
Faculty of Sciences and Mathematics, University of Nǐs, Serbia
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EXISTENCE RESULTS FOR SOME DIFFERENTIAL
EQUATIONS WITH DEVIATING ARGUMENT

Monica Lauran

Abstract

In this paper we shall establish sufficient conditions for the existence of
solutions of some differential equation and its solvability in CL, subset of the
Banach space (C[a, b], ‖·‖). The main tool used in our study is the nonexpan-
sive operator technique.

1 Introduction

Several authors studied a special class of first order differential equa-
tions, called iterative differential equations, see for example the papers
[5],[9],[10],[11],[12],[15],[16],[18],[20],[21]. These equations are important in the
study of infection models and are related to the study of the motion of charged
particles with retarded interaction. The general form of these equations is

y′(t) = f(x, y(y(t))) (1.1)

Buica [5] studied initial value problems for (1.1) and obtained existence and exis-
tence and uniqueness results by means of fixed point techiques.
Very recently, Berinde [4] introduced the techique of nonexpansive operators in the
study of first order iterative differential equations of the form (1.1) and thus ex-
tended the results from [5].
Our main aim in this paper is to use the techique of nonexpansive operators from
[4] to more general iterative and non iterative first order differential equations of
the form

y′(x) = f(x, y(x), y(λx))

and
y′(x) = f(x, y(x), y(y(x)))

respectively, with initial condition

y(x0) = y0.
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2 Fixed point theory of nonexpansive mappings

We extract here the basic theory of nonexpansive mappings, from the paper [4], in
order to offer the notions and results that will be needed in the next sections of the
paper.
Let (X, d) be a metric space. A mapping T : X → X is said to be an α-contraction
if there exists α ∈ [0, 1) such that

d(Tx, Ty) ≤ αd(x, y), ∀x, y ∈ X

In the case where α = 1 the mapping T is said to be nonexpansive.
Let K be a nonempty subset of a real normed linear space E and T : K → K be a
map. In this setting, T is nonexpansive if

||Tx− Ty| | ≤ ||x− y| |, ∀x, y ∈ K

Althought the nonexpansive mappings are generalizations of α- contractions,
they do not inherit properties of contractive mappings. More precisely, if K is a
nonempty closed subset of a Banach space E and T : K → K is a nonexpansive
mapping wich is not an α- contractions, then, as is shown by the following example,
T may not have fixed points.

Example 2.1. ([10], Example 3.3, pp. 30)
In the space c0(N) the isometry defined by

T (x1, x2, ...) = (1, x1, x2, ...)

maps the unit ball into its boundary but T has not fixed points.

One of the most important fixed point theorems for nonexpansive mappings,
due to Browder, Ghode and Kirk, see e.g. [3], is state as follows.

Theorem 2.1. Let K be a nonempty closed conex and bounded subset of a uniformly
Banach space E. Then any nonexpansive mapping T : K → K has at least a fixed
point.

Remark 2.1. Theorem 2.1 provides no information on the approximation of the
fixed point of T is given.

Let K be a convex subset of a normed linear space E and let T : K → K be
a self-mapping. Given an x0 ∈ K and a real number λ ∈ [0, 1], the sequence xn

defined by the formula

xn+1 = (1− λ)xn + λTxn, n = 0, 1, 2, ....

is usually called Krasnoselskij iteration or Krasnoselskij-Mann iteration.
For x0 ∈ K the sequence xn defined by

xn+1 = (1− λn) · xn + λn · Txn, n = 0, 1, 2... (2.1)
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where λn ⊂ [0, 1] is a sequence of real number satisfying some appropiate condition,
is called Mann iteration. Edelstein [8] proved that strict convexity of E sufficies for
the Krasnoselskij iteration converge to a fixed point of T. The question of whether
or not strict convexity can be removed has been answered in the affirmative by
Ishikawa [11] by the following result.

Theorem 2.2. ([11]) Let K be a subset of a Banach E and let T : K → K be a
nonexpansive mapping. For arbitrary x0 ∈ K, consider the Mann iteration process
xn given by (2.1) under the following assumptions:
(a) xn ∈ K for all positive integers n;
(b) 0 ≤ λn ≤ b < 1 for all positive integers n;
(c)

∑∞
n=0 λn = ∞. If xn is bounded, then xn − Txn → 0 as n →∞.

