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1. INTRODUCTION

A k-ary near-unanimity operation (or k-NU) on a set A is an operation that
satisfies the equations

f(y7iz:7"'7$)%f(x7y""7x)z...%f(x7x""7x?y)%x'
A k-ary weak near-unanimity operation (or k-WNU) on A is an operation that
satisfies the equations

and

w(y,x,...,x) R w(@,y,...,z) = - =wr,...,zY).
If an algebra A has a k-NU (or a k-WNU) term operation, we say that A satisfies
NU(k) (or WNU(k), respectively). Likewise, a variety is said to satisfy NU(k) (or
WNU(k), respectively), it it has a k-variable term satisfying these equations.

It has been conjectured that a finite idempotent algebra A has finite relational
width if and only if V(A) (the variety generated by A) has meet semi-distributive
congruence lattices. The concept of “finite relational width” arises in the theory of
complexity of algorithms, in the algebraic study of constraint-satisfaction problems.
Actually, there are several different definitions of this concept and it is not known
if they are equivalent. One version of the concept and the conjecture mentioned
above are due to B. Larose and L. Zéadori [10].

The important family of varieties with meet semi-distributive congruence lat-
tices has various known characterizations. There is a characterization by a certain
Maltsev condition; also, it is known that a locally finite variety has this property iff
it omits congruence covers of types 1 and 2 (defined in the tame congruence theory
of D. Hobby, R. McKenzie [6]).

E. Kiss showed that a finite idempotent algebra of relational width & must have
an m-WNU term operation for every m > k. E. Kiss and M. Valeriote then observed
that a finite algebra with a k-WNU term operation, k > 1, must omit congruence
covers of type 1. These observations led M. Valeriote to make two conjectures: any
locally finite variety omits congruence covers of type 1 iff it satisfies WNU(k) for
some k > 1; any locally finite variety has meet semi-distributive congruence lattices
if and only if for some k, it satisfies WNU(m) for all m > k. In this paper, we
prove both of these conjectures of M. Valeriote.

The family of locally finite varieties omitting type 1 is the largest family of lo-
cally finite varieties defined by a nontrivial idempotent Maltsev condition. For this
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result, see D. Hobby, R. McKenzie [6], [Theorem 9.6]. Several equivalent charac-
terizations for this largest Maltsev family are given in this theorem of D. Hobby
and R. McKenzie. One that we will use states that a locally finite variety V omits
type 1 if and only if V has a term p(x,y, z) with the property that whenever A
is an algebra in V and 6 is a locally solvable congruence of A and (a,b) € 6, then
p(a,b,b) = a = p(b,b,a). An important corollary of this characterization, which we
need, is that in such a variety, every Abelian algebra is polynomially equivalent to
a module over a ring.

The result we prove in this paper, that a locally finite variety V omits type 1 iff
V = WNU(k) for some k > 1, is the simplest known Maltsev characterization of
this family of varieties.

In addition to proving the two conjectures of M. Valeriote, we shall demonstrate
here that every congruence distributive variety satisfies WNU(k) for all k > 3.
(This result requires no assumption of local finiteness.) Thus, in particular, it
follows that NU(n) implies WNU(k) whenever k > 3 and n > 3. A consequence of
our characterization of locally finite varieties omitting type 1 is that every locally
finite, congruence modular variety must satisfy WNU(k) for some k > 1. Our final
contribution will be a second proof of this fact about congruence modular varieties.

The chief results of this paper are listed below. The remainder of the paper is
devoted to presenting proofs of these results.

Theorem 1.1. Let V be a locally finite variety. The following are equivalent:

(1) V omits type 1.

(2) There is an integer k > 1 such that V = WNU(k).

(3) There is an integer n > 1 such that V = WNU(k) for all k > 1 with k=1
(mod n).

Theorem 1.2. Let V be a locally finite variety. The following are equivalent:

(1) V omits types 1 and 2.

(2) The congruence lattices of all algebras in V are meet semi-distributive.

(3) There is an integer m > 1 such that V |= WNU(k) for all k > m.

