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1. Introduction

In this paper we are interested in the existence of solutions for some nonlinear
elliptic equations with principal part having degenerate coercivity. The model case
is:






− div

( |∇u|p−2 ∇u
(1 + |u|)θ (p−1)

)

= f in Ω,

u = 0 on ∂Ω,
(1.1)

with Ω a bounded open subset of RN , N ≥ 2, p > 1, θ ≥ 0, and f a measurable
function on whose summability we will make different assumptions. It is clear
from the above example that the differential operator is defined on W1,p

0 (Ω), but
that it may not be coercive on the same space as u becomes large. Due to this
lack of coercivity, standard existence theorems for solutions of nonlinear elliptic
equations cannot be applied. In this paper, we will prove several existence and
regularity results (depending on the summability of the datum f ) for the solutions
of (1.1).

Let us give the precise assumptions on the problems that we will study.
Let Ω be a bounded open subset of RN , N ≥ 2.
Let 1 < p < N, and let a : Ω × R × RN → RN be a Carathéodory function

(that is, a(·, t, ξ) is measurable on Ω for every (t, ξ) in R × RN , and a(x, ·, ·) is
continuous on R×RN for almost every x in Ω), such that the following assumptions
hold:

a(x, t, ξ) · ξ ≥ b(|t|) |ξ|p , (1.2)
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for almost every x in Ω, for every (t, ξ) in R × RN , where

b(t) = α

(1 + t)θ(p−1)
, (1.3)

for some θ ≥ 0 and some α > 0;

|a(x, t, ξ)| ≤ β [ j(x) + |t|p−1 + |ξ|p−1] , (1.4)

for almost every x in Ω, for every (t, ξ) in R × RN , where j is a non-negative
function in L p′

(Ω), and β > 0;

[a(x, t, ξ) − a(x, t, ξ ′)] · [ξ − ξ ′] > 0 , (1.5)

for almost every x in Ω, for every t in R, for every ξ , ξ ′ in RN , with ξ �= ξ ′. Remark
that assumption (1.2) implies that

a(x, t, 0) = 0 , (1.6)

for almost every x in Ω and for every t in R. We will then define, for u in W1,p
0 (Ω),

the nonlinear elliptic operator

A(u) = − div(a(x, u,∇u)) ,

which, thanks to (1.4), maps W1,p
0 (Ω) into its dual space W−1,p′

(Ω).
In this paper, we are interested in proving the existence results for the nonlinear

elliptic problem:

{
A(u) = − div(a(x, u,∇u)) = f in Ω,

u = 0 on ∂Ω,
(1.7)

under various assumptions on the function f and on θ (appearing in (1.3)). As
stated before, due to assumption (1.3), A may not be coercive on W1,p

0 (Ω), so that
the standard Leray–Lions surjectivity theorem cannot also be applied even in the
case in which f belongs to W−1,p′

(Ω). To overcome this problem, we will reason
by approximation, “cutting” by means of truncatures the nonlinearity a(x, t, ξ) in
order to get a pseudomonotone and coercive differential operator on W1,p

0 (Ω),
obtaining some a priori estimates on approximate solutions, a technical result of
almost everywhere convergence for the gradients of the approximate solutions, and
then passing to the limit.

Our results are a generalization, in the direction of a nonlinear operator with
respect to the gradient, of the results contained in [11] and [1], where the case
p = 2 is studied. For related results, see also [10], where a part of the results
of [11] are proved with an easier technique; see also [21], for the uniqueness of
solutions and [16] for regularity results.

Our first result is the following:
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Theorem 1.1. Let 0 ≤ θ ≤ 1, and let f belong to Lm(Ω), with m > N/p. Then
there exists at least a solution u in W1,p

0 (Ω)∩ L∞(Ω) of problem (1.7), in the sense
that

∫

Ω

a(x, u,∇u) · ∇v dx =
∫

Ω

f v dx , ∀v ∈ W1,p
0 (Ω) . (1.8)

Remark 1.2. Observe that the assumption on f given in the preceding theorem
is the one which yields L∞(Ω) solutions for nonlinear coercive elliptic equations
([12]). The result (which is independent of θ) is not surprising, since if one looks
for bounded solutions then the lack of coercivity of the operator A (which is created
by unbounded functions) “disappears”.

If we decrease the summability of f , the situation is no longer the same: there
is now an “interaction” between f and θ in order to still have W1,p

0 (Ω) solutions.
Before giving the statement of the theorem, let us define

m̃ = Np

(N − p) (1 − θ) (p − 1) + p2
. (1.9)

Theorem 1.3. Let 0 ≤ θ < 1, and let f be in Lm(Ω), with

m̃ ≤ m <
N

p
. (1.10)

Then there exists at least a solution u of (1.7) in the sense of (1.8). Moreover, u
belongs to W1,p

0 (Ω) ∩ Ls(Ω), with

s = Nm (p − 1) (1 − θ)

N − m p
. (1.11)

Remark 1.4. If θ = 1, assumption (1.10) becomes empty, being m̃ = N/p in this
case. Observe that, for every θ in [0, 1), we have

m̃ ≥ Np

Np − N + p
= (p∗)′ ,

so that the datum f always belongs to W−1,p′
(Ω). In this sense, it is natural to

expect a W1,p
0 (Ω) solution; anyway, the solution is no longer bounded, so that the

operator A is actually not coercive.

If we continue to decrease the summability of f , we no longer obtain solutions in
the “energy space” W1,p

0 (Ω). Furthermore, we will have a solution whose gradient
will have a regularity depending on both θ and the summability assumptions on f .
Since we assumed a different growth from above and from below on a (see (1.2) and
(1.4)), it is not possible to deduce a priori from the regularity of u that |a(x, u,∇u)|
belongs to L1(Ω). Thus, it is not possible to use the notion of solution in the sense
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of distributions. In order to overcome this problem, we will need to introduce a
different definition of solution, which also involves a different definition of gradient
for a measurable function u.

We begin by defining, for k > 0, and t in R, the truncation function

Tk(t) = max{−k, min{k, t}} , (1.12)

and we recall the following result (see [8], Lemma 2.1):

Theorem 1.5. Let u be a measurable function such that Tk(u) belongs to W1,p
0 (Ω)

for every k > 0. Then there exists a unique measurable function v : Ω → RN such
that

vχ{|u|<k} = ∇Tk(u), for almost every x ∈ Ω, ∀k > 0, (1.13)

where χE is the characteristic function of a measurable set E. If, moreover, u
belongs to W1,1

0 (Ω), then v coincides with the standard distributional gradient
of u.

In view of the above result, for every measurable function u such that Tk(u)

belongs to W1,p
0 (Ω) for every k > 0, we define ∇u, the weak gradient of u, as

the unique function v which satisfies (1.13). The definition of the weak gradient
allows us to give the following definition of an entropy solution for problem (1.7)
(see [8]):

Definition 1.6. Let f be in Lm(Ω), m ≥ 1. A measurable function u is an entropy
solution of (1.7) if Tk(u) belongs to W1,p

0 (Ω) for every k > 0, and if
∫

Ω

a(x, u,∇u) · ∇Tk(u − ϕ) dx ≤
∫

Ω

f Tk(u − ϕ) dx , (1.14)

for every k > 0 and for every ϕ ∈ W1,p
0 (Ω) ∩ L∞(Ω).

Note that the left-hand side is well defined since the integral is only on the set
|u − ϕ| ≤ k, and on this set |u| ≤ k + ‖ϕ‖

L∞(Ω)
= M, so that we have

∫

Ω

a(x, u,∇u) · ∇Tk(u − ϕ) dx =
∫

Ω

a(x, TM(u),∇TM(u)) · ∇Tk(u − ϕ) dx ,

which is finite by the growth assumptions on a.
If u is an entropy solution of (1.7) and is such that |a(x, u,∇u)| belongs to

L1(Ω), then u is also a solution of (1.7) in the sense of distributions (see [8]).