The following corollaries of Theorem 2.2 will be particularly important for the
application part of our paper.

Corollary 2.1. ([6]) Let K be a convex and compact subset of a Banach space E
and let T : K → K be a nonexpansive mapping. If the Mann iteration process xn

satisfies assumptions (a)-(c) in Theorem 2.2 ,then xn converges strongly to a fixed
point of T.

Proof. See Theorem 6.17 in Chidume [6].

Corollary 2.2. ([6]) Let K be a closed bounded convex subset of a real normed
space E and T : K → K be a nonexpansive mapping. If I − T maps closed bounded
subset of E into closed subset of E and xn is the Mann iteration, with λn satisfying
assuptions (a)-(c) in Theorem 2.2, then xn converges strongly to a fixed point of T
in K.

Proof. See Corollary 6.19 in Chidume [6].

3 Existence theorems and approximation of solu-
tions of some differential equations

The following initial value problem was studied in [5]
{

y′(x) = f(x, y(y(x))
y(x0) = y0

(**)

where x0, y0 ∈ [a, b] and f ∈ C ([a, b], [a, b]).
For x ∈ [a, b] denote

Cx = max{x− a, b− x},
and

(∗)CL = {y ∈ C([a, b]× [a, b] : |y(t1)− y(t2)| ≤ L · |t1 − t2| , ∀t1, t2 ∈ [a, b]};L > 0

For problem (**), Buică in [5] established existence and uniquess results [Theorem
1,2,4 and 5]. We formulate one of them.
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Theorem 3.1. ([5]) Assume that the following conditions are satisfied for problem
(**)

(i) f ∈ C([a, b]× [a, b]× [a, b])
(ii) there exists L1 > 0 such that |f(s, u)− f(s, v)| ≤ L1 |u− v| for any s, u, v ∈

[a, b];
(iii) if L is the Lipschitz constant involved in (*), then

M = max {|f(s, u)| : (s, u) ∈ [a, b]× [a, b]} ≤ L

(iv) one of the following conditions holds:
a) M · Cx0 ≤ Cy0 ;
b) x0 = a, M(b− a) ≤ b− y0, f(s, u) ≥ 0, ∀s, u ∈ [a, b];
c) x0 = b, M(b− a) ≤ y0 − a, f(s, u) ≥ 0, ∀s, u,∈ [a, b].

(v) L1 · Cx0 · (L + 1) < 1.
Then there exists a unique solution y∗ of problem (**) in CL.

If condition L1 · Cx0 · (L + 1) < 1 is weakened to L1 · Cx0 · (L + 1) ≤ 1 then
the assertion on the existence of a unique solution of problem (**) is not true. The
Theorem 3.1 was extended at Theorem 3.3 in [4].
In this paper, our aim is to obtain similar results to the ones in [4], but for the
following initial value problem for a differential equation with deviating argument

y′(x) = f(x, y(x), y(λx)), x ∈ [a, b] (1)

y(x0) = y0 (2)

where x0, y0 ∈ [a, b], λ ∈ (0, 1) and f ∈ C([a, b]× [a, b]× [a, b]).
This equation is more general because it extends the result of [4] or [5].

We formulate the first existence result for solutions of differential equation (3.1)
with initial condition (3.2).

Theorem 3.2. Assume that
(i) f ∈ C([a, b]× [a, b]× [a, b])
(ii) there exists L1 > 0 such that

|f(s, u1, v1)− f(s, u2, v2)| ≤ L1(|u1 − u2| + |v1 − v2|) for any s, ui, vi ∈ [a, b], i =
1, 2

(iii) if L is the Lipschits constant involved in (* ), then

M = max {|f(s, u, v)| : (s, u, v) ∈ [a, b]× [a, b]× [a, b]} ≤ L

(iv) One of the following conditions holds:
a) M · Cx0 ≤ Cy0 ;
b) x0 = a, M(b− a) ≤ b− y0, f(s, u, v) ≥ 0, ∀s, u, v ∈ [a, b];
c) x0 = b, M(b− a) ≤ y0 − a, f(s, u, v) ≥ 0, ∀s, u, v ∈ [a, b].

