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EXISTENCE RESULTS

FOR SUPERLINEAR SEMIPOSITONE BVP’S

V. ANURADHA, D. D. HAI, AND R. SHIVAJI

(Communicated by Hal Smith)

Abstract. We consider the existence of positive solutions to the BVP

(p(t)u′)′ + λf(t, u) = 0, r < t < R,

au(r)− bp(r)u′(r) = 0,

cu(R) + dp(R)u′(R) = 0,

where λ > 0. Our results extend some of the existing literature on superlinear
semipositone problems and singular BVPs. Our proofs are quite simple and
are based on fixed point theorems in a cone.

1. Introduction

We consider the existence of positive solutions for the Sturm-Liouville boundary
value problem

(p(t)u′)′ + λf(t, u) = 0, r < t < R,
au(r) − bp(r)u′(r) = 0,
cu(R) + dp(R)u′(R) = 0,

(1.1)

where f(t, 0) need not be non-negative. The problem (1.1) with Dirichlet boundary
conditions was treated by Garaizar [5] and Castro-Shivaji [3]. In [5], the existence
of a positive solution to (1.1) for λ > 0 small was established with p(t) = tn−1,
f(t, u) = tn−1g(u), g(0) < 0 and g(u) = O(uk) for some k > 1. The existence of a
unique positive solution to (1.1) for λ > 0 small was proved in [3] with p(t) = 1, f
independent of t, f(0) < 0, f ′ > 0, f ′′ > 0 and f superlinear. Further, Anuradha-
Shivaji [1] extended this existence result for the Robin boundary condition case. In
this paper, we shall establish the existence of a positive solution to (1.1) for λ > 0
small under the following general conditions:

f(t, u) ≥ −M
for some M > 0, and

lim
u→∞

f(t, u)

u
=∞

uniformly on a compact subinterval of (r,R).
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We also study the problem (1.1) with f possibly singular. Here we do not assume
that f(t, u) is decreasing in u, thus extending the corresponding results in [2, 4, 6, 9].
Our proofs are quite simple and are based on fixed point theorems in a cone.

2. Existence with f regular

We make the following assumptions:

(A.1) p ∈ C[r,R], p(t) > 0 for every t ∈ [r,R].
(A.2) a, b, c, d ≥ 0 and ac+ ad+ bc > 0.
(A.3) f : [r,R] × [0,∞) → R is continuous and there exists an M > 0 such that

f(t, u) ≥ −M for every t ∈ [r,R], u ≥ 0.

(A.4) limu→∞
f(t,u)
u =∞ uniformly on a compact subinterval [α, β] of (r,R).

Then we have

Theorem 2.1. Let (A.1)–(A.4) hold. Then the problem (1.1) has a positive solu-
tion for λ > 0 sufficiently small.

In order to prove Theorem 2.1, we first recall:

Theorem A ([7]–[8]). Let K be a cone in a Banach space E and let A : K→ K be
a completely continuous operator. Let 0 < r < R be such that

(i) u ≤ Au⇒ ‖u‖ 6= r,
(ii) u ≥ Au⇒ ‖u‖ 6= R.

Here u ≤ v iff v − u ∈ K. Then A has a fixed point u with r < ‖u‖ < R.
We further need the following lemmas.

Lemma 2.1. Let (A.1), (A.2) hold and let u satisfy

(p(t)u′)′ = −v, r < t < R,

au(r)− bp(r)u′(r) = 0, cu(R) + dp(R)u′(R) = 0,

where v ∈ L1(r,R), v ≥ 0. Then

u(t) ≥ |u|0q(t), t ∈ [r,R],

where

q(t) = min

(
b+ a

∫ t
r

1
p

b+ a
∫ R
r

1
p

,
d+ c

∫ R
t

1
p

d+ c
∫ R
r

1
p

)
.

Here | · |0 stands for the sup norm.

Proof of Lemma 2.1. It can be verified that

u(t) =

∫ R

r

K(t, s)v(s) ds, t ∈ [r,R],

where

K(t, s) =


α−1

(
b+ a

∫ s

r

1

p

)(
d+ c

∫ R

t

1

p

)
if s ≤ t,

α−1

(
b+ a

∫ t

r

1

p

)(
d+ c

∫ R

s

1

p

)
if s ≥ t,

(2.1)

where α = ad+ ac
∫ R
r

1
p + bc.
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Let |u|0 = u(t0) for some t0 ∈ [r,R]. We verify that

K(t, s)

K(t0, s)
≥ q(t), s, t, t0 ∈ (r,R).

