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Abstract The paper deals with existence, multiplicity and asymptotic behavior of entire

solutions for a series of stationary Kirchhoff fractional p-Laplacian equations. The existence

presents several difficulties due to the intrinsic lack of compactness arising from different

reasons, and the suitable strategies adopted to overcome the technical hurdles depend on

the specific problem under consideration. The results of the paper extend in several direc-

tions recent theorems. Furthermore, the main assumptions required in the paper weaken the

hypotheses used in the recent literature on stationary Kirchhoff fractional problems. Some

equations treated in the paper cover the so-called degenerate case that is the case in which

the Kirchhoff function M is zero at zero. In other words, from a physical point of view, when

the base tension of the string modeled by the equation is zero, it is a very realistic case. Last

but not least no monotonicity assumption is required on M , and also this aspect makes the

models more believable in several physical applications.
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1 Introduction

In this paper we study a series of problems involving the stationary Kirchhoff fractional

p-Laplacian operator u �→ M([u]p
s,p)(−Δ)s

pu for functions u, defined in the entire R
N and

belonging to suitable fractional Sobolev spaces in which the Gagliardo semi-norm

[u]p
s,p =

∫∫

R2N

|u(x) − u(y)|p

|x − y|N+ps
dxdy

is well defined. The operator (−Δ)s
p is the fractional p-Laplacian, which for every function

ϕ ∈ C∞
0 (RN ) may be defined, up to normalization factors, as

(−Δ)s
pϕ(x) = 2 lim

ε→0+

∫

RN \Bε(x)

|ϕ(x) − ϕ(y)|p−2(ϕ(x) − ϕ(y))

|x − y|N+ps
dy

for all x ∈ R
N , where Bε(x) = {y ∈ R

N : |x − y| < ε}.
The non-local coefficient M is the main Kirchhoff function related to the elliptic part of

the problem and is assumed throughout the paper, without further mentioning, that

(M) 0 < s < 1 < p < ∞, sp < N , M : R
+
0 → R

+
0 is a nonnegative continuous function

and there exists θ ∈ [1, N/(N − ps)) such that t M(t) ≤ θM (t) for any t ∈ R
+
0 ,

where M (t) =
∫ t

0 M(τ )dτ

holds.

A typical prototype for M , due to Kirchhoff in 1883, is given by M(t) = a + b tθ−1 for

t ≥ 0, with a, b ≥ 0 and a + b > 0. When M(t) > 0 for all t ≥ 0, Kirchhoff problems are

said to be non-degenerate and this happens for example if a > 0 and b ≥ 0 in the model

case. Otherwise, if M(0) = 0 and M(t) > 0 for all t > 0, the Kirchhoff problems are called

degenerate and this occurs in the model case when a = 0 and b > 0.

In the large literature on Kirchhoff problems, the transverse oscillations of a stretched

string, with non-local flexural rigidity, depends continuously on the Sobolev deflection norm

of u via M([u]2
s,2). Sometimes the Kirchhoff function M is assumed Lipschitz continuous,

but not always monotone, as in [10], even if the model proposed by Kirchhoff is clearly

monotone. Note that when the inertial effects of longitudinal modes can be neglected, the

tension is spatially uniform along the string and can be directly computed from the elongation

of the string according to the Hooke law and arriving to the form of M proposed by Kirchhoff

and derived properly by Carrier. In any case, M measures the change of the tension on the

string caused by the change of its length during the vibration. The presence of the nonlinear

coefficient M is crucial to be considered when the changes in tension during the motion

cannot be neglected. In the case of linear string vibrations, the tension is constant that is

M(t) ≡ M(0), but nonlinear vibrations are more realistic.

The existence theorems we prove should use new techniques in order to overcome the

non-local nature of the problems as well as the lack of compactness, and the suitable strategies

adopted depend of course on the problem under consideration.

The first equation we treat is

M([u]p
s,p)(−Δ)s

pu − γ
|u|p−2u

|x |ps
= λw(x)|u|q−2u + K (x)|u|p∗

s −2u in R
N , (1.1)

where γ and λ are real parameters, the exponent q is such that θp < q < p∗
s , with p∗

s =
N p/(N − ps) the critical exponent in the sense of Sobolev, and the positive weights w and

K satisfy
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Existence theorems for entire solutions of stationary. . . 2101

(w) w > 0 a.e. in R
N and w ∈ L℘(RN ), with ℘ = p∗

s /(p∗
s − q) and θp < q < p∗

s ,

(K ) K ≥ 0 a.e. in R
N and K ∈ L∞(RN ).

When yielding with (1.1) we assume also (w) and (K ), without further mentioning.

Problem (1.1) is fairly delicate due to the intrinsic lack of compactness, which arise from

the Hardy term and the nonlinearity with critical exponent p∗
s . For this reason we assume

that (1.1) is non-degenerate, that is

inf
t∈R

+
0

M(t) = a > 0. (1.2)

Stationary non-degenerate Kirchhoff problems have been extensively studied in the last

decades, but usually under the request that M is increasing in R
+
0 , as in [17,26,29] and the

reference therein. We replace the monotonicity assumption by (M). In particular, as shown

in [2,31], the Kirchhoff function M(t) = (1 + t)k + (1 + t)−1, k ∈ (0, 1), verifies both

(M) and (1.2), but is not monotone. In fact, we have that inf t∈R
+
0

M(t) = a > 0, with

a = k−k/(k+1)(1 + k) < M(0) = 2. Furthermore, (M) is satisfied taking θ = k + 1,

provided that k is so small that k < sp/(N − sp).

The main solution space for (1.1) is the fractional Beppo–Levi space Ds,p(RN ), that

is the completion of C∞
0 (RN ) with respect to [ · ]s,p . As it is well known, Ds,p(RN ) =

(Ds,p(RN ), [ · ]s,p) is a uniformly convex Banach space. By Theorems 1 and 2 of [23]

‖u‖p
p∗

s
≤ CN ,p

s(1 − s)

(N − ps)p−1
[u]p

s,p,

∫

RN

|u(x)|p

|x |ps
≤ CN ,p

s(1 − s)

(N − ps)p
[u]p

s,p

for all u ∈ Ds,p(RN ), where CN ,p is a positive constant depending only on N and p.

Thus, the fractional Sobolev embedding Ds,p(RN ) →֒ L p∗
s (RN ) and the fractional Hardy

embedding Ds,p(RN ) →֒ L p(RN , |x |−ps) are continuous, but not compact. However, we

are able to introduce the best fractional critical Sobolev and Hardy constant S = S(N , p, s)

and H = H(N , p, s) given by

S = inf
u∈Ds,p(RN )

u �=0

[u]p
s,p

‖u‖p
p∗

s

, H = inf
u∈Ds,p(RN )

u �=0

[u]p
s,p

‖u‖p
H

, ‖u‖p
H =

∫

RN

|u(x)|p

|x |ps
dx . (1.3)

Of course the numbers S and H are strictly positive. We refer to Theorem 1.1 of [18] for

the sharp Hardy constant H .

Define κ = κ(q, M) by

κ =
a(q − θp)

θ(q − p)
.

Clearly κ ∈ (0, a], being θ ≥ 1 and p ≤ θp < q by assumption on θ and q . There are

cases, besides the obvious one M ≡ a, in which κ = a, that is θ = 1 in (M), as shown in

Sect. 2. Problem (1.1) has a variational nature, and under the above structural assumptions,

(weak) solutions of (1.1) are exactly the critical points of the underlying functional Jγ,λ,

which satisfies the geometry of the mountain pass lemma. The main existence result for

problem (1.1) is given in terms of critical points uγ,λ found at special mountain pass levels.

These solutions are simply called mountain pass solutions.

Theorem 1.1 Suppose that (1.1) is non-degenerate, that is (1.2) holds. Then for every γ in

(−∞, κ H) problem (1.1) admits a non-trivial mountain pass solution uγ,λ for any λ > 0

and uγ,λ satisfies the asymptotic behavior

lim
λ→∞

[uγ,λ]s,p = 0, (1.4)
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2102 M. Caponi, P. Pucci

whenever ‖K‖∞ = 0. While if ‖K‖∞ > 0, then there exists λ∗ = λ∗(γ ) > 0 such that for

any λ ≥ λ∗ problem (1.1) admits a non-trivial mountain pass solution uγ,λ which satisfies

again (1.4).

Theorem 1.1 extends in several directions Theorem 1.3 of [16]. A very natural appealing

open problem is to prove existence of non-trivial solutions for (1.1), when M(0) = 0 and

M(t) > 0 for all t > 0.

Next, we study problem (1.1) in the degenerate case, that is when

M(0) = inf
t∈R

+
0

M(t) = 0.

But we require that γ = 0, that is that the Hardy term does not appear any longer. A very

intriguing open question is to prove existence of solutions in the degenerate case, assuming

only that

inf
t∈R

+
0

M(t) = 0.

Up to now this case has been never treated, since it seems particularly delicate to handle,

even if extremely interesting, not only from a mathematical point of view, but especially in

applications.

More precisely, we next consider

M([u]p
s,p)(−Δ)s

pu = λw(x)|u|q−2u + K (x)|u|p∗
s −2u in R

N , (1.5)

when (1.2) is replaced by M(0) = 0 and

(M1) For any τ > 0 there exists mτ > 0 such that M(t) ≥ mτ for all t ≥ τ .

(M2) There exists b > 0 such that M(t) ≥ b t for any t ∈ [0, 1].
The degenerate case is very appealing, and it is covered in famous well-known papers in

Kirchhoff theory, as [10,27]. In particular, in [10] the Kirchhoff function M is assumed Lip-

schitz continuous, but not monotone. Also in the degenerate case there are several functions

M which are not increasing in R
+
0 , but satisfy (M), (M1) and (M2), see Sect. 3 for details.

From a physical point of view the fact that M(0) = 0 means that the base tension of the

string is zero, a very realistic model. The existence theorem for (1.5) is

Theorem 1.2 Let M(0) = 0 and ps < N < 2ps. Suppose that M satisfy (M1) and (M2).

Then problem (1.5) admits a non-trivial mountain pass solution uλ for any λ > 0 and uλ

satisfies the asymptotic behavior

lim
λ→∞

[uλ]s,p = 0, (1.6)

whenever ‖K‖∞ = 0. While if ‖K‖∞ > 0, then there exists λ∗ > 0 such that for any λ ≥ λ∗

problem (1.5) admits a non-trivial mountain pass solution uλ which satisfies again (1.6).

When p = 2, the restriction 2s < N < 4s was also required in [2,24] for somehow

related fractional degenerate Kirchhoff Dirichlet problems in bounded domains and it implies

N ∈ {1, 2, 3}. Similarly, condition (M2) already appears in [2], where it is largely explained

as it weakens analogous growth conditions on M required at 0 in the degenerate case in the

literature on Kirchhoff problems. We refer to [2] for further details.

Theorem 1.2 is very general and extends in several directions the existence results obtained

in [21], when μ = 0 in [21].

In the last part of the work, we extend the results given in [31] for the non-homogeneous

fractional p-Laplacian Schrödinger–Kirchhoff equations to the degenerate case M(0) = 0

and consider
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Existence theorems for entire solutions of stationary. . . 2103

M([u]p
s,p)(−Δ)s

pu + V (x)|u|p−2u = f (x, u) + g(x, u) + h(x) in R
N . (1.7)

For (1.7) we assume that M satisfies only (M) and (M1). The function h can be viewed

as a perturbation term, and h is assumed throughout the paper to be in Lν′
(RN ), where ν′ is

the conjugate exponent of some fixed ν ∈ [p, p∗
s ].

On the potential function V we suppose

(V1) V ∈ C(RN ) satisfies inf
x∈RN

V (x) ≥ V0 > 0.

(V2) There exists R > 0 such that lim
|y|→∞

meas({x ∈ BR(y) : V (x) ≤ c}) = 0 for any

c > 0.

Condition (V2) is weaker than the coercivity assumption V (x) → ∞ as |x | → ∞ usually

required in Schrödinger problems. Assumption (V2) was originally introduced by Bartsch

and Wang in [5] to overcome the lack of compactness in problems defined in the entire space

R
N .

The natural space where finding solutions for (1.7) is W , that is the completion of C∞
0 (RN )

with respect to the norm

‖u‖W =
(

[u]p
s,p + ‖u‖p

p,V

)1/p
, ‖u‖p

p,V =
∫

RN

V (x)|u(x)|pdx,

with V satisfying (V1). By standard arguments, it is clear that also W = (W, ‖ · ‖W ) is a

uniformly convex Banach space, see Lemma 10 in the Appendix of [31].

