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EXISTENCE THEOREMS FOR MEASURES
ON CONTINUOUS POSETS, WITH APPLICATIONS TO
RANDOM SET THEORY

TOMMY NORBERG*

Abstract.

We state conditions on a partially ordered set (poset) L and a mapping 4, defined on a class %, of
filters on L, under which 4 extends to a measure on the minimal o-field over .#_.

By applying this extension result to the case when L is a continuous lattice, all locally finite
measures on Lare identified as well as all Lévy-Khinchin measures. We then characterize these kinds
of measures on continuous (inf-) semilattices and continuous posets. An interesting correspondence
between Lévy-Khinchin measures and inf-infinitely divisible probability measures is presented.

The correspondence between probability measures on the line and distribution functions is
a particular case of this result. So is also Choquet’s characterization of the distributions of all random
closed sets in a fixed locally compact second countable Hausdorff space S. Our approach to
Choquet’s theorem show that it holds as soon as the topology of S is continuous, second countable
and sober. Qur method also yields characterizations of the distributions of all random compact and
all random compact convex sets in R? for finite d. We furthermore obtain characterizations of infinite
divisibility under union and sup, resp. for these kinds of random sets.

The embedding s — {s} 7, s& S, enables us to give simple proofs of existence theorems for finite and
locally finite (i.e., Radon) measures on S. In the final section we give a simple proof of the
Daniell-K olmogorov existence theorem for probability measures on (countable) products of continu-
ous lattices.

1. Introduction.

Although an extensive part of this paper is devoted to an existence theorem for
measures on partially ordered sets (posets for short), we believe that the most
interesting part is its application to continuous lattices and some consequences
thereof. So let us begin with a description of the part.

Let L be a continuous poset and assume its Scott topology to be second
countable. Write X, or X(L), for the minimal o-field over the sets
Tx = {yeL;x £y}, xe L. We shall see below that T is the Borel-o-field wrt. the
Scott topology. Indeed X is generated by the collection & of Scott open filters on
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16 TOMMY NORBERG

L. Say that a measure A on (L, X) is locally finite if it is so wrt. the Scott topology,
ie. if
Mx) < w, xel.
Assume that L is a lattice. Then the formula
(1.1) A(x) = A(Tx), xelL,

defines a bijection between the family of locally finite measures 4 on L and the
family of non-negative mappings /4 on L satisfying

(1.2) A(x) = im,A(x,), Xx,x;,X5,...€ L, x,Tx,
(1.3) A (X X1, X)) 20, neN,x,x(,...,x,€L.

Here, and in the following, x,Tx means that x; < x, £ ... S x = v x,{x,]x

should be interpreted analogously), N = {1,2,...} and the left }Tand side of (1.3)1s
recursively defined by putting

Ay(x;x1) = A(x) — Alx v x,)
and letting it equal
Ay (X1 Xy} — Ay 1 (XV X0 X gy X 1)

ifn=2.

Clearly any function satisfying (1.3) is decreasing. It is not hard to produce
a counterexample showing that decreasing functions need not satisfy (1.3).
Howeer, if L is a chain, i.e. totally ordered, then all decreasing functions satisfy
(1.3).

Let A be a measure on L. Then

ML) = sup, ., ATx).

Thus as a particular case of (1.1) we obtain a characterization of the probability
measures on L in terms of distribution functions. These are the non-negative
functions A on L that satisfy (1.2), (1.3) and

(1.4) sup,..A(x) = 1.

Note that if L has a bottom 0, which holds iff L is a continuous complete lattice,
then

Ax) £ A0), xeL.

In this case, (1.1) characterizes all finite measures on L.
Some of the lattices to which we shall apply (1.1) are continuous under the
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reverse order. In this case (1.1) takes the form
A(x) = A{yeL;y £ x}, xelL.

We talk about distribution functions in this case too, though their definition is
omitted.

All existence theorems for measures on continuous posets that are proved in
this paper require the Scott topology to be second countable. Below we shall give
a useful characterization of this technical condition. Let us just note here that
a continuous topology has a second countable Scott topology iff it is second
countable in itself.

The real line R is a lattice which is not continuous. But (— oo, oo] is one. So is
also [~ o0, o0) under the reverse order. Both (— o0, 0] and [ — o0, c0) have
second countable Scott topologies. Thus, as a special case of (1.1), we obtain the
well-known correspondence between measures p on the line satisfying

w(—oo,x] < oo, xeR,
and increasing right-continuous functions F on R satisfying
lim, . _ F(x) =0,

which by straightforward methods extends to the correspondence between
Lebesgue-Stieltjes measures on the line and increasing right-continuous func-
tions.

The correspondending results in higher dimensions follow from the fact that "
is a continuous lattice with a second countable Scott topology under the coor-
dinatewise order, (x,....X,) = (V1,..., ¥, iff x; £ y;, 1 £i =< n. Note also that
this holds for the infinite product LY if L has a bottom, i.e. if L is a continuous
complete lattice. This fact enables us to give a simple derivation of the
Daniell-Kolmogorov existence theorem for probability measures on products of
continuous complete lattices.

We describe a special case of (1.1) which we mean is important. Let S be
a locally compact second countable Hausdorfl space. Write & for its complete
lattice of closed sets, which is continuous under reverse inclusion, F;, < F, iff
F, < F,. Note that &, with this order, is isomorphic to the lattice of open sets in
S. Thus the Scott topology on £ is second countable.

By a random closed set in S we understand an % -valued mapping &, defined on
some probability space (2, %, P), which satisfies

{ENK+ O} ={we WK +J}e®, K < S compact,

cf. Matheron (1975). 1t is easily seen that this requirement for measurability is
equivalent to

{(cFleR, Fe#F.
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It follows that the formula
(1.5) P{éc F} = A(F), Fe#,

defines a bijection between the family of distributions P& ! of random closed sets
& in S and the family of distribution functions A on #. Choquet (1953) character-
izes these distributions in terms of certain “alternating capacities™ or “hitting
probabilities” T defined by

T(K)=P{{(K + &}, K <= S compact.

Itis not hard to see that our result implies and is implied by this result of Choquet.

But note that (1.5)is a bijection as we asserted above as soon as the topology on
S is continuous and second countable. In particular it is irrelevant whether S has
a Hausdorfl topology or not.

It is not possible to extend Choquet’s characterization of the probability
measures on % in terms of alternating capacities to all spaces having a continu-
ous second countable topology. However we can come close to this generality.
Below we shall see that Choquet’s characterization holds on all spaces having
a continuous, second countable and sober topology. But note that in the absence
of the HausdorfT separation property the hitting probabilities P{¢ () K + ¥}
must be defined on subsets K < S that are not only compact but also saturated (a
set in a topological space is saturated if it coincides with the intersection of its
open neighborhoods).

This extension of Choquet’s theorem is a particular case of a characterization
of the locally finite measures on Lin terms of functions on its collection % of Scott
open filters, which is valid as soon as L is an (inf-) semi-lattice with a top.

We shall also characterize this class of locally finite measures without further
assumptions on L. This time the characterization is in terms of “additive”
mappings defined on the Scott topology of L.

We mention a few more continuous semi-lattices to which our results apply.
Let S be a space having a continuous, second countable and sober topology. The
collection of all compact and saturated subsets of S is a continuous semi-lattice
under reverse inclusion. (Note that K; A K, = K, U K,.) It is a lattice if S is
Hausdorff. The collection of all extended real-valued lower semicontinuous
functions on S is a continuous complete lattice under the pointwise order. Both
examples are discussed in Giertz, Hofmann, Keimel, Lawson, Mislove & Scott
(1980). Gerritse (1985) discusses an extension of the latter to lattice-valued
functions.

The family € of compact and convex sets in RY, equipped with reverse
inclusion, is a continuous lattice for de N. We regard (J as being convex. Cf.
Giertz et al. (1980). We shall see that ¢ has a second countable Scott topology. It
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will then follow by (1.1) that the formula
(1.6) P{¢ = C} = A(C), Ce%,

defines a bijection between the family of distributions P¢ ™! of random variables
£ in € and the family of distribution functions A on . (By a random variable in
a measurable space 2 we understand an Q-valued measurable mapping of some
probability space. Its distribution is the induced probability measure on Q.)

Let & be a random variable in ¥ with distribution function A. Then ¢ is
non-empty with probability one iff

(1.7) A(F) = 0.

Many authors define a random compact convex set in R? to be a mapping of some
probability space into 4’ = ¢\ {J}, which is measurable wrt. the Borel-o-
field on €" generated by the Hausdorff metric. We shall see below that this o-field
is the minimal o-field over the sets {D e €"; D = C}, C €4, .. the relativization of
2 (¥)to%'. Hence ¢ 1s a random compact convex set iff (1.7) holds. Note also that,
clearly, any random compact convex set is also a random variable (in our sense)
in 6.

We thus get, as a particular case of (1.6), a bijection between the family of
distributions P&~ ! of random compact convex sets ¢ in R? and the family of
distribution functions A on % satisfying (1.7). This solves a problem which has
been open since 1981, when Vitale and Trader & Eddy showed that the distribu-
tion of a random compact set in R? is determined by its distribution function. See
Vitale (1981) and Trader & Eddy (1982). Both papers use Banach space methods,
while our proof of (1.6) is purely lattice theoretical. We anticipate that lattice
theoretical methods in the near future will turn out to be useful in stochastic
geometry.

