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EXISTENCE THEOREMS FOR INFINITE PARTICLE
SYSTEMS

BY

THOMAS M. LIGGETTX1)

Abstract. Sufficient conditions are given for a countable sum of bounded generators

of semigroups of contractions on a Banach space to be a generator. This result is then

applied to obtain existence theorems for two classes of models of infinite particle

systems. The first is a model of a dynamic lattice gas, while the second describes a

lattice spin system.

1. Introduction. Several models of infinite particle systems with interactions

have been introduced recently by Spitzer [8]. They describe the behavior of

infinitely many indistinguishable particles which move on a countable set S in

such a way that the movement of each particle at any particular time is influenced

by the state of the entire system at that time. These models were motivated by the

desire to study Markov processes which have as invariant measures some of the

classical measures of statistical mechanics.

Given an intuitive description of the behavior of the particles, it is often not

clear whether or not there exists a Markov process which corresponds to that

description. Therefore it is important to find conditions under which infinite

particle systems exist. At least two approaches to this problem have been used.

Holley [4] applied the Hille-Yosida theorem to construct the required semigroups

of operators from intuitively reasonable generators for several interesting classes

of interactions on S=Z1 (the integer lattice). The main difficulty here was in verify-

ing the assumption i%(I—XQ.) = C(K) in the Hille-Yosida theorem, and it was in

that verification that the restriction S=ZX was necessary. Harris [3], on the other

hand, was able to give a rather direct probabilistic construction of the process in

the case that S=Zd and each particle is affected only by neighboring particles.

This approach has the advantage that it is successful in higher dimensions and that

it permits the particles to be distinguishable, so one can follow the behavior of any

particular particle. However, it seems to be limited to the nearest neighbor case,

or at least to the case in which only particles which are within some fixed distance

of each other can interact. In this paper, we will follow the semigroup approach to
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obtain an existence theorem for general countable S and for several general types

of interactions. One of the important models we will consider is that of a dynamic

lattice gas. A description of it follows.

Let 5 be a countable set, and K={0, 1}S with the product topology, so that K

is compact. K will be the state space for the system, and r¡ e K will have the inter-

pretation that u e S is occupied if r¡(ü) = 1 and unoccupied if ^(w)=0. The interaction

of the particles will be described via (i) a nonnegative "speed" function c(u, -q)

on Sx K, and (ii) a probability transition function pix, y) on SxS. The intuitive

description of the process in terms of these functions is that if at a certain time the

system is in state r¡, a particle at x will attempt a transition during the next small

interval of time At with probability c(x, r¡)At + o(At), and that if it attempts a

transition, it will go to y with probability pix, y) if ^(j)=0 and will remain at x

otherwise. In other words, transitions to occupied states are suppressed in keeping

with our requirement that each state be occupied by at most one particle at a time.

Of course if S is finite, the system reduces to a finite state continuous time Markov

chain, and the existence problem is trivial. We will adopt the convention that

c(x, 7/0=0 whenever t/(x) = 0.

In order to define the generator, the following notation will be useful. If r¡ e K

and u,veS, let r¡u and r/u>„ be those elements of K defined by

Vu.v(x) = V(.X)     if X == U, V, r¡u(x) = r¡(x) if X =± U,

= Tj(u)    if X = V, = 1— r¡(x)    if X = u.

= r¡(v)   if x = u;

Then r¡u,v=V if « and v are both vacant or both occupied, while otherwise t¡UíV

represents a transition from one site to another. Let C(K) be the space of continuous

real valued functions on K (with the supremum norm), and 3? be the set of those

elements of C(K) which depend only on finitely many coordinates. Of course ^

is dense in C(K). The intuitively reasonable choice for the generator of the process

we have in mind is then

(1.1) Q/fo)=    2   C(x,-n)p(x,y)[fi(rixj-f(r¡)].
x.yeS

Note that nonzero contributions to this sum occur only if î;(x) = 1 and -q(y)=0,

which corresponds to a transition from x to y. The above expression will of course

not make sense for all/e C(K), but it should at least be well defined fox fie ¡F.

