
EXISTENCE RESULTS FOR NONLINEAR ELLIPTIC

PROBLEMS ON FRACTAL DOMAINS
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Abstract. Some existence results for a parametric Dirichlet problem defined

on the Sierpiński fractal are proved. More precisely, a critical point result for
differentiable functionals is exploited in order to prove the existence of a well

determined open interval of positive eigenvalues for which the problem admits

at least one non-trivial weak solution.

1. Introduction

The purpose of the present paper is to establish some existence results for the
following Dirichlet problem{

∆u(x) + a(x)u(x) = λg(x)f(u(x)), x ∈ V \ V0,
u|V0 = 0,

(Sf,ga,λ)

where V stands for the Sierpiński gasket in (IRN−1, | · |), N ≥ 2, V0 is its intrinsic
boundary (consisting of its N corners), ∆ denotes the weak Laplacian on V and λ
is a positive real parameter. We assume that f : IR → IR is a continuous function
and that the variable potentials a, g : V → IR satisfy the following conditions:

(h1) a ∈ L1(V, µ) and a ≤ 0 almost everywhere in V ;
(h2) g ∈ C(V ) with g ≤ 0 and such that the restriction of g to every open subset

of V is not identically zero.

Many physical problems on fractal domains lead to nonlinear models (for ex-
ample, reaction-diffusion equations, problems on elastic fractal media or fluid flow
through fractal regions), so it is appropriate to study nonlinear partial differential
equations on fractals.

In recent years there has been an increasing interest in studying such equations,
also motivated and stimulated by the considerable amount of literature devoted to
the definition of a Laplacian operator for functions on fractal domains. Among the
contributions to the theory of nonlinear elliptic equations on fractals we mention
[9, 11, 13, 14, 18].

For instance, Falconer and Hu, in [11], considered Dirichlet problems defined on
the Sierpiński fractal. More precisely, under certain hypotheses on the nonlinear
term, the existence of at least one non-trivial solution was proved (see Theorems
3.5 and 3.18 of [11] and Remark 3.4 below).
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Further, in [13], Hu analyzed the following problem{
∆u(x) + a(x)u(x) = λf(x, u(x)), x ∈ K \K0,
u|K0

= 0,
(Sfa,λ)

where K is the Sierpiński gasket (of intrinsic boundary K0) in IR2 and f : K×IR→
IR is a continuous symmetric function satisfying some monotonicity properties.
More precisely, in Theorem 2.2 of the above cited work, the existence of p–pairs of

non-trivial solutions of (Sfa,λ) was achieved in relation with the value of the p–th
eigenvalue, say λp, of the problem{

∆u(x) + λa(x)u(x) = 0, x ∈ K \K0,
u|K0

= 0.

Very recently, Breckner, Repovš and Varga [8] studied the existence of multiple

solutions for the problem (Sf,ga,λ) through variational methods. Their approach en-
sures the existence of at least three weak solutions under some hypotheses on the
behaviour of the nonlinearity f .

Successively, Breckner, Rădulescu, and Varga [7] proved the existence of infinitely

many solutions of problem (Sf,ga,1) under the key assumption that the nonlinearity

f is non-positive in a sequence of positive intervals (see Remark 3.2). See also the
papers [2, 3, 4, 5, 6, 16] and references therein for related topics.

In this paper, requiring an asymptotic behaviour of the nonlinearity f at zero,
we are able to determine a precise open interval of positive parameters λ, for which

problem (Sf,ga,λ) admits at least one non-trivial weak solution in the Sobolev space

H1
0 (V ).
The proofs of our main results are based on a critical point theorem due to

Ricceri [17] in the form given in [1].

Theorem 1.1. Let X be a reflexive real Banach space, and let Φ,Ψ : X → IR be
two sequentially weakly lower semicontinuous functionals. Assume also that Φ is
strongly continuous and coercive. For every r > infX Φ, put

ϕ(r) := inf
u∈Φ−1(]−∞,r[)

(
sup

v∈Φ−1(]−∞,r[)
Ψ(v)

)
−Ψ(u)

r − Φ(u)
.