Indeed, if t, t0 ≤ s,

K(t, s)

K(t0, s)
=

b+ a
∫ t
r

1
p

b+ a
∫ t0
r

1
p

≥
b+ a

∫ t
r

1
p

b+ a
∫ R
r

1
p

;

if t ≤ s ≤ t0,

K(t, s)

K(t0, s)
=

(
b+ a

∫ t
r

1
p

)(
d+ c

∫ R
s

1
p

)
(
b+ a

∫ s
r

1
p

)(
d+ c

∫ R
t0

1
p

) ≥
(
b+ a

∫ t
r

1
p

)
(
b+ a

∫ R
r

1
p

) .
The other cases are treated similarly. Thus

u(t) =

∫ R

r

K(t, s)

K(t0, s)
K(t0, s)v(s) ds ≥ |u|0q(t), t ∈ [r,R].

Lemma 2.2. Let (A.1), (A.2) hold and let w be the solution of

(p(t)u′)′ = −1, r < t < R,

au(r) − bp(r)u′(r) = 0,

cu(R) + dp(R)u′(R) = 0.

Then there exists a positive number C such that w(t) ≤ Cq(t) for every t ∈ [r,R].

Proof of Lemma 2.2. We have

w(t) = α−1

[(
d+ c

∫ R

t

1

p

)(∫ t

r

(
b+ a

∫ s

r

1

p

)
ds

)

+

(
b+ a

∫ t

r

1

p

)(∫ R

t

(
d+ c

∫ R

s

1

p

)
ds

)]

≤ α−1(R − r)
(
b+ a

∫ t

r

1

p

)(
d+ c

∫ R

t

1

p

)
≤ Cq(t),

where C = α−1(b+ a
∫ R
r

1
p)(d+ c

∫ R
r

1
p)(R − r).

Proof of Theorem 2.1. Let λ satisfy

0 < λ < min

(
1

C1|w|0
,

1

CM

)
,(2.2)

where C1 = supr≤s≤R, 0≤t≤1 g(s, t), g(s, t) = f(s, t) + M and C is the constant
defined in Lemma 2.2.
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Let w = λMw. Then u is a positive solution of (1.1) iff ũ = u+ w is a solution
of

(p(t)u′)′ = −λg̃(t, u− w),

au(r) − bp(r)u′(r) = 0,

cu(R) + dp(R)u′(R) = 0

with ũ(t) > w(t) on (r,R). Here g̃(t, u) = g(t, u) for u ≥ 0, and g(t, u) = g(t, 0) for
u < 0.

Let K = {u ∈ C[r,R] : u(t) ≥ |u|0q(t), t ∈ [r,R]}, where q is defined by
Lemma 2.1. For each v ∈ K, let u = Av be the solution of

(p(t)u′)′ = −λg̃(t, v − w),

au(r) − bp(r)u′(r) = 0,

cu(R) + dp(R)u′(R) = 0.

By Lemma 2.1, A : K→ K and it can be verified that A is completely continuous.
We shall prove that A has a fixed point in K by using Theorem A [7]. Let u ∈ K
be such that u ≤ Au. We claim that |u|0 6= 1. Indeed, if |u|0 = 1, then we have

u(t) ≤ λ
∫ R

r

K(t, s)g̃(s, u− w) ds ≤ λC1w(t), t ∈ [r,R],

where K(t, s) is given by (2.1). This implies

1 ≤ λC1|w|0,

a contradiction to (2.2), proving the claim.
Now, let u ∈ K with u ≥ Au. Then we have

u(t) ≥ λ
∫ β

α

K(t, s)g̃(s, u− w) ds.(2.3)

Let M̃ > 0 and let |u|0 = R. Since

w(s) = λMw(s) ≤ λCM

R
u(s),

it follows that

u(s)− w(s) ≥
(

1− λCM

R

)
u(s).

Therefore if R is sufficiently large, we have

u(s)− w(s) ≥ 1
2u(s) ≥ 1

2Rδ, s ∈ [α, β],(2.4)

where δ = minα≤s≤β q(s), and

g̃(s, u− w) = g(s, u− w) ≥ M̃(u(s)− w(s)) ≥ M̃Rδ

2
(2.5)

by (A.4).
Combining (2.3)–(2.5), we obtain

R ≥ λM̃Rδ

2

(
sup
r≤t≤R

∫ β

α

K(t, s) ds

)
,
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which is a contradiction if M̃ is sufficiently large. So there exists an R > 1 such
that |u|0 6= R. By Theorem A (expansion theorem), A has a fixed point ũ with
1 ≤ |ũ|0 ≤ R.