The nonlinearity f : R
N × R → R is a Carathéodory function verifying condition

(F) There exists q ∈ (θp, p∗
s ) such that either

( f1) f (x, t) = w(x)|t |q−2t for a.a x ∈ R
N and all t ∈ R, where w satisfies (w), or

( f2) f verifies both assumptions

(a) there exists a positive function w of class L∞(RN ) such that w(x) = o(1) as

|x | → ∞ and | f (x, t)| ≤ w(x)|t |q−1 for a.a x ∈ R
N and all t ∈ R,

(b) 0 < q F(x, t) ≤ t f (x, t) for a.a x ∈ R
N and all t ∈ R \ {0}, where F(x, t) =

∫ t

0

f (x, τ )dτ .

The nonlinearity g : R
N × R → R is a Carathéodory function satisfying condition

(G) There are exponents r and μ in (θp, p∗
s ) such that for all ε > 0 there exists Cε > 0 and

|g(x, t)| ≤ θpε|t |θp−1 + rCε|t |r−1

for a.a. x ∈ R
N and all t ∈ R, and either

(i) θp < μ < q and μG(x, t) ≤ t g(x, t) for a.a x ∈ R
N and all t ∈ R, where

G(x, t) =
∫ t

0 g(x, τ )dτ , or

(ii) q ≤ μ < p∗
s and 0 ≤ μG(x, t) ≤ t g(x, t) for a.a x ∈ R

N and all t ∈ R.

Simple examples of subcritical nonlinear terms which satisfy conditions (F) and (G) are

given by f (x, t) = w(x)|t |q−2t , with w > 0 a.e. in R
N and w either satisfying (w), or with w

in L∞(RN ) and w(x) = o(1) as |x | → ∞, and by g(x, t) = ϕ(x)ψ(t), with ϕ ∈ L∞(RN ),

ϕ > 0 a.e in R
N and ψ(t) = r |t |r−2t + μ|t |μ−2t , provided that θp < min{q, μ} and

μ ≤ r < p∗
s .

The condition inf{G(x, t) : x ∈ R
N , |t | = 1} > 0, assumed in [31], is no longer

required in this paper thanks to the presence of the non-trivial nonlinearity f . We state below

the main existence result for problem (1.7).
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2104 M. Caponi, P. Pucci

Theorem 1.3 Let M(0) = 0 and suppose that M, V , f and g satisfy (M1), (V1)–(V2),

(F) and (G), respectively. Then there exists a number δ > 0 such that for all perturbations

h ∈ Lν′
(RN ), with ‖h‖ν′ ≤ δ, problem (1.7) admits a non-trivial mountain pass solution u0 in

W . If furthermore h is non-trivial, then (1.7) admits at least a second independent non-trivial

solution u1 in W .

Finally, if g ≡ 0, then the assertion above continues to hold assuming only (V1) on the

potential V .

The last part of Theorem 1.3, that is when g ≡ 0 in (1.7), takes inspiration from the paper

[19] and covers also the interesting case in which V is a positive constant. Furthermore,

Theorem 1.3 extends in several directions previous accomplishments, as the existence results

obtained in [7,15,22,33,34] and in a broad sense [8].

Finally, we study equation (1.7), still requiring only (V1) on the potential V , but including

the term g, provided that V , f , g and h are radial functions in x .

Theorem 1.4 Let N ≥ 2 and M(0) = 0. Suppose that (M1), (V1), (F) and (G) hold, and

that V , f , g and h are radial functions in x. Then there exists a number δ > 0 such that for

all radial perturbations h ∈ Lν′
(RN ), with ‖h‖ν′ ≤ δ, problem (1.7) admits a non-trivial

radial mountain pass solution u0 in W . If furthermore h is non-trivial, then (1.7) admits at

least a second independent non-trivial radial solution u1 in W .

Theorem 1.4 not only covers the so-called degenerate and non-local case, but also encloses

general nonlinearities and perturbations. Therefore Theorem 1.4 extends in several directions

the existence results obtained in [14,25].

The paper is organized as follows. In Sect. 2 we prove the existence Theorem 1.1 for the

Hardy problem (1.1) and the asymptotic behavior (1.4). Section 3 is devoted to the study

of the degenerate problem (1.5) and to the proof of the existence Theorem 1.2 and of the

validity of (1.6). Finally, Sects. 4 and 5 deal with the proof of Theorems 1.3 and 1.4 for the

degenerate Schrödinger–Kirchhoff equation (1.7), respectively.

2 The non-degenerate problem (1.1)

In this section we prove the existence result for problem (1.1) and we recall that throughout

the section (M), (w), (K ) and (1.2) hold.

Let Lq(RN , w) be the weighted Lebesgue space endowed with the norm

‖u‖q
q,w =

∫

RN

w(x)|u|qdx

By Proposition A.6 of [3] the Banach space Lq(RN , w) = (Lq(RN , w), ‖ · ‖q,w) is uni-

formly convex. Furthermore, combining some ideas of Lemma 2.3 of [3], Lemma 2.2 of [4]

and Lemma 2.6 of [32], see also Lemma 2.3 of [30], we have

Lemma 2.1 The embedding Ds,p(RN ) →֒ Lq(RN , w) is continuous, with

‖u‖q,w ≤ Cw[u]s,p for all u ∈ Ds,p(RN ), (2.1)

and Cw = S−1/p‖w‖1/q
℘ > 0. Furthermore, the above embedding is also compact.
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Proof By (w), the Hölder inequality and (1.3), for all u ∈ Ds,p(RN )

‖u‖q,w ≤
( ∫

RN

w(x)℘dx

)1/℘q

·
( ∫

RN

|u|p∗
s dx

)1/p∗
s

≤ S−1/p‖w‖1/q
℘ [u]s,p,

that is (2.1) holds.

To prove the second part of the lemma, we need to show that if un ⇀ u in Ds,p(RN ),

then ‖un − u‖q,w → 0 as n → ∞. Thanks to the Hölder inequality

∫

RN \BR

w(x)|un − u|qdx ≤ L

( ∫

RN \BR

w(x)℘dx

)1/℘

= o(1) (2.2)

as R → ∞, being w ∈ L℘(RN ) and ‖un −u‖q
p∗

s
= L < ∞ for all n ∈ N by (1.3). Moreover,

for all R > 0 the embedding Ds,p(RN ) →֒ W s,p(BR) is continuous and so the embedding

Ds,p(RN ) →֒→֒ Lν(BR) is compact for all ν ∈ [1, p∗
s ), by Corollary 7.2 of [12]. In fact,

using (1.3) and the Hölder inequality

‖u‖p

W s,p(BR)
≤ CR‖u‖p

p∗
s
+ [u]p

s,p ≤ (CR/S + 1)[u]p
s,p

for all u ∈ Ds,p(RN ), where CR = (ωN /N )ps/N R ps and ωN is the measure of the unit

sphere SN−1 = {x ∈ R
N : |x | = 1} of R

N .

Fix ε > 0. There exists Rε > 0 so large that
∫

RN \BRε
w(x)|un − u|qdx < ε by (2.2).

Take a subsequence (unk
)k ⊂ (un)n . Since unk

→ u in Lν(BRε ) for all ν ∈ [1, p∗
s ), then up

to a further subsequence, still denoted by (unk
)k , we have that unk

→ u a.e. in BRε . Thus

w(x)|un − u|q → 0 a.e. in BRε . Furthermore, for each measurable subset E ⊂ BRε , by the

Hölder inequality we have

∫

E

w(x)|unk
− u|qdx ≤ L

( ∫

E

w(x)℘dx

)1/℘

.

Hence, (w(x)|unk
− u|q)k is equi-integrable and uniformly bounded in L1(BRε ), since

w ∈ L℘(RN ) by (w). Then, the Vitali convergence theorem implies

lim
k→∞

∫

BRε

w(x)|unk
− u|qdx = 0

and so un → u in Lq(BRε , w), since the sequence (unk
)k is arbitrary.

Consequently,
∫

BRε
w(x)|un − u|qdx = o(1) as n → ∞. In conclusion, as n → ∞

‖un − u‖q
q,w =

∫

RN \BRε

w(x)|un − u|qdx +
∫

BRε

w(x)|un − u|qdx ≤ ε + o(1).

This completes the proof, being ε > 0 arbitrary. ⊓⊔

We say that u ∈ Ds,p(RN ) is a (weak) solution of (1.1) if

M([u]p
s,p)〈u, ϕ〉s,p − γ

∫

RN

|u(x)|p−2u(x)ϕ(x)

|x |ps
dx

= λ

∫

RN

w(x)|u(x)|q−2u(x)ϕ(x)dx +
∫

RN

K (x)|u(x)|p∗
s −2u(x)ϕ(x)dx,

for all ϕ ∈ Ds,p(RN ), where

〈u, ϕ〉s,p =
∫∫

R2N

|u(x) − u(y)|p−2(u(x) − u(y))(ϕ(x) − ϕ(y))

|x − y|N+ps
dxdy.
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2106 M. Caponi, P. Pucci

Problem (1.1) has a variational structure and Jγ,λ : Ds,p(RN ) → R, defined by

Jγ,λ(u) =
1

p
M ([u]p

s,p) −
γ

p
‖u‖p

H −
λ

q
‖u‖q

q,w −
1

p∗
s

‖u‖p∗
s

p∗
s ,K ,

where ‖u‖p∗
s ,K = (

∫

RN K (x)|u(x)|p∗
s dx)1/p∗

s , is the underlying functional associated

with (1.1). Obviously, Jγ,λ is well defined and of class C1(Ds,p(RN )).

Condition (1.2) gives that M(t) > 0 for any t ∈ R
+
0 and (M) yields that t �→ t−θ

M (t)

is non-increasing in R
+. Consequently, for all t0 > 0

tθ0 M (t) ≤ M (t0)t
θ for all t ≥ t0. (2.3)

Now, as in [17], we prove that the functional Jγ,λ has the geometric features required to

apply the mountain pass theorem of Ambrosetti and Rabinowitz of [1].

Lemma 2.2 For every γ ∈ (−∞, aH) and λ > 0 there exist α > 0 and ρ ∈ (0, 1] such

that Jγ,λ(u) ≥ α for all u ∈ Ds,p(RN ), with [u]s,p = ρ, and a function e ∈ C∞
0 (RN ), with

[e]s,p > ρ and Jγ,λ(e) < 0. The function e depends only on γ − when K > 0 a.e. in R
N .

Proof Fix γ ∈ (−∞, aH) and λ > 0. By (K ), (1.2), (1.3) and (2.1) there exists a positive

constant SK such that for all u ∈ Ds,p(RN )

Jγ,λ(u) ≥
a

p
[u]p

s,p −
γ

p
‖u‖p

H −
λ

q
‖u‖q

q,w −
1

p∗
s

‖u‖p∗
s

p∗
s ,K

≥
(

a

p
−

γ +

pH

)

[u]p
s,p −

λ

q
Cq

w[u]q
s,p − SK [u]p∗

s
s,p.

Setting

ηγ,λ(t) =
(

a

p
−

γ +

pH

)

t p −
λ

q
Cq

wtq − SK t p∗
s for all t ∈ [0, 1],

we note that there exists ρ ∈ (0, 1] such that maxt∈[0,1] ηγ,λ(t) = ηγ,λ(ρ) > 0, since

γ + < aH and p < q < p∗
s by (M) and (w). Consequently, Jγ,λ(u) ≥ α = ηγ,λ(ρ) > 0

for all u ∈ Ds,p(RN ), with [u]s,p = ρ.

Now take v ∈ C∞
0 (RN ) such that [v]s,p = 1. By (2.3) we have for t → ∞

Jγ,λ(tv) ≤ M (1)
tθp

p
[v]θp

s,p + γ − t p

p
‖v‖p

H − λ
tq

q
‖v‖q

q,w −
t p∗

s

p∗
s

‖v‖p∗
s

p∗
s ,K → −∞,

since p ≤ θp < q < p∗
s by (M) and (w). Hence, taking e = τ0v, with τ0 > 0 sufficiently

large, we obtain at once that [e]s,p ≥ 2 and Jγ,λ(e) < 0. In particular, [e]s,p > ρ and e

depends on γ −. Furthermore, e can be taken independent of λ whenever K > 0 a.e. in R
N ,

otherwise e could depend also on λ, as claimed. ⊓⊔

From the proof of Lemma 2.2 it is apparent that if e is the function determined at some

γ ∈ (−∞, aH) and λ0 > 0, then e is such that Jγ,λ(e) < 0 for all λ ≥ λ0 and [e]s,p ≥ 2 >

ρ = ρ(γ, λ), being ρ ∈ (0, 1].
We recall in passing that, if X is a real Banach space, a C1(X) functional J satisfies the

Palais–Smale condition at level c ∈ R if any Palais–Smale sequence (un)n at level c, that is

such that

J (un) → c and J ′(un) → 0 in X ′ as n → ∞ (2.4)

admits a convergent subsequence in X .
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Fix γ ∈ (−∞, aH), λ > 0 and put

cγ,λ = inf
ξ∈Γ

max
t∈[0,1]

Jγ,λ(ξ(t)),

Γ = {ξ ∈ C([0, 1], Ds,p(RN )) : ξ(0) = 0, ξ(1) = e}.