Indeed we can already now announce a Lévy-Khinchin representation of the
distributions of those random variables & in 4 that are infinitely divisible in the
sense that, for each neN, there are independent and identically distributed
random variables £, ..., ¢, in 4 satisfying

'fé Vi G

Here £ denotes equality in distribution and v, ¢ is the convex closure of U;¢;.
This representation result is a special case of a characterization of the distribu-
tions of those random variables ¢ in L which are infinitely wrt. the meet A. We
continue to describe the class of measures that appear in the characterization.
Assume that L has a top 1, nothing else (except that L is continuous and has
a second countable Scott topology). By a Lévy-Khinchin measure on L we
understand a measure Y on L which concentrates its mass to L\ {1} and satisfies

W(L\F) < o0, Fe .



20 TOMMY NORBERG

If L is a semi-lattice with a top, then so is &, and the formula
(1.8) Y(F) =y(L\F), Fe %,

defines a bijection between the family of Lévy-Khinchin measures i on Land the
family of non-negative mappings ¥ on % satisfying

(1.9) P(L) =0,
(1.10) Y(F) = lim, ¥(F,), F, F,,F,,...€ %, F,1F,
(1.11) Ap, ... Ap ¥(F)0,neN,F, F,,...,F,e &.

The left hand side of (1.11) is recusively defined by letting it equal
Ap, - dp W(F)— A _ ... 45 Y(F(\F,)

n-1

if n = 2 and putting
Ap, W(F) = ¥Y(F) — Y(F (\ Fy).

Analogously we define 4, ... 4, c(x) whenever ¢ is a real-valued function
defined on a semi-lattice.

For some L the members of ¥ are hard to identify or difficult to describe. Thus
there is a need for a characterization of the Lévy-Khinchin measures on L in
terms of functions defined on L. Not surprisingly this can be done if L is lattice.
We shall also give a characterization of this class of measures in terms of
mappings defined at Scott open subsets of L. The latter characterization is valid
with no further assumptions on L (except that L has a top).

Let S be a space equipped with a continuous second countable sober topology.
Due to the sobriety, the mapping s — {s} ~ maps S one-to-one onto the collection
of all irreducible closed subsets of S. We shall use this embedding of S into its
collection # of closed sets, to derive existence theorems for finite and locally
finite measures on S, from existence theorems for finite and Lévy-Khinchin
measures on &.

We proceed to describe the contents of the various sections of this paper. In
Section 2 we prove an existence theorem for measures on posets, from which all
the other results of this paper follow more or less easy. It might be a good idea to
skip this section at the first reading of this paper. Section 3 contains our
characterizations of the locally finite measures on L under various presumptions
on the latter, while Section 4 contains our characterizations of the Lévy-Khin-
chin measures on L. In Section 5 we derive the Lévy-Khinchin representation of
the inf-infinitely divisible probability measures on L. Our extension of Choquet’s
existence theorem for random set distributions is given in Section 6. Here we also
fill in those details in the discussion above on random set theory that are neither
obvious nor proved elsewhere. In Section 7 we derive existence theorems for
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finite and locally finite measures on any space equipped with a continuous,
second countable and sober topology, and in the final Section 8 we present
a simple proof of the Daniell-Kolmogorov existence theorem for probability
measures on countable products of continuous complete lattices.

Regarding the terminology let us just note here that R, = {0,00) and
R, =R, J{x}

2. An existence theorem for measures on posets.

Let L be a poset and consider a non-negative mapping /A defined on a collection
F. of filters on L, which is closed under non-empty countable intersections.
Assume

(2.1) MK) = lim, A(K,), K.K. K, ...eZ K,|K,
(2.2) A ... Ag MK) 20, neN, K. K,,...,K,eZ

We furthermore presumes the existence of a collection %, of filters on L, which is
closed under finite non-empty intersections and is “dual” to %, in the following
sense: Whenever K e # and Ge #,, thereare K|, K,,...€ %, and G,,G,,...€%,
satisfying K, 1G and G, | K. Moreover, if K < G and K, 1G, where K, K, K,,

..eZ and Ge %, thenK c K,, for some n,and if K, |K < { J,G,, where K, K,
K,,... €% and G,, G,, ... € #,, then K, c U,,<mG for some m. Finally,
whenever Ge.#, we have G < K for some K € %,. Then

THEOREM 2.1. £ extends to a measure on the minimal o-field over #,. This
extension is unique if L = | J,K, for some K, K,, ... e Z.

Our proof of this theorem is given in a series of lemmata and propositions,
some of which we believe have independent value.
Write

F ={K(\G,KeZ,GeZ,}.

Then clearly, % is closed under finite non-empty intersections. Qur first lemma
depends only in this fact. Put

S ={F\ |y o FeF, o c ¥ finite}.
Then
LemMma 2.2, & is a semi-ring. It is a semi-algebra if Le ¥

We do not hesitate to leave the proof of Lemma 2.2 to the reader.
Any representation F\ ( ] & of a non-empty member S of & will be called
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reduced if o = (J orif
(2.3) Ac Fforall Ae o,
(2.4 A, = A, whenever A, A, e, A, < A,.

We shall show that every non-empty member of S has a unique reduced repre-
sentation. We begin with two lemmata which also will be needed later in this
section.

LEMMA 2.3. Let E, Fe % and let o/ = F be finite. If & + F\| )/ < E, then
FcE.

PROOF. Let xe F. We must prove that xe E. If x ¢ | ).« this is obvious, so we
assume x € A for some 4 €.o/. Choose ye F\ U /. Then there exists some ze F
withz £ x,z < y. Ifze( )./, then ye ) /. This is not true. Hence z ¢ | ) «/. But
then ze E and x € E follows.

LEMMA 2.4. Let Fe F and let of < F be finite. If F < | ) .o/, then F = A for
some A€ <.

Proor. Clearly o F (J. Suppose we may choose x € F\ Aforall Ae.o/. We
may then choose x € F such that x £ x,, 4e.%/. By assumption then xe A4 for
some A € .o/ It follows that x , € A. This is a contradiction, from which the lemma
follows.

PROPOSITION 2.5. Every non-empty member S of & has a reduced representa-
tion, and if F\ | ) .o and E\ | ) # are two reduced representations of S, then F = E
and o4 = A.

PrOOF. Assume @ # S = F\ (&, where Fe # and & < & is finite. Sup-
pose < is non-empty. Note that

s=FJF),

so we may assume (2.3). Fix A€ .o/, and assume 4 = A’ for some A’ e o/, A’ + A.
Then

Ue = (\ {4}

Thus we may also assume (2.4). In other words, S has a reduced representation.
Let us now assume that both F\ | )/ and E\ | J# are reduced representa-
tions of S. Then

F\UM < E.

By Lemma 2.3, F < E. By symmetry, F = E. But then | ) o/ = | /#. Thusif o/ or
2 is empty, so is the other. Fix 4, e /. By Lemma 2.4, A, = B, for some B, € 4.
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Similarly, B, < A for some A € . But then A, < A and we conclude by (2.4)
that A; = A'. Hence A, = B,. This shows that &/ = #. Now .« = 4 follows by
symmetry.

Note that the results so far do not depend on our particular choice of #. They
hold for every collection & of filters on L which is closed under finite non-empty
intersections.

Now we extend 4 to &

MF)=sup{MK); KeZF,K « F}, Fe #.

It is not hard to see that the set on the right is non-empty for every Fe %.
Moreover, 4 is still real-valued. We first study the continuity properties of 1. We
begin with two lemmata.

LeEMMA 2.6. Whenever F,F,,F, €%, we have
i) AF()F,) < MF),
()  AMF(\Fy) + AF(\F) £ AF) + AFF,(\Fy).

ProoF. Clearly 4 is increasing. Hence (i). Choose K; « F(|F, and K,
F()F,.ThenK, (YK, < F(\F,[)F,,and K | K, = F.Itis not hard to see
that K, | K, « K < F for some K e #,. By (2.2),

MK,) + UKy = MK K) + UKV K,)
SMK)+ MK NK (VKy) SAF) + MF(VF ) Fa).
Now (i1) is obvious.

LEMMA 2.7. Let E;, Fie F for 1 S i< n. If E; < F, for alli, then A((\!-, F)) —
MOV E) £ 201 (MF) — AE)).

PrOOF. The case n = 1 is trivial. Suppose n = 2. Put D = F,, D, = E, and
D, = E,. By Lemma 2.6,

ME) + A(F, m E,) < A(F)) + ME, ﬂ E,).
Then put D = F,, D, = F, and D, = E,, and conclude that
MF, ﬂ F,) + ME,) £ A(F,) + AFy ﬂ E,).

Add these expressions and cancel A(F, () E,) from both sides. Conclude that the
lemma is true if n = 2.
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Now suppose we have proved the lemma for all n £ m, where m = 2. Then
I F) = ANV ED
s i(ﬂ"': F) = A Vo1 E) + AFpiy) — AEpiy)
< D AF) — AE).

Hence the lemma is then trueforn = m + 1. By induction the lemma is true for all
neN.