(4) For every positive integer n there is a positive integer m such that ¥V |=
WNU(k) for all k withm+1 <k <m+n.

Theorem 1.3. Every congruence distributive variety satisfies WNU(k) for all in-
tegers k > 3.

Corollary 1.4. Let V be a locally finite, congruence modular variety. There is an
integer n > 1 such that V = WNU(k) for all k > 1 with k =1 (mod n).

These results will be proved in the order listed. Our proof of Theorem 1.3 has
a different character from our proofs of the first two theorems. The Corollary is a
corollary to Theorem 1.1. However, as we mentioned, we shall present, in the final
section of the paper, a different proof of Corollary 1.4 along the lines of our proof
of Theorem 1.3.

2. EASY OBSERVATIONS AND EXAMPLES

It is well known that if a locally finite variety V admits type 1 then V cannot can-
not satisfy any non-trivial idempotent Maltsev condition. In particular, it cannot
have a weak near-unanimity term. This supplies one of two implications needed to
prove Theorem 1.1. We shall now review the argument that proves this well-known
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fact, and review a closely related argument that reveals some limitations on the
existence of weak near-unanimity terms that occur when V admits type 2. For the
concepts and results used in these arguments, see D. Hobby, R. McKenzie [6].

Suppose that V has a type 1 congruence quotient. Then there is a finite algebra
F in V and a minimal congruence p in F such that (O, ) has type 1. Let U
be a (0p, u)-minimal set and N be a (Op, u)-trace contained in U and e(z) be a
polynomial operation of F satisfying e(e(z)) = e(x) (for all x € F) and e(F) = U.
Suppose that F has a k-WNU-term 7(z). Then the operation e(7(Z)) restricted to
N is an operation on the set N that satisfies the WNU(k)-equations. This operation
is a polynomial of the algebra F|y. But since the type is 1, every polynomial
operation of F|y depends on at most one of its variables. Hence F|y does not
satisfy WNU (k) for any k > 1, implying that F, likewise does not satisfy WNU(k)
for any k£ > 1.

Next, we show that if V admits type 2 then there is a prime integer p such
that whenever p divides k then V admits no k-WNU term. This, and the obser-
vation above about type 1 quotients, give one of two implications needed to prove
Theorem 1.2. Suppose that V has a type 2 congruence quotient. Choose a finite
algebra F in V with a minimal congruence p in F such that (Op,u) has type 2.
Let U be a (Op, p)-minimal set and N be a (0p, pu)-trace contained in U. In this
situation, F|y is polynomially equivalent to a one-dimensional vector space over a
finite field k. Let p be the characteristic of k. It is easily verified that if F|y has a
k-WNU operation among its polynomial operations, then this operation is unique,
and defined as

T(l’l,...,iﬂk):T(ﬁc1+"'+$k),

where 7 € k and kr = 1 in k. Such r exists in k iff p does not divide k. Now the
same argument as above shows that F cannot satisfy WNU(k) if p divides k.

Example 2.1. Let A,, = (Z,,,x —y + z) where (Z,,z +y) is the group of integers
modulo n. The term operations of this algebra are simply those operations which
can be expressed in the form

f(@o,... xK-1) = Z kix;

where k; are integers and their sum is 1 modulo n. If this operation is a k-WNU,
then all the k; are congruent modulo n. Thus A,, = WNU(k) iff (k,n) = 1. For
example, Ag satisfies WNU(5) but not WNU(2), WNU(3) nor WNU(4).

Let A = (Z,x — y + z) where (Z,z + y) is the group of integers. This algebra
does not satisfy WNU(k) for any k > 3.