Then, for every r > infX Φ and every λ ∈ ]0, 1/ϕ(r)[, the restriction of the func-
tional Iλ := Φ− λΨ to Φ−1(]−∞, r[) admits a global minimum, which is a critical
point (local minimum) of Iλ in X.

Clearly, the abstract framework introduced in the above mentioned paper is
adaptable to our context by using the geometric and analytic properties of the
Sierpiński fractal as, for instance, the careful analysis of the Sobolev-type inequality
(see, for instance, [11, Lemma 2.4] and Section 2)

sup
x,y∈V∗

|u(x)− u(y)|
|x− y|σ

≤ (2N + 3)
√
W (u), (1)

where

σ :=
log((N + 2)/N)

2 log 2
,

and V∗ and W will be defined in the sequel.
A special case of our results reads as follows.
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Theorem 1.2. Let f : IR → IR be a non-negative continuous function. Assume
that

lim
ξ→0+

∫ ξ

0

f(t)dt

ξ2
= +∞. (h′0)

Then the positive number λ∗, given by

λ∗ := − 1

2(2N + 3)2

(∫
V

g(x)dµ

) sup
γ>0

γ2∫ γ

0

f(t)dt

,

is such that, for every λ ∈]0, λ∗[, the elliptic Dirichlet problem (Sf,ga,λ) admits at least

one non-trivial weak solution uλ ∈ (H1
0 (V ), ‖ · ‖). Furthermore, lim

λ→0+
‖uλ‖ = 0.

This paper is organized as follows. In Section 2 we recall the geometrical con-
struction of the Sierpiński gasket and our variational framework. Successively,
Section 3 is devoted to the proof of the main theorem. Finally, in the last section,
we give an application of the obtained results.

We cite the very recent monograph by Kristály, Rădulescu and Varga [15] as a
general reference for the basic notions used here.

2. Abstract Framework

LetN ≥ 2 be a natural number and let p1, . . . , pN ∈ IRN−1 be so that |pi−pj | = 1

for i 6= j. Define, for every i ∈ {1, . . . , N}, the map Si : IRN−1 → IRN−1 by

Si(x) =
1

2
x+

1

2
pi .

Let S := {S1, . . . , SN} and denote by F : P(IRN−1)→ P(IRN−1) the map assigning

to a subset A of IRN−1 the set

F (A) =

N⋃
i=1

Si(A).

It is known that there is a unique non-empty compact subset V of IRN−1, called
the attractor of the family S, such that F (V ) = V ; see, Theorem 9.1 in Falconer
[10].

The set V is called the Sierpiński gasket in IRN−1 of intrinsic boundary V0 :=
{p1, . . . , pN}. Let µ be the normalized restriction of the d-dimensional Hausdorff

measure Hd on IRN−1 to the subsets of V , so µ(V ) = 1.
Further, the following property of µ will be useful in the sequel:

µ(B) > 0, for every non-empty open subset B of V. (2)

In other words, the support of µ coincides with V (see, for instance, Breckner,
Rădulescu and Varga [7] for more details).

Denote by C(V ) the space of real-valued continuous functions on V and by

C0(V ) := {u ∈ C(V ) | u|V0
= 0}.
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The spaces C(V ) and C0(V ) are endowed with the usual supremum norm ‖ · ‖∞.
For a function u : V → IR and for m ∈ IN let

Wm(u) =

(
N + 2

N

)m ∑
x,y∈Vm

|x−y|=2−m

(u(x)− u(y))2, (3)

where Vm := F (Vm−1), for m ≥ 1. Put V∗ :=
⋃
m≥0 Vm and note that V = V∗.