We are now ready to state the existence results for solutions not in the energy
space W1,p

0 (Ω). As before, we define

m = N

[N (1 − θ) + θ] (p − 1) + 1
. (1.15)
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Theorem 1.7. Let 0 ≤ θ < 1, and let f be in Lm(Ω), with

max {1, m} < m < m̃ . (1.16)

Then there exists at least an entropy solution u in W1,q
0 (Ω) ∩ Ls(Ω) of (1.7), with

s as in (1.11), that is

s = Nm (p − 1) (1 − θ)

N − m p
,

and

q = Nm (p − 1)(1 − θ)

N − m [1 + θ (p − 1)] . (1.17)

Remark 1.8. Once again, the case θ = 1 cannot be considered, since assumption
(1.16) becomes empty (both m̃ and m become equal to N/p). The number q given
by (1.17) is always smaller than p, so that the solution u does not necessarily belong
to W1,p

0 (Ω). Observe, however, that it is possible to have m satisfying both (1.16)
and m ≥ (p∗)′, so that the datum f belongs to W−1,p′

(Ω). Furthermore, note that
we always have q > 1, so that the solution belongs to some Sobolev space; hence,
as stated before, the weak gradient of u coincides with its standard distributional
gradient.

Starting from (1.4), and using the fact that u belongs to W1,q
0 (Ω) with q as in

the statement, we have that |a(x, u,∇u)|q/(p−1) belongs to L1(Ω). Thus, we have
that, a priori, |a(x, u,∇u)| belongs to L1(Ω) if and only if q ≥ p − 1, a fact that
is not necessarily true under our assumptions on m and θ; indeed, it is satisfied if
and only if m is such that

m ≥ m = N

N(1 − θ) + 1 + θ(p − 1)
,

and, if p > 2, one has that m > m, so that it is possible to have entropy solutions
which may not be solutions in the sense of distributions.

The last possible choice of summability for f is now f in Lm(Ω), with 1 ≤ m ≤
max{1, m}. In this case, the solutions we will obtain no longer belong to Sobolev
spaces (and, in some cases, not even to L1(Ω)). We will prove the following
existence theorem for entropy solutions of (1.7):

Theorem 1.9. Let 0 ≤ θ < 1, and let f in Lm(Ω), with

1 ≤ m ≤ max{1, m} . (1.18)

Then there exists at least an entropy solution u of problem (1.7). Moreover, u
belongs to the Marcinkiewicz space Ms(Ω), with s given by (1.11), that is

s = Nm (p − 1) (1 − θ)

N − m p
,
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and ∇u, the weak gradient of u, belongs to the Marcinkiewicz (Mq(Ω))N, with q
given by (1.17), that is

q = Nm (p − 1)(1 − θ)

N − m [1 + θ (p − 1)]
(see Section 2 for the definition of Marcinkiewicz spaces).

The plan of the paper is as follows: in Section 2 we will prove some a priori
estimates in Lebesgue spaces on the solutions un of some approximating problems,
and this will be done using rearrangement techniques. Section 3 will be devoted
to the estimates on the gradients of un , while in Section 4 a theorem of almost
everywhere convergence for the gradients of un is proved. Section 5 contains
the proof of the existence theorems, obtained by putting together the results of
Sections 2 and 3. The final section of the paper studies the case θ > 1, giving
a detailed picture of both existence and non-existence results for solutions of (1.7).

2. A priori estimates in Lebesgue spaces

Let n ∈ N, and define, for u in W1,p
0 (Ω), the differential operator

An(u) = − div(a(x, Tn(u),∇u)) ,

which turns out to be pseudomonotone from W1,p
0 (Ω) to W−1,p′

(Ω). Moreover, by
(1.2), we have

〈An(u), u〉 =
∫

Ω

a(x, Tn(u),∇u) · ∇u dx ≥ 1

(1 + n)θ(p−1)

∫

Ω

|∇u|p dx .

Hence, An is also coercive on W1,p
0 (Ω). Thus, if fn belongs to L∞(Ω), there exists

at least one solution un in W1,p
0 (Ω) ∩ L∞(Ω) of

{− div(a(x, Tn(un),∇un)) = fn in Ω,
un = 0 on ∂Ω,

(2.1)

solution in the sense that
∫

Ω

a(x, Tn(un),∇Tn(un)) · ∇v dx =
∫

Ω

fn v dx , ∀v ∈ W1,p
0 (Ω) .

Before studying problem (2.1), we recall the definition of decreasing rearrange-
ment of a measurable function w : Ω → R. If one denotes by |E| the Lebesgue
measure of a set E, one can define the distribution function µw(t) of w as:

µw(t) = |{x ∈ Ω : |w(x)| > t}| , t ≥ 0 .

The decreasing rearrangement w∗ of w is then defined as the generalized inverse
function of µw:

w∗(σ) = inf{t ∈ R : µw(t) ≤ σ} , σ ∈ (0, |Ω|) .
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We recall that w and w∗ are equimeasurable, i.e.,

µw(t) = µw∗(t) , t ≥ 0 .

This implies, for example, that, for any monotone function ψ, it holds that:

∫

Ω

ψ
(|w(x)|) dx =

∫ |Ω|

0
ψ
(
w∗(σ)

)
dσ ,

and, in particular,

‖w∗‖
L p(0,|Ω|) = ‖w‖

L p(Ω)
, 1 ≤ p ≤ ∞ . (2.2)

The theory of rearrangements is well known and exhaustive treatments of it can be
found for example in [7], [17], [20], [4].

Using the notation just introduced above, we say that a measurable function
w : Ω → R belongs to the Marcinkiewicz space Mr(Ω), r > 0, if there exists
a constant c such that

µw(t) ≤ c

tr
, ∀t > 0.

We observe that the above condition is equivalent to say that w∗(σ) ≤ cσ−1/r , ∀σ ∈
(0, |Ω|), for some positive constant c, and we put ‖w‖

Mr (Ω)
= sup

σ∈(0,Ω|)
w∗(σ)σ1/r .

We also recall that if w ∈ Lr(Ω) then w ∈ Mr(Ω). Indeed, we have

w∗(σ) ≤ 1

σ

∫ σ

0
w∗(σ) dσ ≤ 1

σ1/r
‖w‖

Lr (Ω)
.

For solutions of (2.1) one can prove the following differential inequality:

Theorem 2.1. Suppose un is a solution of (2.1), and define:

B(t) =
∫ t

0
b(η)

1
p−1 dη =

∫ t

0

α
1

p−1

(1 + η)θ
dη , t ≥ 0 . (2.3)

The following inequality holds, for a.e. s ∈ (0, |Ω|):

−d

dσ
B
(
u∗

n(σ)
) ≤ 1

(
NC1/N

N σ1−1/N
)p′

(∫ σ

0
f ∗
n (τ) dτ

)p′/p

, (2.4)

where CN is the measure of the unit ball in RN .

Proof. For t > 0 and k > 0, we use in the formulation of solution (1.8) the test
function v = Tk(un − Tt(un)), obtaining:

∫

t<|un |≤t+k
a(x, Tn(un),∇un) · ∇un dx ≤ k

∫

|un|>t
| fn | dx .
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Dividing both sides by k and using (1.2) we get:

α

k

∫

t<|un |≤t+k

|∇un|p

(1 + |un|)θ(p−1)
dx

≤ α

k

∫

t<|un |≤t+k

|∇un|p

(1 + |Tn(un)|)θ(p−1)
dx ≤

∫

|un|>t
| fn | dx .