It follows that ũ(t) ≥ q(t) ≥ λCMq(t) ≥ w(t), and so u = ũ − w is a positive
solution to (1.1), completing the proof of Theorem 2.1.

3. Existence with f singular

We now turn our attention to the problem (1.1) with f possibly singular. We
make the following assumptions:

(A.5) f : (r,R)× (0,∞)→ (0,∞) is continuous.
(A.6) There exist positive constants C, α, β with r < α < β < R, and h ∈ L1(α, β),

h ≥ 0, h 6≡ 0 such that

f(t, u) ≥ h(t)

for t ∈ (α, β), u ≤ C.
(A.7) For each θ > 0, there exists pθ ∈ L1(r,R) such that

f(t, u) ≤ pθ(t), t ∈ (r,R),

for every u ∈ C[r,R] with u(t) ≥ θq(t), where q(t) is given by Lemma 2.1.
We then have

Theorem 3.1. Let (A.1), (A.2), (A.5)–(A.7) hold, and let λ > 0; then the problem
(1.1) has a positive solution u ∈ C1[r,R] ∩C2(r,R).

In order to prove Theorem 3.1 we first recall:

Theorem B ([7]–[8]). Let K be a cone in a Banach space E,

D = {u ∈ K : r ≤ ‖u‖ ≤ R}
and A : D → K be a completely continuous operator such that

(i) u ∈ D, λ ∈ (0, 1), u = λAu⇒ ‖u‖ 6= R,
(ii) u ∈ D, λ > 1, u = λAu⇒ ‖u‖ 6= r,
(iii) inf‖u‖=r ‖Au‖ > 0.

Then A has a fixed point in D.

Proof of Theorem 2.1. Let K be the cone as in the proof of Theorem 2.1 and let

r0 =
1

2
min

(
λ sup
r≤t≤R

∫ β

α

K(t, s)h(s) ds, C, 1

)
,

R0 = 2 max

(
λ sup
r≤t≤R

∫ R

r

K(t, s)p1(s) ds, 1

)
,

where K(t, s) is defined by (2.1).
Let D = {u ∈ K : r0 ≤ |u|0 ≤ R0}. For each v ∈ D, let u = Av be the solution

of

(p(t)u′)′ = −λf(t, v),

au(r) − bp(r)u′(r) = 0,

cu(R) + dp(R)u′(R) = 0.
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Note that u exists since f(t, v) ≤ pr0(t), by (A.7). By Lemma 2.1, A : D → K
and it can be verified that A is completely continuous. To apply Theorem B, it is
sufficient to verify that

|Au|0 > r0 for u ∈ D with |u|0 = r0,

|Au|0 < R0 for u ∈ D with |u|0 = R0.

Let u ∈ D with |u|0 = r0. Then by (A.6)

Au(t) = λ

∫ R

r

K(t, s)f(s, u) ds ≥ λ
∫ β

α

K(t, s)h(s) ds, t ∈ [r,R],

and so |Au|0 > r0.
Next, let u ∈ D with |u|0 = R0. Then u(t) ≥ q(t) and by (A.7) we have

Au(t) ≤ λ
∫ R

r

K(t, s)p1(s) ds

and so |Au|0 < R0.
Thus A has a fixed point u which is a C1[r,R] ∩ C2(r,R) positive solution to

(1.1), completing the proof of Theorem 3.1.

Remark 1. Condition (A.7) is satisfied if∫ R

r

f(t, θs(t)) dt <∞(A.8)

for every θ > 0, where s(t) = min(t− r,R− t). In the case where b, d > 0, (A.7) is
equivalent to ∫ R

r

f(t, u) dt <∞(A.9)

for every u > 0.

Remark 2. In the case where p(t) = 1, the existence of a positive C1[r,R]∩C2(r,R)
solution to (1.1) was studied in [4, 6, 9]. The result in [6], which extends the one
in [9], requires that f satisfy (A.2), (A.5), (A.8), (A.9), f(t, u) → 0 as u → ∞
and f(t, u) → ∞ as u → 0 uniformly on compact subsets of (r,R), and f(t, u)
be decreasing in u for each t. In [4], (A.8) and the limiting conditions of [6] were
removed, provided a, b, c, and d are positive. Also, the result in [2] when applied
to the problem (1.1) with p(t) = 1 requires that f(t, u) be decreasing in u and f
satisfy (A.7). Thus Theorem 3.1 unifies and extends the corresponding results in
[2, 4, 6, 9].
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