PROPOSITION 2.8. Let F, F\, F,,... €% and suppose F, |F. Then
MF) = lim, A(F,).

Proor. Clearly A(F) < lim, A(F,) = a. Fix ¢ > 0. For every n choose K, € %,
such that K, < F, and

MF,) — MK,) S e 27"
By Lemma 2.7,
AMF,) — ;t(ﬂ:;l K) =<
Hence a < A((),K,) + ¢ S AF) + &

PROPOSITION 2.9. Let Fe F,let Ge %, and assume K, 1G for some K, K, ...
€%.. Then

AF () G) = lim, A(F () K,).

Proor. Clearly A(F () K,)lim, A(F (K, S MF()G). Let a <A(F()G)
Then « < A(K') for some K'e %, K' < F()G. But then K’ = K, for some n.
Hence K' < F () K, and « £ A(F [} K,) follows.

We write down a particular case of Proposition 2.9:
MK\ G) =lim, MK K,.GeZ,, K.K\,K,,...€eZ, K,1G.

ProPOSITION 2.10. Let Fe #, Ke %, and Ge %,. Choose K|, K,,...€ #_ and
Gy, Gy, ...€ Z, such that K, 1G while G, | K. Then

MF ﬂ K ﬂ G) = lim, A(F ﬂ K, ﬂ G,)
ProOOF. Note that
/I(FﬂKﬂK,,)§,1(FﬂK,,ﬂG,,)§/1(FﬂGﬂG,,).

Let n — co. By Proposition 2.9, the left most side tends to A(F () K () G). But so
does also the right most side by Proposition 2.8.

Fix F, F,, F, € &#. The reader easily shows that
Ap Ay MF) = MF) — MF(\F) — MF(YFy) + MF (F,(\Fy).
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By symmetry,
Ap, Ap AF) = Ap Ap, MF).
We furthermore see that
Ap A, MF) = Ag A(F)

if Fy « F,. Thisshows that 4 ... 4p ,forneNandF,,...,F,e#, only depend
ontheset o = {Fy,..., F,}. Accordingly, we sometimes write 4_, A(F) instead of
the more cumbersome Ay ...4p A(F). For convenience we further put
Ay MF) = AF).

We now show that the real number 4, A(F) only depends on the member
F\ | o of & - not on its representation.

Lemma 2.11. If F\ | o and E\\ ) # are two representations of a member of
&, then

A, MF) = Adg4 ME).

Proor. If F\ | ) &/ = @ then F = | ) o and, by Lemma 2.4, F < A for some
A€ o/. Then, as the reader easily shows, 4 , A(F) = 0. Now suppose F \U o 0.
Note that

Am)~(F) = AMr\F A’(F)’
and thatif 4, A’'e/, A = A" and A + A, then

The proofs of these facts are easy. They show that we may change F\ | ) « into
its reduced representation without changing the value of 4, A(F). In view of
Proposition 2.5, the lemma is now obvious.

Thus we may extend 4 to the semi-ring & by putting
MR\ o) = A 4MF), Fe F, o = F finite.
PrOPOSITION 2.12. 4 is an additive mapping on &.
ProOF. Fix S, Te ¥ such that S\ T = & while S{ ] T = &. Of course
(2.5) MSUT)= A8+ MT)

if S or T are empty, so let us assume both to be non-empty. We further let

F\ | o, E\| % and D\ () % be reduced representation of S, T and S| J T,
resp.
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By Lemma 2.3, F{ JE < D. Clearly F()E = | J(«/ | ) #). By Lemma 2.4,
F () E is included in some member of .o/ | ) 2. Let us assume
(2.6) F(Ec 4,
where Ae/, and prove F = D. (Similarly the reader may prove that
F(\E < | # implies E = D.)

If D = E,then F = Eand F < A follows by (2.6). This is impossible. Hence we
may select a point xe D\ E. In order to obtain a contradiction, suppose there is
a point ye D\ F. For each Ce ¥, choose x.€ D\ C. Then choose z € D such that
z<x,z<yand z £ xcfor Ce®. If ze C for some C e ¥, then x.e C. A contra-
diction. Thus ze S| ) T = F (] E. However this implies that ye F or x € E. This
we cannot have, and it follows that D = F. Hence F = D as claimed above.

But then E < F. By (2.6), E = A. Hence T < A. This implies(S| ) T)\ 4 =S,
and (S| ) T)() A = T. We thus have

s =D\ 4,
T=DA\¢%.
Hence
AS) + AT) = Ay MD) + Adg AD (Y A) = 4, D) = AS|J 7).
Thus (2.5) holds if (2.6) is at hand. The remaining case is completely similar.
PropPOSITION 2.13. /4 is a non-negative mapping on &.

PrOOF. Let § = F\ U of €.¥. There is nothing to prove if ./ is empty, so
assume not. Suppose F = Ko( )G, and o = {K;[)G; 1 <i < m}, where
Ke#,G,e#,0<i<meN.For0<i<mchoose K;, K;,,...€Z such that
K,1G.. If 0el = {0,1,...,m} then ();(;KiyT()iesGi Put &, = {K,[ K,z
1<i<m}.By(2.2)

Ay, A(Ko[)Kon) 2 0.
By Proposition 2.9, the left hand side of this inequality tends to 4, A(F).

Now note that i extends to a measure on the o-field generated by & if 1 is
countably subadditive on &, i.e. if

(2.7) MUnSn) £ T0kSh S12820 -+, UnSa€ S

See e.g. Theorem 11.3 in Billingsley (1979).
We extend 2 additively to the ring # generated by . It is not hard to see that
(2.7) follows from

2.8) lim, A(R,) = 0, R,,R,,...€ AR, | .



MEASURES ON CONTINUOUS POSETS AND RANDOM SET THEORY 27

In order to prove (2.8) write
={K\|J o, KeZ, o < Z, finite}.

It is not hard to see that ¥ satisfies the following “sequential compactness
property”: Whenever (),C, = & forsome C,,C,,...€%,wehave [ ),<,C, = &
for some m. Now conclude by Lemma 1.6.1. in Neveu (1965), that this sequential
compactness property still holds if we replace each C, by a finite union of
members of 4.

The following approximation result turns out to be handy.

PROPOSITION 2.14. For Re R, we have
MR) = sup {A(| Ji-,C;neN, Cie¥,C;c R, 1 Si<n}
PrOOF. It is clear that we only need to prove
(2.9) AS) = sup{MC), Ce¥,C = S}, 5e¥.

If S = Fforsome F e #,(2.9) follows from Proposition 2.9. Thus we may assume
S=Ko(Go\Ur1K;:[)G;, where meN and K;e %, while G, Z, for 0 <
i £m. Choose Ky, Kg3, . .. € %, such that K, 1G,,. Then choose, for 1 Sism,
some G,y, G;p,... €%, with G,, le- Put C, = Ko [} Ko\ {1 Gin ) Gi- Then
C, 18 and, by Proposition 2.10, A(C,) — A(S). This shows formula (2.9).

Let R;, R,,...€ % and assume R, | J. Fix ¢ > 0 and choose for each n some
finite ¢, = € such that | )€, < R, and

MR, — A JE€,) e 27"

Clearly (),({J4%.,) = ().R, = <. By the sequential compactness property (see
the discussion preceeding Proposition 2.14), we must have (), <.(| J%,) = & for
some m. But then

Rm = Unngm\ U(gn < Unngn\ U(gn
By finite subadditivity,

MR, £ Y asmMR,) — MG S &

This shows that A(R,) |0. Thus (2.8) holds.

Hence A extends to a measure on the o-field generated by % . Clearly this is the
minimal o-field over £..

Let us now assume that L= | J,K,, where K, K,, ... € %, Moreover, let u be
a measure on the minimal o-field over %, satisfying

wK) = AK), Ke Z,
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Then, clearly,
u(R) = A(R), ReR.

Hence, for meN,

#( O(Unngn)) = A( m(Unngn))-

We conclude that g = 4. This completes our proof of Theorem 2.1.

3. Locally finite measures.

Our first result characterizes, among the collection of all continuous posets,
those that have a second countable Scott topology. We then discuss three
characterizations of the locally finite measures on such posets. We begin by
recalling some notations from Giertz et al (1980).

Let Lbe a poset. A set D = Lis called directed if it is non-empty and if x, ye D
implies the existence of a ze D with x < zand y < z. We assume that all directed
subsets D of L have a supremum \/D. Such posets are called up-complete. Let x,
ye€ L. Say that x is way below y, and write x < y,if y £ \/D, D = Ldirected imply
x < z for some ze D. The poset L is called continuous if the set {ye L; y < x} is
directed with supremum x for all xe L.

Now let L be continuous. Aset U < Liscalled Scott openifitis an upper set (i.e.
Tx < U whenever xe U) and if xe U implies the existence of some ye U with
y < x. The collection of all Scott open sets is a topology on L which we denote
Scott(L). It is not hard to verify that Scott (L) is a continuous topology.

We denote by CoScott (L) the collection of all Scott closed subsets of L. Note
that a non-empty F < L is Scott closed iff it is a lower set (ie. |x = {yel;
y < x} < F whenever x€ F) and D < F directed implies \/DeF.

We denote by &, or OFilt(L), the collection of all Scott open filters on L.
Recall that a set F < L is a filter if it is a non-empty upper set which is filtering in
the sense that whenever x, ye F there is a ze F satisfying z < xand z S y. It is
easy to see that .# is up-complete.

Let x, ye Land let F,Ge %. Then

(3.1) x <€y < yeH c fxfor some He %,
(3.2) F<G <« Fclzc Gforsomezel.

See Lawson (1979). Our references to (3.1) and (3.2) are usually tacit. Note that
they imply

(3.3 xeF = xeHc fzc Fforsome z, HeL x %.
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Hence

F=J).rtz=J{He# H<F}.

The collection on the right is easily seen to be directed. We conclude that & is
a continuous poset. Another useful fact which follows from (3.1) is that Z is
a base for Scott (L).

Note that the mapping

F.={Fe¥, xeF}, xel,

is an isomorphism between L and OFilt (). This is a part of a result of Lawson
(1979) which nowadays usually is referred to as the Lawson duality. Lawson
{1979) also proves that L is a semi-lattice with a top iff & is so.

Let us agree to say that a subset Q of L is separating if x < y implies that
x £ g < yforsome ge Q. Assume Q is separating. If x < y then, by (3.1)and (3.3),
x € q <y for some qe Q. Moreover, the set {geQ; q < x} is directed with
supremum x for all xe L. Let Fe #. If x € F then we may choosea ge F () Q with
q < x. It follows that

(3.5) F={Jsconr14.

The union to the right in (3.5) is directed.

Let ¢ be a continuous topology. Of course any separating subset of % is a base
for %. Conversely,if 4, < % is a base for ¢, then the colection of all finite unions of
members of 4, | ) {f} is a separating subset of 4. Hence ¢ is second countable iff
% contains a countable separating subset. By Proposition 3.1 below, this holds iff
Scott (%) is second countable.

ProrosiTioN 3.1. Let L be a continuous poset. The following four conditions are
equivalent:
(i)  Scott(L) is second countable,
(i) L contains a countable separating set,
(i) & contains a countable separating set,
(iv) Scott(%) is second countable.

ProoF. Write U, = {yeL;x < y},xe L,andlet Q c L.IfQisseparating, then
the collection U,, ge Q, is a base for the Scott topology. To see this, let xe U,
where U e L is Scott open. Choose y€ U such that y < x. But then y < g < x for
some g€ Q. Hence xe U, = U. This shows our claim.

We see that (i) implies (1). To see that the latter implies (iii), note that, under (i),
Z contains a countable base 2 for the Scott topology. Let F,Ge %, F < G. Then
F < 1x for some xe G. But then xe H < G for some He 2. Clearly F « H = G.
Hence 2 is a separating subset of .%, This shows (iii).

Next, assume (iii) and let 2 = % be countable and separating. Whenever F,
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He 4, F <€ H, we choose xgyze L such that F < Tx;y < H. The obtained set
{xpy}isclearly countable. If x, ye L, x < y,thenye F < H < 1xfor some pair F,
He 2. This follows by (3.1) and repeated applications of (3.3). But then
x < xpy < y. Hence {xgy} is separating. This shows (ii).

Thus (i), (ii) and (iii) are equivalent. But then (iii) must be equivalent to (iv) as
well.

In the remaining part of this section we let L be a continuous poset with
a second countable Scott topology. Then L contains a countable separating
subset Q. Let x € L. Then x is the supremum of the directed set {ge Q; ¢ < x}. Ttis
now not hard to see the existence of a sequence {x,} < L satisfying x,?x and
X, < x,, for all n. But then there are F,, F,, ... e ¥ satisfying x,, , € F,, < Tx,.
Clearly F, [(1x). Similarly the reader may use (3.5) to show that, whenever Fe &,
there are x,,x,,...€L satisfying x,,, < x, for all n and F = | J, 1x,. But this
follows from the Lawson duality as well.

It is obvious from the discussion above that Z is the minimal ¢-field over Z.
But then Scott (L) = Z. Now note that | x is the closure of {x} in Scott(L). Hence
lxeX for all xe L. It follows that singletons are measurable sets.

The next result needs no proof. But note that L < L (in Scott(L})) if L has
a bottom.

PROPOSITION 3.2. Let A be a measure on a continuous poset L with a second
countable Scott topology. Then 4 is locally finite iff

AMU) < oo, UeScott(L), U < L.
Suppose Le . Then this holds iff
"MF)< o0, Fe ¥, F < L.

We now prove the characterization (1.1) of the locally finite measures on L,
which is valid whenever L is a lattice. It is a straightforward consequence of
Theorem 2.1.

THEOREM 3.3. Let L be a continuous lattice and assume Scott(L) to be second
countable. Then (1.1) defines a bijection between the family of locally finite mea-
sures A on L and the family of mappings A: L - R, satisfying (1.2)—(1.3).

ProoF. Let 4 be a locally finite measure on L and define A by (1.1). A routine
argument yields

A xq,. .00, x,) = AxN\Ulo Tx), neN, x,x,,...,x,€L.

Thus A satisfies (1.3). To see that A satisfies (1.2), it is enough to note that x,, Tx iff
(Tx,) L(Tx).

Clearly different locally finite measures give rise to different functions in (1.1),
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since otherwise the uniqueness part of Theorem 2.1 would be violated. Thus the
mapping 4 — A, defined by (1.1), is an injection.

To see that it is a bijection, let the function A: L — R, satisfy (1.2) and (1.3) and
define 4 by (1.1). Put %, = {1x; xe L} and let #, = {Fe &, F < L}. The reader
easily verifies that the assumptions of Theorem 2.1 are at hand. Hence 4 extends
to a locally finite measure on L.

Let A be a locally finite measure on L. Then
(3.6) AF) = sup,.rA(Tx), Fe &.

To see this, use the fact that whenever Fe . there are x,, x,,. .. € L satisfying
(tx,) TF. A similar argument which uses Proposition 3.2 shows

(3.7) M(1x) = inf,.p A(F), xeL.

Assume, for now, that L is a semi-lattice with a top 1. Then L is an abelian
semi-group under the composition A. Its neutral element is 1. Write # for the

space of all filters on L in the topology of pointwise convergence. Assume
M: L — R satisfies

d, ... 4, M(x) 20, neN, x,x,,...,x,eL.

Berg, Christensen & Ressel (1984) show that there exists a bounded Radon
measure p on % satisfying (see their proposition 4.4.17)

p{FeF;xeF} = M(x), xeL.
It is easily seen that the mapping ¢: # — &, defined by
c(F)=F°, Fe ¥,

is continuous (we assume & is endowed with its Scott topology). In particular cis
measurable, Hence ¢! transfers y into a bounded measure v = pc™ ! on &

WF,) = u{Fe#,xeF°}, xelL.
Assume M also satisfies
M(x) = lim, M(x,), x,x,X3,...€L, x,Tx.

Fix x e L. Then there are points x,, x,,...€ L satisfying x, <€ x,,, for all n and
x, Tx. By assumption M(x,) T M(x) and it is easy to see that

{FeZF;x,eF}1{FeZ,xeF°}.
Hence

WF,) = M(x), xe L.
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Our aim now is to extend this existence result for bounded measures on %, to
a characterization of all locally finite measures on .¥. We begin with some
preparations.

Obviously Scott (L)\ {J} is a continuous lattice with a second countable
Scott topology, so Theorem 3.3 characterizes all locally finite measures on
Scott (L)\ {}. Note that

2 (Scott (LN {}) = {BeZ(Scott (L)), J & B}.

Hence all measures on Scott(L)\ {J} trivially extend to Scott(L). Our next
result tells us when a measure on Scott (L) concentrates itsmassto £ | | {&f}. For
xe L write

%, = {UeScott(L), xeU},
and note that % is a Scott open filter on both Scott(L) and Scott (L)\ {}.

PROPOSITION 3.4. Let L be a continuous semi-lattice with a top 1 and a second
countable Scott topology. Then

(3.8) L(¥) = {BeE(Scott (LN (@), B £}
= {BeZ(Scott(L)); B < #}.
Let 11 be a measure on Scott (L). Write L, = {xe€ L; x < 1}. Then p concentrates its
mass to £\ ) (D} iff
(3.9) Wl (\UN ) =0, x,yeL,
Proor. Clearly
U e X (Scott (LN { @) < (Scott (L).

Fix UeScott(L), U + . Then U = J,F, for some F,,F,,...€ #. Choose
{Xmm} = Lsuch that F, = u,, 1x,, for each n. Clearly U = u,, 1x,,,. Renumber
and conclude that U = U, 1x, for some suitably chosen x,x,,...€ L. Hence

U = (4,

We see that X (Scott (L)\ {J}) and that Z (Scott (L)) are the minimal o-fields over
the sets %,, xe L.
But () is the minimal o-field over the sets &, = %, () £. Hence

2(£) = Z(Scott (L) () £
= Z(Scott (L\ {@} ) 2.

Let Q c L be countable and separating. We may assume that Q < L,. Fix
U eScott(L), U + . If U ¢ & there must be a pair x, y € L satisfyingxe U, ye U
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while x A y¢U. Choose p, ge Q) U such that p < x and g < y. Of course
p A q¢ U. We see that

Scott (LN\(ZL UA{DD = Upgeo Yy (N UNUpp g
It follows that % is a measurable subset of both Scott (L) and Scott (L)\ {}.

Now (3.8) is immediate. Clearly so is also (3.9).

THEOREM 3.5. Let L be a continuous semi-lattice with a top 1 and a second
countable Scott topology. The formula

(3.10) MF,) = M(x), xeL,

defines a bijection between the family of locally finite measures A on & and the
family of mappings M : L — R, which are finite on L, = {x e L, x < 1} and satisfy

(3.11) M(x) = lim, M(x,), x,x,X,5,...€L,x,Tx,
(3.12) Ay .. 4, M(x) 20, neN, x,x,,...,x,eL,.

PROOF. Let A be a locally finite measure on ¥ and define M by (3.10). By
Proposition 3.2, M maps L, into R,. Formula (3.11) is obvious, while (3.12)
follows from

A, ... 4, M(x) = AF\Uio1 F.), neN, x,x,,...,x,€L,,

the proof of which we leave to the reader. The uniqueness part is left to the reader
too.

Next let M:L - R, map L, into R, and assume (3.11)-(3.12). Whenever
UeScott(L), U + &, we write

A(U) = inf (M( A x,); neN, xy,...,x,€U}

Note that 1€ U. Hence there is an xe U () L,. Clearly A(U) £ M(x) < .

We show that A satisfies (1.2) and (1.3). Clearly A is decreasing. Thus,if U, 1 U,
U, # &, then A(U,) | a = A(U). Assume a > A(U). Then o > M( AL, x;) for
some x,...,X, € U. Butthenx,,...,x,e U,for nsufficiently large. This leads to
a contradiction. Hence « = A(U) and we conclude (1.2).

To see (1.3), fix keN and Uy, U,,..., UgeScott (L\ {}. For j =0,1,...,k
and neN, choose some finite set {x,,} c L such that H;, 1U;, where H;, =
U; T X Let 0eJ = {0,1,...,k} and write H;, = {J;c;H;,. Then H,,1U, =
\Ujes U;- We show that

A(U,) = lim, M(Ajep Ay Xyj0)-
Clearly Ay A;x,; decreases as n increases. Hence

A(Uy) £ lim, M( Ajer NiXpji)-
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Let A(U;) < a and choose y,,...,y,,€ U, such that M(AJL,y) < a. Clearly
Ajes NiXpii & APy v, for sufficiently large n. Hence

nji =

o 2 lim, M(Ajey AiXaj0)s

as was to be proved.
Now (1.3) is immediate. Cf the proof of Proposition 2.13. By Theorem 3.3,
there is a unique locally finite measure 4 on Scott(L)\ {J} satisfying

A1U) = A(U), U eScott(L)\ {&}.

Our aim now is to show that / is concentrated on &
Fix xe L. By (3.6),

MU = supyey A(U) = M(x).

Assume y <€ x. Then xeU < 1y for some UeScott(L). If y,,...,y,eU then
¥ £ Al.,y;and therefore M(y) £ M(Al.,y;). Hence

M(y) £ AU) = A%,).
By (3.11),
M(x) < A,).
We have shown that
MU, = M(x), xeL.
Fix x,ye L. By (3.6) and since %, ,, = %, \ %,
MU () Uy) = 5uPs yeu AV) £ M(x A y)
= W, ) S MU\,

Thus we have equality throughout.

By Proposition 3.4, we conclude that A concentrates its mass to £. Let us
identify A with its restriction to #. Then, clearly, (3.10) holds. That 4 is locally
finite on & follows from the fact that M is finite on L,. Cf Proposition 3.2.

We have already remarked that when L is a continuous semi-lattice with a top,
so is its Lawson dual . and vice versa. Thus the Lawson duality allows us to
replace the characterization above of the locally finite measures on & in terms of
functions defined on L, with an equivalent characterization of the locally finite
measures on L in terms of functions defined on .Z.

COROLLARY 3.6. Let L be as in Theorem 3.5. The formula

(3.13) O(F) = MF), Fe ¥,
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defines a bijection between the family of locally finite measures 2 on L and the family
of mappings ®: ¥ — R, which are finite on &, = {F e #; F < L} and satisfy
(3.14) &(F) = lim, ®(F), F,F,F,,...€e ¥, F,1F,

(3.15) A ... Ap ®(F) 20, neN,F,F,,...,F,e %,

We now prepare the proof of a characterization of the locally finite measures
on L in terms of “additive” mappings on Scott (L), which is valid without any
further assumptions on L.

LeMMA 3.7. Let L be a continuous poset with a second countable Scott topology.
Let # € OFilt (Scott (L)), # + Scott(L). Assume

U YVeA =>UeH or Vei.
Then # = U, for some x € L.

PrROOF. By assumption #° is a directed and Scott closed subset of Scott(L).
Hence

#° = {UeScott (L, U = H},

where H = U]f’“. Note that H % L, since # + & by assumption. Now the
reader easily shows that if H < E U F for some E, F e CoScott(L), then H « E
or H° = F. Thus H® is a non-empty irreducible Scott closed set. It follows by
Proposition 5.2 of Lawson (1979) that H® = | x for some x € L. But then U € o iff
xeU.

Put % = {,;xeL}. Note that, for x,yeL, x <y iff ¥, = %,. Hence # is
isomorphic to L. Note further that # € OFilt (%) iff # = {%,; xe F} for some
Fe%. Hence Z (%) is the minimal o-field over the sets {#,; xe F}, Fe &.

ProOPOSITION 3.8. Let L be a continuous poset with a second countable Scott
topology. Then

(3.16) 3 () = {Be X (OFilt(Scott (L)) B < #}.

Let u be a measure on OFilt(Scott(L)). Then u concentrates its mass to
% U {Scott (L)} iff

(3.17) u{A# e OFilt(Scott (L)), U|JVeHX , U&H# Véx} =0, U, VeScott(L).
Proor. By Lemma 3.7,
OFilt (Scott (L)\ (% | J (Scott (L))
= v vesconwy {H# € OFilt(Scott (L), U ) VeH, U H#, Vet

It is not hard to see that the union above may be thinned to U, Ve 2, where 2 is
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a countable separating subset of Scott(L). Moreover,  (OFilt(Scott (L)) is the

minimal o-field over the sets {.# € OFilt(Scott(L)); U e s#}, U € Scott(L), and
{# e OFilt(Scott (L), Ue #} (\« = {#,; xe U}, UeScott(L).

Now both assertions of the proposition are immediate.

We can now prove the following existence theorem for locally finite measures
on L.

THEOREM 3.9. Let L be a continuous poset with a second countable Scott
topology. A mapping 4i:Scott(L)— R,, which is increasing and finite on
{U eScott (L), U < L}, extends to a unique locally finite measure on L iff

(3.18) M) =0,
(3.19) AU) = lim, {U,), U, U,, U,,...eScott(L), U, 1U,
(3.20) AU V) + MU (V) = MU) + (V). U, V eScott(L).
Proor. Let U, Uy, ..., U,eScott(L) and assume U | J U, J...{J U, < L.
Note that

Ay, MU) = MU) — AU (Y Uy) = (U (J U,) — AU,
By induction it follows readily that
Ay, ... 4y MUY= U YU ...l U) = &U, ...l Uy

Thus, by Theorem 3.5, there is a locally finite measure ¢ on OFilt(Scott (L))
satisfying

u(# € OFilt (Scott (L)); Ue #} = AU), UeScott(L).

Fix U, Ve Scott(L). Choose {U,}, {V,} = Scott(L)such that U, < U, V, <« V
for all n and U, tU while V, TV. First note that

p{# e OFilt(Scott (L), U, V,e #, U A, VA
< p{o# e OFilt(Scott (L)), U,{) V,e #, U, & #, V, 6} = 0.
Then note that the sets to the left increases to
{# eOFilt(Scott (L), U Ve, UK, Vé X}

Hence the latter set has p-measure zero. By Proposition 3.8, u concentrates its
mass to % ) {Scott(L)}.
By (3.18), u{Scott(L)} = 0. Thus u is concentrated to %. Now note that

MUO)y=uHeU;UeH#} = p{U,; xeU}, UeScott(L), U + .
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Hence 4 extends to a measure on L. We conclude from Proposition 3.2 that 4 is
locally finite. Its uniqueness follows (cf. (3.7)) from

A(tx) = inf, , A(U), xeL.

We conclude this section with an existence theorem for finite measures on L.
Also this result requires some preparations.
Note that the mapping

x—= L\ |x, xeL,
is a measurable injection into Scott (L). Write [* for its range.

PROPOSITION 3.10. Let L be a continuous poset with a second countable Scott
topology. Then

“(3.21) Z(Scott (L) () ¥ = {BeZ(Scott(L)); B = L*}.
Let u be a locally finite measure on Scott(L). Then u concentrates its mass to
J{L} iff
(3.22) p(PU Y VNQUJTV) =0, U, VeScott(L).
ProOF. By Proposition 5.2 of Lawson (1979),
Scott (LN({L} U ) = Uv veseonay TU (Y VNAU JTV).

It is easy to see that the union to the right can be thinned to a countable one.
Hence [* € £ Scott(L)). Now both assertions of the proposition are immediate.

THEOREM 3.11. Let L be a continuous poset and assume its Scott topology is
second countable. An increasing mapping A: Co Scott (L) — R, extends to a unique
Jinite measure on L iff

(3.23) M) =0,
(3.24) MF) = lim, A(F,), F, Fy, F,,...eCoScott(L), F, | F,
(3.25) ME(\F) + AME|J F) = A(E) + AF), E, FeCoScott(L).

Proor. Conclude by Theorem 3.3 that there is a finite measure u on Scott(L)
satisfying

u(tU) = AU°), UeScott(L).

A straightforward calculation shows that (3.22) holds. Moreover, by (3.23),
p{L} = 0. Hence u concentrates its mass to [*. Now note that

AF) = p{L\ |x; xeF}, FeCoScott(L).

Hence A extends to a measure on L. The uniqueless is clear.
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4. Lévy-Khinchin measures.

In this section L is a fixed continuous poset with a top 1 and a second countable
Scott topology. Note that, then Scott (L)\ {F} is a lattice. Our first result tells us
when a measure on L is a Lévy-Khinchin measure. Its proof is omitted.

PROPOSITION 4.1. Let L be a continuous poset with a top and a second countable
Scott topology. Let |y be a measure on L which concentrates its mass to L\ {1}.
Then s is a Lévy-K hinchin measure iff the following two equivalent conditions hold:

YN\ U) < oo, UeScott(L), U ¥ &,
Y(L\1x) < o0, xel,x < 1.
Here is our most general existence theorem for Lévy-Khinchin measures on L.

THEOREM 4.2. Let L be a continuous poset with a top and with a second countable
Scott topology. An increasing mapping y:CoScott(L)\ {S} — R, extends to
a unique Lévy-Khinchin measure on L iff

4.1) W) =0
4.2) Y(F) = lim,y(F,), F,F,, F,,...eCoScott (L)\ {S}, F, |F,
(4.3)  YEUF) +WE\F)=y(E)+ y(F), E, Fe CoScott (L)\ {S}.
Proor. Conclude by Theorem 3.3 that there is a locally finite measure y on
Scott (L)\ { &} satisfying
u(TU) = y(U°), UeScott (L), U + .

Then conclude by Proposition 3.10 that u concentrates its mass to ¥,
Now note that

Y(F) = u{L\ 1x; xe F}, FeCoScott(L).
This shows that i extends to a measure on L satisfying
Y(F) < oo, FeCoScott(L), F % S.

But I\ |1 = ¥ and u concentrates its mass to Scott(L)\ {J}. Thus ¢ is
a Lévy-Khinchin measure.
It is not hard to see that  is unique.

Our next existence theorem presumes that L is a semi-lattice.

THEOREM 4.3. Let L be a continuous semi-lattice with a top and a second
countable Scott topology. Then formula (1.8) defines a bijection between the family
of Lévy-Khinchin measures y on L and the family of mappings ¥: ¥ - R,
satisfying (1.9)-(1.11).
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Proor. The reader easily shows (1.9)-(1.11) if ¥, through (1.8), stems from
a Lévy-Khinchin measure  on L. So we assume that ¥:L — R, satisfies
(1.9)-(1.11). Whenever H € ¥ we write

Py(F)= —A,¥W(F)= Y(F(\H)~ V(F), FeZ.

It is not hard to see that @, satisfies (3.14)-(3.15). Thus there is a locally finite
measure Ay on L satisfying

iu(F) = ®y(F) = W(F (\H) — ¥(F), Fe 2.
Note that ,(D) = P(H). Hence
iy(LN\F) = $(H) — Y(F () H) + P(F). Fe 2.

Clearly Z, concentrates its mass to L\ H. Assume Ge ¥, G < H. Then the
restriction of A5 to L\ H coincides with Ay. This follows by the uniqueness part of
Corollary 3.6.

We now put
Y(B) = supy.e Aiu(B), BeX.
Then  is a measure on L. Let Fe #. Then
YL\ F) = ¥(F) + supy (¥ (H) — ¥(F () H)) = ¥(F).
This shows (1.8). Now note that, writing 1 for the top of L,
Y{1} = supyceinil} =0.

Thus ¢ is a Lévy-Khinchin measure.
To see the uniqueness part of the theorem, consider two Lévy-Khinchin
measures Y, and ¥, on L, and assume

Y, (L\ F) = y,(L\F), Fe #.

By Corollary 3.6, y/, and v, coincides on L\ F for each F € #. But then we must
have iy, =, on L\ {1}.

The remark preceeding Corollary 3.6 can be modified to the present study of
Lévy-Khinchin measures.

COROLLARY 4.4, Let L be as in Theorem 4.3. The formula
(4.4) P(x) = L\ F,), xeL,

defines a bijection between the family of Lévy-Khinchin measures \y on & and the
Jamily of functions @: L — R, satisfying

4.5) ®(1) = 0,
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4.6) &(x) = lim, D(x,), x,x,X,5,...€x,1x,
4.7) Ay .. 8, P(x) =0, neN,x,xy,...x,€L.

Assume L to be lattice and let A: L —» R,. Suppose that A is decreasing, that
A(1) = 0, that A(x,) = A(x) as x, Tx and that

A(x v )+ Ax A y) = A(x) + A(), x,y€L.
By Corollary 4.4, there is a unique Lévy-Khinchin measure  on & satisfying
Y(L\F,) = Ax), xeL,
and, by Theorem 3.3, the formula
MTx) = A(x), xeL,

defines a unique locally finite measure on L. We have here an interesting
one-to-one pairing between a subclass of the Lévy-Khinchin measures on . and
a subclass of the locally finite measures on L.

When L is a lattice we may characterize the Lévy-Khinchin measures on L in
terms of functions on L. Put L, = {xe L; x < 1}, where, as usual, 1 denotes the
top of L. Note that x,ye L, iff x v yeL,.

THEOREM 4.5. Let L be a continuous lattice and assume Scott (L) to be second
countable. The formula

(4.8) M(x) = y(L\ Tx), xeL,

defines a bijection between the family of Lévy-Khinchin measures  on L and the
family of mappings M: L — R, which are finite on L, and satisfy

4.9) inf, ., M(x) =0,
(4.10) M(x) = lim, M(x,), x,X;,X3,...€L, x,1x,
4.11) M, (x;x0,...x,) =0, neN,x,x,,...,x,€L.

Proor. Assume M:L — R, maps L, into R and that (4.9)-(4.11) hold. Write
Y(F)=inf, f M(x), Fe Z.

Note that if Fe &, then F (| L, + &. Hence ¥ maps & into R,. It is easy to
check that (1.9)-(1.11) hold. Thus, by Theorem 4.3, there is a Lévy-Khinchin
measure ¥ on L satisfying

W(L\F) = ¥(F), Fe &.

Let xe L. Choose F,,F,,...€% such that F, | (1x). Then y(L\ F,) Ty/(L\ 1x).
Now proceed as in the proof of Theorem 3.5 and show that ¥(F,) 1 M(x). This
shows (4.8).

The remaining part of the proof is easy and hence omitted.
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5. Infinite divisibility.

Consider a random variable ¢ in a continuous semilattice L. Assume L has a top
and a second countable Scott topology. Write 4 for the distribution of £. We say
that A (or ¢) is infinitely divisible if, for every n, there are independent and
identically distributed random variables &,,..., &, in L such that

fé A

It 1s not hard to see that A is infinitely divisible iff for all ¢+ > O there is
a probability measure 4, on L satisfying

A(F)' = A(F)

for Fe . The details are routine and hence omitted.

The first result of this section characterizes infinite divisibility in an important
particular case. Its proof is an immediate application of Proposition 6.10 in Berg,
Christensen & Ressel (1984) and therefore omitted.

PROPOSITION 5.1. Let L be a continuous semi-lattice with a top and a second
countable Scott topology. Then the formula

MF) = exp(—¥(L\F)), Fe 2,

defines a bijection between the family of all Lévy-K hinchin measures s on L and the
Samily of all infinitely divisible probability measures 4 on L satisfying

MF)>0, FeZ.
In the case when L is a lattice we may introduce the distribution function
A(x) = P(x £ &), xelL,

of . Clearly £ is infinitely divisible iff A' is a distribution function on L for all
t>0.

COROLLARY 5.2. Let L be a continuous lattice with a second countable Scott
topology. The formula

MTx) = exp(—y(L\1x)), xeL,

defines a bijection between the family of all Lévy-K hinchin measures y on L and the
Samily of all infinitely divisible probability measures 4 on L satisfying

AMTx) >0, xel,x <€ 1.
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ProoF. Just note that
AMTx) = inf, p A(F),
YL\ TX) = sup.p Y(L\ F)
for all x € L. Then apply Proposition 5.1.

We proceed to discuss the general case. Recall that £ is a random variable in
a continuous semi-lattice L. Write

L= (\{F;Fe?, teFas.}.

Note that L; is the (Scott) support of {. Hence {eL, a.s. Moreover, L, is
a continuous semi-lattice. Put

%, = OFilt(L,).
It is not difficult to show that
L ={F(\LgFe ¥, F(\ L %+ &}

and that, for Fe %, F ()L, + & iff P{¢eF} > 0. Hence P{¢eF [\ L:} >0 if
Fe%,F ﬂ L; + (J. Note also that L, e Z,. If { is infinitely divisible we can say
more.

PROPOSITION 5.3. Let L be a continuous semi-lattice with a second countable
Scott topology, and let & be an infinitely divisible random variable in L. Let

(5.1) x= v{yeL; P{y <&} > 0}.
Then L, = |x.

Proor. We first show that L, has a top. By a result of Lawson (1979) (recalled
in Section 3) this will follow if we can show that %, is a semi-lattice. For this, fix
F,, F,€ % and assume A(F, ) F,) = 0. where we have written A = P{™'. For
every t > O there is a probability measure 4, on L such that 1,(F) = A(F) for
F e %. Now note that

1= 2(F U F5) £ 4(F]) + A(F3),
from which we conclude that
tTV ST~ MF)) + 7 — AFL)Y.
Let ¢t —» 0. Then
o £ —log M(F,) — log A(F,).

Hence A(F,) = 0 or A(F,) = 0. This shows that .%, is a semi-lattice.
Let x be the top of L,. If y < x we may choose F e & with xe F < 1y. But then
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F ()L + &. Hence P{y < &} > 0. This shows the less than or equal to part of
(5.1). To see the remaining part, assume P{ye F} > 0. Then P{{eF} > 0 for
some Fe &, F — 1y. We see that FﬂL‘: + ,1.e. xe F. Hence y < x.

We do not hesitate to omit the proof of the following Lévy-Khinohin represen-
tation of the infinitely divisible probability measures on L.

THEOREM 5.4. Let L be a continuous semi-lattice with a top and a second
countable Scott topology. The formulae

x = v{yeL; i(ly) > 0},
Y(Ix\F)= —logi(F), Fe ¥, xeF,

defines a bijection between the set of all infinitely divisible probability measures 4 on
L and the set of all pairs (x, /), where x € L and { is a Lévy-K hinchin measure on | x.

Note that it may happen that the Lévy-Khinchin measure in the representa-
tion of an infinitely divisible probability measure is identically zero.
Also note that the second formula in Theorem 5.4 may be replaced by

Y(x\1Ty) = —logi(1y), yeL,y = x,

if L is a lattice. A similar remark applies to Propositions 5.5 and 5.6 below, the
proofs of which are easy and hence omitted.

PROPOSITION 5.5. Let 4 be a probability measure on L, and put
(5.2) Y(F)= —log i(F), Fe &,
(5.3) Yy ={Fe¥; ¥(F) < x}.
Then 4 is infinitely divisible iff Ly is a semi-lattice and
(5.4) Af,... 4, ¥(F) £0, neN,F,F,,... . F,e &,

PROPOSITION 5.6. Let ¥: % — R, and define ¥, as in (5.3). Assume Ly is
a semi-lattice and that (5.4) holds together with

¥(F) = lim, ¥(F,), F,F,,F,,...€ %, F,1F,
¥(L) = 0.

Then there is a unique infinitely divisible probability measure 1 on L satisfying (5.2).

6. Applications to random set theory.

Here we write down our extension of Choquet’s characterization of the distribu-
tions of all random sets in a locally compact second countable Hausdorff space.
We then fill in those details from the discussion in the introduction of applica-
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tions to random set theory, that are neither obvious nor proved elsewhere.

Let S be a space endowed with a continuous and second countable topology 4.
We write F for its collection of all closed sets and ¢~ for its collection of all
compact and saturated subsets. Note that all subsets of a T'1-space are saturated.
See e.g. Giertz et al (1980).

A non-empty F € # is said to be irreducibleif F = F, | ) F,forsome F,, F,e #
implies that F < F, or F < F,. Clearly all singleton closures are irreducible. The
topological space S is called sober if every irreducible closed set is the singleton
closure of a unique member of S. That is to say, S is sober iff the mapping s — {s} ~
is a bijection between S and the collection of all irreducible closed subsets of S.
Note that all Hausdorff spaces are sober. The verification of this fact is straight-
forward. Moreover, any continuous poset endowed with its Scott topology is
sober. Cf Proposition 5.2 in Lawson (1979).

Assume now that S is sober. Recall that % is continuous and has a second
countable Scott topology under reverse inclusion. It can be shown that ¢ is
a continuous semi-lattice under the same order. Indeed, Hofmann & Lawson
(1980) proves that the mapping

K - {FeZ;K(\F = &} cOFilt(¥), Ke X

is an isomorphism. In particular this shows that Scott (") is second countable.
Say that a real-valued mapping T on X is an alternating capacity if K, |K
implies T(K,) | T(K) and if

T(K;Ky,...,K,)£0, neN, K, K,,....K,ex.
Note that the latter condition is equivalent to
T(K|{)K,) 2 T(K), K,K,eX,
TK|JK,) + T(K{JK) 2 TIK K, UK,), K,K,K e,

etc, cf Matheron (1975), and Berg, Christensen & Ressel (1984).
The following extension of Choquet’s theorem is, a view of the discussion
above, an obvious consequence of Corollary 3.6.

THEOREM 6.1. Let S be a space endowed with a continuous second countable
sober topology. Then the formula

P{ENK + &) = T(K), Ke X,

defines a bijection between the family of distributions PE™ ! of random closed sets
&in S and the family of alternating capacities T satisfying T() = Oand T(K) £ 1,
KeX.

Theorem 6.1 extends to a bijection between the family of Lévy-Khinchin
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measures Y on % and the family of all alternating capacities ¥ with ¥(J) = 0,
given by

Y(K)=y{FeF F\K+ @}, Kex.

Use Theorem 4.3.

A random closed set £ in S is called infinitely divisible if, for every ne N, there
are independent and identically distributed random closed sets £,,...,¢&, in
S such that ¢ £ U, &, holds. Our next result gives a rather complete description of
the infinitely divisible distributions. It extends the applicability of results in
Matheron (1975) and Berg, Christensen & Ressel (1984). There is no need for
a proof.

THEOREM 6.2. Let S be as in Theorem 6.1. For every infinitely divisible random
closed set & in S, the closed set

H=n{Fe#;P{{cF}>0}
satisfies H < £ a.s., and, if H % S, the formula
Y(K)= —~logP{¢{(\K =}, Kex, K(\H =,

defines an alternating capacity on H¢. Conversely, for every pair (H,¥), where
H < S, H+S,is closed and ¥ is an alternating capacity on H® with ¥Y() = 0,
there exists an infinitely divisible random set & in S with distribution

om0 fexp(—W(K) if Kex', K(\H =&,
P{CﬂK—@}—{ 0 FKex KNH o

Moreover, for ¥V: A — ﬁ+, V() =0, write
Ay ={Ke X ¥(K)< x}.
If Ay is closed under finite non-empty unions and if
Y(K) = lim, ¥(K,), K,K,K,,...e ¥, K, |K,

Y(K:K,,....K,) £0, neN, K,K,...,K,e Xy,

then there exists an infinitely divisible random set & with distribution
P{E(\K = &} = exp(—¥(K)), Ke X

In this case Ke Ay iff Ke A, K ﬂ H = J, where H is as above.

This results of Sections 3—5 may be applied to the collection . It is interesting
to compare the conclusions with the assertions of Theorems 6.1 and 6.2, since
X is isomorphic to the collection of all open filters on #. However, we leave this
to the reader.
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Now let € denote the collection of compact and convex subsets of R? for some
d e N. We endow % with reverse inclusion. Note that % is a continuous lattice and
that ¢ is the top of . Write ¢’ = ¢\ {}.

Let C, De%. Giertz et al (1980) shows

C<D <« DcC.

Let %, be a countable base for the Euclidean topology on R? consisting of convex
relatively compact sets. Clearly we may choose G,,...,G,€%, such that
D < (Ji-, G;= C°.ButthenD = v}_,G; < C,wherewehavewritten v]_, G;
for the convex closure of | J{_; G; . This shows that ¢ has a countable separating
subset, and we conclude by Proposition 3.1 that the Scott topology on € is
second countable.

Write £’ = £(%) () €’ for the restriction of £ to ’. A routine argument from
measure theory shows that ' is generated by the family {De%";D < C},Ce ¥
Moreover,

¥ ={BeXl(¥), J¢B},

since €' € X (%).

Consider a ¢’-valued mapping & of some probability space (2, Z, P). Assume
¢is measurable w.r.t. £'. If G < R%is open then {C e %; C = G} is a Scott open set
in &, and therefore measurable w.r.t. Z. Hence

EcGled, G < RYopen.
{ P

Denote by | - || and (-,-) the Euclidean norm and inner product resp. By
a closed half-space we shall understand a set of the type

H(x,) = {yeR% (y,x) S a}, xeRY, |x| =1, aeR.

We write # for the collection of all such sets. If H € # then H = (), G, for some
sequence G,, G,,. .. of open sets. Hence

6.1) {¢EcH}eR, HeX.
Let d; denote the distance function of Ce ¥, i.e.
de(x) = infiec |x — yl, xe R
Whenever Ce %’ and ¢ = 0 we furthermore introduce the parallel set
C.= {xeR% dc(x) L &}

Note that C,e%’. Fix xeR%, ||x|| = 1,xe R, Ce % and ¢ > 0. The reader easily
shows that C = H(x,a) iff C, « H(x,a + ¢). Hence ¢, is measurable w.r.t. ' for
alle > 0.
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The Hausdorff metric h on €’ is defined by
hC,D)=inf{e 20;C=D,D<=C,},C,De¥.

It is well-known that his complete and separable. Note that the infimum above is
attained. Thatistosay,for C,De% ande = 0,h(C,D) £ ¢iff C =« D,and D <= C.,.
Hence

(6.2) (hEC) S ebeR, Ce¥, 2 0.

We have now proved that ¢ is measurable w.r.t. the Borel o-field generated by
the Hausdorff metricif £ is measurable w.r.t. £'. To see the converse, assume (6.2).
Fix xeR", ||x|{| = 1 and put

f(C) = SupyeC(-xa Y), Ce®%.

The reader easily shows
fIC)=f(C)+¢& Ce¥, e20.

Now it is not hard to see that f is continuous w.r.t. the Hausdorff metric. But
then we must have

{{cHx 0} ={f(Q)Sa}eR

Thus (6.1) holds.
If Ce®’, then C = (),H, for some Hy, H,,...€ #. By (6.1),

{EcCled, Ce¥.

That is to say, ¢ is measurable w.r.t. X', We have thus shown that ¢ is measurable

w.r.t. X' iff £ is measurable w.r.t. the Borel g-field generated by the Hausdorff
metric on €.

7. Measures on locally compact sober spaces.

The aim of this section is to prove two existence theorems for measures on a space
equipped with a continuous second countable sober topology, one for finite
measures and one for locally finite measures. We fix such a space S throughout
this section and write . for its Borel o-field. The notations ¥, # and X are
retained from Section 6.

It is known that S is locally compact in the sense that, whenever se Ge 9 we
have se K° < K < G for some K € X". See Hofmann & Lawson (1978). On the
other hand, the topology of any locally compact space is easily seen to be
continuous. So, we might just as well assume S to be locally compact, second
countable and sober.
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Let us introduce
§=1{s} ,seS
S = {5, seS},
and write 7 for the o-field on § generated by the sets
{$;s€G}, Ge¥.

Then, as the reader easily sees, the bijection s — 5 is bimeasurable. Furthermore
note that its range § ¢ & and that, for Fe #, FeSiff F is irreducible.
Our first result tells us that the mapping s — § is an embedding of S into #.

ProPoOSITION 7.1. We have
SeX(#),
= {BeX(¥), Bc §}.
ProOOF. Write #' = #\ {&}. It is easy to see that
FNS=Ur res{FeEF F& F,F & F) F e FiJF,).

The reader easily verifies that the union on the right may be taken over all F|, F,
in some separating subset of #. It follows that Se T (#). Now note that & is the
minimal o-field over the sets

{HeF;HcF}(\S, FeF
Hence & = X(#)()S. Now the final assertion is obvious.
Here is our existence theorem for finite measures on (S, ).

THEOREM 7.2: Let u: & — R,. Assume u(Z) = 0, that p is increasing, that
w(F,) = u(F) as F, | F and that y is additive in the following sense

wFy U F,) + u(Fy (Fy) = w(Fy) + i(F,), F,F,e#.
Then p extends to a unique finite measure on S.
Our proof depends on the following proposition.
PROPOSITION 7.3. Let 4 be a finite measure on F , and write
AF)=AHe# , HcF}, FeF
Then J concentrates its mass to S iff A(Z) = 0 and A is additive, i.e.

A(F1UF2)+A(F10F2)=A(F1)+A(Fz), F,F,e#
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Proor. The resuit follows from the fact that
MFeF F & F\,F & F,,F < F, | F,} = A(F,) — A(F;) + A(F, (| Fy),
which is valid for all F,, F, e #. The details are left to the reader.

PrROOF OF THEOREM 7.2. By Theorem 3.3, there is a finite measure 4 on
F satsfying

AMHeF,H<F} =uF), Fe#.
By Proposition 7.3, 4 concentrates its mass to S. The measure
A(B) = A{5;se B}, Be ¥,
is the required extension of u. It is of course unique.

It is also possible to characterize the finite measures on § in terms of their
restrictions to %. This however is part of a characterization below of the locally
finite measures on S. We say that a measure u on (S,%) is locally finite if
w(G) < oo for all Ge % with G < S. Clearly this requirement holds iff 4(K) <
for all K € . So the class of locally finite measures on S coincides with the class of
Radon measures.

Whenever p is a measure on (S,%) we shall write g for the measure on
(F,%(F)) given by

f(B) = u{s€S;5e B}, BeX(¥).
Note that
g{He#,H&E F} = y(S\F), FeZ.
Hence

PROPOSITION 7.4. A measure p on S is locally finite iff i is a Lévy-Khinchin
measure on F .

The next result is similar to Proposition 7.3. We omit its proof.
PROPOSITION 7.5. Let s be a Lévy-Khinchin measure on &, and write
Y(G)=y{FeZ F(\G#+ J}, Ge¥.
Put further 4, = {Ge%; G < S}. Then  is concentrated on S iff
¥Y(G,|JGy) + Y(G, () G,) = ¥(G)) + Y(G,), G,,G,€9,.

It is now not hard to prove the following existence theorem for locally finite
measures on S.

THEOREM 7.6. Let i:% — R, be finiteon %, = {Ge %; G < S}. Assume further
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that u() = 0, that p is increasing, that 4(G,) Tu(G) as G, 1G and that p is additive
on %, that is

#G U Gy) + u(G, () Gy) = 1(G)) + u(Gy), G1,G,€9,.
Then y is the restriction to 9 of a unique locally finite measure on S.
Proor. By Theorem 4.5, there is a Lévy-Khinchin measure  on # satisfying
Yy{He# ,H & F} = u(F°), Fe #.

Use Proposition 7.5 to conclude that ¥ concentrates its mass to 3.

8. The Daniell-Kolmogorov theorem.

Let L,L,,... be a sequence of continuous complete lattices and assume
Scott (L;) to be second countable for each i. Let us provide each finite product
[17-1 L;, and also the infinite product L = [ [;L;, with the coordinatewise order.
Note that all these product posets are continuous complete lattices with second
countable Scott topologies. By Theorem 3.3, probability measures on these
product lattices may be characterized in terms of their distribution functions.

Assume now that we are given a projective sequence of distribution functions
A on []r., L, ne N. That is to say,

Ape(Xgse X 1) = A(xy,...,x,), neN, x;e L, 1 Sign
Here, and below, we write O for the bottom of L,, ne N. Let us now write
A(xy, Xq,.. ) = lim, A (xy,...,x,), x;€L;,ieN.

Then, clearly, A satisfies the requirement (1.3). Moreover, A(0,0,...) = 1. Thus it
will follow that A is a distribution function on L if we can prove (1.2).

This is however easy: Fix x, = (X,1,X,2.--.)€L, neN, such that x,Tx =
(x4, %5,...)e L. Clearly A(x) £ A(x,) | inf, A(x,). But

inf, A(x,) = inf, inf,, 4,(X,15- -« » Xpm)
= inf, inf, A, (X,15- .« s Xpm) = i0f, A (X5 .0 X,) = A(%).

This shows (1.2). By Theorem 3.3, there is a unique probability measure A on
L with distribution function A.

REFERENCES

P. Billingsley, Probability and Measure, Wiley, 1979.

C. Berg, J. P. R. Christensen and P. Ressel, Harmonic Analysis on Semigroups, Springer, 1984.

G. Choquet, Theory of capacities, Ann. Inst. Fourier (Grenoble), 5 (1953), 131-295.

G. Gerritse, Lattice-valued semi-continuous functions, Report, Dep. of Math., Catholic Univer-
sity, Nijmegen, 1985.

Pl o e



MEASURES ON CONTINUOUS POSETS AND RANDOM SET THEORY 51

5. G.Giertz, K. H. Hofmann, K. Keimel, J. D. Lawson, M. Mislove and D. S. Scott, 4 Compendium
of Continuous Lattices, Springer, 1980.

6. K. H. Hofmann and J. Lawson, The spectral theory of distributive continuous lattices, Trans.
Amer. Math. Soc. 246 (1978), 285-310.

7. K. H. Hofmann and M. W. Mislove, Local compactness and continuous lattices in Continuous
Lattices (eds. B. Banaschewski and R.-E. Hoffmann) 209-248, Springer LNM 871, 1980.

8. 1. D. Lawson, The duality of continuous posets, Houston J. Math., 5 (1979), 357-386.

9. G. Matheron, Random Sets and Integral Geometry, Wiley, 1975.

10. J. Neveu, Mathematical Foundations of the Calculus of Probability, Holden-Day, 1965.

11. D. A. Trader and W. F. Eddy, Probability functionals for random sets, Report, Dep. of Stat.,
Carnegie-Mellon University, Pittsburgh, 1982.

12. R. A. Vitale, Determining conditions for random sets, Report, Dep. of Math., Claremont Graduate
School, 1981.

MATHEMATICAL STATISTICS
DEPARTMENT OF MATHEMATICS
CHALMERS UNIVERSITY OF TECHNOLOGY
AND THE UNIVERSITY OF GOTEBORG
$-412 96 GOTEBORG. SWEDEN