(2.5)

The above inequality and Hölder’s inequality imply:
(

α

k

∫

t<|un |≤t+k

|∇un|
(1 + |un|)θ(p−1)

dx

)p

≤
(

α

k

∫

t<|un |≤t+k

1

(1 + |un|)θ(p−1)
dx

)p−1 (∫

|un |>t
| fn | dx

)

.

(2.6)

We can pass to the limit as k goes to 0 in (2.6) to get, after simplification,

α

(1 + t)θ(p−1)

(
d

dt

∫

|un |≤t
|∇un| dx

)p

≤ [−µ′
un

(t)
]p−1

∫ µun (t)

0
f ∗
n (τ) dτ . (2.7)

It is well known that a consequence of the Fleming–Rishel formula (see [15]) and
the isoperimetric inequality (see [14], [3]), is the following inequality:

N C1/N
N µun (t)

1−1/N ≤ d

dt

∫

|un|≤t
|∇un| dx , (2.8)

where CN denotes the measure of the unit ball in RN . Then (2.7) and (2.8) give:

α
1

p−1

(1 + t)θ
≤

[−µ′
un

(t)
]

(
N C1/N

N µun (t)1−1/N
)p′

(∫ µun (t)

0
f ∗
n (τ) dτ

)p′/p

.

Using the properties of rearrangements one easily obtains (2.4). ��
Remark 2.2. Looking at the above proof, it appears clear that the result of Theo-
rem 2.1 does not depend on the choice of the function b(t) made in (1.3). We
explicitly remark that if b(t) is any continuous bounded positive function, then
(2.4) still holds true, being B(t) defined as in (2.3).

Corollary 2.3. Suppose that un is a solution of (2.1), and assume:

0 ≤ θ ≤ 1 . (2.9)

We have:

(i) if m > N/p ≥ 1, then:

‖un‖
L∞(Ω)

≤ B−1






|Ω| p′
N − p′

pm

(
N C1/N

N

)p′
Nm(p − 1)

pm − N
‖ fn‖

p′
p

Lm (Ω)




 , (2.10)

where B−1 denotes the inverse function of B, defined in (2.3);
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(ii) if 1 < m < N/p, then:

‖B(|un|)r‖
L1(Ω)

≤ A‖ fn‖
rp′

p

Lm (Ω)
, (2.11)

where r = Nm(p − 1)/(N − m p) and A is a constant which depends on
N, p, m;

(iii) if m = 1, then

‖B(|un|)‖
M

N(p−1)
N−p (Ω)

≤ N ′

(p′ − N ′)
(

N C1/N
N

)p′ ‖ fn‖
p′
p

L1(Ω)
. (2.12)

The above corollary can be proven using the following technical result which
can be found, for example, in [2].

Lemma 2.4. Let φ : (0,+∞) → (0,+∞) be a decreasing function. For ε ≥ 0
and λ �= 1, let Fλ(σ) be defined as follows:

Fλ(σ) =






∫ σ

0
τεφ(τ) dτ if λ < 1

∫ ∞

σ

τεφ(τ) dτ if λ > 1.

If r > 0, then:

∫ +∞

0

(
Fλ(σ)

σ

)r

σrλ dσ

σ
≤ c
∫ +∞

0

(
φ(σ)

)r
σr(ε+λ) dσ

σ
,

where c is a constant which depends only on ε, r and λ.

Proof of Corollary 2.3. The corollary is a consequence of the fact that, if we
integrate (2.4) between s and |Ω|, we have:

B(u∗
n(σ)) ≤ 1

(
N C1/N

N

)p′

∫ |Ω|

σ

(∫ ρ

0
f ∗
n (τ) dτ

)p′/p dρ

ρp′/N′ . (2.13)

Immediately we get part (i) by evaluating B(u∗
n(0)). Also part (iii) is immediate.

Indeed, taking into account the fact that B is a positive increasing function we can
say that the decreasing rearrangement of B(|un(x)|) coincides with B(u∗

n(σ)). On
the other hand (2.13) implies:

B(u∗
n(σ)) ≤

N ′‖ fn‖p′/p
L1(Ω)

(p′ − N ′)
(

N C1/N
N

)p′
σ p′/N′−1

,

which gives (2.12).
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As regards part (ii), we observe that (2.13) gives:

‖B(|un|)r‖
L1(Ω)

≤ 1
(

N C1/N
N

)p′

(∫ |Ω|

0

(∫ |Ω|

σ

(∫ ρ

0
f ∗
n (τ) dτ

)p′/p dρ

ρp′/N′

)r

dσ

)

.

Recalling that the function f̄n(ρ) = 1

ρ

∫ ρ

0
f ∗
n (τ) dτ is decreasing, we can use two

times Lemma 2.4 to obtain:

‖B(|un|)r‖
L1(Ω)

≤ c

(∫ |Ω|

0
( f ∗(τ))rp′/pτrp′/N dτ

)

,

where c is a suitable constant. Recalling that, in particular, fn ∈ Mm(Ω) (with m
as in (ii)), the above inequality implies (2.11). ��

Remark 2.5. Looking at (2.13) in the proof of Corollary 2.3 one realizes that (2.10)
can be proven under the weaker assumption:

∫ |Ω|

0

(∫ σ

0
f ∗
n (τ) dτ

)p′/p dσ

σ p′/N′ < +∞ .

The above condition is equivalent to saying that f belongs to the Lorentz space
L(N/p, p′/p). Clearly statement (ii) can also be given in terms of suitable estimates
in Lorentz spaces. We also remark that in the case p = N in statement (ii) (which
we have not studied here), similar results can be given. More precisely, one can
prove that u belongs to a suitable Orlicz space (see [25] when N = p = 2).

Remark 2.6. Using the explicit form of the function B, Corollary 2.3 thus implies
the following:

a) if m > N
p ≥ 1, then for every θ in [0, 1] the norm of un in L∞(Ω) is bounded

by a constant depending on the norm of fn in Lm(Ω);

b) if 1 < m < N
p , then for every θ in [0, 1) the norm of u

(1−θ)
Nm(p−1)

N−m p
n is bounded

in L1(Ω) by a constant depending on the norm of fn in Lm(Ω);

c) if m = 1, then for every θ in [0, 1) the norm of un in M
N(p−1)(1−θ)

N−p (Ω) is bounded
by a constant depending on the norm of fn in L1(Ω).

We explicitly observe that in b) the case θ = 1 is a limit case where it is not
possible, in general, to prove that |un|q is bounded in L1(Ω) for some q > 0. As
a consequence of Corollary 2.3 one can only say that log(1 + |un|) is bounded in

L
Nm(p−1)

N−m p (Ω). A similar observation holds true in c).

It is possible to get information about un also when assumption (2.9) is not
satisfied. For example, we have the following result:
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Corollary 2.7. Suppose that un is a solution of (2.1), and assume

θ > 1 . (2.14)

If fn is such that

1
(

N C1/N
N

)p′

∫ |Ω|

0

(∫ σ

0
f ∗
n (τ) dτ

)p′/p dσ

σ p′/N′ <
α

1
p−1

θ − 1
, (2.15)

then,

‖un‖
L∞(Ω)

≤ B−1






1
(

N C1/N
N

)p′

∫ |Ω|

0

(∫ σ

0
f ∗
n (τ) dτ

)p′/p dσ

σ p′/N′




 , (2.16)

where B−1 denotes the inverse function of B.

Proof. The proof follows the arguments of Corollary 2.3. Inequality (2.16) is an
immediate consequence of (2.13), (2.14) and (2.15). ��
Remark 2.8. The results stated in Theorem 2.1, in Corollaries 2.3, 2.7 and in
Remarks 2.5, 2.6, are sharp in the sense that the estimates for u∗

n become equalities
when the problem has a spherical symmetry. More precisely, consider the model
problem:






− div

( |∇v|p−2∇v

(1 + |v|)θ(p−1)

)

= f # in Ω#

v = 0 on ∂Ω#,

(2.17)

where Ω# is the ball centered at the origin such that |Ω#| = |Ω| and f #(x) =
f ∗(CN |x|N ), x ∈ Ω#. It is easy to show that inequality (2.4) can be written as

− d

dσ
B(u∗

n(σ)) ≤ − d

dσ
B(v∗(σ)).