The restrictions we will place on the functions c(x, -n) and p(x, y) will guarantee

this.

It is clear, of course, that some restrictions are needed. Suppose, for example,

that c(x, r/)=l whenever x is occupied and p(x, y) is a transition function on 5

which satisfies 2,xp(x, y) = °o for some y e S. Then £2/will not be well defined for

f(r¡)=r¡(y). This is not merely a technical problem, but rather reflects in a real

sense the fact that no process exists which corresponds to our intuitive prescription.
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1972] EXISTENCE THEOREMS FOR INFINITE PARTICLE SYSTEMS 473

In this case, for example, if we start the process in the state r¡ given by r¡(x) = 1 for

x^y and r¡(y) = 0 our intuitive description of the process would lead y to become

occupied by the "first" particle which tried to jump to y, after which no further

transitions would take place. But it is easy to check that there is no such "first"

attempt.

A simplified version of our main existence theorem is the following :

Theorem 1.2. Suppose that c(x, r¡) andp(x,y) satisfy

(1.3) Pix,y)^0,       ^pix,y)úl,
y

(1.4) sup2/X*.jO < °o>
y    x

(1.5) c(x, rj) 7> 0,       sup c(x, rj) < 00,
x,v

(1.6) sup 2 SUP \c(x, r¡)—c(x, 7]u)\ < 00.
x      u     tt

Then there is a unique strongly continuous semigroup of positive contractions on

C(K) whose generator Q, is given by (1.1) for fe !F. Hence there is a unique strong

Markov process on K with generator O.

All the conditions of the above theorem except (1.4) and (1.6) are quite natural.

Both (1.4) and (1.6) express in a general way the requirement that particles which

are far apart should not affect each other very much. Condition (1.4) is made

reasonable by the example given above, and is satisfied in most cases of interest.

For example, it is automatic if p(x, y) is symmetric, or if S is a discrete Abelian

group and p(x, y)=p(0, y—x). Condition (1.6) is a type of uniform Lipschitz

condition on the functions c(x, r¡) in the following sense. IffeCiK) satisfies a

Lipschitz condition with respect to a metric on K of the form

d(V,Q= £ a(x)h(x)-£(x)|
xes

where a(x) > 0 and 2 «00 < °°> then

(1.7) Isup\firi)-f(r,u)\  <co.
u    v

Conversely, iff satisfies (1.7), then for some choice of a(x), f satisfies a Lipschitz

condition with respect to d. Condition (1.6) is certainly satisfied, for example, in

the case that the speed function has finite range in the sense that there is an N so

that, for each x e S, c(x, r¡) depends on r¡ only through at most TV coordinates. In

the case which is of interest in statistical mechanics, c(x, r¡) is of the form

c(x,r¡) = exp\   2   V(x,y)\
U(«=i J

where V(x, y) is a (potential) function on Sx S which satisfies sup* 2y I V(x, y)\

<oo. Assumptions (1.5) and (1.6) are automatic here.
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The next section is devoted to studying the general question of when an infinite

sum of bounded generators of semigroups is again the generator of a semigroup.

Our sufficient conditions involve the degree to which the summands commute

with each other. In §3 we apply this abstract result to prove a somewhat more

general version of Theorem 1.2 in which we allow the transition probabilities to

depend on the state r¡ of the system in ways other than the simple exclusion model

discussed above. The final section derives an existence theorem for a somewhat

different type of system from the results of §2. The model considered there des-

cribes the behavior of a lattice spin system. While this is an important model in its

own right, our point of view here is that it illustrates the wide range of applicability

of Theorem 2.8.

Our results can be applied to other models which we have not described in detail.

For example, when Theorem 2.8 is applied to the "zero range interaction" model

discussed in [4] and [8], the results obtained are somewhat better than those known

previously.