We have Wm(u) ≤Wm+1(u) for very natural m, so we can put

W (u) = lim
m→∞

Wm(u). (4)

Define now

H1
0 (V ) := {u ∈ C0(V ) |W (u) <∞}.

It turns out that H1
0 (V ) is a dense linear subset of L2(V, µ) equipped with the

‖ · ‖2 norm. We now endow H1
0 (V ) with the norm

‖u‖ :=
√
W (u).

In fact, there is an inner product defining this norm: for u, v ∈ H1
0 (V ) and m ∈ IN

let

Wm(u, v) =

(
N + 2

N

)m ∑
x,y∈Vm

|x−y|=2−m

(u(x)− u(y))(v(x)− v(y)).

Put

W(u, v) = lim
m→∞

Wm(u, v).

Then W(u, v) ∈ IR and the space H1
0 (V ), equipped with the inner product W,

which induces the norm ‖ · ‖, becomes a real Hilbert space.
Moreover,

‖u‖∞ ≤ (2N + 3)‖u‖, for every u ∈ H1
0 (V ), (5)

and the embedding

(H1
0 (V ), ‖ · ‖) ↪→ (C0(V ), ‖ · ‖∞) (6)

is compact.
For more details concerning the definitions and notions which lead in a natural

way to the Sobolev space H1
0 (V ) we refer to Fukushima and Shima [12]. See also

Sections 1.3 and 1.4 of [19] (this reference applies for N = 3, but the cases N ≥ 4
are straightforward generalizations of this one).

Remark 2.1. As pointed out by Falconer and Hu [11], we just observe that if
a ∈ L1(V ) and a ≤ 0 in V then, by (5), the norm ‖ · ‖∗, defined by

‖u‖∗ :=

(
W(u, u)−

∫
V

a(x)u(x)2dµ

)1/2

, ∀u ∈ H1
0 (V ),

is equivalent to ‖ · ‖.

We now state a useful property of the space H1
0 (V ) which shows, together with

the facts that (H1
0 (V ), ‖ · ‖) is a Hilbert space and H1

0 (V ) is dense in L2(V, µ), that
W is a Dirichlet form on L2(V, µ).
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Lemma 2.1. Let h : IR→ IR be a Lipschitz mapping with Lipschitz constant L ≥ 0
and such that h(0) = 0. Then, for every u ∈ H1

0 (V ), we have h ◦ u ∈ H1
0 (V ) and

‖h ◦ u‖ ≤ L‖u‖.

Proof. It is clear that h ◦ u ∈ C0(V ). For every m ∈ IN we have, by (3) and the
Lipschitz property of h, that

Wm(h ◦ u) ≤ L2Wm(u).

Hence W (h ◦ u) ≤ L2W (u), according to (4). Thus h ◦ u ∈ H1
0 (V ) and ‖h ◦ u‖ ≤

L‖u‖. �

Following Falconer and Hu [11], we can define in a standard way a linear self-
adjoint operator ∆: Z → L2(V, µ), where Z is a linear subset of H1

0 (V ) which is
dense in L2(V, µ) (and dense also in (H1

0 (V ), ‖ · ‖)), such that

−W(u, v) =

∫
V

∆u · vdµ, for every (u, v) ∈ Z ×H1
0 (V ).

The operator ∆ is called the (weak ) Laplacian on V .
More precisely, let H−1(V ) be the closure of L2(V, µ) with respect to the pre-

norm
‖u‖−1 = sup

h∈H1
0 (V )

‖h‖=1

| < u, h > |,

where

< v, h >=

∫
V

v(x)h(x)dµ,

v ∈ L2(V, µ) and h ∈ H1
0 (V ). Then H−1(V ) is a Hilbert space. Then the relation

−W(u, v) =< ∆u, v >, ∀v ∈ H1
0 (V ),

uniquely defines a function ∆u ∈ H−1(V ) for every u ∈ H1
0 (V ).