This means that all the estimates which are direct consequences of (2.4) cannot
be improved. Using this kind of argument the optimality of Corollary 2.7 will be
further analysed in Section 6.

3. Gradient estimates

In this section we will give some a priori estimates on the gradients of the solu-
tions of (2.1), depending on the various regularity assumptions on fn as stated in
Theorems 1.1, 1.3, 1.7 and 1.9.

We start with the simplest result concerning the assumptions on fn which
yield bounded solutions. We observe that if un is bounded in L∞(Ω), then it is
also natural to expect a boundedness in W1,p

0 (Ω), since in this case the lack of
coerciveness of the operator A “disappears”.
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Theorem 3.1. Let 0 ≤ θ ≤ 1, let m > N/p, and let un be a solution of (2.1). Then
there exists a constant c, continuously depending on the norm of fn in Lm(Ω), and
independent of n, such that

‖un‖
W1,p

0 (Ω)
≤ c . (3.1)

Proof. We choose un as a test function in (2.1). We obtain, using (1.2) and (1.3),

α

∫

Ω

|∇un|p

(1 + |un|)θ (p−1)
dx ≤

∫

Ω

| fn| |un| dx ,

which implies
∫

Ω

|∇un|p dx ≤ c (1 + ‖un‖
L∞(Ω)

)1+θ (p−1) ‖ fn‖
Lm (Ω)

,

for some positive constant c. Since, by Remark 2.6, a), the norm of un in L∞(Ω) is
bounded by a constant depending on the norm of fn in Lm(Ω), (3.1) is proved. ��

The next result deals with the cases studied in Theorems 1.3 and 1.7.

Theorem 3.2. Let un be a solution of (2.1) under the assumptions (1.2) and (1.3),
with 0 ≤ θ < 1, and let m̃, m, s and q be as in (1.9), (1.15), (1.11) and (1.17),
respectively. We have:

(a) if m̃ ≤ m < N/p, then the norm of un in W1,p
0 (Ω) and in Ls(Ω) is bounded

by a constant continuously depending on the norm of fn in Lm(Ω);
(b) if max{1, m} < m < m̃, then the norm of un in W1,q

0 (Ω) and in Ls(Ω) is
bounded by a constant continuously depending on the norm of fn in Lm(Ω).

Proof. We already know, from Remark 2.6, that un is bounded in Ls(Ω) by a con-
stant depending on the norm of fn in Lm(Ω). We explicitly observe that a direct
consequence of the definition of m is that when m > m then s > N ′ > 1.

In order to prove the gradient estimate, we use the same arguments of Theo-
rem 2.1 to get (2.5). Using the explicit form of b(t) we have

d

dt

∫

|un |≤t

|∇un|p

(1 + |un|)θ(p−1)+1−s/m′ dx ≤ c (1 + t)−1+s/m′
∫ µun (t)

0
f ∗
n (τ) dτ. (3.2)

Integrating between 0 and +∞ we get
∫

Ω

|∇un|p

(1 + |un|)θ(p−1)+1−s/m′ dx ≤ c
∫ +∞

0
(1 + t)−1+s/m′

∫ µun (t)

0
f ∗
n (τ) dτ dt

= cm ′

s

∫ |Ω|

0
f ∗
n (τ)

[
(1 + u∗

n(τ))
s/m′ − 1

]
dτ .

(3.3)

Under the assumptions of part (a) we have θ(p − 1) + 1 − s/m ′ ≤ 0, so that
(3.3), together with the fact that un is bounded in Ls(Ω), immediately implies
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that un is bounded in W1,p
0 (Ω) (and the norm of un is controlled by a constant

depending on the norm of fn in Lm(Ω)). Under the assumptions of part (b) we
have θ(p − 1) + 1 − s/m ′ > 0, so, for q as in (1.17), we get

∫

Ω

|∇un|q dx ≤
(∫

Ω

|∇un|p

(1 + |un|)θ(p−1)+1−s/m′ dx

) q
p (∫

Ω

(1 + |un|)s dx

)1− q
p

,

and the proof is then complete, since every term can be estimated with constants
depending on the norm of un in Ls(Ω), hence on the norm of fn in Lm(Ω). ��

Remark 3.3. A different way of proving the previous theorem is to use v = (1 +
|un|)s/m′ − 1 as a test function in (2.1), which is admissible since un belongs to
W1,p

0 (Ω) ∩ L∞(Ω).

Remark 3.4. We observe that in the case (a) the arguments used in Theorem 3.2
allow us to prove that not only the norm of un is bounded in W1,p

0 (Ω), but also that
|∇un|p

(1 + |un|)θ(p−1)+1−s/m′ is bounded in L1(Ω), a slightly stronger result (recall that

in this case θ(p − 1) + 1 − s/m ′ ≤ 0).

If 1 ≤ m ≤ max{1, m} we have to turn to Marcinkiewicz spaces in order to
obtain a priori estimates on the gradients of un .

Theorem 3.5. Let un be a solution of (2.1) under the assumptions (1.2) and (1.3),
with 0 ≤ θ < 1, and let m, s and q be as in (1.15), (1.11) and (1.17), respectively.
If we have

1 ≤ m ≤ max{1, m}, (3.4)

then the norm of un in Ms(Ω) and the norm of |∇un| in Mq(Ω) are bounded by
constants continuously depending on the norm of fn in Lm(Ω). Furthermore, if
m > 1 and 1 < m ≤ m, then the norm of |un|s is bounded in L1(Ω) (once again,
by a constant continuously depending on the norm of fn in Lm(Ω)).

Before proving the above theorem we state a technical lemma which gives a
sufficient condition for a function to be in a Marcinkiewicz space.

Lemma 3.6. Let v be a measurable function belonging to Mr(Ω) for some r > 0,
such that, for every k ≥ 0, Tk(v) belongs to W1,p

0 (Ω), p > 1. Suppose that

∫

|v|≤k
|∇v|p dx ≤ ckλ, ∀k > k0, (3.5)

for some non-negative λ, c and k0. Then the weak gradient of v is such that |∇v|
belongs to Mq(Ω), with q = r p

r + λ
.
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Proof. The proof of the lemma is essentially the same as the proof of Lemma 3.2
in [11] (see also [8]), but, for the sake of completeness, we sketch it. If k > 0 is
fixed, for every t > 0, we can write

|{|∇v| > k}| ≤ |{|∇v| > k, |v| ≤ t}| + |{|v| > t}| .
Using (3.5) and the fact that v ∈ Mr(Ω), we have, for t > k0,

|{|∇v| > k}| ≤ 1

k p

∫

Ω

|∇Tt(v)|p dx + |{|v| > t}|

≤ c

(
tλ

k p
+ 1

tr

)

.

(3.6)

For k sufficiently large (k > (λkr+λ
0 /r)1/p), a minimization of the right-hand side

of (3.6) gives

|{|∇v| > k}| ≤ c

trp/(r+λ)
.

Observing that, for any value of k, |{|∇v| > k}| ≤ |Ω|, we obtain the assertion. ��

Proof of Theorem 3.5. The boundedness of un in both Lebesgue and Marcinkiewicz
spaces holds true by Remark 2.6. We explicitly observe that, in this case, s can be
smaller than 1 (a fact that happens if either p or θ are close to 1).