2. The Hille-Yosida Theorem for sums of bounded generators. We recall that a

(possibly unbounded) linear operator A on a Banach space X is called dissipative

if f—XAf= g implies that ||/||^||g|| whenever fie 2(A) and A>0. A is closed if

the graph of A is a closed subset of X x X. Consider two sequences {Mn} and

{U„} of bounded linear operators on X with the property that £¿„ = 2íS = i MkUk

is dissipative for each n. We wish to find conditions under which the

"limit" of the sequence £2„ satisfies the assumptions of the Hille-Yosida

theorem.

Let ¡xk be a sequence of positive numbers such that ||Mfc|| = p.k, and define

= ifieX 2 l|E4/|K<oo
k = l

Then ^ is a linear space, and for fie <ê we can define

Q0/= um Qn/.
n-»co

Since Í2„ is dissipative for each n, í¿0 is also. Let ¡Q be the closure of the graph of

O0 in Xx X. Then Í2 is dissipative, and since O is also closed, R(I—XQ.) is closed

in Xiov A>0.

A slight technical problem arises here because Ü, is not necessarily the graph of a

linear operator. A useful condition which guarantees this (i.e., that D0 have a

minimal closed extension which is a linear operator), is that ^ be dense in X (see,

for example, Lemma 3.3 of [7]). This assumption is made in Theorem 2.8, and is

satisfied thereafter. However, Theorem 2.2 below is valid even if O is "multi-

valued."

The restrictions we will place on the sequences {Mn} and {£/„} will involve the

degree to which they commute with each other. To describe this, we introduce the
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usual concept of the commutator of two bounded operators A and B on X: [A, B]

= AB-BA. Also, put

(2.1) y(A,B) = sup   IU'WI
T \\Af\\ + \\Bf\\

where the supremum is taken over all/e ATor which the denominator is not zero.

Note that y(A, B)=0 if A and B commute and that y(A, B)¿max (\\A\\, \\B\\).

Theorem 2.2. Suppose there is a constant L so that for all n

(2.3) § VWW* U¿ & L

and

(2.4) t^\\\Uk,Mn]\\ úLpn.
fc=i

Then 01(1- AQ) 2 "f for 0 < A < ££•

Proof. Fix ge?. Since £2n is bounded and dissipative, R(I— AQn) = X for all

A > 0. Fix A such that 0 < A < \L and define /„ e X by

(2.5) /n-AÍ2n/n = g.

Apply £/m to both sides of (2.5) to obtain

£/m/„-A J UmMkUJn = C/mg.
fc=i

By adding and subtracting several terms this can be rewritten in the form

Umfn-XilnUmfn = Umg+X 2 [Um,Mk]Ukfn+X 2 ü/JCf«, r/fc]/„.

Using (2.1) and the fact that Í2„ is dissipative,

\\UM\   =   [l^mfll+A  2   l|[^m,Mfc]||  \\Ukfn\\
k = l

+ X 2 /w(£7m, Uk)[\\Ukfn\\ + \\UM\]-
k = l

This becomes

(2.6) (1 -AL)||UM = II Umg|| + A 2 A..*ll Ml

where /Jm>fc = || [Um, Mk] \\ + pky(Um, Uk). The assumptions of the theorem imply that

CO

2   Pmßm.K ̂ 2Lpk,
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which says that, if we regard {/xm} as a measure p on the positive integers, {ßm,k}

acts as a bounded operator B on L,(p) by (7iw)(m) = 2?=i j8m,kw(W with ||7i||=27_.

With this in mind, fix an n and define

v™ = \\Umfn\\    and   w«= \\Umg\\.

Since g e#, h>={w("°} eLiOu), and hence ¡; = {i;(m)} eL,(fi) by (2.6). In this notation,

(2.6) becomes

(2.7) (l-XL)v ^w+XBv

where the inequality is to be understood componentwise. Since B is a positive

operator and the norm of (1 — AL)_1A7iis less than 1, we may iterate (2.7) to obtain

v Ú (ll(l-XL))(I-(X/(l-XL))By1w.

The important thing to note is that the term on the right of this inequality is

independent of n and is in L,(p,). So, we conclude that there is a sequence {um}

such that 2m=i umpm<ao and ||£/m/n|| úum for each n. In particular,/„ e^ so we

may define

gn =/n-^o/n.

Now, recalling (2.5),

||gn-g|| = A||Q0/n-Dn/n|| ^ A    |    \\MkUkfn\\ Ú A    J   MA~*0,
k=n+l fc=n+l

so gn -> g. Since gn e 3i(I— AQ) which is closed, g e 0t{I- AQ). So, we have shown

that 3/tiI-Xil)^. To complete the proof we use again the fact that ^(7-AQ)

is closed.

As an immediate consequence of this result, we have

Theorem 2.8. If'S is dense in X and the assumptions of Theorem 2.2 hold, then

Q generates a unique strongly continuous semigroup Sit) of contractions on X.

Furthermore, if Sn(t) is the semigroup generated by £2n,

sup   \\Snit)f-Sit)fW-+0
OâiSlo

as n -> oo for each t0>0 and fie X.

Proof. The first statement follows from the Hille-Yosida Theorem, since (i)

SdiiY)^ which is dense, (ii) Q is dissipative, and (iii) ^(7— XQ,) = X for all suf-

ficiently small A > 0 by Theorem 2.2. The convergence statement is a consequence

of Trotter's Theorem (see, for example, Theorem 3 of [6]).

3. Application to infinite particle systems with speed change and exclusion.   In

this section we will obtain an existence theorem for infinite particle systems as a

consequence of the main result of §2. The notation S, K, & and CiK) will be as
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in §1. We begin with nonnegative continuous functions c(x, r¡) on SxK and

p(x, y, r/) on Sx SxK which satisfy c(x, r¡) = 0 if t¡(x) = 0, p(x, y, ^) = 0 if r¡(y)=l,

and yZyeSp(x, y,TJ)^l, for each x e S and r¡ e K. In order to place the existence

problem in the context of the previous section, define bounded operators M(x>y)

and Uix,V) on X= C(K) for x, ye Shy

U(x.y)Än) = fiVx.v) -fil), M{x,y)fi-q) = c(x, rj)p(x, J, rj)f(rj).

Lemma 3.1. For any finite subset T of Sx S, the operator

LiT =    £   MÍXty)U(X¡y)
(x,y)eT

is dissipative.

Proof. Suppose/- XQ.Tf=g with A > 0. Choose t¡ so that/(■>?) = max {/(£), £ e K).

Then for each ix,y) e T, U(x<y)fir¡) ¿0 and so /(i?) úgii). Applying the same argu-

ment to the minimum off, we see that ||/|| á ||g||.

Throughout the remainder of the section, we will assume that we are given

functions c(x) on S and pix, y) on Sx S such that cLv, r¡)^c(x) and pix,y,r¡)

= p(x, y) for all T¡ e K. The additional assumptions which will be made at various

points are

(3.2) sup c(x) 2 p(x, y) < co,       sup 2 c(x)p(x, y) < co,
x y y     x

(3.3) 2 SUP \c(u> Vx)-c(u, tJ)\ g c(u),
X      V

(3.4) 2 SUP ¡P(u> v> Vx)-P(u, v, v)\ ^ p(u, v).
X      77

Put P(X¡y) = c(x)p(x, y) and define Q as in §2, using any enumeration of the

countable set SxS.lt is clear that the definition is independent of the enumeration.

In order to show later that the semigroup we construct is positive, we need the

following simple result.

Lemma 3.5. Iffe 2(íl), g^O andf-Xilf=g thenf^O.

Proof. Since fe 3¡(íl), there are /„ e V so that fn ->/ and Qfn -> Of. Let

gn=fn-*Qfn- Then min {fn(rf), r¡ e K}^min {gn(r¡), r¡ e K} by the argument of

Lemma 3.1. So since gn ->g^0, it follows that/^0.

Lemma 3.6. 7/(3.2) holds, then J^Crf. Therefore ^ is dense in C(K), and for

eachfe^,

W(l) = 2 c(*> 1?)/J(X> y y v)[f(Vx.y)-f(v)l
x.y

Proof. If fe J5" depends only on the coordinates in the finite subset T of S,

II Ulx,y)f\\ =0ifxtTandy$T, and || Ulx¡y)f\\ á 2||/| otherwise. So,

2 lltf<-.v>/lk*.„) = 2||/|| 2 cW I p(x>y) + 22 <txMx,y)\ < «,
x.y

which says that/e <€.
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We can now derive our main existence theorem from the results of §2.

Theorem 3.7. Assume that (3.2), (3.3) and (3.4) hold. Then Q generates a unique

strongly continuous semigroup Sit) of positive contractions on C(K). Furthermore,

if ST(t) is the semigroup generated by 0.Tfor T a finite subset of S,

lim  sup   \\STit)f-Sit)f\\ = 0
TfS  OSÍSÍO

for each t0>0 and fie CiK).

Proof. We must verify the assumptions of Theorem 2.8. ^ is dense in CiK) by

Lemma 3.6. If {x, y} r\ {u, v} = 0, U(x<y) and U(UtV) commute, while ||t/(A;>v)|| =2 for

all pairs ix,y). So, y(U(x,y), C/(u,„)) = 0 if {x, y} n {u, v} = 0 and y(U(x,y), i/(u,1))) = 2

in any case. It is easy to check then that condition (3.2) implies condition (2.3) of

Theorem 2.2 in this case.

The verification of condition (2.4) requires somewhat more computation. First

note that

\\[U{XM, M(Ui„)]||   ^ SUp \c(u, Vx.y)P(u, V, -qx<y)-c(u, 7])p(u, V, rj)\.
1

For any function g e C(K),

sup \g(vx.y)-g(v)\ ^ sup \g(vx)-g(v)\+sup \g(-ny)-g(v)\-
1 r? n

Using this, we obtain

\\[U(x.v), Miu,v)]\\   = P(U, V)  SUp \c(u, r)x)-c(u, r¡)\ +SUp \c(u, r¡y)-c(u, r/)\
1 » n J

+ C(u)  SUp \p(u, V, r¡x)-p(u, V,r))\+ SUp \p(u, V, 7]y)-p(u, V,r¡)\\.
t n ti J

Assumptions (3.3) and (3.4) then lead to

2 c(x)p(x,y)\\[UiXiV), M(u>1))]||
X.1I

<: 2c(u)p(u, v)\ sup 2 c(x)p(x, y) + sup 2 c(x)P(x, y) \.
K.  x      y y      x J

Using (3.2) again completes the verification of condition (2.4). So Theorem 2.8

applies. The assertion that the semigroup is positive follows from Lemma 3.5,

which says that (7—AQ)-1 leaves the positive cone invariant.

We conclude this section with several remarks. Theorem 3.7 really asserts the

existence of a strong Markov process on K with generator Q, since a standard

theorem (e.g. Theorem 9.4 of [1]) gives the existence of the process once the semi-

group 5(0 is obtained. The convergence part of Theorem 3.7 is often useful in

studying properties of the resulting Markov process. For instance, the existence of

invariant measures in some models has been obtained by Holley [4] by approxi-
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mating the desired measure by measures which are invariant for the processes

which correspond to the semigroups 5T(0-

Finally, we should point out that Theorem 1.2 is a special case of Theorem 3.7.

To see this, put

Pix, y, rj) = pix, y)   if 7](y) = 0,

= 0 ifijÜO-1.

To verify the assumptions of Theorem 3.7, take p(x, y) = 2p(x, y) and c(x) to be a

sufficiently large constant.

4. Application to lattice spin systems. In this section, we present a second

application of the results of §2 to the existence theory of infinite particle systems.

Again let 5 be a countable set, but now we regard each point of 5 as being occupied

by a particle which can be in any state <p of F, where F is a compact set. The con-

figuration of the entire system can then be described by a point -q in K=FS, which

we give the product topology. A particle at x e S waits a random amount of time

determined by a "speed" function c(x, -n) on Sx K. Then it changes its state from

■n(x) to another state <p of F according to a transition function p{q(x), d<p) on F.

If F={— 1, 1}, an interpretation of the process is that the particles, which might be

located at the lattice sites of a crystal, can each be spinning up (if <p= +1) or down

(if 99= — 1), and that at certain random times which are influenced by the state of

the entire system, the direction of spin of a particle switches.

The problem is to find conditions on c(x, r/) and p(\/i, d<p) under which there exists

a strong Markov process on K which behaves according to the intuitive description

given above. Some partial existence results were obtained in [2] for a special case.

Other properties of this model have been studied in [5].

If x e S and <p e F, let -nx be the element of K defined by

Vxiy) = r,(y)   y*x,

= <p      y = x.

Then/(r?£) is a continuous function of <p whenever r¡ e Kandfe C(K). Throughout

this section, we will assume that the transition function p(ifi, d<p) satisfies the follow-

ing regularity condition: the map <// -^p(>p, dtp) is continuous from F to the space

of probability measures on 7^ with the weak* topology. Then the integral

$fP(vÍx)> d9)fiVx) makes sense and is a continuous function of-q foreach/e C(K)

and x e 5. So,

(Uxf)(v) = I Pivix), d<p)[fi(rix)-f(ri)]

defines a bounded operator on C(K) for each x e 5. We assume also that c(x, •>?) = 0

is a continuous function of 17 for each xeS and that supÄ>„ c(x, -n)<co. Then

(Mxf)(rj) = c(x, -n)f(r]) also defines a bounded operator on C(K).

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



480 T. M. LIGGETT [March

That 2xer MxUx is dissipative for any finite subset T of S follows from the

argument used in Lemma 3.1. So, define Q as in §2, taking px to be the constant

supy>„ ciy, rj). Then anyfe CiK) which depends on only finitely many coordinates

is in S¡(Q) and

Of = 2 cix, V) f pi-nix), dpMtâ-Arj))
xeS JF

for such/. The basic assumption we will need for the existence theorem is

(4.1) sup 2 sup \c(y, r¡x)-c(y, r,)\ < co.
y     x   v,q

This is quite similar to condition (1.6) of Theorem 1.2 and again describes the

requirement that the speed of a particle at one point should not be affected very

much by the behavior of particles at distant sites.

Theorem 4.2. 7/(4.1) is satisfied, Í2 generates a strongly continuous semigroup

of positive contractions on X=C(K). Therefore there is a unique strong Markov

process on K with generator Q.

Proof. We must verify the assumptions of Theorem 2.8. # is dense in C(K)

since it contains allfe C(K) which depend only on finitely many coordinates. In

this case, Ux and Uy commute, so y(Ux, Uy) = 0 and assumption (2.3) is automatic.

To obtain condition (2.4) from (4.1), it suffices to note that

[U„ My]f(v) = J p(v(x), d9)[c(y, 7¡%)-c(y, r,)]f(r,i)

so

\\[Ux,My]\\ Í sup\c(y,r¡x)-c(y,ri)\.
cp.n

Finally, the positivity of the semigroup follows again from the fact that (7— AÍ2) ~*

is a positive operator for A > 0.

In order to understand the content of (4.1), it is helpful to consider the special

case of this model which is of interest in physics. This is the case which is studied

in [5], for example. Take S=Zd and F={-1, 1}. For each finite subset T of Zd,

we are given a number JT. Define oT(rj) = YJxsT r¡(x) and

c(x, rj) = exp \ 2 Jt°>t(v) \-
l TBX )

In this context, a sufficient condition for (4.1) to hold is that the numbers JT should

satisfy

sup 2 \Jt\#(T) < co
yeS   Tsy

where $(T) denotes the cardinality of T. This condition is satisfied in [5].
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Finally, we note that more complex models could be analyzed using the same

techniques. For example, the transition function p(4>, dy) could be made to depend

on the state r¡. We did not pursue this, since there are many ways of generalizing

the model, and we feel that the existence of most models of this type which are of

interest can be deduced directly from Theorem 2.8.
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