Finally, fix λ > 0. Let a : V → IR, f : IR → IR and g : V → IR be as in the

Introduction. We say that a function u ∈ H1
0 (V ) is a weak solution of (Sf,ga,λ) if

W(u, v)−
∫
V

a(x)u(x)v(x)dµ+ λ

∫
V

g(x)f(u(x))v(x)dµ = 0,

for every v ∈ H1
0 (V ).

While we mainly work with the weak Laplacian, there is also a directly defined
version. We say that ∆su is the standard Laplacian of u if ∆su : V → IR is
continuous and

lim
m→∞

sup
x∈V \V0

|(N + 2)m(Hmu)(x)−∆su(x)| = 0,

where
(Hmu)(x) :=

∑
y∈Vm

|x−y|=2−m

(u(y)− u(x)),

for x ∈ Vm. We say that u ∈ C0(V ) is a strong solution of (Sf,ga,λ) if ∆su exists and

is continuous for all x ∈ V \ V0, and

∆su(x) + a(x)u(x) = λg(x)f(u(x)), ∀ x ∈ V \ V0.

The existence of the standard Laplacian of a function u ∈ H1
0 (V ) implies the

existence of the weak Laplacian ∆u (see, for completeness, Falconer and Hu [11]).
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Remark 2.2. If a ∈ C(V ), f : IR → IR is continuous and g ∈ C(V ), then, using
the regularity result Lemma 2.16 of Falconer and Hu [11], it follows that every weak

solution of the problem (Sf,ga,λ) is also a strong solution.

3. Main results

Define F : IR → IR by F (ξ) =

∫ ξ

0

f(t)dt and fix λ > 0. The functional

Iλ : H1
0 (V )→ IR given by

Iλ(u) :=
1

2
‖u‖2 − 1

2

∫
V

a(x)u(x)2dµ+ λ

∫
V

g(x)F (u(x))dµ, (7)

for every u ∈ H1
0 (V ), will turn out to be the energy functional attached to problem

(Sf,ga,λ).

We have the following result contained in [11, Proposition 2.19] that we recall
here in a convenient form.

Lemma 3.1. The energy functional Iλ : H1
0 (V ) → IR defined by relation (7) is a

C1(H1
0 (V ), IR) functional. Moreover, for each point u ∈ H1

0 (V ),

I ′λ(u)(v) =W(u, v)−
∫
V

a(x)u(x)v(x)dµ+ λ

∫
V

g(x)f(u(x))v(x)dµ, ∀ v ∈ H1
0 (V ).

In particular, u ∈ H1
0 (V ) is a weak solution of problem (Sf,ga,λ) if and only if u is a

critical point of Iλ.

The aim of the paper is to prove the following result concerning the existence of

at least one non-trivial solutions of the problem (Sf,ga,λ).

Theorem 3.1. Let f : IR → IR be a continuous function with f(0) = 0. Assume
that

−∞ < lim inf
ξ→0+

F (ξ)

ξ2
and lim sup

ξ→0+

F (ξ)

ξ2
= +∞. (h0)

Then the positive number λ∗, given by

λ∗ := − 1

2(2N + 3)2

(∫
V

g(x)dµ

) sup
γ>0

γ2

max
|ξ|≤γ

F (ξ)
,

is such that, for every λ ∈]0, λ∗[, the problem (Sf,ga,λ) admits at least one non-trivial

weak solution uλ ∈ H1
0 (V ). Moreover,

lim
λ→0+

‖uλ‖ = 0,

and, for every γ̄ > 0, the function λ→ Iλ(uλ) is negative and strictly decreasing in0,− 1

2(2N + 3)2

(∫
V

g(x)dµ

) γ̄2

max
|ξ|≤γ̄

F (ξ)

 .
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Proof. Let us define the functionals Φ,Ψ : X → IR by