Obviously cγ,λ > 0 thanks to Lemma 2.2.

Before proving that Jγ,λ satisfies the Palais–Smale condition at level cγ,λ in Ds,p(RN ),

we introduce an asymptotic condition for the level cγ,λ. This result is exactly Lemma 4.3

of [16] (see also Lemma 6 of [17] for a somehow related fractional non-degenerate Kirchhoff

Dirichlet problem) and will be crucial not only to get (1.4), but above all to overcome the

lack of compactness due to the presence of a Hardy term and a critical nonlinearity.

Lemma 2.3 For all γ ∈ (−∞, aH) it results

lim
λ→∞

cγ,λ = 0.

Proof Fix γ ∈ (−∞, aH) and λ0 > 0. Let e ∈ C∞
0 (RN ) be the function obtained by

Lemma 2.2, depending on γ − and possibly on λ0. Hence the functional Jγ,λ satisfies the

mountain pass geometry at 0 and such e for all λ ≥ λ0. In particular, there exists tγ,λ > 0

verifying Jγ,λ(tγ,λe) = maxt≥0 Jγ,λ(te). Therefore, 〈J ′
γ,λ(tγ,λe), e〉 = 0 and then

t
p−1
γ,λ

(

M(t
p
γ,λ[e]

p
s,p)[e]

p
s,p − γ ‖e‖p

H

)

= λt
q−1
γ,λ ‖e‖q

q,w + t
p∗

s −1

γ,λ ‖e‖p∗
s

p∗
s ,K

≥ λ0t
q−1
γ,λ ‖e‖q

q,w

(2.5)

by the fact that λ ≥ λ0. We claim that {tγ,λ}λ≥λ0 is bounded in R. Indeed, using (M) and

(2.3) we get

t
p
γ,λ[e]

p
s,p M(t

p
γ,λ[e]

p
s,p) − γ t

p
γ,λ‖e‖p

H ≤ θM (t
p
γ,λ[e]

p
s,p) +

γ −

H
t

p
γ,λ[e]

p
s,p

≤
(

θM (1) +
γ −

H

)

t
θp
γ,λ[e]

θp
s,p

(2.6)

for any λ ∈ Λ, with Λ = {λ ≥ λ0 : tγ,λ[e]s,p ≥ 1}. Hence, from (2.5) and (2.6) it follows

(

θM (1) +
γ −

H

)

[e]θp
s,p ≥ λ0t

q−θp
γ,λ ‖e‖q

q,w for any λ ∈ Λ,

which implies the boundedness of {tγ,λ}λ∈Λ, since θp < q by (w), ‖e‖q,w > 0 and e

depends on γ − and λ0 by Lemma 2.2 and its remark. It follows at once that indeed {tγ,λ}λ≥λ0

is bounded. This proves the claim.

Fix now a sequence (λk)k ⊂ [λ0,∞) such that λk → ∞ as k → ∞. Obviously (tγ,λk
)k is

bounded in R. Hence, there exists a subsequence of (λk)k , still relabeled (λk)k , and a constant

τ ≥ 0 such that tγ,λk
→ τ as k → ∞. By the continuity of M , also

(

M(t
p
γ,λk

[e]p
s,p)

)

k
is

bounded, and so by (2.5) there exists Lγ − such that

λk t
q−1
γ,λk

‖e‖q
q,w + t

p∗
s −1

γ,λk
‖e‖p∗

s

p∗
s ,K ≤ Lγ − for any k ∈ N. (2.7)

We assert that τ = 0. In fact, if τ > 0 we get

lim
k→∞

(

λk t
q−1
γ,λk

‖e‖q
q,w + t

p∗
s −1

γ,λk
‖e‖p∗

s

p∗
s ,K

)

= ∞,
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which contradicts (2.7). Thus τ = 0 and tγ,λ → 0 as λ → ∞, since the sequence (λk)k is

arbitrary.

Consider now the path ξ(t) = te, t ∈ [0, 1], belonging to Γ . By Lemma 2.2

0 < cγ,λ ≤ max
t∈[0,1]

Jγ,λ(ξ(t)) ≤ Jγ,λ(tγ,λe) ≤
1

p
M (t

p
γ,λ[e]

p
s,p) +

γ −

p
‖e‖p

H t
p
γ,λ.

Moreover, M (t
p
γ,λ[e]

p
s,p) → 0 as λ → ∞ by the continuity of M . This completes the

proof of the lemma, since e depends only on γ −. ⊓⊔

Now, following the key idea of the proof of Lemma 4.5 in [16], given when M ≡ 1 and

p = 2, we prove the validity of the Palais–Smale condition for Jγ,λ at level cγ,λ in Ds,p(RN ).

Lemma 2.4 Let γ ∈ (−∞, κ H) be fixed. If ‖K‖∞ = 0, then Jγ,λ satisfies the Palais–Smale

condition at level cγ,λ for all λ > 0. While if ‖K‖∞ > 0, then there exists λ∗ = λ∗(γ ) > 0

such that Jγ,λ satisfies the Palais–Smale condition at level cγ,λ for any λ ≥ λ∗.

Proof Fix γ < κ H and let (un)n ⊂ Ds,p(RN ) be a Palais–Smale sequence of Jγ,λ at level

cγ,λ for all λ > 0. By (M) and (1.3)

Jγ,λ(un) −
1

q
〈J ′

γ,λ(un), un〉 =
1

p
M ([un]p

s,p) −
1

q
M([un]p

s,p)[un]p
s,p

− γ

(

1

p
−

1

q

)

‖un‖p
H +

(

1

q
−

1

p∗
s

)

‖un‖p∗
s

p∗
s ,K (2.8)

≥
(

1

θp
−

1

q

)

M([un]p
s,p)[un]p

s,p −
γ +

H

(

1

p
−

1

q

)

[un]p
s,p +

(

1

q
−

1

p∗
s

)

‖un‖p∗
s

p∗
s ,K .

Then, thanks to (1.2), (2.4) and (2.8) there exists σγ,λ > 0 such that as n → ∞

cγ,λ + σγ,λ[un]s,p + o(1) ≥ μγ [un]p
s,p,

μγ = a

(

1

θp
−

1

q

)

−
γ +

H

(

1

p
−

1

q

)

> 0 (2.9)

since γ < κ H . Therefore, (un)n is bounded in Ds,p(RN ).

By (1.3) and Lemma 2.1, there exists uγ,λ ∈ Ds,p(RN ) such that, going if necessary to a

subsequence

un ⇀ uγ,λ in Ds,p(RN ), [un]s,p → αγ,λ,

un ⇀ uγ,λ in L p∗
s (RN ), ‖un − uγ,λ‖p∗

s ,K → ℓγ,λ,

un

|x |s
⇀

uγ,λ

|x |s
in L p(RN ), ‖un − uγ,λ‖H → ıγ,λ, (2.10)

un → uγ,λ in Lq(RN , w), un → uγ,λ a.e. in R
N .

In particular, by (2.4) and (2.8)

cγ,λ + o(1) ≥ μγ [un]p
s,p +

(

1

q
−

1

p∗
s

)

‖un‖p∗
s

p∗
s ,K , (2.11)

where μγ is given in (2.9).

First, we assert that

lim
λ→∞

αγ,λ = 0. (2.12)
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Otherwise, lim supλ→∞ αγ,λ = αγ > 0. Hence there is a sequence k → λk ↑ ∞ such

that αγ,λk
→ αγ as k → ∞. Then, letting k → ∞ we get from (2.11) and Lemma 2.3 that

0 ≥ μγ α p
γ > 0.

This contradiction proves the assertion (2.12). Moreover,

[uγ,λ]s,p ≤ lim
n→∞

[un]s,p = αγ,λ,

since un ⇀ uγ,λ, and so (K ), (1.3) and (2.12) implies that

lim
λ→∞

‖uγ,λ‖p∗
s ,K = lim

λ→∞
‖uγ,λ‖H = lim

λ→∞
[uγ,λ]s,p = 0. (2.13)

Thanks to (2.4), we have as n → ∞

o(1) =M([un]p
s,p)〈un, ϕ〉s,p − γ

∫

RN

|un(x)|p−2un(x)ϕ(x)

|x |ps
dx

− λ

∫

RN

w(x)|un(x)|q−2un(x)ϕ(x)dx −
∫

RN

K (x)|un(x)|p∗
s −2un(x)ϕ(x)dx,

for any ϕ ∈ Ds,p(RN ). By (2.10), the sequence (Un)n , defined in R
2N \ Diag (R2N ) by

(x, y) �→ Un(x, y) =
|un(x) − un(y)|p−2(un(x) − un(y))

|x − y|(N+ps)/p′ ,

is bounded in L p′
(R2N ) as well as Un → Uγ,λ a.e. in R

2N , where

Uγ,λ(x, y) =
|uγ,λ(x) − uγ,λ(y)|p−2(uγ,λ(x) − uγ,λ(y))

|x − y|(N+ps)/p′ .

Thus, going if necessary to a further subsequence, we get Un ⇀ Uγ,λ in L p′
(R2N ), and

so

〈un, ϕ〉s,p → 〈uγ,λ, ϕ〉s,p

for any ϕ ∈ Ds,p(RN ), since |ϕ(x) − ϕ(y)| · |x − y|−(N+ps)/p ∈ L p(R2N ). Then, using

(2.10) and the facts that |un |q−2un ⇀ |uγ,λ|q−2uγ,λ in Lq ′
(RN , w) and |un |p∗

s −2un ⇀

|uγ,λ|p∗
s −2uγ,λ in L p∗

s
′
(RN , K ), by Preposition A.8 of [3], we obtain

M(α
p
γ,λ)〈uγ,λ, ϕ〉s,p − γ

∫

RN

|uγ,λ(x)|p−2uγ,λ(x)ϕ(x)

|x |ps
dx

= λ

∫

RN

w(x)|uγ,λ(x)|q−2uγ,λ(x)ϕ(x)dx +
∫

RN

K (x)|uγ,λ(x)|p∗
s −2uγ,λ(x)ϕ(x)dx

for any ϕ ∈ Ds,p(RN ). Hence, uγ,λ is a critical point of the C1(Ds,p(RN )) functional

Jαγ,λ
(u) =

1

p
M(α

p
γ,λ)[u]p

s,p −
γ

p
‖u‖p

H −
λ

q
‖u‖q

q,w −
1

p∗
s

‖u‖p∗
s

p∗
s ,K . (2.14)

By the Hölder inequality we have

|〈u, v〉s,p| ≤ [u]p−1
s,p [v]s,p for all u, v ∈ Ds,p(RN )
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and so, for any u ∈ Ds,p(RN ), the functional 〈u, · 〉s,p is linear and continuous on Ds,p(RN ).

Consequently, (2.4), (2.10) and (2.14) give as n → ∞

o(1) = 〈J ′
γ,λ(un) − J ′

αγ,λ
(uγ,λ), un − uγ,λ〉 = M([un]p

s,p)[un]p
s,p

+ M(α
p
γ,λ)[uγ,λ]p

s,p − M([un]p
s,p)〈un, uγ,λ〉s,p − M(α

p
γ,λ)〈uγ,λ, un〉s,p

− γ

∫

RN

(|un |p−2un − |uγ,λ|p−2uγ,λ)(un − uγ,λ)

|x |ps
dx

− λ

∫

RN

w(x)(|un |q−2un − |uγ,λ|q−2uγ,λ)(un − uγ,λ)dx

−
∫

RN

K (x)(|un |p∗
s −2un − |uγ,λ|p∗

s −2uγ,λ)(un − uγ,λ)dx

= M(α
p
γ,λ)(α

p
γ,λ − [uγ,λ]p

s,p) − γ ‖un‖p
H + γ ‖uγ,λ‖p

H − ‖un‖p∗
s

p∗
s ,K

+ ‖uγ,λ‖
p∗

s

p∗
s ,K + o(1)

= M(α
p
γ,λ)([un − uγ,λ]p

s,p) − γ ‖un − uγ,λ‖p
H − ‖un − uγ,λ‖

p∗
s

p∗
s ,K + o(1).

In fact, thanks to (2.10) it results

lim
n→∞

∫

RN

w(x)(|un |q−2un − |uγ,λ|q−2uγ,λ)(un − uγ,λ)dx = 0.