(v) 2 · L1 · Cx0 ≤ 1.
Then the initial value problem (3.1)+(3.2) has at least solution in CL.
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Proof. It follows from [5, Lemma 1] that CL is a nonempty convex and compact
subset of the Banach space (C[a, b], ‖·‖) where ‖x‖ = sup

t∈[a,b]

|x(t)| .
Consider the integral operator F : CL → C[a, b] defined by

(Fy) (t) = y0 +
∫ t

x0

f(s, y(s), y(λs))ds, t ∈ [a, b].

It is clear that y ∈ CL is a solution of initial value problem (3.1)+(3.2) if and only
if y is a fixed point of F , i.e.,

y = Fy

We first prove that CL is an invariant set with respect to F , i.e., we have
F (CL) ⊂ CL.
If condition (iv)− a) holds, then for any y ∈ CL and t ∈ [a, b] we have

|(Fy)(t)| ≤ |y0|+
∣∣∣
∫ t

x0
f(s, y(s), y(λs)ds

∣∣∣ ≤ |y0|+ M · |t− x0| ≤ b

|(Fy)(t)| ≥ |y0| −
∣∣∣
∫ t

x0
f(s, y(s), y(λs)ds

∣∣∣ ≥ |y0| −M · |t− x0| ≥
≥ |y0| −M · Cx0 ≥ y0 − Cy0 ≥ a.

which shows that Fy ∈ [a, b],for any y ∈ CL.
Now, for any t1, t2 ∈ [a, b] we have

|(Fy)(t1)− (Fy)(t2)| ≤
∣∣∣∣
∫ t2

t1

f(s, y(s), y(λs))ds

∣∣∣∣ ≤ M · |t1 − t2| ≤ L · |t1 − t2|

Thus, Fy ∈ CL,∀y ∈ CL. In a similar way we treat the cases (iv)−b) and (iv)−c).
Therefore F : CL → CL (i.e., F is a self-mapping of CL)

We prove that F is nonexpansive operator. Let y, z ∈ CL and t ∈ [a, b]. Then

|F (y)(t)− (Fz)(t)| ≤
≤

∣∣∣
∫ t

x0
f(s, y(s), y(λs))− f(s, z(s), z(λs))

∣∣∣ ds ≤
≤ ∫ t

x0
L1 (|y(s)− z(s)|+ |y(λs)− z(λs)|) ds ≤

≤ 2L1 · |t− x0| · ‖y − z‖ ≤ 2L1 · Cx0 · ‖y − z‖
Now, by taking the maximum in last inequality, we get

‖Fy − Fz‖ ≤ 2L1 · Cx0 · ‖y − z‖
which in viewe of condition (v), proves that F is nonexpansive operator hence
continuous.
It now remains to apply the Schauder’s fixed point theorem and we obtain the
conclusion.

It is therefore the aim of this paper to show that if condition (v) hold, then
we are still able to approximate a (non-unique) solution of the initial value prob-
lem (3.1)+(3.2) by means of a Krasnoselskij-Mann iteration procedure. The next
theorem states the main result of this paper.
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Theorem 3.3. Assume that all condition of Theorem 3.1 are satisfied.
Then the solution y∗ of the initial value problem (3.1)+(3.2) can be approximated
by the Krasnoselskij iteration

yn+1(t) = (1− µ) · yn(t) + µy0 + µ

t∫

x0

f(s, yn(s), yn(λs))ds, t ∈ [a, b], n ≥ 1

where µ ∈ (0, 1) and y1 ∈ CL is arbitrary.

Proof. The proof is based on Corollary 1 or 2.

Now we are applying the same technique for the iterative differential equation

y′(x) = f(x, y(x), y(y(x))) (3.3)

with initial condition
y(x0) = y0 (3.4)

where x0, y0 ∈ [a, b], f ∈ C ([a, b]× [a, b]× [a, b]) are given, wich extends the prob-
lem studied in [4]. This equation is more general than equation involved in (**).
We formulate the second result on existence solutions of the initial value problem
(3.3)+(3.4) in CL.