Φ(u) :=
1

2
‖u‖2 − 1

2

∫
V

a(x)u(x)2dµ and Ψ(u) := −
∫
V

g(x)F (u(x))dµ,

where X denotes the reflexive Banach space H1
0 (V ). Now, in order to achieve our

goal, fix λ as in the conclusion.
With the above notations we have that Iλ = Φ−λΨ. We seek for weak solutions

of problem (Sf,ga,λ) by applying Theorem 1.1. First of all we observe that, by Lemma

3.1, the functional Iλ ∈ C1(X, IR).
Moreover, Φ is obviously coercive and, by using Lemma 5.6 in Breckner, Rădulescu

and Varga [7], the functionals Φ and Ψ are weakly sequentially lower semicontinuous
on X.

Since 0 < λ < λ∗, there exists γ̄ > 0 such that

λ < λ∗(γ̄) := − γ̄2

2(2N + 3)2

(∫
V

g(x)dµ

)
max
|ξ|≤γ̄

F (ξ)

. (8)

Set r :=
γ̄2

2(2N + 3)2
. Due to the compact embedding into C0(V ), by (5), we

have

{v ∈ X : Φ(v) < r} ⊆ {v ∈ X : ‖v‖∞ ≤ γ̄} .
Therefore

ϕ(r) = inf
Φ(u)<r

sup
Φ(v)<r

∫
V

(−g(x))F (v(x))dµ+

∫
V

g(x)F (u(x))dµ

r − Φ(u)

≤
sup

Φ(v)<r

∫
V

(−g(x))F (v(x))dµ

r

≤ −
(∫

V

g(x)dµ

) max
|ξ|≤γ̄

F (ξ)

r

= −2(2N + 3)2

(∫
V

g(x)dµ

) max
|ξ|≤γ̄

F (ξ)

γ̄2
=

1

λ∗(γ̄)
.

Thanks to Theorem 1.1, there exists a function uλ ∈ Φ−1(]−∞, r[) such that

I ′λ(uλ) = Φ′(uλ)− λΨ′(uλ) = 0,

and, in particular, uλ is a global minimum of the restriction of Iλ to Φ−1(]−∞, r[).
Now, we claim that the function uλ cannot be trivial, i.e. uλ 6= 0. Indeed, fix a

non-negative function u ∈ X such that there is an element x0 ∈ V with u(x0) > 1.
It follows that

D := {x ∈ V | u(x) > 1}
is a non-empty open subset of V (due to the continuity of u).

Define h : IR→ IR as follows

h(t) := |min{t, 1}|, for all t ∈ IR.

Then h(0) = 0 and h is a Lipschitz function whose Lipschitz constant L is equal to
1. Hence, by using Lemma 2.1, it follows that v := h ◦ u ∈ X.
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Moreover, v(x) = 1 for every x ∈ D, and 0 ≤ v(x) ≤ 1 for every x ∈ V .
On the other hand, condition

−∞ < lim inf
ξ→0+

F (ξ)

ξ2

implies the existence of real numbers ρ > 0 and % such that

F (ξ) ≥ %ξ2, for every ξ ∈ [0, ρ[. (9)

Further, condition

lim sup
ξ→0+

F (ξ)

ξ2
= +∞

yields the existence of a sequence {ξn} in ]0, ρ[ such that lim
n→∞

ξn = 0 and

lim
n→∞

F (ξn)

ξ2
n

= +∞. (10)

Now, we have that

Iλ(ξnv) =
ξ2
n

2
‖v‖2 − ξ2

n

2

∫
V

a(x)v(x)2dµ + λF (ξn)

∫
D

g(x)dµ

+ λ

∫
V \D

g(x)F (ξnv(x))dµ,

for every n ∈ IN.
Using (9) and the fact that g ≤ 0 in V , we get

Iλ(ξnv) ≤ ξ2
n

2
‖v‖2 − ξ2

n

2

∫
V

a(x)v(x)2dµ + λF (ξn)

∫
D

g(x)dµ

+ λ%ξ2
n

∫
V \D

g(x)v(x)2dµ,

for every n ∈ IN. Thus

Iλ(ξnv)

ξ2
n

≤ 1

2
‖v‖2 − 1

2

∫
V

a(x)v(x)2dµ+ λ
F (ξn)

ξ2
n

∫
D

g(x)dµ+ λ%

∫
V \D

g(x)v(x)2dµ.