Finally, we remark that if A is an Abelian algebra in a locally finite variety ) that
omits type 1, then A does have a k-WNU for some k£ > 1. In fact, by D. Hobby, R.
McKenzie [6] Theorem 9.6, A has a term operation p(z,y, z) satisfying Maltsev’s
equations p(z,y,y) = = and p(x,z,y) = y. It is well known (see [4]) that every
Abelian algebra A with such an operation is polynomially equivalent to a unitary
module; and that all term operations of the module of the form f(xq,...,z5—1) =
>, kixi, where k; are integers and their sum is 1, are term operations of A. Hence
A does have k-WNU term operations in this case (in fact, for every k > 1 that is
relatively prime to the cardinality of A).
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3. REDUCTION TO IDEMPOTENT ALGEBRAS

An operation f(z1,...,2,) on aset A is said to be idempotent if f(a,...,a) =a
foralla € A. An algebra A = (A, ---) is called idempotent iff all the operations of A
are idempotent, equivalently, every one-element subset of A is a subalgebra of A.
By an idempotent term of a variety ¥ we mean a term for which t(x,z,...,z) = x
is a law of V. A variety is called idempotent if all of its algebras are idempotent,
equivalently, if for all terms of V are idempotent.

If V is any variety, there is the idempotent reduct of V, or V9. The variety Vi
is idempotent. It is formed in this way: For every idempotent term ¢ = ¢(Z) of
V, there is a corresponding basic operation f;(Z) of V¢ with the same number of
variables as t. The signature of Vi¢ consists just of the operation symbols f; with ¢
ranging over the idempotent term operations of V. For every algebra A € V there
is the algebra A of the same signature as V9,

A = (A, {t* : t an idempotent term of V})

whose basic operations are the term operations over A induced by the terms that are
idempotent over V. Then V'Y is defined as the variety generated by all the algebras
A, with A ranging over V. It can be shown that for any positive integer n, the
free algebra of rank n in V4, or Fy,a(n), is isomorphic over the free generators, to
the subalgebra of Fy(n) generated by the free generators of Fy(n).

We mention this construction because it is an (easily verified) fact that each
of the properties of algebras and of varieties that we are concerned with in this
paper is invariant under the constructions A — Al V — Vid An algebra A
satisfies WNU(k) iff A satisfies WNU(k). The same is true of a variety V. We
have that V is congruence distributive, or congruence modular, iff V¢ has the
respective property. Moreover, if V is locally finite then Vi¢ is locally finite; and
in case V is locally finite, then V omits type 1 (respectively type 2) iff V¢ omits
type 1 (respectively type 2). (This is not obvious, but is a consequence of the
Maltsev characterizations of these properties given in D. Hobby, R. McKenzie [6],
Chapter 9.)

Thus both the hypotheses, and the conclusions, in each of our chief results, is
invariant under passing to the idempotent reduct. Consequently, it will suffice to
prove our results for idempotent varieties. Henceforth, we work only with idempo-
tent algebras, and idempotent varieties. Idempotent algebras have several special
properties that will be useful in our proofs. We mention that if 6 is a congruence
on an idempotent algebra A, then every block of 6 is a subalgebra of A. Other
useful properties will be explained as the need for them arises.

4. TOTALLY SYMMETRIC RELATIONS

From here to the end of this paper, all algebras are assumed to be idempotent,
unless explicitly stated otherwise.

Definition 4.1. Let A be any algebra. A subuniverse B of A" is totally sym-
metric iff B is invariant under all permutations of the coordinates. If B is totally
symmetric, then B is a subdirect power of a certain subuniverse of A, which we
term D(B) and call the domain of B. The projection of B at each coordinate is
equal to D(B).
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To simplify notation, we shall write elements of A™ as though they were semi-
group words. Thus, for example, ba™ ! will denote the vector (b,a,...,a) in A"
where {a,b} C A.

Definition 4.2. An algebra B < A" will be called a *-subalgebra of A™ iff for
some {a,b} C A, B is generated by the n vectors ba" "1, aba™~2, ..., a" 1b. Note
that in this case B (the universe of B) is totally symmetric, and D(B) is generated
by {a,b}.

Definition 4.3. Let A be an algebra and £ > 1 be an integer. We say that
A satisfies WNU(k) iff A has a k-ary term operation w(Z) satisfying the weak
near-unanimity equations

w(y,x,...,z) R w(x,y,z,...,¢)~= - w(T,z,... B z7Y)
(and w(z,...,x) ~ z, but the idempotent equation is already assumed).