Theorem 3.4. Assume that
(i) f ∈ C ([a, b]× [a, b]× [a, b])
(ii) there exists L1 > 0 such that

|f(s, u, v)− f(s, u2, v2)| ≤ L1 (|u1 − u2|+ |v1 − v2|), for any s, ui, vi ∈ [a, b], i = 1, 2
(iii) if L is the Lipschits constant involved in (* ), then

M = max {|f(s, u, v)| : (s, u, v) ∈ [a, b]× [a, b]× [a, b]} ≤ L

(iv) One of the following conditions holds:
a) M · Cx0 ≤ Cy0

b) x0 = a,M(b− a) ≤ b− y0, f(s, u, v) ≥ 0, ∀s, u, v ∈ [a, b]
c) x0 = b,M(b− a) ≤ y0 − a, f(s, u, v) ≥ 0, ∀s, u, v ∈ [a, b]

(v) L1(2 + L) · Cx0 ≤ 1.

Then the initial value problem (3.3)+(3.4) has at least solution in CL, which
can be approximate by the Krasnoselskij iteration

yn+1(t) = (1− µ) · yn(t) + µy0 + µ

t∫

x0

f(s, yn(s), yn(yn(s)))ds, t ∈ [a, b], n ≥ 1

where µ ∈ (0, 1) and y1 ∈ CL is arbitrary.
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Proof. We defined the integral operatorul F : CL → C[a, b], by

(Fy)(t) = y0 +
∫ t

x0

f(s, y(s), y(y(s)))ds, t ∈ [a, b].

In the same way as Theorem 3.1 we prove that CL is an invariant set with respect
to F , i.e., we have F (CL) ⊂ CL.

|(Fy)(t)| ≤ |y0|+
∣∣∣∣
∫ t

x0

f(s, y(s), y(y(s)))ds

∣∣∣∣ ≤ |y0|+ M · |t− x0| ≤ b

|(Fy)(t)| ≥ |y0| −
∣∣∣
∫ t

x0
f(s, y(s), y(y(s)))ds

∣∣∣ ≥ |y0| −M · |t− x0| ≥
≥ |y0| −M · Cx0 ≥ y0 − Cy0 ≥ a

Thus Fy ∈ [a, b], for any y ∈ CL.
For any t1, t2 ∈ [a, b] we have:

|(Fy)(t)− (Fz)(t)| ≤
∣∣∣∣
∫ t

x0

f(s, y(s), y(y(s)))ds

∣∣∣∣ ≤ M · |t− t2| ≤ L · |t1 − t2|

So, Fy ∈ CL,for any y ∈ CL. In a similar way we treat the cases (iv) − b) and
(iv)− c).
We prove that F is nonexpansive operator. Let y, z ∈ CL and t ∈ [a, b]. Then

|(Fy)(t)− (Fz)(t)| ≤ ∫ t

x0
f |(s, y(s), y(y(s)))− f(s, z(s), z(z(s)))| ds ≤

≤ L1 ·
∫ t

x0
(|y(s)− z(s)|+ |y(y(s))− z(z(s))|) ds ≤

≤ L1 ·
∫ t

x0
(|y(s)− z(s)|+ |y(y(s))− y(z(s))|+ |y(z(s))− z(z(s))|) ds ≤

≤ L1 ·
∫ t

x0
(|y(s)− z(s)|+ L · |y(s)− z(s)|+ |y(z(s))− z(z(s))|) ds

Now, by taking the maximum in last inequality, we get

‖Fy − Fz‖ ≤ L1(2 + L) · |t− x0| · ‖y − z‖ ≤ L1(2 + L) · cx0 · ‖y − z‖
which in viewe of condition (v), proves that F is nonexpansive operator hence
continuous.
It now remains to apply the Schauder’s fixed point theorem and we obtain the first
part of conclusion and Corollary 1 or 2 get the second part of conclusion.

In the case f(t, u, v) = f(t, v) the problem (3.3) is the problem (3.1) in [4].
We consider now the following iterative differential equations

y′(x) = f(x, y(x), y(y(x)), y(λx)), λ ∈ (0, 1) (3.5)

whith initial condition
y(x0) = y0 (3.6)

This equation is more general than equation (1.1) or (3.3), because there is an
additional disturbance term y(λx). The next result is an existence theorem for the
initial value problem (3.5)+(3.6) in CL.
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Theorem 3.5. Assume that
(i) f ∈ C ([a, b]× [a, b]× [a, b]× [a, b])
(ii) there exists L1 > 0 such that

(∗∗) |f(s, u1, v1, w1)− f(s, u2, v2, w2)| ≤ L1(|u1 − u2|+ |v1 − v2|+ |w1 − w2|),
∀s, ui, vi, wi ∈ [a, b], i = 1, 2

(iii) if L is the Lipschitz constant involved in (* ), then

M = max {|f(s, u, v, w)| : (s, u, v, w) ∈ [a, b]× [a, b]× [a, b]× [a, b]} ≤ L

(iv) One of the following conditions holds:
a) M · Cx0 ≤ Cy0

b) x0 = a,M(b− a) ≤ b− y0, f(s, u, v, w) ≥ 0, ∀s, u, v, w ∈ [a, b]
c) x0 = b,M(b− a) ≤ y0 − b, f(s, u, v, w) ≥ 0, ∀s, u, v, w ∈ [a, b].