As regards the gradient estimates, we can argue as in the proof of Theorem 3.2
in order to obtain (3.2). A simple consequence of it is the following inequality:

d

dt

∫

|un |≤t
|∇un|p dx ≤ c(1 + t)θ(p−1)

∫ µun (t)

0
f ∗
n (τ) dτ.

Integrating between 0 and k, k > 0, we get
∫

|un|≤k
|∇un|p dx ≤ c

∫ k

0
(1 + t)θ(p−1)

∫ µun (t)

0
f ∗
n (τ) dτ dt. (3.7)

If m = 1, from (3.7) we have
∫

|un |≤k
|∇un|p dx ≤ c((1 + k)θ(p−1)+1 − 1) ,

where c is a constant which depends only on the data. This means that we can apply
Lemma 3.6, obtaining that |∇un| is bounded in Mq(Ω), where q is as in (1.17);
that is the assertion.

If 1 < m ≤ max{1, m} (this means m > 1), we have to use the fact that un is
bounded in Ms(Ω). From (3.7) we get

∫

|un |≤k
|∇un|p dx ≤ c

∫ k

0

(1 + t)θ(p−1)

ts/m′ dt,

where c is a constant which depends only on the data. The above inequality implies
that, for k large, inequality (3.5) holds true with λ = θ(p − 1) + 1 − s/m ′. An
application of Lemma 3.6 then gives the assertion. ��
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4. Almost everywhere convergence of gradients

This section will be devoted to the proof of the almost everywhere convergence of
the gradients of the approximate solutions un , a technical result which, together
with the a priori estimates proved in the preceding sections, will allow us to pass
to the limit in the approximate equations (2.1).

Recall that if u is a measurable function such that Tk(u) belongs to W1,p
0 (Ω)

for every k > 0 then it is possible to define its weak gradient ∇u.
Our result is the following:

Theorem 4.1. Let un be a sequence of solutions of the problems
{− div(a(x, Tn(un),∇un)) = fn in Ω,

un = 0 on ∂Ω,
(4.1)

with fn strongly convergent to some f in L1(Ω). Suppose that:

(i) un is such that Tk(un) belongs to W1,p
0 (Ω) for every k > 0;

(ii) un converges almost everywhere in Ω to some measurable function u which
is finite almost everywhere, and such that Tk(u) belongs to W1,p

0 (Ω) for every
k > 0 (note that (i) and (ii) imply that Tk(un) weakly converges to Tk(u) in
W1,p

0 (Ω));
(iii) un is bounded in Mr1 (Ω) for some r1 > 0, and u belongs to the same Mr1 (Ω);
(iv) there exists γ > 0 such that |∇un|γ is bounded in Lr2(Ω), for some r2 > 1,

and |∇u|γ belongs to the same Lr2(Ω).

Then, up to a subsequence, ∇un converges almost everywhere in Ω to ∇u, the
weak gradient of u.

Proof. We follow the proof which can be found in [9]. Let λ be a real number
between 0 and 1, which will be chosen later. Define an(x, t, ξ) = a(x, Tn(t), ξ) and
(for the sake of simplicity, we omit the dependence of an on x)

I(n) =
∫

Ω

{[an(un,∇un) − an(un,∇u)] · ∇(un − u)}λ dx .

Note that I(n) is well defined since the integrand function is non-negative thanks to
(1.5). We fix k > 0 and split the integral in I(n) on the sets {|u| > k} and {|u| ≤ k},
obtaining

I1(n, k) =
∫

{|u|>k}
{[an(un,∇un) − an(un,∇u)] · ∇(un − u)}λ dx ,

and

I2(n, k) =
∫

{|u|≤k}
{[an(un,∇un) − an(un,∇u)] · ∇(un − u)}λ dx .

We remark that, by the growth conditions on a (see (1.4)), one has

I1(n, k) ≤ c
∫

{|u|>k}

(
1 + |∇un|λ p + |∇u|λ p) dx .
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We now choose λ < 1 such that λ p = γ . Using the Hölder inequality and (iv) we
obtain

I1(n, k) ≤ c

(∫

Ω

(
1 + |∇un|γ r2 + |∇u|γ r2

)
dx

) 1
r2 |{|u| > k}|1− 1

r2

≤ c |{|u| > k}|1− 1
r2 .

By (iii), and by the choice of λ, we thus have

lim
k→+∞

lim sup
n→+∞

I1(n, k) = 0 . (4.2)

Since where |u| ≤ k one has u = Tk(u), and since the integrand function is
non-negative, for I2(n, k) one has

I2(n, k) ≤ I3(n, k)

=
∫

Ω

{[an(un,∇un) − an(un,∇Tk(u))] · ∇(un − Tk(u))}λ dx .

We fix h > 0 and split the integral in I3(n, k) on the sets {|un − Tk(u)| > h} and
{|un − Tk(u)| ≤ h}, obtaining

I4(n, k, h)

=
∫

{|un−Tk(u)|>h}
{[an(un,∇un) − an(un,∇Tk(u))] · ∇(un − Tk(u))}λ dx ,

and

I5(n, k, h)

=
∫

{|un−Tk(u)|≤h}
{[an(un,∇un) − an(un,∇Tk(u))] · ∇(un − Tk(u))}λ dx .

For I4(n, k, h) one can reason as for I1(n, k), since (thanks to (iii)), the measure of
the set {|un − Tk(u)| > h} tends to zero as h tends to +∞ uniformly in n and k.
Thus (with the same choice of λ), one has

lim
h→+∞ lim sup

k→+∞
lim sup
h→+∞

I4(n, k, h) = 0 . (4.3)

Since ∇(un − Tk(u)) = ∇Th(un − Tk(u)) on the set {|un − Tk(u)| ≤ h}, we have

I5(n, k, h) =
∫

Ω

{[an(un,∇un) − an(un,∇Tk(u))] · ∇Th(un − Tk(u))}λ dx .

By the Hölder inequality (with exponents 1/λ and 1/(1 − λ)), we have

I5(n, k, h)

≤ |Ω|1−λ

{∫

Ω

[an(un,∇un) − an(un,∇Tk(u))] · ∇Th(un − Tk(u)) dx

}λ

.
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Define

I6(n, k, h) =
∫

Ω

[an(un,∇un) − an(un,∇Tk(u))] · ∇Th(un − Tk(u)) dx ,

which we split as the difference I7(n, k, h) − I8(n, k, h), where

I7(n, k, h) =
∫

Ω

an(un,∇un) · ∇Th(un − Tk(u)) dx ,

and

I8(n, k, h) =
∫

Ω

an(un,∇Tk(u)) · ∇Th(un − Tk(u)) dx .

The integral in I8(n, k, h) is on the set where |un −Tk(u)| ≤ h, that is a subset of the
set where |un| ≤ k + h; thus, if n ≥ h + k, one has (recalling the definition of an),
an(un,∇Tk(u)) = a(un,∇Tk(u)). Using the almost everywhere convergence of un

to u, and the growth assumptions on a, one has that

a(un,∇Tk(u)) → a(u,∇Tk(u)) strongly in (L p′
(Ω))N ,

so that, using the weak convergence of ∇Th(un − Tk(u)) to ∇Th(u − Tk(u)) in
(L p(Ω))N (a consequence of (i) and (ii)), one has

lim
n→+∞ I8(n, k, h) =

∫

Ω

a(u,∇Tk(u)) · ∇Th(u − Tk(u)) dx = 0 ,

since a(u,∇Tk(u)) �= 0 only on the set |u| ≤ k, and on this set the gradient of
Th(u − Tk(u)) is zero. For I7(n, k, h) we use the equation (2.1), and we obtain

I7(n, k, h) =
∫

Ω

fn Th(un − Tk(u)) dx .