We say that A satisfies ST (k) iff every x-subalgebra of A* contains a diagonal
vector a¥. We say that A satisfies TS(k) iff every non-empty totally symmetric
subuniverse of A¥ contains a diagonal vector.

We begin a sequence of lemmas detailing useful properties of these concepts.

Lemma 4.4. For a fized signature and a fixed integer k > 1, the class of algebras
of the given signature satisfying TS(k) is closed under subalgebras, homomorphic
images, and finite products.

Proof. Tt is straightforward to show that this class is closed under subalgebras and
homomorphic images, and we leave this task to the reader. Now suppose that
C = A x B and that A &= TS(k) and B | TS(k). Let S be any non-empty
totally symmetric subuniverse of C*. Let mo : C — A be the first projection
homomorphism. Then 7%(S) = Sp is a non-empty totally symmetric subuniverse

of A*¥. We can choose a diagonal element a* in Sy. Then
S| = {(bo, ey bk_1) S Bk : ((a, bo), ceey (CL, bk—l)) S S}

is a non-empty totally symmetric subuniverse of BF. (Here, the idempotency of A
ensures that S; is a subuniverse.) So there is b € B with b* € S;. This means that
ck € S, where ¢ = (a,b). .

Lemma 4.5. Let k > 1 be a positive integer.
(i) For any algebra A, the implications WNU(k) = ST (k) and TS(k) = ST(k)
are valid.
(ii) For any algebra A, A = WNU(E) iff A belongs to some variety V such
that the free algebra on two generators in V satisfies ST(k).
(i) For any finite algebra A, the implications TS(k) = WNU(k) = ST(k) are
valid.

Proof. We regard (i) as obvious. Just note that if w(Z) is a k-variable weak-nu term
for A, and if B C A" is the subalgebra generated by the sequence of vectors (for
some {a,b} C A) ¢ = a’ba* 1, 0 < i < k, then w(qo,...,qx—1) (With w applied
in B) is the vector ¢* where ¢ = w(b,qa,...,a).

We remark that the truth of (ii) requires the assumed idempotency of algebras.
To prove (ii), assume first that A satisfies WNU(k) and that w(Z) is a k-variable
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weak-nu term for A. Let V be the variety generated by A. Then w(Z) is a weak-nu
term for every algebra in V (since the weak-nu property is determined by satisfaction
of certain equations). Let, then, F be the free algebra on two generators in V.
By (i), F = ST(k), since F = WNU (k). Now conversely, suppose that F is the
free algebra freely generated by a two-element set {x,y} in a (idempotent) variety
V, and that F = ST (k). Let Ay be the subalgebra of F* generated by the sequence
of vectors f; = x'yx*~"~1 0 <i < k. Since F |= ST(k), there is a diagonal element
(¢,...,c) in Ag. For some term w(xg,...,Tx—1), we can write

(C,...,C) :w(fo,fl,...7fk_1).

This means that for each 0 <i < k,
c=w(fod), 1(7),..., foc1(i)) =w(z,2,...,2,9,2,...,2)

in which the final application of w is to a sequence of i z’s followed by y and then
k—i—1 2’s. Since also w(z,z,...,z) = z, then all the equations required for w(Z)
to be a weak-nu term for V are satisfied. Thus w(Z) is a weak-nu term for every
algebra that belongs to V.

We now prove (iii). Let A be a finite algebra. All that remains is to show that
A =TS(k) implies A = WNU(k). So let us assume that A satisfies TS(k). Let F
be the free algebra on two generators in the variety generated by A. Now F is finite,
and is isomorphic to a subalgebra of a finite direct power of A. By Lemma 4.4,
F | TS(k); a fortiori, F |= ST(k). Finally, by (ii) of this lemma, A = WNU(k). e

The next three lemmas establish that if a finite algebra satisfies WNU(k) then
it will satisfy T'S(k’) for some k' > k.

Definition 4.6. By a special weak near-unanimity operation on a set A we shall
mean a weak-nu operation w(Z) on A that satisfies the equation

ww(y,z,...,x),z,...,x) cw(y,z,...,x).