Condition (h2) and (2) imply that∫
D

g(x)dµ < 0,

so we get from (10) and the above inequality that

lim
n→∞

Iλ(ξnv)

ξ2
n

= −∞.

Then, there is an index n0 such that Iλ(ξnv) < 0 for every n ≥ n0. Now, since

lim
n→∞

Φ(ξnv) = 0,

one has that ξnv ∈ Φ−1(]−∞, r[) definitively. In conclusion, 0X cannot be a global
minimum for the restriction of the functional Iλ to Φ−1(]−∞, r[). Hence, for every

λ ∈]0, λ∗[ the problem (Sf,ga,λ) admits a non-trivial solution uλ ∈ X.

At this point, we prove that ‖uλ‖ → 0 as λ → 0+ and that the function λ →
Iλ(uλ) is negative and decreasing in ]0, λ∗[.
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For our goal, let us consider λ̄ ∈]0, λ∗[. Moreover, let γ̄ > 0 and let λ ∈]0, λ∗(γ̄)[.
The functional Iλ admits a non-trivial critical point uλ ∈ Φ−1(]−∞, r[), where

r :=
γ̄2

2(2N + 3)2
.

Since Φ is coercive and uλ ∈ Φ−1(]−∞, r[) for every λ ∈]0, λ∗(γ̄)[, there exists
a positive number L such that

‖uλ‖ ≤ L,
for every λ ∈]0, λ∗(γ̄)[.

Therefore, since Ψ′ is a compact operator, there exists a positive constant M
such that

|Ψ(uλ)| ≤ ‖Ψ′(uλ)‖X∗‖uλ‖ < ML2, (11)

for every λ ∈]0, λ∗(γ̄)[.
Now I ′λ(uλ) = 0, for every λ ∈]0, λ∗(γ̄)[ and in particular

I ′λ(uλ)(uλ) = 0,

that is,

Φ(uλ) = λ

∫
V

g(x)f(uλ(x))uλ(x)dµ, (12)

for every λ ∈]0, λ∗(γ̄)[.
Hence, by (11) and (12) it follows that

lim
λ→0+

Φ(uλ) = 0. (13)

Moreover, one has

‖uλ‖2

2
≤ ‖uλ‖

2

2
−

∫
V

a(x)uλ(x)2dµ

2
= Φ(uλ), (14)

for every λ ∈]0, λ∗(γ̄)[. Then, conditions (13) and (14) yield

lim
λ→0+

‖uλ‖ = 0.

Further, the map λ 7→ Iλ(uλ) is negative in ]0, λ∗(γ̄)[ since the restriction of the
functional Iλ to Φ−1(]−∞, r[) admits a global minimum, which is a critical point
(local minimum) of Iλ in X.

Finally, observe that

Iλ(u) = λ

(
Φ(u)

λ
−Ψ(u)

)
,

for every u ∈ X and fix 0 < λ1 < λ2 < λ∗(γ̄).
Moreover, put

mλ1 :=

(
Φ(uλ1

)

λ1
−Ψ(uλ1)

)
= inf
u∈Φ−1(]−∞,r[)

(
Φ(u)

λ1
−Ψ(u)

)
,

and

mλ2
:=

(
Φ(uλ2

)

λ2
−Ψ(uλ2

)

)
= inf
u∈Φ−1(]−∞,r[)

(
Φ(u)

λ2
−Ψ(u)

)
.