Furthermore, using again (2.10) and the celebrated Brézis & Lieb lemma of [6]

[un]p
s,p = [un − uγ,λ]p

s,p + [uγ,λ]p
s,p + o(1),

‖un‖p∗
s

p∗
s ,K = ‖un − uγ,λ‖

p∗
s

p∗
s ,K + ‖uγ,λ‖

p∗
s

p∗
s ,K + o(1),

‖un‖p
H = ‖un − uγ,λ‖p

H + ‖uγ,λ‖p
H + o(1)

as n → ∞. Finally, we have used the fact that [un]s,p → αγ,λ as n → ∞.

Hence, we have obtained the main formula

M(α
p
γ,λ) lim

n→∞
[un − uγ,λ]p

s,p = lim
n→∞

‖un − uγ,λ‖
p∗

s

p∗
s ,K + γ lim

n→∞
‖un − uγ,λ‖p

H

= ℓ
p∗

s

γ,λ + γ ı
p
γ,λ.

(2.15)

Let us divide the proof in two parts.

Case ‖K‖∞ = 0. Clearly ℓγ,λ = 0 in (2.15). Assume for contradiction that ıγ,λ > 0. Then,

from (1.3) and (2.15)

M(α
p
γ,λ) lim

n→∞
[un − uγ,λ]p

s,p = γ lim
n→∞

‖un − uγ,λ‖p
H < aH lim

n→∞
‖un − uγ,λ‖p

H

≤ M(α
p
γ,λ) lim

n→∞
[un − uγ,λ]p

s,p,

which is impossible. Hence, ıγ,λ = 0 for all λ > 0. Thus, using also (2.15) and the fact that

ℓγ,λ = 0, we get

lim
n→∞

[un − uγ,λ]p
s,p = lim

n→∞
‖un − uγ,λ‖p

H = 0

by (1.2). In conclusion, un → uγ,λ in Ds,p(RN ) as n → ∞ for all λ > 0 as required.

Case ‖K‖∞ > 0. By (2.11) and the Brézis & Lieb lemma, we get as n → ∞

cγ,λ + o(1) ≥
(

1

q
−

1

p∗
s

)

‖un‖p∗
s

p∗
s ,K =

(

1

q
−

1

p∗
s

)

[

ℓ
p∗

s

γ,λ + ‖uγ,λ‖
p∗

s

p∗
s ,K

]

+ o(1).
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Then, Lemma 2.3 and (2.13) imply that

lim
λ→∞

ℓγ,λ = 0. (2.16)

Since γ < aH there exists c ∈ [0, 1) such that γ + = c a H . Thus, (2.15) can be rewritten

as

(1 − c)M(α
p
γ,λ) lim

n→∞
[un − uγ,λ]p

s,p + cM(α
p
γ,λ) lim

n→∞
[un − uγ,λ]p

s,p = ℓ
p∗

s

γ,λ + γ ı
p
γ,λ.

Now, for all λ > 0 we have ℓ
p∗

s

γ,λ + γ +ı
p
γ,λ ≥ (1 − c)S‖K‖∞

−p/p∗
s a ℓ

p
γ,λ + c a Hı

p
γ,λ by

(K ), (1.3) and (1.2), being c ∈ [0, 1). Therefore, since γ + = c a H ,

ℓ
p∗

s

γ,λ ≥ (1 − c)S ‖K‖∞
−p/p∗

s a ℓ
p
γ,λ. (2.17)

Consequently, (2.16) and (2.17) imply at once that there exists λ∗ = λ∗(γ ) > 0 such that

ℓγ,λ = 0 for all λ ≥ λ∗. In other words,

lim
n→∞

‖un − uγ,λ‖p∗
s ,K = 0

for all λ ≥ λ∗. From now on we can proceed as in the first case, and prove that ıγ,λ=0 for all

λ ≥ λ∗. Thus, using also (2.15), we get un → uγ,λ in Ds,p(RN ) as n → ∞ for all λ ≥ λ∗

as required, and the proof is complete. ⊓⊔

As already noted in the Introduction, besides the obvious case M ≡ a, in which κ = a,

there are several non-monotone Kirchhoff functions for which κ = a, that is θ = 1. For

instance, M(t) = 2 in [0, 1], M(t) = 3 − t in [1, 2], M(t) = 1 in [2, 3], M(t) = t − 2 in

[3, 2
√

3] and finally M(t) = 2
√

3 − 2 in [2
√

3,∞) is a non-monotone function satisfying

(M), with θ = 1.

Proof of Theorem 1.1 Fixγ ∈ (−∞, κ H). Thanks to Lemmas 2.2 and 2.4 the functional Jγ,λ

satisfies all the assumptions of the mountain pass theorem for any λ > 0 when ‖K‖∞ = 0

and for any λ ≥ λ∗, with λ∗ = λ∗(γ ) > 0 if ‖K‖∞ > 0. This guarantees the existence of a

critical point uγ,λ ∈ Ds,p(RN ) for Jγ,λ at level cγ,λ. Since Jγ,λ(uγ,λ) = cγ,λ > 0 = Jγ,λ(0)

we have that uγ,λ �= 0. Moreover the asymptotic behavior (1.4) holds thanks to (2.13). ⊓⊔

3 The degenerate problem (1.5)

In this section we study the degenerate problem (1.5), and in passing we recall that (M) is

assumed throughout the paper.

If M (t0) > 0 for some t0 > 0, then (M) yields that

tθ0 M (t) ≥ M (t0)t
θ for all t ∈ [0, t0] (3.1)

and we have the following

Lemma 3.1 Suppose that M is not identically zero in R
+ and that (M) holds, with θ = 1.

Then M(0) = M0 > 0.

Proof Suppose that M (1) > 0, for simplicity. By (3.1) we know that

M (1)t ≤ M (t) =
∫ t

0

M(τ )dτ
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for all t ∈ [0, 1]. Now, let (tn)n be a sequence such that tn ∈ (0, 1) for all n ∈ N and tn ↓ 0

as n → ∞. By the mean value theorem, we obtain the existence of a sequence (τn)n , with

τn ∈ (0, tn), such that

M (1)tn ≤ M(τn)tn for all n ∈ N (3.2)

and so M (1) ≤ M(τn) for all n ∈ N, being tn > 0. Observe that M(τn) → M(0) as

n → ∞, since τn → 0 as n → ∞ and M is continuous. Hence, letting n → ∞ in (3.2) we

get M(0) ≥ M (1). This completes the proof, since M (1) > 0 by assumption. ⊓⊔

As note in [9], condition (M1) gives that M(t) > 0 for any t > 0. In particular, under

(M) and (M1), Lemma 3.1 implies that θ > 1 when M(0) = 0. The vice versa is false.

Indeed, when a > 0 and b > 0, the canonical Kirchhoff function M(t) = a + b t has the

property that M(0) = a > 0, but M satisfies (M) for any θ ≥ 2.

We say that u ∈ Ds,p(RN ) is a (weak) solution of (1.5) if

M([u]p
s,p)〈u, ϕ〉s,p =λ

∫

RN

w(x)|u(x)|q−2u(x)ϕ(x)dx

+
∫

RN

K (x)|u(x)|p∗
s −2u(x)ϕ(x)dx,

for all ϕ ∈ Ds,p(RN ). The underlying functional associated with problem (1.5) is Jλ :
Ds,p(RN ) → R, given by

Jλ(u) =
1

p
M ([u]p

s,p) −
λ

q
‖u‖q

q,w −
1

p∗
s

‖u‖p∗
s

p∗
s ,K .

Obviously, also Jλ is well defined and of class C1(Ds,p(RN )). For (1.5) we somehow

follow the strategies developed in Sect. 2, but for convenience of the reader we give details.

Lemma 3.2 Suppose that M is not identically zero. For any λ > 0 there exist α > 0

and ρ > 0 such that Jλ(u) ≥ α for all u ∈ Ds,p(RN ), with [u]s,p = ρ, and a function

e ∈ C∞
0 (RN ), with [e]s,p > ρ and Jλ(e) < 0. The function e is independent of λ when

K > 0 a.e. in R
N .

Proof By assumption there exists t0 > 0 such that M (t
p
0 ) > 0.

Fix λ > 0 and take u ∈ Ds,p(RN ), with [u]s,p ≤ t0. By (M), (K ), (1.3), (2.1) and (3.1)

there exists a positive constant SK such that

Jλ(u) ≥ m[u]θp
s,p −

λ

q
‖u‖q

q,w −
1

p∗
s

‖u‖p∗
s

p∗
s ,K

≥ m[u]θp
s,p −

λ

q
Cq

w[u]q
s,p − SK [u]p∗

s
s,p,

where m = M (t
p
0 )t

−θp
0 /p > 0, as shown above. Setting

ηλ(t) = m tθp −
λ

q
Cq

wtq − SK t p∗
s for all t ∈ [0, t0],

we note that there exists ρ ∈ (0, t0] such that maxt∈[0,t0] ηλ(t) = ηλ(ρ) > 0, since θp < q <

p∗
s by (w). Consequently, Jλ(u) ≥ α = ηλ(ρ) > 0 for all u ∈ Ds,p(RN ), with [u]s,p = ρ.

Now, take v ∈ C∞
0 (RN ) such that [v]s,p = 1. By (2.3) we have as t → ∞

Jλ(tv) ≤ m tθp − λ
tq

q
‖v‖q

q,w −
t p∗

s

p∗
s

‖v‖p∗
s

p∗
s ,K → −∞,
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since θp < q < p∗
s by (w). Hence, taking e = τ0v, with τ0 > 0 sufficiently large, we obtain

at once that [e]s,p ≥ 2t0 and Jλ(e) < 0. In particular, [e]s,p > ρ and e does not depend on λ

whenever K >0 a.e. in R
N . ⊓⊔

Again from the proof of Lemma 3.2 it is apparent that if e is the function determined at

some λ0 > 0, then e is such that Jλ(e) < 0 for all λ ≥ λ0 and [e]s,p ≥ 2t0 > ρ = ρ(λ),

being ρ ∈ (0, t0].
Fix λ > 0 and set

cλ = inf
ξ∈Γ

max
t∈[0,1]

Jλ(ξ(t)),

Γ = {ξ ∈ C([0, 1], Ds,p(RN )) : ξ(0) = 0, ξ(1) = e}.

Obviously cλ > 0 thanks to Lemma 3.2.

Lemma 3.3 If M is not identically zero, then

lim
λ→∞

cλ = 0.

Proof We can proceed exactly as in the proof of Lemmas 3.2 and 2.3, formally taking γ = 0,

λ0 > 0, replacing M (1) by M (t
p
0 )/t

θp
0 in (2.6) and defining

Λ = {λ > λ0 : tλ[e]s,p ≥ t0}.

We leave the further details to the reader. ⊓⊔

Let (un)n ⊂ Ds,p(RN ) be a Palais–Smale sequence for Jλ at level cλ ∈ R. Then

Jλ(un) → cλ and J ′
λ(un) → 0 as n → ∞. (3.3)

Next, we prove the validity of the Palais–Smale condition for Jλ at level cλ in Ds,p(RN ),

following somehow the main idea of the proof of Lemma 3.4 in [2], given for p = 2, see

also [9]. It is exactly at this point that we need also (M1) and (M2). Just to clarify the two

simple examples,

M1(t) =

⎧

⎪

⎨

⎪

⎩

4t se t ∈ [0, 1],
6 − 2t se t ∈ [1, 2],
t se t ∈ [2,∞[,

M2(t) =
√

t + arctan t,

are not monotone, but satisfy (M), with θ = 2, as well as (M1) and (M2).

Lemma 3.4 Let (M1)–(M2) hold and suppose that ps < N < 2ps. If ‖K‖∞ = 0, then

the functional Jλ satisfies the Palais–Smale condition at level cλ for all λ > 0. While if

‖K‖∞ > 0, then there exists λ∗ > 0 such that Jλ satisfies the Palais–Smale condition at

level cλ for any λ ≥ λ∗.

Proof Fix λ > 0. Let (un)n ⊂ Ds,p(RN ) be a Palais–Smale sequence of Jλ at level cλ. Due to

the degenerate nature of (1.5), we have to consider two situations. Either inf
n∈N

[un]s,p = dλ > 0

or inf
n∈N

[un]s,p = 0. Hence, let us divide the proof in two parts.

Case inf
n∈N

[un]s,p = dλ > 0. We claim that (un)n is bounded in Ds,p(RN ). By (M1), with

τλ = d
p
λ , there exists mλ = mτλ

> 0 such that

M([un]p
s,p) ≥ mλ for any n ∈ N. (3.4)
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Using (M), we get

Jλ(un) −
1

q
〈J ′

λ(un), un〉

=
1

p
M ([un]p

s,p) −
1

q
M([un]p

s,p)[un]p
s,p +

(

1

q
−

1

p∗
s

)

‖un‖p∗
s

p∗
s ,K (3.5)

≥
(

1

θp
−

1

q

)

M([un]p
s,p)[un]p

s,p +
(

1

q
−

1

p∗
s

)

‖un‖p∗
s

p∗
s ,K .