(v) L1(3 + L) · Cx0 ≤ 1
Then the initial value problem (3.5)+(3.6) has at least solution in CL, which

can be approximate by the Krasnoselskij iteration

yn+1(t) = (1−µ) · yn(t)+µy0 +µ

t∫

x0

f(s, yn(s), yn(yn(s)), yn(λs))ds, t ∈ [a, b], n ≥ 1

where µ ∈ (0, 1) and y1 ∈ CL is arbitrary.

Proof. We define the integral operator F : CL → C[a, b], by

(Fy)(t) = y0 +
∫ t

x0

f(s, y(s), y(y(s), y(λs))ds, t ∈ [a, b], y ∈ CL

In the same way as Theorem 3.1 we prove that CL is an invariant set with respect
to F , i.e., we have F (CL) ⊂ CL.

|(Fy)(t)| ≤ |y0|+
∣∣∣∣
∫ t

x0

f(s, y(s), y(y(s))y(λs))ds

∣∣∣∣ ≤ |y0| −M · |t− x0| ≤ b

|(Fy)(t)| ≥ |y0| −
∣∣∣
∫ t

x0
f(s, y(s), y(y(s)), y(λs))ds

∣∣∣ ≥ |y0| −M · |t− x0| ≥
≥ |y0| −M · Cx0 ≥ a

Which means that Fy ∈ [a, b],for any y ∈ CL.
For any t1, t2 ∈ [a, b] we have:

|(Fy)(t1)− (Fy)(t2)| ≤
∣∣∣∣
∫ t2

t1

f(s, y(s), y(y(s)), y(λs))ds

∣∣∣∣ ≤ M · |t− t2| ≤ L · |t1 − t2|

which leads to the fact that Fy ∈ CL,for any y ∈ CL. In a similar way we treat the
cases (iv)− b) and (iv)− c).
We prove that F is nonexpansive operator. Let y, z ∈ CL and t ∈ [a, b]. Then
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|(Fy)(t)− (Fz)(t)| ≤ ∫ t

x0
|f(s, y(s), y(y(s)), y(λs))− f(s, z(s), z(z(s)), z(λs))| ds ≤

≤ L1 ·
∫ t

x0
(|y(s)− z(s)|+ |y(y(s))− z(z(s))|+ |y(λs)− z(λs)|) ds ≤

≤ L1 ·
∫ t

x0
(|y(s)− z(s)|+ |y(y(s))− y(z(s))|+ |y(z(s))− z(z(s))|+ |y(λs)− z(λs)|) ds ≤
≤ L1 ·

∫ t

x0
(|y(s)− z(s)|+ L · |y(s)− z(s)|+ |y(z(s))− z(z(s))| +

+ |y(λs)− z(λs)|)ds ≤ L1(3 + L) · |t− x0| · ‖y − z‖ ≤ L1(3 + L) · cx0 · ‖y − z‖
Now, by taking the maximum in last inequality, we get

‖Fy − Fz‖ ≤ L1(3 + L) · Cx0 · ‖y − z‖
which in view of condition (v), proves that F is nonexpansive operator hence con-
tinuous.
It now remains to apply the Schauder’s fixed point theorem and we obtain the first
part of conclusion and Corollary 1 or 2 get the second part of conclusion.

4 Examples

We conclude the paper by presenting two examples wich illustrate the generality
and efficiency of our results.