Using the strong convergence of fn in L1(Ω), one then has

lim
n→+∞ I7(n, k, h) =

∫

Ω

f Th(u − Tk(u)) dx ,

so that

lim
k→+∞ lim

n→+∞ I7(n, k, h) = 0 . (4.4)

Putting together (4.2), (4.3) and (4.4) one thus has

lim
n→+∞ I(n) = 0 .

Since the integrand function in I(n) is non-negative, this implies that

{[an(un,∇un) − an(un,∇u)] · ∇(un − u)}λ → 0 , strongly in L1(Ω).

Thus, up to subsequences still denoted by un ,

[an(x, un(x),∇un(x)) − an(x, un(x),∇u(x))] · ∇(un(x) − u(x)) → 0 , (4.5)
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for almost every x in Ω. We now conclude the proof using the same technique as
that of [18]. Let x in Ω be such that un(x) converges to u(x), that |u(x)| < +∞,
and that (4.1) holds true. Due to (ii), the set of x in Ω such that at least one of
the above properties does not hold has zero measure. Since |u(x)| < +∞, one has
|un(x)| ≤ |u(x)| + 1 ≤ n for n large enough, so that (4.5) becomes

[a(x, un(x),∇un(x)) − a(x, un(x),∇u(x))] · ∇(un(x) − u(x)) → 0 . (4.6)

Due to the growth assumptions on a with respect to ξ , and to the fact that |un(x)|
remains bounded, one has that {|∇un(x)|} is a bounded sequence. Let ρ be a limit
point of the sequence ∇un(x). Thanks to the continuity of a, and to (4.6), one has

[a(x, u(x), ρ) − a(x, u(x),∇u(x))] · (ρ − ∇u(x)) = 0 ,

and this implies, by (1.5), that ρ = ∇u(x). Since the limit is independent of the
subsequence, ∇un(x) converges to ∇u(x), and this result holds for almost every x
in Ω. ��

5. Proof of the results

In this section we are going to combine the results of Sections 2, 3 and 4, in order
to prove Theorems 1.1, 1.3, 1.7 and 1.9.

Let f be in Lm(Ω), with m ≥ 1, and let fn be a sequence of L∞(Ω) functions
strongly convergent to f in Lm(Ω). Then let un be a sequence of solutions of (2.1),
which exist by the result of [18]. Let k > 0 be fixed, and choose Tk(un) as a test
function in (2.1) to obtain

∫

Ω

a(x, Tn(un),∇un) · ∇Tk(un) dx =
∫

Ω

fn Tk(un) dx .

Using (1.2), we have, for n > k,

α

∫

Ω

|∇Tk(un)|p dx ≤ (1 + k)θ (p−1) k ‖ fn‖
L1(Ω)

,

so that Tk(un) is bounded in W1,p
0 (Ω) independently of n. This implies (see [8]) that

there exists a subsequence of un (still denoted by un) which is almost everywhere
convergent in Ω to a measurable function u such that Tk(u) belongs to W1,p

0 (Ω) for
every k > 0. Since fn is at least bounded in L1(Ω), then un is bounded in Ms(Ω)

(with s as in (1.11)), and |∇un| is bounded in Mq(Ω) (with q as in (1.17), written
for m = 1). It is then true that un satisfies the assumptions i)–iv) of Theorem 4.1
(with r1 = s and γ = q/2, r2 = 2), and so ∇un almost everywhere converges
to ∇u.

Thus,

a(x, Tn(un),∇un) almost everywhere converges to a(x, u,∇u) . (5.1)

Suppose now that the assumptions of Theorems 1.1 or 1.3 hold. Then un is bounded
in W1,p

0 (Ω) so that (as a consequence of (1.4)), |a(x, Tn(un),∇un)| is bounded in
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L p′
(Ω). Thus, by (5.1), a(x, Tn(un),∇un) is weakly convergent to a(x, u,∇u) in

(L p′
(Ω))N . If v belong to W1,p

0 (Ω) is it then possible to pass to the limit as n tends
to infinity in the identities

∫

Ω

a(x, Tn(un),∇un) · ∇v dx =
∫

Ω

fn v dx ,

to obtain that u is a solution of (1.7) in the sense (1.8).

If we are under the assumptions of Theorems 1.7 or 1.9, we fix k > 0, ϕ in
W1,p

0 (Ω) ∩ L∞(Ω), and choose Tk(un − ϕ) as a test function in (2.1). We have
∫

Ω

a(x, Tn(un),∇un) · ∇Tk(un − ϕ) dx =
∫

Ω

fn Tk(un − ϕ) dx .

The right-hand side converges, as n tends to infinity, to
∫

Ω

f Tk(u − ϕ) dx ,

since fn is strongly covergent in (at least) L1(Ω), while Tk(un − ϕ) converges both
weakly∗ in L∞(Ω) and almost everywhere to Tk(u − ϕ). As the left-hand side is
concerned, we split it as the sum
∫

{|un−ϕ|≤k}
a(x, Tn(un),∇un) · ∇un dx −

∫

{|un−ϕ|≤k}
a(x, Tn(un),∇un) · ∇ϕ dx .

Taking into account the fact that the second integral is on a subset of the set where
|un| ≤ k + ‖ϕ‖

L∞(Ω)
= M, we can rewrite it (taking n > M) as

∫

{|un−ϕ|≤k}
a(x, TM(un),∇TM(un)) · ∇ϕ dx .

Since |a(x, TM(un),∇TM(un))| is bounded in L p′
(Ω), a consequence of (5.1)

is that a(x, TM(un),∇TM(un)) is weakly convergent to a(x, TM(u),∇TM(u)) in
(L p′

(Ω))N ; hence, the second integral converges, as n tends to infinity, to
∫

{|u−ϕ|≤k}
a(x, TM(u),∇TM(u)) · ∇ϕ dx =

∫

{|u−ϕ|≤k}
a(x, u,∇u) · ∇ϕ dx .

The integrand function of the first is non-negative (by (1.2)), and it is almost
everywhere convergent (by (5.1)); by Fatou’s lemma, we have
∫

{|u−ϕ|≤k}
a(x, u,∇u) · ∇u dx ≤ lim inf

n→+∞

∫

{|un−ϕ|≤k}
a(x, Tn(un),∇un) · ∇un dx .

Putting all the terms together, we obtain
∫

{|u−ϕ|≤k}
a(x, u,∇u) · ∇(u − ϕ) dx =

∫

Ω

f Tk(u − ϕ) dx ,

which is (1.14).

As a final remark, we observe that the solution u we obtained possesses the
regularity stated in the statements of the theorems, due to the results of Sections 2
and 3. ��
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5.1. Data in divergence form

If the datum of (1.7) is in divergence form, it is possible to give an existence result
similar to those of the previous theorems. For the sake of simplicity, we consider
the model problem (1.1) with data in divergence form, that is






− div

( |∇u|p−2 ∇u
(1 + |u|)θ (p−1)

)

= − div(F) in Ω,

u = 0 on ∂Ω,
(5.2)

with |F| in L p′
(Ω).

Theorem 5.1. Let 0 ≤ θ < 1, and let |F| be in L p′
(Ω). Then there exists at least

an entropy solution of (5.2), i.e., a function u such that Tk(u) belongs to W1,p
0 (Ω)

for every k ≥ 0 and
∫

Ω

|∇u|p−2 ∇u

(1 + |u|)θ (p−1)
· ∇Tk(u − ϕ) dx =

∫

Ω

F · ∇Tk(u − ϕ) dx , (5.3)

for every ϕ in W1,p
0 (Ω) ∩ L∞(Ω). Moreover, u is such that |u|(1−θ) p∗

belongs to
L1(Ω).

Proof. Let un be a sequence of solutions of





− div

( |∇un|p−2 ∇un

(1 + |Tn(un)|)θ (p−1)

)

= − div(F) in Ω,

un = 0 on ∂Ω;
(5.4)

observe that un exists in W1,p
0 (Ω) by the result of [18] since − div(F) is in

W−1,p′
(Ω).