Lemma 4.7. If a finite algebra of size n has a weak near-unanimity term of arity
k, then it has a special weak near-unanimity term of arity k™.

Proof. Let A be a finite algebra of size n and ¢t be a weak near-unanimity term for A
of arity k. We define by induction a sequence t1, %o, . .., ¢, of weak near-unanimity

terms of arities k, k2,..., k™, respectively. Put ¢; = ¢, and for all integers i < n!
define
tiv1 (21, ... Tpitr)
= ti(t(lL'l, - ,.%k),t((tk_H, ce ,ng), e ,t(xk(k171)+13 - ,$k1+1)).

Since t is idempotent, it is easy to see that ¢; is a weak near-unanimity term for
all . Moreover, t;(y,x,...,z) = 7i(y) (the ith iterate of 7, applied to y) where 7,
is the unary operation on A defined by 7,(y) = t(y,z,...,x). The n!-fold iteration
of a unary operation on an n-element set yields an idempotent operation; that is,
27 (y) = 7M(y) for all x,y € A. This means that t, is a special weak near-
unanimity term for A. °

Lemma 4.8. If an algebra has a k+ 1-ary special weak near-unanimity term, then
it has an mk + 1-ary special weak near-unanimity term for every integer m > 1.
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Proof. Let T be a special weak k-nu for A. We define by induction a sequence
t1,ta,... of terms of arities k + 1,2k 4+ 1,..., respectively. Put t; = t. If ¢, is
defined, then define

tm+1(x07 e 7$(m+1)k) = tm(t(x()a e ,.’L'k)7.’17]€+1, ey m(m+1)k)'

Clearly, by an inductive argument, ¢; is a special weak-nu term for each i > 1. e

Lemma 4.9. Let A be a finite algebra of size n, with a special weak near-unanimity
term t of arity k+ 1, and let m > nk. Then A satisfies T'S(mk + 1).

Proof. Let B < AR 1o g totally symmetric subalgebra.

CLAIM 4.10. Suppose that ab*z € B for some a,b € A and & € A™=DE_ Then
1z € B where ¢ = t(a,b,...,b).

For 0 <i < k let f; = b'ab*~*Z. Since B is totally symmetric, f; € B for all i.
Then **z =t(fo,..., fr) € B.

CLAIM 4.11. Suppose that a'b’*z € B for some integers 1 < i < j where a,b € A.
Then c¢'t7kz € B where ¢ = t(a,b,...,b).

By applying the previous claim to the coordinates that contain ab® we get that
cFt1qi=1pli—Dkz € B. By repeated applications we obtain that ¢’+#*pli—Dkz ¢ B.
Note, that t(c,b...,b) = ¢ because t is special. Therefore, by applying the previous
claim to the coordinates that contain cb¥, we get that ¢iT(+Dkpi—i—Dkz ¢ B By
repeated applications we finally obtain that ¢*7%z € B.

Cram 4.12. Suppose that a*’ by ...bxT € B for some elements a, by, ...bx in A and
tuple . Then cf ... c’,jda‘c € B for some elements cy, ..., cxk,d in A.

For 1 <i<kand0<j<kput g, =a 1hja*~" € Ak. For 0 < i < k define
fi =¥io--- gji7i_1akgi+1,i+1 ... Yi+1,kb:T, which is best described by the following
matrix:

_fo ] _a a - a bl a - a - bk a e a bO i'-

f1 b a a a a a a by a b I

f2 a bO a a bl a a a e b2 x

Jr—1 a a -+ a a a -+ a -+ a a a b1 T

_fk‘_ _a a bo a a bl a a e bk j'_
Clearly, fo,..., frx € B, because each is obtained from a*’ by ...bpxT by permuting

its coordinates. By calculating f = t(fo,..., fx) € B we see that f = ck...c}dz,
where ¢; = t(b;, a,...,a) and d = t(bg,...,bg).

CLAIM 4.13. There ezist elements ay,az . ..,am,b € A so that afak...ak b€ B.