Example 4.1. Consider the following initial value problem associated to an itera-
tive differential equation with deviating argument

{
y′(x) = − 1

2 + y(y(x)) + y(λx)
y( 1

2 ) = 1
2

(3.7)

where x ∈ [0, 1], y ∈ C1 ([0, 1], [0, 1]) , λ ∈ (0, 1). We are interested to study the
solutions y ∈ C1([0, 1], [0, 1]) belonging to the set

C1 = {y ∈ C ([0, 1], [0, 1]) : |y(t1)− y(t2)| ≤ |t1 − t2| ,∀t1, t2 ∈ [0, 1]} ,

which, in view of our notations, means that L = 1. We have

a = 0, b = 1, x0 =
1
2

hence Cx0 = max {x0 − a, b− x0} =
1
2
.

The function f(x, u, v) = − 1
2 +u+v is Lipschitzian in the sense of (**) with respect

to u and v, with Lipschitz constant L1 = 1. This shows that

2 · L1 · Cx0 = 1,

so the condition (v) in Theorem 3.5 is satisfied, but the condition (v) in Theo-
rem 3.1 is not. By theorem 3.3 the solution of differential equation (3.7) can be
approximated by means of the iterative method

yn+1(t) = (1− µ) · yn(t) + µy0 + µ

t∫

x0

[
−1

2
+ yn(yn(s)) + yn(λs))

]
ds

where µ ∈ (0, 1) and y1 ∈ C1 is arbitrary.
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Example 4.2. We consider the initial value problem
{

y′(x) = − 1
3 + 1

2 · y(x) + 1
2y(y(x))

y
(

1
3

)
= 1

3

(3.8)

where x ∈ [0, 1], y ∈ C1 ([0, 1], [0, 1]) .
We show that the problem (3.8) has at least solution in

C1 = {y ∈ C ([0, 1], [0, 1]) : |y(t1)− y(t2)| ≤ |t1 − t2| , ∀t1, t2 ∈ [0, 1]}

We have L = 1, a = 0, b = 1, x0 = 1
3 and max {x0 − a, b− x0} = 2

3 .
The function f(x, u, v) = − 1

3 + u+v
2 is Lipschitzian with Lipschitz constant L1 = 1

2 .

Under these conditions we have L1(2+L) ·Cx0 = 1, so Theorem 3.4 is applicable
but the Theorem 3.1 is not. Note also that y(x) = 1

3 , x ∈ [0, 1] is a solution of the
initial value problem (3.8). By Theorem 3.4 the initial value problem (3.8) has at
least one solution in C1 that can be approximate by Krasnoselskij iteration

yn+1(t) = (1− µ) · yn(t) + µy0 + µ

t∫

x0

[
−1

3
+

1
2
· yn(s) +

1
2
· yn(yn(s))

]
ds

where µ ∈ (0, 1) and y1 ∈ C1 is arbitrary.
In particular cases, if f(t, u, v) = f(t, v), we find the differential equation studied
in [4].
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[1] Bacoţiu, C., Volterra-Fredholm nonlinear systems with modified argument via
Picard operator theory, Carpathian Journal of Math., 24(2008), No. 2, 1-19

[2] Benchohra, M. and Darwish M. A., On unique solvability of quadric inte-
gral equations with linear modification of the argument,Miskolc Math. Notes,
10(2009), No.1, 3-10

[3] Berinde,V., Iterative Approximation of Fixed Points,2nd Ed.,Springer Verlag,
Berlin Heidelberg New York,2007

[4] Berinde,V., Existence and approximation of solutions of some first order it-
erative differential equations, Miskolc Math. Notes,Vol. 11 (2010), No. 1, pp.
1326

[5] Buica,A., Existence and continuous dependence of solutions of some functional-
diferential equations, Seminar of Fixed Point Theory 3, 1995, 1-14

[6] Chidume,C.E.,Geometric Properties of Banach spaces and nonlinear Iterations,
Springer Verlag, Berlin, Heidelberg, New York,2009



Existence results for some differential equations with deviating argument 31
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[12] Fečkan, E., On certain type of functional differential equations, Math. Slovaca,
43(1993), 39-43

[13] Goebel,K. and Kirk, W.A., Topics in Metric Fixed Point Theory, Cambridge
University Press, Cambridge, 1990

[14] Ishikawa, S., Fixed point and iteration of a nonexpansive mapping in a Banach
space, Proc. Amer. Math. Soc., 59(1976), No. 1,65-71

[15] Li, W.-R., Cheng, S.S., A Picard theorem for iterative differential equations,
Demonstratio Math. 42 (2009), No. 2, 371-380
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