Clearly, as claimed before, mλi < 0 (for i = 1, 2), and mλ2 ≤ mλ1 thanks to
λ1 < λ2.
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Then the map λ 7→ Iλ(uλ) is strictly decreasing in ]0, λ∗(γ̄)[ owing to

Iλ2
(uλ2

) = λ2mλ2
≤ λ2mλ1

< λ1mλ1
= Iλ1

(uλ1
).

The proof is complete. �

Remark 3.1. We observe that condition (h0) is technical and ensures that the
solution, obtained by using Theorem 3.1, is non-trivial. Anyway, the statements of
Theorem 3.1 are still true for every continuous function f that does not vanish at
zero. In this last case our approach ensures the existence of one non-trivial solution,
for λ ∈]0, λ∗[, without condition (h0). If

max
|ξ|≤γ̄

F (ξ) = 0,

for some γ̄ > 0, Theorem 3.1 ensures the existence of one non-trivial solution, for
every λ ∈]0,+∞[.

Remark 3.2. If in addition to condition (h0) in Theorem 3.1, the function f also
satisfies

(h′1) There exist two sequences {an} and {bn} in ]0,∞[ with bn+1 < an < bn,
lim
n→∞

bn = 0 and such that f(s) ≤ 0 for every s ∈ [an, bn];

(h′2) Either sup{s < 0 | f(s) > 0} = 0, or there is a δ > 0 with f |[−δ,0] = 0,

then, as proved by Breckner, Rădulescu and Varga in [7], the problem (Sf,ga,1) admits

a sequence {un} of pairwise distinct weak solutions such that lim
n→∞

‖un‖ = 0. In

particular, lim
n→∞

‖un‖∞ = 0.

Remark 3.3. A sufficient condition that ensures hypothesis (h0) in Theorem 3.1
is expressed by

lim
ξ→0+

F (ξ)

ξ2
= +∞. (h′0)

Further, if f is non-negative, one has

sup
γ>0

γ2

max
|ξ|≤γ

F (ξ)
= sup

γ>0

γ2

F (γ)
,

since, in this case, max
|ξ|≤γ

F (ξ) = F (γ), for every positive γ. Hence, Theorem 1.2 in

the Introduction immediately follows from Theorem 3.1.

The following example is a direct consequence of Theorem 3.1, bearing in mind
Remarks 3.1 and 2.2.

Example 3.1. For each parameter λ belonging to

Λ :=

]
0,

2e−2

(2N + 3)2

[
,

the following Dirichlet problem{
∆u(x) + λeu(x) = u(x), x ∈ V \ V0,
u|V0

= 0,
(Sλ)

admits at least one non-trivial strong solution. Moreover,

lim
λ→0+

‖uλ‖ = 0

and the function λ→ Iλ(uλ) is negative and decreasing in Λ.
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Remark 3.4. In [11] Falconer and Hu studied the non-autonomous Dirichlet prob-
lem {

∆u(x) + a(x)u(x) = λf(x, u(x)), x ∈ V \ V0,
u|V0

= 0,
(Sfa,λ)

where a : V → IR is assumed to be integrable and f : V × IR→ IR is a continuous
function. The celebrated Ambrosetti-Rabinowitz condition

(AR) there are constants ν > 2 and r ≥ 0 such that

tf(x, t) ≤ νF (x, t) < 0,

for every |t| ≥ r, uniformly for every x ∈ V ,

is an essential request in almost all the existence theorems contained in the above
cited paper. However if, for instance, f is constant for large |t|, assumption (AR) is

violated, even though (Sfa,λ) would be expected to have a non-trivial solution. The

saddle point theorem copes with this case; see [11, Theorem 4.2]. We observe that
Theorem 3.1 (see also Remark 3.1) obtained in this paper does not require a global
growth of the non-linearity f in order to obtain the existence of one non-trivial
solution as the above example shows.
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on the Sierpiński gasket, Chin. Ann. Math. Ser. 34B (2) (2013), 381–398.
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