Let 7 < m be the largest integer for which there exist elements aq,...,a;,
bo, -5 bim—j)x € A so that a’f . a;?bo -+ bm—jr € B. To get a contradiction, as-
sume that j < m. Clearly m — j < n, otherwise some element of A appears at least
k-many times in by, . . ., b,x by the pigeon-hole principle, which contradicts the max-
imality of j. Consequently, n(k—1) < m—n < j. Applying the pigeon-hole principle
again to the elements a1, ...,a; we may assume that a; = as = ...ax. Therefore,
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a¥’bg ... braj .y ... afbriy ... bam—jyr € B. Applying the previous claim to this tu-
ple yields elements cq, . .., cx,d € Asothatcf ... cﬁdaﬁJr1 . a?bkﬂ o bm—jk € B.
But this contradicts the maximality of j.

CLAIM 4.14. There exist elements b,c € A so that ¢™*b € B.

Let j < m be the largest integer for which there exist elements b,c € A and
@jt1,- .-, am € A so that /*a¥, ... afb € B. Clearly, k < j by applying the
pigeon-hole principle to the tuple a¥ ...a" b whose existence is guaranteed by the
previous claim. To get a contradiction, assume that j < m. Using Claim 4.11 for
the tuple a’?+1cjka§+2 ...ak b we get that al(j"rl)ka;’?_s_2 ...ak b € B for some d € A,

J
which is a contradiction.

CLAIM 4.15. There exists an element a € A so that o™t € B.
This follows immediately from the previous claim and Claim 4.11. °

Theorem 4.16. Let Aq,..., A, be finite algebras of the same signature such that
for 1 <i<mn, A; = WNU(k;) for some k; > 1. There is an integer k > 0 and
a term t(Z) of k + 1 wvariables in the signature of these algebras so that for all
1 <i<n,tis a special weak near-unanimity operation for A; and for all m > 1,
A, ETS(mk +1).

Proof. 1t follows easily from Lemmas 4.7, 4.8 and 4.9 that there is an integer NV > 1
such that every algebra A, satisfies TS(N). Let F be the free algebra on two
generators z, y in the variety generated by Aq,..., A,. By Lemma 4.4, F = TS(N),
and by Lemma 4.5, (iii), F | WNU(N). Then by Lemma 4.7, F has a special weak-
nu term of K + 1 variables for a certain K > 0. This term is also a special weak-nu
term for each A;. Let M be the cardinality of the largest algebra among the A,;.
Then by Lemma 4.9, when m > MK then every algebra A; satisfies TS(mK + 1).
We take k = MK?. Thus for m > 1, each A; satisfies TS(mk + 1). Moreover,
our proof of Lemma 4.8, starting with the special weak-nu term of K + 1 variables
for F, yields a term ¢(Z) of k + 1 variables that is a special weak-nu for each of the
algebras A;. °

There is another set of hypotheses that forces satisfaction of TS(k).

Theorem 4.17. Suppose that A is a finite algebra. Let m > 3 and k > (m—1)|A].
If A satisfies ST(n) for allm <n <k then A satisfies TS(k).

Proof. Let T be a non-empty totally symmetric subuniverse of A*. Choose & € T.
Since k > (m — 1)|A|, and by total symmetry, we can assume that

ml gy =TT

S]]

c
Now let n be maximal, m — 1 < n < k, so that T contains an element of the form
u"zZ, u € A. Let a"g € T, a € D(T). We can assume that n < k, else the proof is
finished. Write g = bp, b € D(T). Put
S={zec A" .zpeT}.

Obviously, S is a totally symmetric subuniverse of A" ! (since the operations are
idempotent and T is totally symmetric). Moreover S contains the vector a™b. Thus
S contains a *-subalgebra of A™™!. Since n > m — 1, then m < n+1 < k. Then

since ST(n + 1) is satisfied by A, we conclude that there is e € A with e"™! € S.
This means that e”*!p € T. But this contradicts the assumed maximality of n. e
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5. MINIMAL STAR SUBALGEBRAS

If we are trying to prove that a given finite algebra satisfies ST(k), then we will
be looking at a x-subalgebra B < A*. and attempting to show that B contains
a diagonal element. Among all the x-subalgebras included in B, there will be at
least one that properly includes no other -subalgebra of A*. Every x-subalgebra
of A¥ contains a diagonal vector iff every one of these minimal x-subalgebras of
A” is a singleton, consisting of a diagonal vector. Thus it is natural to focus our
attention on minimal x-subalgebras of A¥. These algebras, in general, have some
very interesting properties.