Then, thanks to (3.3) and (3.4), there exists σλ > 0 such that as n → ∞

cλ + σλ[un]s,p + o(1) ≥ mλ

(

1

θp
−

1

q

)

[un]p
s,p.

Therefore, (un)n is bounded in Ds,p(RN ), since 1 < p < θp < q by (M), (w) and

Lemma 3.1.

By (1.3) and Lemma 2.1, there exists uλ ∈ Ds,p(RN ) such that, going if necessary to a

subsequence

un ⇀ uλ in Ds,p(RN ), [un]s,p → αλ,

un ⇀ uλ in L p∗
s (RN ), ‖un − uλ‖p∗

s ,K → ℓλ, (3.6)

un → uλ in Lq(RN , w), un → uλ a.e. in R
N .

In particular, by (3.5) as n → ∞

cλ + o(1) ≥
(

1

θp
−

1

q

)

M([un]p
s,p)[un]p

s,p. (3.7)

Moreover αλ > 0, since dλ > 0. Therefore M([un]p
s,p) → M(α

p
λ ) > 0 as n → ∞, by

the continuity of M and the fact that 0 is the unique zero of M thanks to (M1).

First, we assert that

lim
λ→∞

αλ = 0. (3.8)

Otherwise, lim supλ→∞ αλ = α > 0. Hence there is a sequence k → λk ↑ ∞ such that

αλk
→ α as k → ∞. Then, letting k → ∞ we get from (3.7) and Lemma 3.3 that

0 ≥
(

1

θp
−

1

q

)

M(α p)α p > 0

by (M1). This contradiction proves the assertion (3.8). Moreover,

[uλ]s,p ≤ lim
n→∞

[un]s,p = αλ,

since un ⇀ uλ in Ds,p(RN ), and so (K ), (1.3) and (3.8) implies that

lim
λ→∞

‖uλ‖p∗
s ,K = lim

λ→∞
[uλ]s,p = 0. (3.9)

Thanks to (3.3), as in Lemma 2.4, we obtain

M(α
p
λ )〈uλ, ϕ〉s,p =λ

∫

RN

w(x)|uλ(x)|q−2uλ(x)ϕ(x)dx

+
∫

RN

K (x)|uλ(x)|p∗
s −2uλ(x)ϕ(x)dx

123



Existence theorems for entire solutions of stationary. . . 2115

for any ϕ ∈ Ds,p(RN ). Hence, uλ is a critical point of the C1(Ds,p(RN )) functional

Jαλ
(u) =

1

p
M(α

p
λ )[u]p

s,p −
λ

q
‖u‖q

q,w −
1

p∗
s

‖u‖p∗
s

p∗
s ,K . (3.10)

Consequently, (3.3), (3.6) and (3.10) give as n → ∞

o(1) =〈J ′
λ(un) − J ′

αλ
(uλ), un − uλ〉 = M([un]p

s,p)[un]p
s,p + M(α

p
λ )[uλ]p

s,p

− M([un]p
s,p)〈un, uλ〉s,p − M(α

p
λ )〈uλ, un〉s,p

− λ

∫

RN

w(x)(|un |q−2un − |uλ|q−2uλ)(un − uλ)dx

−
∫

RN

K (x)(|un |p∗
s −2un − |uλ|p∗

s −2uλ)(un − uλ)dx (3.11)

=M(α
p
λ )(α

p
λ − [uλ]p

s,p) − ‖un‖p∗
s

p∗
s ,K + ‖uλ‖

p∗
s

p∗
s ,K + o(1)

=M(α
p
λ )([un − uλ]p

s,p) − ‖un − uλ‖
p∗

s

p∗
s ,K + o(1).

Thus, we have obtained the main formula

M(α
p
λ ) lim

n→∞
[un − uλ]p

s,p = lim
n→∞

‖un − uλ‖
p∗

s

p∗
s ,K . (3.12)

Suppose that ‖K‖∞ = 0. Then ℓλ = 0 in (3.12) and so un → uλ in Ds,p(RN ) as n → ∞
for all λ > 0, being M(α

p
λ ) > 0.

Otherwise, if ‖K‖∞ > 0, by (3.3), (3.5), (3.6) and the Brézis & Lieb lemma, we get as

n → ∞

cλ + o(1) = Jλ(un) −
1

q
〈J ′

λ(un), un〉 ≥
(

1

q
−

1

p∗
s

)

‖un‖p∗
s

p∗
s ,K

=
(

1

q
−

1

p∗
s

)

[

ℓ
p∗

s

λ + ‖uλ‖
p∗

s

p∗
s ,K

]

+ o(1).

Then, Lemma 3.3 and (3.9) imply that

lim
λ→∞

ℓλ = 0. (3.13)

Therefore, by (K ) and (3.12), we have as n → ∞

‖un − uλ‖
p∗

s

p∗
s ,K ≥ S‖K‖∞

−p/p∗
s M(α

p
λ )‖un − uλ‖p

p∗
s ,K + o(1),

where S is the best fractional Sobolev constant given in (1.3). Consequently, using (3.6), for

all λ ∈ R
+

ℓ
p∗

s

λ ≥ S‖K‖∞
−p/p∗

s M(α
p
λ )ℓ

p
λ . (3.14)

We claim that there exists λ∗ > 0 such that ℓλ = 0 for all λ ≥ λ∗. Otherwise there exists

a sequence k → λk ↑ ∞ such that ℓλk
= ℓk > 0. Observe that (3.11) implies in particular

M(α
p
λ )

(

α
p
λ − [uλ]p

s,p

)

= ℓ
p∗

s

λ ,

for any λ > 0. Then, denoting αλk
= αk and uλk

= uk , by (3.14) we get

(ℓ
p∗

s

k )ps/N = M(α
p
k )ps/N

(

α
p
k − [uk]p

s,p

)ps/N ≥ S‖K‖∞
−p/p∗

s M(α
p
k ).
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Thanks to the above inequality, (M2) and (3.8), we obtain for k sufficiently large

α
p2s/N
k ≥

(

α
p
k − [uk]p

s,p

)ps/N ≥ S‖K‖−p/p∗
s

∞ M(α
p
k )1−ps/N ≥ cS‖K‖−p/p∗

s
∞ α

p(1−ps/N )

k ,

where c = b1−ps/N . Hence, since αk > 0 for all k ∈ N, it follows that for all k sufficiently

large

α
p(2ps/N−1)

k ≥ cS‖K‖∞
−p/p∗

s .

This is impossible by (3.8), being 2ps > N by assumption. The claim is so proved.

Therefore, for all λ ≥ λ∗

lim
n→∞

‖un − uλ‖p∗
s ,K = 0.

Consequently, by (3.12), un → uλ in Ds,p(RN ) as n → ∞ for all λ ≥ λ∗, as required.

This completes the proof of the first case.

Case inf
n∈N

[un]s,p = 0. If 0 is an accumulation point of ([un]s,p)n , then there is a subsequence

strongly convergent to uλ = 0 in Ds,p(RN ) and so cλ = Jλ(uλ) = 0, which contradicts

cλ > 0. Hence, 0 is an isolated point for the real sequence ([un]s,p)n . Then there is a

subsequence ([unk
]s,p)k such that inf

k∈N

[unk
]s,p = dλ > 0, and we can proceed as before. This

completes the proof of the second case and of the lemma. ⊓⊔

Proof of Theorem 1.2 Thanks to Lemmas 3.2 and 3.4 the functional Jλ satisfies all the

assumptions of the mountain pass theorem for any λ > 0 when ‖K‖∞ = 0 and for any

λ ≥ λ∗, with λ∗ > 0, if ‖K‖∞ > 0. This guarantees the existence of a critical point

uλ ∈ Ds,p(RN ) for Jλ at level cλ. Since Jλ(uλ) = cλ > 0 = Jλ(0) we have that uλ �= 0.

Moreover the asymptotic behavior (1.6) holds thanks to (3.9). ⊓⊔

4 The Schrödinger–Kirchhoff equation (1.7)

This section is dedicated to the study of the Schrödinger–Kirchhoff equation (1.7). First,

by Theorem 6.7 and Corollary 7.2 of [12] we have the following embedding result for the

uniformly convex Banach space W defined in the Introduction.

Lemma 4.1 Let (V1) hold. If ν ∈ [p, p∗
s ], then the embeddings

W →֒ W s,p(RN ) →֒ Lν(RN )

are continuous. In particular, there exists a constant Cν > 0 such that

‖u‖ν ≤ Cν‖u‖W for all u ∈ W.

If ν ∈ [1, p∗
s ), then the embedding W →֒→֒ Lν(BR) is compact for any R > 0.

We say that u ∈ W is a (weak) solution of problem (1.7) if

M([u]p
s,p)〈u, ϕ〉s,p +

∫

RN

V (x)|u(x)|p−2u(x)ϕ(x)dx (4.1)

=
∫

RN

f (x, u(x))ϕ(x)dx +
∫

RN

g(x, u(x))ϕ(x)dx +
∫

RN

h(x)ϕ(x)dx
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for any ϕ ∈ W . Obviously, also problem (1.7) has a variational structure and the underlying

functional associated is I , defined in W by

I (u) = J (u) − H(u), J (u) =
1

p

(

M ([u]p
s,p) + ‖u‖p

p,V

)

,

H(u) =
∫

RN

F(x, u)dx +
∫

RN

G(x, u)dx +
∫

RN

h(x)udx .

By Lemma 2 of [31] we know that J : W → R is of class C1(W ) and

〈J ′(u), ϕ〉 = M([u]p
s,p)〈u, ϕ〉s,p +

∫

RN

V (x)|u(x)|p−2u(x)ϕ(x)dx

for all u, ϕ ∈ W .

The next results take somehow inspiration from Lemma 3.1 of [19].

Lemma 4.2 Assume (V1) and (F). Then the functional Φ(u) =
∫

RN F(x, u)dx is of class

C1(W ) and for any fixed u ∈ W

〈Φ ′(u), ϕ〉 =
∫

RN

f (x, u(x))ϕ(x)dx for all ϕ ∈ W. (4.2)

Furthermore, Φ ′ : W → W ′ is weak-to-strong sequentially continuous.

Proof First, Φ is well defined on W . Indeed, using the Hölder inequality and Lemma 4.1,

we get

0 ≤
∫

RN

F(x, u)dx ≤

⎧

⎪

⎪

⎨

⎪

⎪

⎩

1

q
‖w‖℘‖u‖q

p∗
s

≤ ‖w‖℘

C
q
p∗

s

q
‖u‖q

W under ( f1)

1

q
‖w‖∞‖u‖q

q ≤ ‖w‖∞
C

q
q

q
‖u‖q

W under ( f2) − (a)

.

Hence, denoting for simplicity by Kw either ‖w‖℘C
q
p∗

s
/q or ‖w‖∞C

q
q /q , we get at once

0 ≤
∫

RN

F(x, u)dx ≤ Kw‖u‖q
W . (4.3)

Obviously, the functionalΦ is Gâteaux differentiable in W and (4.2) holds for all u, ϕ ∈ W .

Thus, we only need to prove that Φ ′(un) → Φ ′(u) in W ′ if un ⇀ u in W . Let (un)n ⊂ W

and u ∈ W such that un ⇀ u in W . Then there exists a constant C such that for all n ∈ N

‖un‖W ≤ C and ‖u‖W ≤ C.

First, suppose that ( f1) holds in (F). Using Lemma 2.1 we know that un → u in

Lq(RM , w) and so |un |q−2un → |u|q−2u in Lq ′
(RN , w), thanks to Proposition A.8 of [3].

Fixed v ∈ W , with ‖v‖W = 1, by the Hölder inequality and Lemma 2.1 we get as n → ∞
∫

RN

| f (x, un) − f (x, u)| · |v|dx ≤
( ∫

RN

w(x)
∣

∣|un |q−2un − |u|q−2u
∣

∣

q ′
dx

)1/q ′

‖v‖q,w

≤ Cw

( ∫

RN

w(x)
∣

∣|un |q−2un − |u|q−2u
∣

∣

q ′
dx

)1/q ′

= o(1).

Consequently, Φ ′(un) → Φ ′(u) in W ′ as n → ∞, as required.
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Now suppose that ( f2)–(a) holds in (F). Fixed ε > 0, there exists Rε > 0 such that for

|x | ≥ Rε

| f (x, u(x))| ≤ ε|u(x)|q−1 and | f (x, un(x))| ≤ ε|un(x)|q−1 for all n ∈ N. (4.4)

Consider a subsequence (unk
)k ⊂ (un)n . By Lemma 4.1 we get that unk

→ u in Lq(BRε ).

Hence, up to a further subsequence, still denoted by (unk
)k for simplicity, there exists a

function ϕ ∈ Lq(BRε ) such that

unk
→ u a.e. in BRε and |unk

| ≤ ϕ a.e. in BRε and for all k ∈ N.

Consequently, using ( f2)–(a) we have that f (x, unk
(x)) → f (x, u(x)) for a.a. x in BRε

and

| f (x, unk
)| ≤ ‖w‖∞ϕq−1 ∈ Lq ′

(BRε ) for all k ∈ N.

The Lebesgue dominated convergence theorem implies that f (x, unk
) → f (x, u) in

Lq ′
(BRε ) and so f (x, un) → f (x, u) in Lq ′

(BRε ) as n → ∞, since the sequence (unk
)k is

arbitrary.

Fix v ∈ W , with ‖v‖W = 1. Then

∫

BRε

| f (x, un) − f (x, u)| · |v|dx ≤
( ∫

BRε

| f (x, un) − f (x, u)|q
′
dx

)1/q ′

‖v‖q

≤ Cq

( ∫

BRε

| f (x, un) − f (x, u)|q
′
dx

)1/q ′

= o(1)

as n → ∞. Now, by the Hölder inequality, Lemma 4.1, ( f2)–(a) and (4.4)

∫

RN \BRε

| f (x, un) − f (x, u)| · |v|dx ≤
∫

RN \BRε

| f (x, un)| · |v|dx +
∫

RN \BRε

| f (x, u)| · |v|dx

≤ ε

∫

RN \BRε

|un |q−1 · |v|dx + ε

∫

RN \BRε

|u|q−1 · |v|dx

≤ ε‖v‖q

(

‖un‖q−1
q + ‖u‖q−1

q

)

≤ εC
q
q

(

‖un‖q−1
W + ‖u‖q−1

W

)

≤ εκ,

where κ = 2C
q
q Cq−1. Hence, as n → ∞

|〈Φ ′(un) − Φ ′(u), v〉| ≤
∫

RN

| f (x, un) − f (x, u)| · |v|dx ≤ εκ + o(1).

Then, being ε > 0 arbitrary, we get at once that

‖Φ ′(un) − Φ ′(u)‖W ′ = sup
v∈W,‖v‖W =1

|〈Φ ′(un) − Φ ′(u), v〉| → 0 as n → ∞.

This complete the proof. ⊓⊔

Clearly, the proof of Lemma 4.2 does not use at all ( f2)–(b) in (F). Combining Lemma 4.2

with Lemma 3 of [31], we have that H ∈ C1(W ) and

〈H ′(u), ϕ〉 =
∫

RN

f (x, u(x))ϕ(x)dx +
∫

RN

g(x, u(x))ϕ(x)dx +
∫

RN

h(x)ϕ(x)dx

for all u, ϕ ∈ W . Consequently, the underlying functional I associated with problem (1.7)

is well defined and of class C1(W ).
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Before proving Theorem 1.3. let us note that (G) yields

|G(x, t)| ≤ ε|t |θp + Cε|t |r for a.a x ∈ R
N and all t ∈ R. (4.5)

Lemma 4.3 Suppose that (M1), (V1), (F) and (G) hold. Then there exist numbers α > 0,

ρ > 0 and δ > 0 such that I (u) ≥ α for all u ∈ W , with ‖u‖W = ρ, and for all h ∈ Lν′
(RN ),

with‖h‖ν′ ≤ δ, and there exists a radial function e ∈ C∞
0 (RN ), with‖e‖W > ρ and I (e) < 0.

Proof By the Hölder inequality, Lemma 4.1, (3.1) with t0 = 1, (4.3) and (4.5), for u ∈ W ,

with ‖u‖W ≤ 1, and putting β = min{M (1), 1}/p, we have

I (u) ≥
1

p

(

M (1)[u]θp
s,p + ‖u‖p

p,V

)

− Kw‖u‖q
W − ε‖u‖θp

θp − Cε‖u‖r
r − ‖h‖ν′‖u‖ν

≥ β‖u‖θp
W − εC

θp
θp ‖u‖θp

W − Kw‖u‖q
W − CεCr

r ‖u‖r
W − Cν‖h‖ν′‖u‖W

=
(β

2
‖u‖θp−1

W − Kw‖u‖q−1
W − CεCr

r ‖u‖r−1
W − Cν‖h‖ν′

)

‖u‖W ,

choosing ε = β/2C
θp
θp > 0. Define

η(t) =
β

2
tθp−1 − Kw tq−1 − CεCr

r tr−1 for all t ∈ [0, 1].

There exists ρ ∈ (0, 1] such that maxt∈[0,1] η(t) = η(ρ) > 0, since 1 < θp < min{q, r}
by (M), (F) and (G). Taking δ = η(ρ)/2Cν , we obtain that I (u) ≥ α = ρη(ρ)/2 > 0 for

all u ∈ W , with ‖u‖W = ρ and for all h ∈ Lν′
(RN ), with ‖h‖ν′ ≤ δ.

Fix a radial function v of class C∞
0 (RN ), with ‖v‖W = 1. For a.a x ∈ R

N , by (F) we

obtain that the function t �→ t−q F(x, tv(x)) is non-decreasing in R
+ and so

F(x, tv(x)) ≥ tq F(x, v(x)) for all t ≥ 1.

Clearly
∫

RN F(x, v)dx > 0 by (F) and the fact that v ∈ C∞
0 (RN ) and ‖v‖W = 1. Hence,

as t → ∞
∫

RN

F(x, tv)dx ≥ tq

∫

RN

F(x, v)dx → ∞. (4.6)

Similarly, for a.a x ∈ R
N the function t �→ t−μG(x, tv(x)) is non-decreasing in R

+ by

(G) in both cases (i) and (i i). Then
∫

RN

G(x, tv)dx ≥ tμ
∫

RN

G(x, v)dx for all t ≥ 1. (4.7)

Moreover, (1.3) implies that [v]s,p > 0. Consequently, by (2.3) with t0 = 1, (4.6) and

(4.7), putting again β = max{M (1), 1}/p, we have for all t ≥ 1

I (tv) ≤
1

p

(

M (1)tθp[v]θp
s,p + t p‖v‖p

p,V

)

−
∫

RN

F(x, tv)dx −
∫

RN

G(x, tv)dx − t

∫

RN

h(x)vdx

≤ β tθp − t

∫

RN

h(x)vdx −

⎧

⎪

⎨

⎪

⎩

(

tq

∫

RN

F(x, v)dx + tμ
∫

RN

G(x, v)dx

)

under (G) − (i)

tq

∫

RN

F(x, v)dx under (G) − (i i)

→ −∞,

as t → ∞, since 1 < θp < q by (M), (F) and Lemma 3.1 since M(0) = 0. Choosing

e = τ0v, with τ0 > 0 large enough, we get at once that e is radial, ‖e‖W > ρ and I (e) < 0.

This completes the proof. ⊓⊔
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Let us recall a standard definition. Let X be a real Banach space and I be a functional

of class C1(X). We say that I satisfies the Palais–Smale condition, if any Palais–Smale

sequence (un)n ⊂ X , that is with the properties that (I(un))n is bounded and I ′(un) → 0 in

X ′ as n → ∞, admits a subsequence which (strongly) converges in X .

It is exactly for proving that I possesses this property in W that we essentially use (V2).

This is also evident from the next crucial lemma.

Lemma 4.4 (Theorem 2.1 of [31]) Let (V1)–(V2) hold and let ν ∈ [p, p∗
s ) be a fixed expo-

nent. For any bounded sequence (vn)n in W there exists v ∈ W such that, up to a subsequence,

vn → v strongly in Lν(RN ) as n → ∞.

Lemma 4.5 Let (M1), (V1)–(V2), (F) and (G) hold. Then I satisfies the Palais–Smale

condition.

Proof Let (un)n be a Palais–Smale sequence of I in W . Then there exists C > 0 such that

|〈I ′(un), un〉| ≤ C‖un‖W and |I (un)| ≤ C for all n ∈ N. (4.8)

Suppose that θp < μ < q . Thus, by (M), (F), (G)–(i) and (4.8) we get

C + C‖un‖W ≥ I (un) −
1

μ
〈I ′(un), un〉

≥
(

1

θp
−

1

μ

)

M([un]p
s,p)[un]p

s,p +
(

1

p
−

1

μ

)

‖un‖p
p,V −

∫

RN

F(x, un)dx

+
1

μ

∫

RN

f (x, un)undx −
∫

RN

G(x, un)dx +
1

μ

∫

RN

g(x, un)undx

−
μ − 1

μ

∫

RN

h(x)undx

≥
(

1

θp
−

1

μ

)

M([un]p
s,p)[un]p

s,p +
(

1

p
−

1

μ

)

‖un‖p
p,V −

∫

RN

F(x, un)dx

+
1

q

∫

RN

f (x, un)undx − ‖h‖ν′‖un‖ν

≥
(

1

θp
−

1

μ

)

M([un]p
s,p)[un]p

s,p +
(

1

p
−

1

μ

)

‖un‖p
p,V − ‖h‖ν′‖un‖ν .

Similarly, if q ≤ μ < p∗
s , replacing now (G)–(i) by (G)–(i i), we have

C + C‖un‖W ≥ I (un) −
1

q
〈I ′(un), un〉

≥
(

1

θp
−

1

q

)

M([un]p
s,p)[un]p

s,p +
(

1

p
−

1

q

)

‖un‖p
p,V −

∫

RN

G(x, un)dx

+
1

μ

∫

RN

g(x, un)undx − ‖h‖ν′‖un‖ν

≥
(

1

θp
−

1

q

)

M([un]p
s,p)[un]p

s,p +
(

1

p
−

1

q

)

‖un‖p
p,V − ‖h‖ν′‖un‖ν .
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Therefore, we have proved that for all n

C + C‖un‖W ≥ min

{

1

θp
−

1

q
,

1

θp
−

1

μ

}

M([un]p
s,p)[un]p

s,p

+ min

{

1

p
−

1

q
,

1

p
−

1

μ

}

‖un‖p
p,V − ‖h‖ν′‖un‖ν . (4.9)

Due to the degenerate nature of (1.7), we have to consider two situations. Either

inf
n∈N

[un]s,p = d > 0 or inf
n∈N

[un]s,p = 0. Hence, let us divide the proof into two cases.

Case inf
n∈N

[un]s,p = d > 0. By (M1), with τ = d p , there exists m = mτ > 0 such that

M([un]p
s,p) ≥ m for any n ∈ N. (4.10)

Thus, (4.9) yields at once that for all n

C + C‖un‖W ≥ min

{

m

(

1

θp
−

1

q

)

, m

(

1

θp
−

1

μ

)

,
1

p
−

1

q
,

1

p
−

1

μ

}

‖un‖p
W − γ ‖un‖W ,

where γ = Cν‖h‖ν′ by Lemma 4.1. Consequently, (un)n is bounded in W , since 1 < p <

θp < min{q, μ} by (M), (F), (G) and Lemma 3.1, being M(0) = 0.

Hence, there exists a function u ∈ W such that, going if necessary to a subsequence,

un ⇀ u in W, (4.11)

being W a uniformly convex Banach space. Let us prove that (un)n converges strongly to u

in W .

Since M is continuous in R
+
0 , then

(

M([un]p
s,p) − M([u]p

s,p)
)

n
is bounded in R. Hence,

(4.11) gives that

lim
n→∞

[

M([un]p
s,p) − M([u]p

s,p)]〈u, un − u〉s,p = 0. (4.12)

Moreover, Lemma 4.2 implies that

lim
n→∞

∫

RN

( f (x, un) − f (x, u))(un − u)dx = 0. (4.13)

Thanks also to (V2), going if necessary to a further subsequence, still denoted by (un)n ,

we have

un → u in Lθp(RN ) and in Lr (RN ) (4.14)

by Lemma 4.4, since p < θp < r < p∗
s by (M), (G) and Lemma 3.1, being M(0) = 0.

Furthermore, using (G), with ε = 1/θp,

|g(x, t)| ≤ |t |θp−1 + Kr |t |r−1 for a.a. x ∈ R
N and all t ∈ R, (4.15)

where Kr = rC1/θp . Then, the Hölder inequality, (4.14) and (4.15) give as n → ∞
∣

∣

∣

∣

∫

RN

(g(x, un) − g(x, u))(un − u)dx

∣

∣

∣

∣

≤
∫

RN

(

|un |θp−1 + |u|θp−1 + Kr |un |r−1 + Kr |u|r−1
)
∣

∣un − u
∣

∣dx

≤
(

‖un‖θp−1
θp + ‖u‖θp−1

θp

)

‖un − u‖θp + Kr

(

‖un‖r−1
r + ‖u‖r−1

r

)

‖un − u‖r = o(1).
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Clearly 〈I ′(un) − I ′(u), un − u〉 → 0 as n → ∞ by (4.11) and the fact that I ′(un) → 0

in W ′. Therefore, combining with (4.11)–(4.13), we obtain as n → ∞

o(1) = 〈I ′(un) − I ′(u), un − u〉 = M([un]p
s,p)

(

〈un, un − u〉s,p − 〈u, un − u〉s,p

)

+ [M([un]p
s,p) − M([u]p

s,p)]〈u, un − u〉s,p

+
∫

RN

V (x)(|un |p−2un − |u|p−2u)(un − u)dx + o(1)

= M([un]p
s,p)

(

〈un, un − u〉s,p − 〈u, un − u〉s,p

)

+
∫

RN

V (x)(|un |p−2un − |u|p−2u)(un − u)dx + o(1),

that is

lim
n→∞

(

M([un]p
s,p)

(

〈un, un − u〉s,p − 〈u, un − u〉s,p

)

+
∫

RN

V (x)(|un |p−2un − |u|p−2u)(un − u)dx

)

= 0.

(4.16)

In particular, M([un]p
s,p)

(

〈un, un − u〉s,p − 〈u, un − u〉s,p

)

≥ 0 and similarly also

V (x)(|un |p−2un − |u|p−2u)(un − u) ≥ 0 by convexity, (M1) and (V1). Then, using (4.10)

and (4.16), we get

lim
n→∞

(

〈un, un − u〉s,p − 〈u, un − u〉s,p

)

= 0,

lim
n→∞

∫

RN

V (x)(|un |p−2un − |u|p−2u)(un − u)dx = 0.
(4.17)

Let us recall the well-known Simon inequalities

|ξ − η|p ≤

{

kp

(

|ξ |p−2ξ − |η|p−2η
)

· (ξ − η), p ≥ 2,

K p

[(

|ξ |p−2ξ − |η|p−2η
)

· (ξ − η)
]p/2

(|ξ |p + |η|p)(2−p)/2, 1 < p < 2,

for all ξ, η ∈ R
N , where kp and K p are positive constants depending only on p. Let us divide

the proof into two cases.

Assume that p ≥ 2. Taking ξ = un(x)−un(y) and η = u(x)−u(y) in the Simon inequality,

we get by (4.17)

[un − u]p
s,p =

∫∫

R2N

|un(x) − un(y) − u(x) + u(y)|p|x − y|−(N+ps)dxdy

≤ kp

(

〈un, un − u〉s,p − 〈u, un − u〉s,p

)

= o(1)

as n → ∞. Similarly, as n → ∞

‖un − u‖p
p,V ≤ kp

∫

RN

V (x)(|un |p−2un − |u|p−2u)(un − u)dx = o(1),

thanks to (V1) and (4.17). In conclusion, ‖un − u‖W → 0 as n → ∞, as required.
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Assume that 1 < p < 2. By (4.11) there exists σ > 0 such that [un]s,p ≤ σ for all n ∈ N.

Then, using the Simon, the Hölder inequalities and (4.17), we have as n → ∞

[un − u]p
s,p ≤ K p

(

〈un, un − u〉s,p − 〈u, un − u〉s,p

)p/2([un]p
s,p + [u]p

s,p

)(2−p)/2

≤ K p

(

〈un, un − u〉s,p − 〈u, un − u〉s,p

)p/2([un]p(2−p)/2
s,p + [u]p(2−p)/2

s,p

)

≤ κ
(

〈un, un − u〉s,p − 〈u, un − u〉s,p

)p/2 = o(1)

where κ = 2K pσ
p(2−p)/2 and where we have applied the following elementary inequality

(a + b)(2−p)/2 ≤ a(2−p)/2 + b(2−p)/2 for all a, b ≥ 0, (4.18)

Similarly, by (4.11) there exists U > 0 such that ‖un‖p,V ≤ U for all n ∈ N. Moreover,

by the Simon, the Hölder inequalities, (4.17) and (4.18), as n → ∞

‖un − u‖p
p,V ≤ L

( ∫

RN

V (x)
(

|un |p−2un − |u|p−2u
)

(un − u)dx

)p/2

= o(1),

where L = 2K pU p(2−p)/2. Hence, ‖un − u‖W → 0 as n → ∞ also for 1 < p < 2. This

completes the proof of the first case.

Case inf
n∈N

[un]s,p = 0. If 0 is an isolated point for the real sequence ([un]s,p)n , then there is

a subsequence ([unk
]s,p)k such that inf

k∈N

[unk
]s,p = d > 0, and we can proceed as before.

Otherwise, if 0 is an accumulation point of the sequence ([un]s,p)n , then thanks to (1.3)

there is a subsequence, still relabeled (un)n , such that

un → 0 in Ds,p(RN ), in L p∗
s (RN ) and a.e. in R

N . (4.19)

We claim that (un)n converges strongly to 0 in W . To this aim, we need only to show that

‖un‖p,V → 0 thanks to (4.19).

Now, (4.9) and (4.19) yield that as n → ∞

C + C‖un‖p,V + o(1) ≥ min

{

1

p
−

1

q
,

1

p
−

1

μ

}

‖un‖p
p,V − ℓ‖un‖p,V + o(1),

where now ℓ = Cν‖h‖ν′ by Lemma 4.1. In particular, there exists a constant Λ > 0 such

that for all n ∈ N

min

{

1

p
−

1

q
,

1

p
−

1

μ

}

‖un‖p
p,V − (C + ℓ)‖un‖p,V ≤ Λ.

Hence, (un)n is bounded in L p(RN , V ) and so in W . Thus, by (4.19) and Lemma 4.1

un ⇀ 0 in W and in Lν(RN ). (4.20)

By (4.20) and Lemma 4.2

lim
n→∞

∫

RN

f (x, un)undx = 0 and lim
n→∞

∫

RN

h(x)undx = 0, (4.21)

since h ∈ Lν′
(RN ).

Clearly (4.15) yields

∣

∣

∣

∣

∫

RN

g(x, un)undx

∣

∣

∣

∣

≤ ‖un‖θp
θp + Kr‖un‖r

r = o(1) as n → ∞, (4.22)
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by virtue of (V2), Lemma 4.4 and (4.19), since p < θp < r < p∗
s by (M), (G) and

Lemma 3.1, being M(0) = 0.

Obviously, 〈I ′(un), un〉 → 0 as n → ∞, by (4.20) and the fact that I ′(un) → 0 in W ′.
Hence, using the continuity of M and (4.19)–(4.22) we have as n → ∞

o(1) =〈I ′(un), un〉 = M([un]p
s,p)[un]p

s,p + ‖un‖p
p,V −

∫

RN

f (x, un)undx

−
∫

RN

g(x, un)undx −
∫

RN

h(x)undx

=‖un‖p
p,V + o(1).

This shows the claim.

Therefore, I satisfies the Palais–Smale condition also in this second case and this com-

pletes the proof. ⊓⊔

Proof of Theorem 1.3 The proof is divided into two steps.

Step 1. Let us prove that there exists u0 ∈ W such that I ′(u0) = 0 and I (u0) < 0.

First, we claim that there exists a function ψ ∈ C∞
0 (RN ) such that

∫

RN

h(x)ψ(x)dx > 0. (4.23)

Since h ∈ Lν′
(RN ) \ {0}, the function

φ(x) =

{

|h(x)|ν′−2h(x), if h(x) �= 0,

0, if h(x) = 0
∈ Lν(RN ).

Then, there exists a sequence (hn)n in C∞
0 (RN ) such that hn → φ strongly in Lν(RN ),

since C∞
0 (RN ) is dense in Lν(RN ). Hence, there exists n0 ∈ N such that

‖hn0 − φ‖ν ≤
1

2
‖h‖ν′−1

ν′ .

Thus, by the Hölder inequality, we have
∫

RN

hn0(x)h(x)dx ≥ −‖hn0 − φ‖ν‖h‖ν′ +
∫

RN

|h(x)|ν
′
dx ≥

1

2
‖h‖ν′

ν′ > 0,

since h �≡ 0. The claim is proved taking ψ = hn0 .

Now, putting Mρ = maxξ∈[0,ρ] M(ξ p), where ρ > 0 is the number given in Lemma 4.3,

by (4.3), (4.5), with ε = 1, and (4.23) we have

I (tψ) ≤
1

p
M ([tψ]p

s,p) +
t p

p
‖ψ‖p

p,V −
∫

RN

G(x, tψ)dx − t

∫

RN

h(x)ψ(x)dx

≤ Mρ

t p

p
[ψ]p

s,p +
t p

p
‖ψ‖p

p,V + tθp‖ψ‖θp
θp + C1tr‖ψ‖r

r − t

∫

RN

h(x)ψ(x)dx < 0,

for t ∈ (0, 1) small enough, since 1 < p < θp < r by (M), (G) and Lemma 3.1, being

M(0) = 0. Thus, we obtain

c0 = inf{I (u) : u ∈ Bρ} < 0,

where Bρ = {u ∈ W : ‖u‖W < ρ}. Then, by the Ekeland variational principle of [13] in Bρ

and Lemma 4.3, there exists a sequence (vn)n ⊂ Bρ such that

c0 ≤ I (vn) ≤ c0 +
1

n
and I (v) ≥ I (vn) −

1

n
‖v − vn‖W (4.24)
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for all n ∈ N and for any v ∈ Bρ . Fixed n ∈ N, for all w ∈ SW , where

SW = {u ∈ W : ‖u‖W = 1},

and for all σ > 0 so small that vn + σ w ∈ Bρ , we have

I (vn + σ w) − I (vn) ≥ −
σ

n
,

by (4.24). Since I is Gâteaux differentiable in W , we get

〈I ′(vn), w〉 = lim
σ→0

I (vn + σ w) − I (vn)

σ
≥ −

1

n

for all w ∈ SW . Hence

|〈I ′(vn), w〉| ≤
1

n
,

since w ∈ SW is arbitrary. Consequently, I ′(vn) → 0 in W ′ as n → ∞ and so (vn)n is

a bounded (P S) sequence of I in Bρ . Thus, Lemmas 4.3 and 4.5 imply the existence of a

function u0 ∈ Bρ such that I ′(u0) = 0 and I (u0) = c0 < 0.

Step 2. Let us prove that there exists u1 ∈ W such that I ′(u1) = 0 and I (u1) > 0.

By Lemma 4.3 and the mountain pass theorem, there exists a sequence, say again (vn)n ,

in W such that as n → ∞
I (vn) → c1 and I ′(vn) → 0, where

c1 = inf
ξ∈Γ

max
t∈[0,1]

I (ξ(t)) > 0,

Γ = {ξ ∈ C([0, 1], W ) : ξ(0) = 0, ξ(1) = e}

and e ∈ W is the function constructed in Lemma 4.3. Then, Lemma 4.5 implies the existence

of a function u1 ∈ W such that I ′(u1) = 0 and I (u1) = c1 > 0.

Finally, since I (u0) = c0 < I (0) = 0 < I (u1) = c1, the solutions u0 and u1 of (1.7) are

non-trivial and independent. This concludes the proof. ⊓⊔

5 The Schrödinger–Kirchhoff equation (1.7) in the radial case

In this section we prove the main existence result for the (1.7) in the radial case. To apply

the mountain pass theorem and the Ekeland variational principle, we need the following

embedding result obtained combining Theorem II.1 of [20] with Lemma 4.1.

Lemma 5.1 Let N ≥ 2. For any p < ν < p∗
s , the embedding

Wrad →֒→֒ Lν(RN )

is compact, where Wrad = {u ∈ W : u is radially symmetric with respect 0}.

Throughout the section we assume that V , f , g and h are radially symmetric functions in

x , and that (M1), (V1), (F) and (G) hold, without further mentioning. Again, the geometry

stated in Lemma 4.3 continues to hold. The significant changes now occur in showing the

validity of the Palais–Smale condition. To overcome the non-compactness of the embedding

W →֒ Lν(RN ), p < ν < p∗
s , we need to restrict the study searching solutions of (1.7)

in Wrad.

Lemma 5.2 Let N ≥ 2 and M(0) = 0. Then I satisfies the Palais–Smale condition in Wrad.
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Proof Fix (un)n any Palais–Smale sequence for I in Wrad. Then, proceeding exactly as in

the proof of Lemma 4.5, we arrive at the same conclusion, replacing (V2) and Lemma 4.4

by Lemma 5.1, being 1 < p < θp < min{q, μ} by (M), (F), (G) and Lemma 3.1 since

M(0) = 0. ⊓⊔

To prove the existence of radial solution for problem (1.7), we need the following result.

Lemma 5.3 Let N ≥ 2 and M(0) = 0. Then there exists a number δ > 0 such that for

all radial perturbation h ∈ Lν′
(RN ), with ‖h‖ν′ ≤ δ, problem (1.7) admits a non-trivial

mountain pass radial solution u0 in Wrad. If furthermore h is non-trivial, then (1.7) possesses

a second independent non-trivial radial solution u1 in Wrad. More precisely, u0 and u1 are

non-trivial critical points of the underlying functional I restricted to Wrad, that is

M([uk]p
s,p)〈uk, ϕ〉s,p +

∫

RN

V (x)|uk(x)|p−2uk(x)ϕ(x)dx

=
∫

RN

f (x, uk(x))ϕ(x)dx +
∫

RN

g(x, uk(x))ϕ(x)dx +
∫

RN

h(x)ϕ(x)dx

(5.1)

for any ϕ ∈ Wrad and for k = 0, 1.

Proof The proof of this lemma is divided into two steps.

Step 1. As in the proof of Theorem 1.3, since h ∈ Lν′
(RN ) is a radial function and h �= 0,

we can choose a function ψ ∈ Wrad such that
∫

RN h(x)ψ(x)dx > 0. Then

c0 = inf{I (u) : u ∈ Bρ} < 0,

where Bρ = {u ∈ Wrad : ‖u‖W < ρ} and ρ > 0 is the number given in Lemma 4.3. Thus,

by the Ekeland variational principle in Bρ , Lemma 4.3 and Lemma 5.2 imply the existence

of a function u0 ∈ Bρ such that I (u0) = c0 < 0 and I ′(u0) = 0 in Wrad.

Step 2. By Lemmas 4.3 and 5.2 and the mountain pass theorem, there exists a function

u1 ∈ Wrad such that I (u1) = c1 > 0 and I ′(u1) = 0 in Wrad, where

c1 = inf
ξ∈Γ

max
t∈[0,1]

I (ξ(t)) > 0,

Γ = {ξ ∈ C([0, 1], Wrad) : ξ(0) = 0, ξ(1) = e}

and e ∈ Wrad is the function constructed in Lemma 4.3.

Hence, we have that u0, u1 �= 0 are two independent radial solutions of (1.7) in the sense

of definition (5.1). This concludes the proof. ⊓⊔

Observe that, up to this moment, the functions u0 and u1 given by Lemma 5.3 are solutions

of problem (1.7) only in the Wrad sense. Now, let us show that these functions are solutions

of (1.7) in the whole space W , that is in sense of definition (4.1). To this aim we use a version

of the well-known principle of symmetric criticality, due to Palais in [28], in the form proved

in [11] which holds in reflexive strictly convex Banach spaces.

Let X = (X, ‖ · ‖X ) be a reflexive strictly convex Banach space. Then, thanks to the

Hahn–Banach theorem, for any f ∈ X ′ there exists a unique u0 ∈ X such that

〈 f, u0〉 = ‖u0‖2
X and ‖ f ‖X ′ = ‖u0‖X , (5.2)

where 〈 · , · 〉 denotes the dual pairing between X ′ and X . Suppose that G is a subgroup of

isometries g : X → X , that is g is linear and ‖gu‖X = ‖u‖X for all u ∈ X . Consider the

G-invariant closed subspace of X

Σ = {u ∈ X : gu = u for all g ∈ G}.
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Lemma 5.4 (Proposition 3.1 of [11]) Let X, G and Σ be as before and let I be a C1

functional defined on X such that I ◦ g = I for all g ∈ G. Then u ∈ Σ is a critical point of

I if and only if u is a critical point of I|Σ .

The proof of Lemma (5.4) is a consequence of (5.2) and of the arguments used in the

proof of Proposition 3.1 of [11]. Finally, we have all the ingredients to complete the proof of

Theorem 1.4.

Proof of Theorem 1.4 Let SO(N ) denote the special orthogonal group, that is

SO(N ) = {A ∈ R
N×N : At A = IN and det A = 1}.

Next, consider the following subgroup of linear operators of W in itself

G = {a : W → W : au = u ◦ A, where A ∈ SO(N )}.

Observe that G is a subgroup of isometries of W . In fact fixed u in W , for all a ∈ G

‖au‖p
W =

∫∫

R2N

|u(Ax) − u(Ay)|p

|x − y|N+ps
dxdy +

∫

RN

V (x)|u(Ax)|pdx

=
∫∫

R2N

|u(x ′) − u(y′)|p

|x ′ − y′|N+ps
dx ′dy′ +

∫

RN

V (x ′)|u(x ′)|pdx ′ = ‖u‖p
W ,

since |x − y| = |A(x − y)| = |Ax − Ay| = |x ′ − y′|, det A = 1 and V is a radial function.

Moreover, it results that

Wrad = {u ∈ W : au = u for all a ∈ G}.

To apply Lemma 5.4 to the functional I , we need to show that I ◦ a = I for all a ∈ G.

As before, fixed u ∈ W for all a ∈ G we have

(I ◦ a)(u) =
1

p
(M ([au]p

s,p) + ‖au‖p
p,V ) −

∫

RN

F(x, u(Ax))dx

−
∫

RN

G(x, u(Ax))dx −
∫

RN

h(x)u(Ax)dx

=
1

p
(M ([u]p

s,p) + ‖u‖p
p,V ) −

∫

RN

F(x ′, u(x ′))dx ′

−
∫

RN

G(x ′, u(x ′))dx ′ −
∫

RN

h(x ′)u(x ′)dx ′ = I (u),

since V , f , g and h are radial functions in x . Hence, I satisfies Lemma 5.4, with X = W

and Σ = Wrad.

By Lemma 5.3 we know that u0, u1 are critical points of I |Wrad , that is

〈I ′(uk), ϕ〉 = 0 for any ϕ ∈ Wrad and for k = 0, 1.

Then, using Lemma 5.4, we get that u0 and u1 are critical points of I in the whole space

W . Thus, u0 and u1 are solutions of the problem (1.7) in the sense of definition (4.1). ⊓⊔

Acknowledgments The authors are members of the Gruppo Nazionale per l’Analisi Matematica, la Probabil-

ità e le loro Applicazioni (GNAMPA) of the Istituto Nazionale di Alta Matematica (INdAM). The manuscript

was realized within the auspices of the INdAM—GNAMPA Project Modelli ed equazioni nonlocali di tipo

frazionario (Prot_2015_000368). The second author was partly supported by the Italian MIUR project Vari-

ational and perturbative aspects of nonlinear differential problems (201274FYK7).

123



2128 M. Caponi, P. Pucci

References

1. Ambrosetti, A., Rabinowitz, P.: Dual variational methods in critical point theory and applications. J.

Funct. Anal. 14, 349–381 (1973)

2. Autuori, G., Fiscella, A., Pucci, P.: Stationary Kirchhoff problems involving a fractional elliptic operator

and a critical nonlinearity. Nonlinear Anal. 125, 699–714 (2015)

3. Autuori, G., Pucci, P.: Existence of entire solutions for a class of quasilinear elliptic equations. Nonlinear

Differ. Equ. Appl. NoDEA 20, 977–1009 (2013)

4. Autuori, G., Pucci, P.: Elliptic problems involving the fractional Laplacian in R
N . J. Differ. Equ. 255,

2340–2362 (2013)

5. Bartsch, T., Wang, Z.: Existence and multiplicity results for some superlinear elliptic problems on R
N .

Commun. Partial Differ. Equ. 20, 1725–1741 (1995)

6. Brézis, H., Lieb, E.: A relation between pointwise convergence of functions and convergence of functional.

Proc. Am. Math. Soc. 88, 486–490 (1983)

7. Chang, X.: Ground states of some fractional Schrödinger equations on R
N . Proc. Edinb. Math. Soc. 58,

305–321 (2015)

8. Chen, S., Liu, S.: Standing waves for 4-superlinear Schrödinger–Kirchhoff equations. Math. Methods

Appl. Sci. 38, 2185–2193 (2015)

9. Colasuonno, F., Pucci, P.: Multiplicity of solutions for p(x)-polyharmonic Kirchhoff equation. Nonlinear

Anal. 74, 5962–5974 (2011)

10. D’Ancona, P., Spagnolo, S.: Global solvability for the degenerate Kirchhoff equation with real analytic

data. Invent. Math. 108, 247–262 (1992)

11. de Morais Filho, D.C., Souto, M.A.S., do’O, J.M.: A compactness embedding lemma, a principle of

symmetric criticality and applications to elliptic problems. Proyecciones 19, 1–17 (2000)

12. Di Nezza, E., Palatucci, G., Valdinoci, E.: Hitchhiker’s guide to the fractional Sobolev spaces. Bull. Sci.

Math. 136, 521–573 (2012)

13. Ekeland, L.: On the variational principle. J. Math. Anal. Appl. 47, 324–353 (1974)

14. Felmer, P., Torres, C.: Radial symmetry of ground states for a regional fractional nonlinear Schrödinger

equation. Commun. Pure Appl. Anal. 13, 2395–2406 (2014)

15. Felmer, P., Vergara, I.: Scalar field equation with non-local diffusion. NoDEA Nonlinear Differ. Equ.

Appl. 22, 1411–1428 (2015)

16. Fiscella A., Pucci P.: On certain nonlocal Hardy–Sobolev critical elliptic Dirichlet problems Kirchhoff.

Adv. Differ. Equ. (to appear)

17. Fiscella, A., Valdinoci, E.: A critical Kirchhoff type problem involving a nonlocal operator. Nonlinear

Anal. 94, 156–170 (2014)

18. Frank, R.L., Seiringer, R.: Non-linear ground state representations and sharp Hardy inequalities. J. Funct.

Anal. 255, 3407–3430 (2008)

19. Ledesma, C.E.T.: Multiplicity result for non-homogeneous fractional Schrödinger-Kirchhoff type equa-

tions in R
n . Adv. Nonlinear Anal. (to appear)

20. Lions, P.-L.: Symétrie et compacité dans les espaces de Sobolev. J. Funct. Anal. 49, 315–334 (1982)

21. Liu, J., Liao, J.-F., Tang, C.-L.: Positive solutions for Kirchhoff-type equations with critical exponent in

R
N . J. Math. Anal. Appl. 429, 1153–1172 (2015)

22. Liu, Z., Guo, S.: Existence of positive ground state solutions for Kirchhoff type problems. Nonlinear

Anal. 120, 1–13 (2015)

23. Maz’ya, V., Shaposhnikova, T.: On the Bourgain, Brezis, and Mironescu theorem concerning limiting

embeddings of fractional Sobolev spaces. J. Funct. Anal. 195, 230–238 (2002)

24. Molica Bisci G., Vilasi L.: On a fractional degenerate Kirchhoff-type problem. Commun. Contemp. Math.

(to appear)

25. Nie, J., Wu, X.: Existence and multiplicity of non-trivial solutions for Schrödinger-Kirchhoff-type equa-

tions with radial potential. Nonlinear Anal. 75, 3470–3479 (2012)

26. Nyamoradi, N.: Existence of three solutions for Kirchhoff nonlocal operators of elliptic type. Math.

Commun. 18, 489–502 (2013)

27. Ono, K.: Blowing up and global existence of solutions for some degenerate nonlinear wave equations with

some dissipation. In: Proceedings of the Second World Congress of Nonlinear Analysts, Part 7 (Athens,

1996). Nonlinear Analysts, vol. 30, pp. 4449–4457 (1997)

28. Palais, R.S.: The principle of symmetric criticality. Commun. Math. Phys. 69, 19–30 (1979)

29. Pucci, P., Saldi, S.: Critical stationary Kirchhoff equations in R
N involving nonlocal operators. Rev. Mat.

Iberoam. 31, 1–22 (2016)

30. Pucci, P., Xiang, M.Q., Zhang, B.: Existence and multiplicity of entire solutions for fractional p-Kirchhoff

equations. Adv. Nonlinear Anal. 5, 27–55 (2016)

123



Existence theorems for entire solutions of stationary. . . 2129

31. Pucci, P., Xiang, M.Q., Zhang, B.: Multiple solutions for nonhomogeneous Schrödinger-Kirchhoff type

equations involving the fractional p-Laplacian in R
N . Calc. Var. Partial Differ. Equ. 54, 2785–2806 (2015)

32. Pucci, P., Zhang, Q.: Existence of entire solutions for a class of variable exponent elliptic equations. J.

Differ. Equ. 257, 1529–1566 (2014)

33. Secchi, S.: Ground state solutions for nonlinear fractional Schrödinger equations in R
N . J. Math. Phys.

54, 031501 (2013)

34. Ye, Y., Tang, C.-L.: Multiple solutions for Kirchhoff-type equations in R
N . J. Math. Phys. 54, 081508

(2013)

123


	Existence theorems for entire solutions of stationary Kirchhoff fractional p-Laplacian equations
	Abstract
	1 Introduction
	2 The non-degenerate problem (1.1)
	3 The degenerate problem (1.5)
	4 The Schrödinger--Kirchhoff equation (1.7)
	5 The Schrödinger--Kirchhoff equation (1.7) in the radial case
	Acknowledgments
	References