Taking Tk(un) as a test function in (5.4), we have
∫

Ω

|∇Tk(un)|p

(1 + |un|)θ(p−1)
dx ≤

∫

Ω

F ∇Tk(un) dx ,

and so ∫

Ω

|∇Tk(un)|p dx ≤ (1 + k)θ p
∫

Ω

|F|p′
dx .

Hence, Tk(un) is bounded in W1,p
0 (Ω) for every k ≥ 0.

Let us define

H(t) =
∫ t

0

ds

(1 + |s|)θ ,

and take H(un) as a test function in (5.4); we have
∫

Ω

|∇un|p

(1 + |un|)θ p
dx ≤

∫

Ω

F · ∇un

(1 + |un|)θ dx

≤ ‖|F|‖
L p′

(Ω)

(∫

Ω

|∇un|p

(1 + |un|)θ p
dx

) 1
p

.
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Hence, ∫

Ω

|∇H(un)|p dx ≤
∫

Ω

|F|p′
dx ,

so that H(un) is bounded in W1,p
0 (Ω). Moreover, by Sobolev embedding,
∫

Ω

|H(un)|p∗
dx ≤ c ,

and since H(un) behaves like |un|1−θ , we have
∫

Ω

|un|(1−θ) p∗
dx ≤ c .

The fact that Tk(un) is bounded in W1,p
0 (Ω) and the estimate on |un|(1−θ) p∗

imply
that (up to subsequences still denoted by un) un converges almost everywhere in
Ω to some function u, which is such that Tk(u) belongs to W1,p

0 (Ω), H(u) belongs
to W1,p

0 (Ω), and |u|(1−θ) p∗
is in L1(Ω).

We now choose H(Tk(un)) − H(Tk(u)) as a test function in (5.4), and observe
that, since H(Tk(un)) weakly converges to H(Tk(u)) in W1,p

0 (Ω), then

lim
n→+∞

∫

Ω

F · (∇H(Tk(un)) − ∇H(Tk(u))) dx = 0 .

Hence

lim
n→+∞

∫

Ω

|∇un|p−2 ∇un

(1 + |Tn(un)|)θ (p−1)
· (∇H(Tk(un)) − ∇H(Tk(u))) dx = 0 .

We now write

|∇un|p−2 ∇un

(1 + |Tn(un)|)θ (p−1)
= |∇Tk(un)|p−2 ∇Tk(un)

(1 + |Tn(un)|)θ (p−1)
+ |∇Gk(un)|p−2 ∇Gk(un)

(1 + |Tn(un)|)θ (p−1)
,

and deal with the two integrals separately. We have, for n > k,

|∇Tk(un)|p−2 ∇Tk(un)

(1 + |Tn(un)|)θ (p−1)
= |∇Tk(un)|p−2 ∇Tk(un)

(1 + |Tk(un)|)θ (p−1)

= |∇H(Tk(un))|p−2 ∇H(Tk(un)) ,

so that
∫

Ω

|∇un|p−2 ∇un

(1 + |Tn(un)|)θ (p−1)
· (∇H(Tk(un)) − ∇H(Tk(u))) dx

=
∫

Ω

[

(|∇H(Tk(un))|p−2 ∇H(Tk(un)) − |∇H(Tk(u))|p−2 ∇H(Tk(u)))

·(∇H(Tk(un)) − ∇H(Tk(u)))

]

dx

+
∫

Ω

|∇H(Tk(u))|p−2 ∇H(Tk(u)) · (∇H(Tk(un)) − ∇H(Tk(u))) dx

−
∫

Ω

|∇Gk(un)|p−2 ∇Gk(un)

(1 + |Tn(un)|)θ (p−1)
· ∇H(Tk(u)) dx .
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Remark that

lim
n→+∞

∫

Ω

|∇H(Tk(u))|p−2 ∇H(Tk(u)) · (∇H(Tk(un)) − ∇H(Tk(u))) dx = 0 ,

since ∇H(Tk(un)) − ∇H(Tk(u)) converges weakly to zero in (L p′
(Ω))N and that

lim
n→+∞

∫

Ω

|∇Gk(un)|p−2 ∇Gk(un)

(1 + |Tn(un)|)θ (p−1)
· ∇H(Tk(u)) dx = 0 ,

since (again up to subsequences) |∇Gk(un)|p−2 ∇Gk(un)

(1 + |Tn(un)|)θ (p−1) converges weakly in

(L p′
(Ω))N to Ψ(x)χ{|u(x)|≥k}, for some Ψ ∈ (L p′

(Ω))N , and ∇H(Tk(u)) = 0 on
the set {|u(x)| ≥ k}. Thus,

lim
n→+∞

∫

Ω

[

(|∇H(Tk(un))|p−2 ∇H(Tk(un)) − |∇H(Tk(u))|p−2 ∇H(Tk(u)))

·(∇H(Tk(un)) − ∇H(Tk(u)))

]

dx = 0 ,

which implies that

H(Tk(un)) → H(Tk(u)) strongly in W1,p
0 (Ω).

Choosing Tk(un − ϕ) as a test function in (5.4), we obtain
∫

Ω

|∇H(un)|p−2 ∇H(un) · ∇Tk(un − ϕ) dx =
∫

Ω

F · ∇Tk(un − ϕ) dx .

Observing that ∇Tk(un − ϕ) �= 0 only on the set {|un − ϕ| ≤ k}, and that on this
set |un| ≤ M = k + ‖ϕ‖

L∞(Ω)
, we have

∫

Ω

|∇H(TM(un))|p−2∇H(TM(un)) · ∇Tk(un − ϕ)dx =
∫

Ω

F · ∇Tk(un − ϕ)dx.

Hence, it is possible to pass to the limit as n tends to infinity, obtaining (5.3). ��

6. The case θ > 1

In this section we are going to consider the case θ > 1. Our first result is an
existence one.

Theorem 6.1. Let θ > 1, and let f be in Lm(Ω), with m > N
p . Then there exists

M > 0 such that if ‖ f ‖
Lm (Ω)

≤ M, then there exists a solution u of (1.7) with u in

W1,p
0 (Ω) ∩ L∞(Ω).

Proof. If θ > 1 then the function B defined in (2.3) is bounded by α
1

p−1

θ−1 . It is then
enough to apply Corollary 2.7 and Theorem 3.1. ��
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In order to prove the next result, which “characterizes” the problem of exis-
tence and non-existence for θ > 1, from now on we will make stronger growth
assumptions on a with respect to both t and ξ . More precisely, we will consider
p = 2, and functions a(x, t, ξ) of the form

a(x, t, ξ) = a(x, t) ξ ,

with

α

(1 + |t|)θ ≤ a(x, t) ≤ β

(1 + |t|)θ , (6.1)

for some positive real numbers α, β, and θ > 1, for almost every x in Ω, and for
every t in R. Moreover, we suppose that there exists L > 0 such that

|a(x, t1) − a(x, t2)| ≤ L |t1 − t2| , (6.2)

for almost every x in Ω, and for every t1, t2 in R. Our result is the following:

Theorem 6.2. Let θ > 1, let f be in Lm(Ω), with m > N
2 , with f ≥ 0. Let λ be a

positive real number, and consider the problem
{− div

(
a(x, uλ) ∇uλ

)= λ f in Ω,

uλ = 0 on ∂Ω.
(6.3)

Then there exists λ∗ > 0, λ∗ ∈ R, such that:

(i) for every λ in [0, λ∗) there exists a solution uλ of (6.3), with uλ in H1
0 (Ω) ∩

L∞(Ω);
(ii) there exists no solution u in H1

0 (Ω) ∩ L∞(Ω) of (6.3) for λ > λ∗;
(iii) if 0 ≤ λ < µ < λ∗, then uλ ≤ uµ;
(iv) for λ = λ∗ there exists an entropy solution of (6.3).

Proof. Let

λ∗ = sup
{
λ > 0 : ∃u ≥ 0 solution of (6.3), with u in H1

0 (Ω) ∩ L∞(Ω)
}

.

By Theorem 6.1, for f fixed, if λ is small enough there exists a solution u of (6.3),
with u in H1

0 (Ω) ∩ L∞(Ω). Since f is positive, so is u. Thus, λ∗ > 0.
To prove that λ∗ < +∞ (which will yield (ii)), suppose by contradiction that

for every λ > 0 there exists a solution uλ of (6.3), with uλ in H1
0 (Ω) ∩ L∞(Ω).

Then uλ is a solution of

− div
(

a(x, uλ) (1 + uλ)
θ ∇uλ

(1 + uλ)θ

)

= λ f .

Define aλ(x) = a(x, uλ(x)) (1 + uλ(x))θ , so that, by (6.1), α ≤ aλ(x) ≤ β. Thus
uλ is a solution in H1

0 (Ω) ∩ L∞(Ω) of

− div
(

aλ(x)
∇uλ

(1 + uλ)θ

)

= λ f .
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Now let

vλ = 1 − (1 + uλ)
1−θ

θ − 1
;

then

∇vλ = ∇uλ

(1 + uλ)θ
,

so that vλ solves
− div (aλ(x) ∇vλ) = λ f ,

and it is easy to see that vλ belongs to H1
0 (Ω) ∩ L∞(Ω). By definition, and by the

fact that θ > 1, one also has

‖vλ‖
L∞(Ω)

≤ 1

θ − 1
. (6.4)

If we denote by Gλ(x, y) the Green function for the operator − div (aλ(x) ∇u) in
Ω with Dirichlet boundary conditions, then one has (see [22])

vλ(x) = λ

∫

Ω

Gλ(x, y) f(y) dy .

Since α ≤ aλ(x) ≤ β, by a result of [19] one has that for every set K ⊂⊂ Ω there
exists a constant c(α, β, K ) such that

Gλ(x, y) ≥ c(α, β, K ) Γ(x, y) , for every (x, y) ∈ K × K ,

where Γ is the Green function of the Laplacian in Ω with Dirichlet boundary
conditions. Thus

vλ(x) ≥ c(α, β, K ) λ

∫

Ω

Γ(x, y) f(y) dy = c(α, β, K ) λw(x) ,

where w is the (strictly positive, by the maximum principle) solution of −∆w = f .
Thus, as λ tends to infinity, one has

vλ(x) → +∞ , for every x in Ω,

and this contradicts (6.4).
We are now going to prove that for every λ in [0, λ∗) there exists a solution

uλ of (6.3). Let λ in [0, λ∗). By definition of λ∗, there exists λ̄ in (λ, λ∗) such that
(6.3) has a solution ū = uλ̄ in H1

0 (Ω) ∩ L∞(Ω). Since f ≥ 0, ū is a supersolution
of problem (6.3). Furthermore, u ≡ 0 is a subsolution of (6.3), and one has u ≤ ū.
We then define u0 = ū, and, by recurrence, let un be the solution of

− div (a(x, un−1) ∇un) = λ f .

Working as in [6], and using (6.2), one proves that the sequence {un} is decreasing,
so that it converges towards a function uλ, which is easily seen to be a solution of
(6.3); hence, (i) is proved. Furthermore, by construction, 0 ≤ uλ ≤ ū. With the
same kind of techniques one also proves (iii).
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Finally, if λ → λ∗ from below, then the corresponding solutions uλ increase
towards a function uλ∗ , hence uλ converges almost everywhere in Ω to uλ∗ . Fur-
thermore, choosing Tk(uλ) as a test function (which can be done, since uλ, hence
Tk(uλ), is in H1

0 (Ω) ∩ L∞(Ω)), one has
∫

Ω

a(x, uλ) |∇Tk(uλ)|2 dx = λ

∫

Ω

f Tk(uλ) dx ,

and so, by (6.1), ∫

Ω

|∇Tk(uλ)|2 dx ≤ c λ∗ (1 + k)θ+1 .

Thus, Tk(uλ) is bounded in H1
0 (Ω) independently of λ; this fact implies, reasoning

as in the proof of Theorems 1.7 or 1.9 (see Section 5), without the need of using
the almost everywhere convergence of gradients since the operator is now linear
with respect to the gradient, that uλ∗ is an entropy solution of (6.3). ��
Remark 6.3. Observe that the assumption on the Lipschitz continuity of a has
not been used to prove (ii), i.e., (6.3) has no solution for λ large enough only
under assumption (6.1). Note also that the bound from above on a given in (6.1)
is necessary in order to have such a non-existence result, since, for example,
the Laplacian operator satisfies assumption (1.2) with b ≡ 1 (and the equation
−∆uλ = λ f has a solution for every λ).

Remark 6.4. The result of Theorem 6.2 (iv) states that problem (6.3) has an entropy
solution for λ = λ∗, without saying whether such a solution is in H1

0 (Ω)∩ L∞(Ω),
in H1

0 (Ω), or if it is less regular. As a matter of fact, such a solution is found as the
limit of an increasing sequence of functions in H1

0 (Ω)∩ L∞(Ω), so that it does not
automatically inherit the properties of the approximating sequence. We are going
to show, with an example, that several possibilities may happen for λ = λ∗. Let
N ≥ 2, let Ω = B(0, 1), the unit ball of RN , and let f ≡ 1. We are going to
consider the model example, that is the solutions uλ of the problem






− div
(

∇uλ

(1 + uλ)
θ

)

= λ in Ω,

uλ = 0 on ∂Ω.
(6.5)

Defining, as in the proof of Theorem 6.2,

vλ = 1 − (1 + uλ)
1−θ

θ − 1
,

one has that vλ is a solution of
{−∆vλ = λ in Ω,

vλ = 0 on ∂Ω.

Since the Laplacian is linear, then vλ = λ v1, where v1 is the unique solution of the
problem {−∆v1 = 1 in Ω,

v1 = 0 on ∂Ω.
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Since v1 is radially symmetric, it can be explicitly calculated, and one has

v1(ρ) = 1

2N
(1 − ρ2) , (ρ = |x|)

so that vλ(ρ) = λ v1(ρ) = λ
2N (1 − ρ2). Recall that, by definition, vλ ≤ 1

θ−1 , so
that one can recover an “actual” solution uλ starting from vλ if and only if the
maximum of vλ is strictly smaller than 1

θ−1 . Since

max
B(0,1)

vλ(ρ) = vλ(0) = λ

2N
,

this can be done if and only if λ < 2N
θ−1 . Thus λ∗ = 2N

θ−1 . For λ = λ∗ one has

vλ∗(ρ) = 1

θ − 1
(1 − ρ2) ,

which implies

uλ∗(ρ) = 1

ρ
2

θ−1

− 1 .

Note that uλ∗ is not in L∞(Ω), and that it belongs to H1
0 (Ω) if and only if θ > N+2

N−2 .
Moreover, a rather “bizarre” fact happens: the regularity of uλ∗ increases as θ

increases, and this is contradiction with the properties of the solutions in the case
θ < 1.

Observe also that if we consider as solutions of (6.5) the solutions given starting
from vλ also in the case λ > λ∗, one has

uλ(ρ) =





(
1 − λ(θ−1)

2N (1 − ρ2)
) 1

1−θ − 1 if ρλ < ρ ≤ 1,

+∞ if 0 ≤ ρ ≤ ρλ,

where

ρλ =
√

λ(θ − 1) − 2N

λ(θ − 1)
,

so that uλ is equal to +∞ on a set of positive Lebesgue measure.
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