Definition 5.1. Let T be a minimal x-subalgebra of F¥ where F is a finite algebra
and k > 3. Thus D(T) (defined in Definition 4.1 as the projection of T onto the
first coordinate, where T is the universe of T), is a two-generated subuniverse of F.
For a,b € D(T) we write b < a iff ba*~1 € T. We say that (a,b) is a primitive pair
for T when b < a. Notice that b < a entails that {a, b} generates D(T).

We call an element a € D(T') generic with respect to T iff b < a for some
b € D(T). We call an element b € D(T) co-generic with respect to T iff b < a
for some a € D(T). A two-generator of D(T') is an element u such that for some
v € D(T), {u,v} generates D(T). Thus every element of D(T') that is generic or
co-generic with respect to T is a two-generator of D(T).

Lemma 5.2. Let T be a minimal x-subalgebra of F¥ where F is a finite algebra
and k > 3. For a € D(T) the following are equivalent.

(i) a is a generic element with respect to T.
(ii) There is some T = x1xo---xp € T such that x1 is co-generic with respect
to T and x5 = a.
(iii) For allw € T there is y € T with w; = y; for 3 <i <k and w; = a.
Also, the following are equivalent.

(a) There are u,v,w € D(T) with u < v < w.

(b) For allv € D(T) there are u,w € D(T) with u < v < w; i.e., every element
of D(T) is both generic and co-generic with respect to T.

(c) For allz € D(T)* there is j € T with x; =y; for 1 <i<k—1.

Proof. First, we tackle (iii) = (i). Take any Z in T. Choose ' € T with yi = a.
Exchanging the first and third coordinates and applying (iii), we find some aza - - -
in T. If 3 < k, then exchange the first and fourth co-ordinates in this vector
and apply (iii) to get some ayaa--- in T. This procedure can be continued, and
eventually produces aba®*~2 € T for some b € D(T). This is equivalent to b < a.
Thus a is generic with respect to T'.

The implication (i) = (ii) is trivial, since b < a means that ba---a € T.

For (ii) = (iii), suppose that ¢ < d, Z € T and 21 = ¢,z2 = a. Since T is
a minimal x-subalgebra, the vectors e1,..., e defined by €;(i) = ¢ and €;(j) = d
when i # j constitute a generating set for T. Thus we can write T = t(e1,...,&x)
in T for some term ¢. Then

t(€3751,€2, R ,52) =y
is a vector in T of the form apcd®*=3 for some p € D(T). Likewise

t(e2,€1,62,...,62) = Z
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is a vector of the form agd*~2 where ¢ € D(T). We write 71 = Z = aqd*~2, and for
3 <i<kweput; =apd 3cd*~". All these vectors can be obtained by permuting
the coordinates in ¢ or Z and so, they belong to T

Now suppose that @ is any vector in T. Write @ = s(ey,...,e;) for a term s,
just as we wrote T above. Consider

’LZI, = S(Tl,Tl,Tg,...,Tk).

It is easily verified that w(i) = w'(i) for 3 < i < k and that w'(1) = a. This
concludes our proof that (ii) = (iii).

For proving the equivalence of (a), (b), (c), we first note that (c¢) = (a) is easy:
Taking any ¢ € D(T), and taking Z = ¢*~!, there is bc*~! € T for some b, i.e.,
b < c¢. By the same token, there is some a € D(T') with a < b.

For (a) = (b), choose three elements of D(T') satisfying a < b < ¢ and let u be
any element of D(T'). Find z € T with 1 = u. Write first Z = s(7y,..., 7;) where
7:(1) = a and 7;(j) = b when i # j. