domain $\left[-\frac{1}{2}, \frac{1}{2}\right] \times\left[-\frac{1}{2}, \frac{1}{2}\right], K \equiv 1$ and $c \in\left(8 \pi, 4 \pi^{2}\right)$. In this case, it is easy to check that our solution obtained in Theorem 1.2 is non-constant.

Our research was carried out at the Max-Planck-Institute for Mathematics in the Sciences in Leipzig. The first author thanks the Max-Planck-Institute for the hospitality and good working conditions. The third author was supported by a fellowship of the Humboldt foundation, whereas the fourth author was supported by the DFG through the Leibniz award of the second author.

## 2. MINIMAX VALUES

Let $\rho=-\beta$ and $u=-\beta \psi$. We rewrite (1.1) as

$$
\begin{align*}
-\Delta u & =\rho \frac{e^{u}}{\int_{\Omega} e^{u}}, & & \text { in } \Omega  \tag{2.1}\\
u & =0, & & \text { on } \partial \Omega
\end{align*}
$$

and (1.2) as

$$
\begin{equation*}
J_{\rho}(u)=\frac{1}{2} \int_{\Omega}|\nabla u|^{2}-\rho \log \int_{\Omega} e^{u} \tag{2.2}
\end{equation*}
$$

for $u \in H_{0}^{1,2}(\Omega)$.
It is easy to see that $J_{\rho}$ has no lower bound for $\rho \in(8 \pi, 16 \pi)$. Hence, to get a solution of (1.1) for $\rho \in(8 \pi, 16 \pi)$, we have to use a minimax method. First, we define a center of mass of $u$ by

$$
m_{c}(u)=\frac{\int_{\Omega} x e^{u}}{\int_{\Omega} e^{u}}
$$

Let $B$ be the bounded component of $\mathbb{R}^{2} \backslash \Omega$. For simplicity, we assume that $B$ is the unit disk centered at the origin. Then we define a family of functions

$$
h: D \rightarrow H_{0}^{1,2}(\Omega)
$$

satisfying

$$
\begin{equation*}
\lim _{r \rightarrow 1} J_{\rho}(h(r, \theta)) \rightarrow-\infty \tag{2.3}
\end{equation*}
$$

and

$$
\begin{equation*}
\lim _{r \rightarrow 1} m_{c}(h(r, \theta)) \text { is a continuous curve enclosing } B \tag{2.4}
\end{equation*}
$$

Here $D=\{(r, \theta) \mid 0 \leq r<1, \theta \in[0,2 \pi)\}$ is the open unit disk. We denote the set of all such families by $\mathcal{D}_{\rho}$. It is easy to check that $\mathcal{D}_{\rho} \neq \emptyset$. Now we can define a minimax value

$$
\alpha_{\rho}:=\inf _{h \in \mathcal{D}_{\rho}} \sup _{u \in h(D)} J_{\rho}(u) .
$$

The following lemma will make crucial use of the non-trivial topology of $\Omega$, more precisely of the fact that the complement of $\Omega$ has a bounded component.

Lemma 2.1. - For any $\rho \in(8 \pi, 16 \pi) \alpha_{\rho}>-\infty$.
Remark. - It is an interesting question weather $\alpha_{16 \pi}=-\infty$.
To prove Lemma 2.1, we use the improved Moser-Trudinger inequality of [6] (see also [1]). Here we have to modify a little bit.

Lemma 2.2. -Let $S_{1}$ and $S_{2}$ be two subsets of $\bar{\Omega}$ satisfying $\operatorname{dist}\left(S_{1}, S_{2}\right) \geq$ $\delta_{0}>0$ and $\gamma_{0} \in(0,1 / 2)$. For any $\epsilon>0$, there exists a constant $c=c\left(\epsilon, \delta_{0}, \gamma_{0}\right)>0$ such that

$$
\int_{\Omega} e^{u} \leq c \exp \left\{\frac{1}{32 \pi-\epsilon} \int_{\Omega}|\nabla u|^{2}+c\right\}
$$

holds for all $u \in H_{0}^{1,2}(\Omega)$ satisfying

$$
\begin{equation*}
\frac{\int_{S_{1}} e^{u}}{\int_{\Omega} e^{u}} \geq \gamma_{0} \quad \text { and } \quad \frac{\int_{S_{2}} e^{u}}{\int_{\Omega} e^{u}} \geq \gamma_{0} \tag{2.5}
\end{equation*}
$$

Proof. - The Lemma follows from the argument in [6] and the following Moser-Trudinger inequality

$$
\begin{equation*}
\frac{1}{2} \int_{\Omega}|\nabla u|^{2}-8 \pi \log \int_{\Omega} e^{u} \geq c \tag{*}
\end{equation*}
$$

for any $u \in H_{0}^{1,2}(\Omega)$, where $c$ is a constant independent of $u \in H_{0}^{1,2}(\Omega)$. Vol. 16, $\mathrm{n}^{\circ}$ 5-1999.

We will discuss the inequality $(*)$ and its application in another paper.
Proof of Lemma 2.1. - For fixed $\rho \in(8 \pi, 16 \pi)$ we claim that there exists a constant $c_{\rho}$ such that

$$
\begin{equation*}
\sup _{u \in h(D)} J_{\rho}(u) \geq c_{\rho}, \quad \text { for any } h \in \mathcal{D}_{\rho} \tag{2.6}
\end{equation*}
$$

Clearly (2.6) implies the Lemma. By the definition of $h$, for any $h \in \mathcal{D}_{\rho}$, there exists $u \in h(D)$ such that

$$
m_{c}(u)=0
$$

We choose $\epsilon>0$ so small that $\rho<16 \pi-2 \epsilon$. Assume (2.6) does not hold. Then we have sequences $\left\{h_{i}\right\} \subset \mathcal{D}_{\rho}$ and $\left\{u_{i}\right\} \subset H_{0}^{1,2}(\Omega)$ such that $u_{i} \in h_{i}(D)$ and

$$
\begin{equation*}
m_{c}\left(u_{i}\right)=0 \tag{2.7}
\end{equation*}
$$

$$
\begin{equation*}
\lim _{i \rightarrow \infty} J\left(u_{i}\right)=-\infty \tag{2.8}
\end{equation*}
$$

We have the following Lemma.
Lemma 2.3. -There exists $x_{0} \in \bar{\Omega}$ such that

$$
\begin{equation*}
\lim _{i \rightarrow \infty} \frac{\int_{B_{1 / 2}\left(x_{0}\right) \cap \Omega} e^{u_{i}}}{\int_{\Omega} e^{u_{i}}} \rightarrow 1 \tag{2.9}
\end{equation*}
$$

Proof. - Set

$$
A(x):=\lim _{i \rightarrow \infty} \frac{\int_{B_{1 / 4}(x) \cap \Omega} e^{u_{i}}}{\int_{\Omega} e^{u_{i}}}
$$

Assume that the Lemma were false, then there exists $x_{0} \in \bar{\Omega}$ such that

$$
A\left(x_{0}\right)<1 \quad \text { and } \quad A\left(x_{0}\right) \geq A(x) \quad \text { for any } x \in \Omega .
$$

It is easy to check $A\left(x_{0}\right)>0$, since $\Omega$ can be covered by finite many balls of radius $1 / 4$. Let $\gamma_{0}=A\left(x_{0}\right) / 2$. Recalling (2.8) and applying lemma 2.2, we obtain

$$
\begin{equation*}
\frac{\int_{\Omega \backslash B_{1 / 2}\left(x_{0}\right)} e^{u_{i}}}{\int_{\Omega} e^{u_{2}}} \rightarrow 0 \tag{2.10}
\end{equation*}
$$

as $i \rightarrow \infty$, which implies (2.9).

Now we continue to prove Lemma 2.1. (2.9) implies

$$
\begin{aligned}
\frac{\int_{\Omega} x e^{u_{i}}}{\int_{\Omega} e^{u_{i}}}-x_{0} & =\frac{\int_{\Omega}\left(x-x_{0}\right) e^{u_{i}}}{\int_{\Omega} e^{u_{i}}} \\
& =\frac{\int_{B_{1 / 2}\left(x_{0}\right.}\left(x-x_{0}\right) e^{u_{i}}}{\int_{\Omega} e^{u_{i}}}+o(1)
\end{aligned}
$$

which, in turn, implies that $\left|m_{c}\left(u_{i}\right)-x_{0}\right|<2 / 3$. This contradicts (2.7).
Lemma 2.4. $-\alpha_{\rho} / \rho$ is non-increasing in $(8 \pi, 16 \pi)$.
Proof. - We first observe that if $J(u) \leq 0$, then $\log \int_{\Omega} e^{u}>0$ which implies that

$$
J_{\rho}(u) \geq J_{\rho^{\prime}}(u) \quad \text { for } \rho^{\prime} \geq \rho
$$

Hence $\mathcal{D}_{\rho} \subset \mathcal{D}_{\rho^{\prime}}$ for any $16 \pi>\rho^{\prime} \geq \rho>8 \pi$. On the other hand, it is clear that

$$
\frac{J_{\rho}}{\rho}-\frac{J_{\rho^{\prime}}}{\rho^{\prime}}=\frac{1}{2}\left(\frac{1}{\rho}-\frac{1}{\rho^{\prime}}\right) \int_{\Omega}|\nabla u|^{2} \geq 0
$$

if $\rho^{\prime} \geq \rho$. Hence we have

$$
\frac{\alpha_{\rho}}{\rho} \geq \frac{\alpha_{\rho^{\prime}}}{\rho^{\prime}}
$$

for $16 \pi>\rho^{\prime} \geq \rho>8 \pi$.

## 3. EXISTENCE FOR A DENSE SET

In this section we show that $\alpha_{\rho}$ is achieved if $\rho$ belongs to a certain . dense subset of $(8 \pi, 16 \pi)$ defined below.

The crucial problem for our functional is the lack of a coercivity condition, i.e. for a Palais-Smale sequence $u_{i}$ for $J_{\rho}$, we do not know whether $\int_{\Omega}\left|\nabla u_{i}\right|^{2}$ is bounded.

We first have the following lemma.
Lemma 3.1. -Let $u_{i}$ be a Palais-Smale sequence for $J_{\rho}$, i.e. $u_{i}$ satisfies

$$
\begin{equation*}
\left|J_{\rho}\left(u_{i}\right)\right| \leq c<\infty \tag{3.1}
\end{equation*}
$$

Vol. 16, $\mathrm{n}^{\circ}$ 5-1999.
and

$$
\begin{equation*}
d J_{\rho}\left(u_{i}\right) \rightarrow 0 \text { strongly in } H^{-1,2}(\Omega) . \tag{3.2}
\end{equation*}
$$

If, in addition, we have

$$
\begin{equation*}
\int_{\Omega}\left|\nabla u_{i}\right|^{2} \leq c_{0}, \quad \text { for } i=1,2, \cdots \tag{3.3}
\end{equation*}
$$

for a constant $c_{0}$ independent of $i$, then $u_{i}$ subconverges to a critical point $u_{0}$ for $J_{\rho}$ strongly in $H_{0}^{1,2}(\Omega)$.

Proof. - The proof is standard, but we provide it here for convenience of the reader.

Since $\int_{\Omega}\left|\nabla u_{i}\right|^{2}$ is bounded, there exists $u_{0} \in H_{0}^{1,2}(\Omega)$ such that
(i) $u_{i}$ converges to $u_{0}$ weakly in $H_{0}^{1,2}(\Omega)$,
(ii) $u_{i}$ converges to $u_{0}$ strongly in $L^{p}(\Omega)$ for any $p>1$ and almost everywhere,
(iii) $e^{u_{i}}$ converges to $e^{u_{0}}$ strongly in $L^{p}(\Omega)$ for any $p \geq 1$.

From (i)-(iii), we can show that $d J\left(u_{0}\right)=0$, i.e. $u_{0}$ satisfies

$$
-\Delta u_{0}=\rho \frac{e^{u_{0}}}{\int_{\Omega} e^{u_{0}}}
$$

Testing $d J_{\rho}$ with $u_{i}-u_{0}$, we obtain

$$
\begin{aligned}
o(1) & =\left\langle d J_{\rho}\left(u_{i}\right)-d J_{\rho}(u), u_{i}-u_{0}\right\rangle \\
& =\int_{\Omega}\left|\nabla\left(u_{i}-u_{0}\right)\right|^{2}-\rho \int_{\Omega}\left(\frac{e^{u_{i}}}{\int_{\Omega} e^{u_{i}}}-\frac{e^{u_{0}}}{\int_{\Omega} e^{u_{0}}}\right)\left(u_{i}-u_{0}\right) \\
& =\int_{\Omega}\left|\nabla\left(u_{i}-u_{0}\right)\right|^{2}+o(1)
\end{aligned}
$$

by (i)-(iii). Hence $u_{i}$ converges to $u_{0}$ strongly in $H_{0}^{1,2}(\Omega)$.
Since by Lemma $2.4 \rho \rightarrow \alpha_{\rho} / \rho$ is non-increasing in ( $8 \pi, 16 \pi$ ), $\rho \rightarrow \alpha_{\rho} / \rho$ is a.e. differentiable. Set

$$
\begin{equation*}
\Lambda:=\left\{\rho \in(8 \pi, 16 \pi) \mid \alpha_{\rho} / \rho \text { is differentiable at } \rho\right\} . \tag{3.4}
\end{equation*}
$$

$\bar{\Lambda}=[8 \pi, 16 \pi]$, see [16]. Let $\rho \in \Lambda$ and choose $\rho_{k} \nearrow \rho$ such that

$$
\begin{equation*}
0 \leq \lim _{k \rightarrow \infty}-\frac{1}{\left(\rho-\rho_{k}\right)}\left(\frac{\alpha_{\rho}}{\rho}-\frac{\alpha_{\rho_{k}}}{\rho_{k}}\right) \leq c_{1} \tag{3.5}
\end{equation*}
$$

for some constant $c_{1}$ independent of $k$.

Lemma 3.2. $-\alpha_{\rho}$ is achieved by a critical point $u_{\rho}$ for $J_{\rho}$ provided that $\rho \in \Lambda$.

Proof. - Assume, by contradiction, that the Lemma were false. From Lemma 3.1, there exists $\delta>0$ such that

$$
\begin{equation*}
\left\|d J_{\rho}(u)\right\|_{H^{-1,2}(\Omega)} \geq 2 \delta \tag{3.6}
\end{equation*}
$$

in

$$
N_{\delta}:=\left\{\left.u \in H_{0}^{1,2}(\Omega)\left|\int_{\Omega}\right| \nabla u\right|^{2} \leq c_{2},\left|J_{\rho}(u)-\alpha_{\rho}\right|<\delta\right\} .
$$

Here, $c_{2}$ is any fixed constant such that $N_{\delta} \neq \emptyset$. Let $X_{\rho}: N_{\delta} \rightarrow H_{0}^{1,2}(\Omega)$ be a pseudo-gradient vector field for $J_{\rho}$ in $N_{\delta}$, i.e. a locally Lipschitz vector field of norm $\left\|X_{\rho}\right\|_{H_{0}^{1,2}} \leq 1$ with

$$
\begin{equation*}
\left\langle d J_{\rho}(u), X_{\rho}(u)\right\rangle<-\delta \tag{3.7}
\end{equation*}
$$

See [15] for the construction of $X_{\rho}$.
Since

$$
\begin{aligned}
\left\|d J_{\rho}(u)-d J_{\rho_{k}}(u)\right\| & =\left\|d J_{\rho}-\frac{\rho}{\rho_{k}} d J_{\rho_{k}}(u)\right\|+\left\|\left(1-\frac{\rho}{\rho_{k}}\right) d J_{\rho_{k}}(u)\right\| \\
& \leq \frac{1}{2}\left(1-\frac{\rho}{\rho_{k}}\right) \int|\nabla u|^{2}+c\left(1-\frac{\rho}{\rho_{k}}\right) \int_{\Omega}|\nabla u|^{2} \rightarrow 0
\end{aligned}
$$

uniformly in $\left\{\left.u\left|\int_{\Omega}\right| \nabla u\right|^{2} \leq c_{2}\right\}, X_{\rho}$ is also a pseudo-gradient vector field for $J_{\rho_{k}}$ in $N_{\delta}$ with

$$
\begin{equation*}
\left\langle d J_{\rho_{k}}(u), X_{\rho}(u)\right\rangle<-\delta / 2 \tag{3.8}
\end{equation*}
$$

for $u \in N_{\delta}$, provided that $k$ is sufficiently large.
For any sequence $\left\{h_{k}\right\}, h_{k} \in \mathcal{D}_{\rho_{k}} \subset \mathcal{D}_{\rho}$ such that

$$
\begin{equation*}
\sup _{u \in h_{k}(D)} J_{\rho_{k}}(u) \leq \alpha_{\rho_{k}}+\rho-\rho_{k} \tag{3.9}
\end{equation*}
$$

and all $u \in h_{k}(D)$ such that

$$
\begin{equation*}
J_{\rho}(u) \geq \alpha_{\rho}-\left(\rho-\rho_{k}\right) \tag{3.10}
\end{equation*}
$$

we have the following estimate

$$
\begin{align*}
\frac{1}{2} \int_{\Omega}|\nabla u|^{2} & =\rho \cdot \rho_{k} \frac{\frac{J_{\rho_{k}}(u)}{\rho_{k}}-\frac{J_{\rho}(u)}{\rho}}{\rho-\rho_{k}} \\
& \leq \rho \cdot \rho_{k} \frac{\frac{\alpha_{\rho_{k}}}{\rho_{k}}-\frac{\alpha_{\rho}}{\rho}}{\rho-\rho_{k}}+\left(\rho+\rho_{k}\right)  \tag{3.11}\\
& \leq C
\end{align*}
$$

by (3.5), (3.9) and (3.10), where $C=(16 \pi)^{2} c_{1}+32 \pi$.
Vol. 16, $\mathrm{n}^{\circ}$ 5-1999.

Now we consider in $N_{\delta}$ the following pseudo-gradient flow for $J_{\rho}$. First choose a Lipschitz continuous cut-off function $\eta$ such that $0 \leq \eta \leq 1$, $\eta=0$ outside $N_{\delta}, \eta=1$ in $N_{\delta / 2}$. Then consider the following flow in $H_{0}^{1,2}(\Omega)$ generated by $\eta X_{\rho}$

$$
\begin{aligned}
\frac{\partial \phi}{\partial t}(u, t) & =\eta(\phi(u, t)) X_{\rho}(\phi(u, t)) \\
\phi(u, 0) & =u
\end{aligned}
$$

By (3.7) and (3.8), for $u \in N_{\delta / 2}$, we have

$$
\begin{equation*}
\frac{d}{d t} J_{\rho}(\phi(u, t))_{\left.\right|_{t=0}} \leq-\delta \tag{3.12}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{d}{d t} J_{\rho_{k}}(\phi(u, t))_{\left.\right|_{t=0}} \leq-\delta / 2 \tag{3.13}
\end{equation*}
$$

for large $k$.
It is clear that for any $h \in \mathcal{D}_{\rho_{k}} h(r, \theta) \notin N_{\delta}$ for $r$ close to 1 . Hence $\phi(h, t) \in \mathcal{D}_{\rho_{k}}$ for any $t>0$. In particular, $\phi(\cdot, t)$ preserves the class of $h_{k} \in \mathcal{D}_{\rho_{k}}$ with condition (3.9). On the other hand, for any $h \in \mathcal{D}_{\rho}$ by definition

$$
\sup _{u \in h(D)} J_{\rho}(u) \geq \alpha_{\rho}
$$

Hence for any $h_{k} \in \mathcal{D}_{\rho_{k}}$ with condition (3.9), $\sup _{u \in \phi(h(D), t)} J_{\rho}(u)$ is achieved in $N_{\delta / 2}$, provided that $k$ is large enough. Consequently, by (3.12), we have

$$
\frac{d}{d t} \sup \left\{J_{\rho}(u) \mid u \in \phi(h(D), t)\right\} \leq-\delta
$$

for all $t \geq 0$, which is a contradiction.

## 4. PROOF OF THEOREM 1.1

From section 3, we know that for any $\bar{\rho} \in(8 \pi, 16 \pi)$ there exists a sequence $\rho_{k} \nearrow \bar{\rho}$ such that $\alpha_{\rho_{k}}$ is achieved by $u_{k}$. Consequently $u_{k}$ satisfies

$$
\begin{align*}
-\Delta u_{k} & =\rho_{k} \frac{e^{u_{k}}}{\int_{\Omega} e^{u_{i}}}, & & \text { in } \Omega  \tag{4.1}\\
u_{k} & =0, & & \text { on } \partial \Omega
\end{align*}
$$

From Lemma 2.4, we have

$$
\begin{equation*}
J_{\bar{\rho}}\left(u_{k}\right)=\alpha_{\rho_{k}} \leq c_{0} \tag{4.2}
\end{equation*}
$$

for some constant $c_{0}>0$ which is independent of $k$. Let $v_{k}=$ $u_{k}-\log \int_{\Omega} e^{u_{k}}$. Then $v_{k}$ satisfies

$$
\begin{equation*}
-\Delta v_{k}=\rho_{k} e^{v_{k}} \tag{4.3}
\end{equation*}
$$

with

$$
\begin{equation*}
\int_{\Omega} e^{v_{k}}=1 \tag{4.4}
\end{equation*}
$$

By results of Brezis-Merle [3] and Li-Shafrir [11] we have
Lemma 4.1 ([3], [11]). -There exists a subsequence (also denoted by $v_{k}$ ) satisfying one of the following alternatives:
(i) $\left\{v_{k}\right\}$ is bounded in $L_{\text {loc }}^{\infty}(\Omega)$;
(ii) $v_{k} \rightarrow-\infty$ uniformly on any compact subset of $\Omega$;
(iii) there exists a finite blow-up set $\Sigma=\left\{a_{1}, \cdots, a_{m}\right\} \subset \Omega$ such that, for any $1 \leq i \leq m$, there exists $\left\{x_{k}\right\} \subset \Omega, x_{k} \rightarrow a_{i}, u_{k}\left(x_{k}\right) \rightarrow \infty$, and $v_{k}(x) \rightarrow-\infty$ uniformly on any compact subset of $\Omega \backslash \Sigma$. Moreover,

$$
\begin{equation*}
\rho_{k} \int_{\Omega} e^{v_{k}} \rightarrow \sum_{i=1}^{m} 8 \pi n_{i} \tag{4.5}
\end{equation*}
$$

where $n_{i}$ is positive integer.
For our special functions $v_{k}$, we can improve Lemma 4.1 as follows
Lemma 4.2. -There exists a subsequence (also denoted by $v_{k}$ ) satisfying one of the following alternatives:
(i) $\left\{v_{k}\right\}$ is bounded in $L_{l o c}^{\infty}(\Omega)$;
(ii) $v_{k} \rightarrow-\infty$ uniformly on $\bar{\Omega}$;
(iii) there exists a finite blow-up set $\Sigma=\left\{a_{1}, \cdots, a_{m}\right\} \subset \bar{\Omega}$ such that, for any $1 \leq i \leq m$, there exists $\left\{x_{k}\right\} \subset \Omega, x_{k} \rightarrow a_{i}, u_{k}\left(x_{k}\right) \rightarrow \infty$, and $v_{k}(x) \rightarrow-\infty$ uniformly on any compact subset of $\bar{\Omega} \backslash \Sigma$. Moreover, (4.5) holds.

Proof. - From Lemma 4.1, we only have to consider one more case in which blow-up points are in the boundary of $\Omega$. There are two possibilities: One is bubbling too fast such that after rescaling we obtain a solution of $-\Delta u=e^{u}$ in a half plane; Another is bubbling slow such that after
rescaling we obtain a solution of $-\Delta u=e^{u}$ in $\mathbb{R}^{2}$. One can exclude the first case. In the second case, one can follow the idea in [11] to show that (4.5) holds. See also [10].

Proof of Theorem 1.1. - (4.4), (4.5) and $\bar{\rho} \in(8 \pi, 16 \pi)$ imply that cases (ii) and (iii) in Lemma 4.2 does not occur. Consequently $\left\{v_{k}\right\}$ is bounded in $L_{\text {loc }}^{\infty}(\Omega)$. Now we can again apply Lemma 2.2 as follows.

Let $S_{1}$ and $S_{2}$ be two disjoint compact subdomains of $\Omega$. Since $\left\{v_{k}\right\}$ is bounded in $L_{l o c}^{\infty}(\Omega)$, we have

$$
\frac{\int_{S_{i}} e^{u_{k}}}{\int_{\Omega} e^{u_{k}}}=\int_{S_{i}} e^{v_{k}} \geq c_{0}, \quad i=1,2
$$

for a constant $c_{0}=c_{0}\left(S_{1}, S_{2}, \Omega\right)>0$ independent of $k$. Choosing $\epsilon$ such that $16 \pi-\bar{\rho}>2 \epsilon$ and applying Lemma 2.2, with the help of (4.2), we obtain

$$
\begin{aligned}
c & \geq J_{\rho_{k}}\left(u_{k}\right)=\frac{1}{2} \int_{\Omega}\left|\nabla u_{k}\right|^{2}-\rho_{k} \log \int_{\Omega} e^{u_{k}} \\
& \geq \frac{1}{2}\left(1-\frac{\rho_{k}}{16 \pi-\epsilon / 2}\right) \int_{\Omega}|\nabla u|^{2} \\
& \geq \frac{1}{2}\left(1-\frac{\bar{\rho}}{16 \pi-\epsilon / 2}\right) \int_{\Omega}|\nabla u|^{2}
\end{aligned}
$$

which implies that $\int_{\Omega}\left|\nabla u_{k}\right|^{2}$ is bounded. Now by the same argument in the proof of Lemma 3.1, $u_{k}$ subconverges to $u_{\bar{\rho}}$ strongly in $H_{0}^{1,2}(\Omega)$ and $u_{\bar{\rho}}$ is a critical point of $J_{\bar{\rho}}$. Clearly, $u_{\bar{\rho}}$ achieves $\alpha_{\bar{\rho}}$. This finishes the proof of Theorem 1.1.

Proof of Theorem 1.2. - Since the proof is very similar to one presented above, we only give a sketch of the proof of Theorem 1.2. Let $\Sigma$ be a Riemann surface of positive genus. We embed $X: \Sigma \rightarrow \mathbb{R}^{N}$ for some $N \geq 3$ and define the center of mass for a function $u \in H^{1,2}(\Sigma)$ by

$$
m_{c}(u)=\frac{\int_{\Sigma} X e^{u}}{\int_{\Sigma} e^{u}}
$$

Since $\Sigma$ is of positive genus, we can choose a Jordan curve $\Gamma^{1}$ on $\Sigma$ and a closed curve $\Gamma^{2}$ in $\mathbb{R}^{N} \backslash \Sigma$ such that $\Gamma^{1}$ links $\Gamma^{2}$. We know that $\inf _{u \in H^{1,2}(\Sigma)} J_{c}(u)$ is finite if and only if $c \in[0,8 \pi]$ (see [7]). Now define a family of functions $h: D \rightarrow H^{1,2}(\Sigma)$ (as in section 2) satisfying

$$
\lim _{r \rightarrow 1} J_{\rho}(h(r, \theta)) \rightarrow-\infty
$$

and

$$
\lim _{r \rightarrow 1} m_{c}(h(r, \theta)) \text { as a map from } S^{1} \rightarrow \Gamma^{1} \text { is of degree } 1 .
$$

Let $\mathcal{D}_{c}$ denote the set of all such families. It is also easy to check that $\mathcal{D}_{c} \neq \emptyset$. Set

$$
\alpha_{c}:=\inf _{h \in \mathcal{D}_{c}} \sup _{u \in h(D)} J_{c}(u)
$$

We first have

$$
\alpha_{c}>-\infty
$$

using the fact that $\Gamma^{1}$ links $\Gamma^{2}$ and Lemma 2.2. Then by the same method as presented above, we can prove that $\alpha_{c}$ is achieved by some $u_{c} \in H^{1,2}(\Sigma)$, which is a solution of (1.4), for $c \in(8 \pi, 16 \pi)$.

## REFERENCES

[1] T. Aubin, Nonlinear analysis on manifolds, Springer-Verlag, 1982.
[2] A. Bahri and J. M. Coron, Sur une equation elliptique non lineaire avec l'exposant critique de Sobolev, C. R. Acad. Sci. Paris Ser. I, Vol. 301, 1985, pp. 345-348.
[3] H. Brezis and F. Merle, Uniform estimates and blow up behavior for solutions of $-\Delta u=V(x) e^{u}$ in two dimensions, Comm. Partial Diff. Equat., Vol. 16, 1991, pp. 1223-1253.
[4] E. P. Caglioti, P. L. Lions, C. Marchioro and M. Pulvirenti, A special class of stationary flows for two-dimensional Euler equations: a statistical mechanics description, Commun. Math. Phys., Vol. 143, 1992, pp. 501-525.
[5] E. Caglioti, P. L. Lions, C. Marchioro and M. Pulvirenti, A special class of stationary flows for two-dimensional Euler equations: a statistical mechanics description. Part II, Commun. Math. Phys., Vol. 174, 1995, pp. 229-260.
[6] W. X. Chen and C. Li, Prescribing Gaussian curvature on surfaces with conical singularities, J. Geom. Anal., Vol. 1, 1991, pp. 359-372.
[7] W. Ding, J. Jost, J. Li and G. Wang, The differential equation $\Delta u=8 \pi-8 \pi h e^{u}$ on a compact Riemann surface, Asian J. Math., Vol. 1, 1997, pp. 230-248.
[8] J. Kazdan and F. Warner, Curvature functions for compact 2-manifolds, Ann. Math., . Vol. 99, 1974, pp. 14-47.
[9] M. K. H. Kiessling, Statistical mechanics of classical particles with logarithmic interactions, Comm. Pure Appl. Math., Vol. 46, 1993, pp. 27-56.
[10] YanYan Li, $-\Delta u=\lambda\left(\frac{V e^{u}}{\int_{M} V e^{u}}-W\right)$ on Riemann surfaces, preprint,
[11] YanYan Li and I. Shafrir, Blow-up analysis for solutions of $-\Delta u=V e^{u}$ in dimension two, Indiana Univ. Math. J., Vol. 43, 1994, pp. 1255-1270.
[12] C. Marchioro and M. Pulvirenti, Mathematical theory of incompressible nonviscous fluids, Appl. Math. Sci., Vol. 96, Springer-Verlag, 1994.
[13] J. Moser, A sharp form of an inequality of N. Trudinger, Indiana Univ. Math. J., Vol. 20, 1971, pp. 1077-1092.
[14] M. Nolasco and G. Tarantello, On a sharp Sobolev type inequality on two dimensional compact manifolds, preprint.

Vol. 16, $\mathrm{n}^{\circ}$ 5-1999.
[15] R. S. Palais, Critical point theory and the minimax principle, Global Analysis, Proc. Sympos. Pure Math., Vol. 15, 1968, pp. 185-212.
[16] M. Struwe, The evolution of harmonic mappings with free boundaries, Manuscr. Math., Vol. 70, 1991, pp. 373-384.
[17] M. Struwe, Multiple solutions to the Dirichlet problem for the equation of prescribed mean curvature , Analysis, et cetera, P. H. Rabinowitz and E. Zehnder Eds., 1990, pp. 639-666.
[18] M. Struwe and G. Tarantello, On multivortex solutions in Chern-Simons gauge theory, preprint.
[19] T. Suzuki, Global analysis for a two-dimensional elliptic eigenvalue problem with the exponential nonlinearity, Ann. Inst. H. Poincaré, Anal. Non Lineaire, Vol. 9, 1992, pp. 367-398.


[^0]:    Classification A.M.S. 1991: 35 J 60, 76Fxx, 46 E 35.
    ${ }^{1}$ Institute of Mathematics, Academia Sinica, Beijing 100080, P. R. China. E-mail address: dingwy@public.intercom.co.cn
    ${ }^{2}$ Max-Planck-Institute for Mathematics in the Sciences, Inselstr. 22-26, D-04103 Leipzig, Germany. E-mail address: jost@mis.mpg.de
    ${ }^{3}$ Institute of Mathematics, Academia Sinica, 100080 Beijing, China, E-mail address: lijia@public.intercom.co.cn
    ${ }^{4}$ Institute of Mathematics, Academia Sinica, 100080 Beijing, China. E-mail address: gwang@mis.mpg.de

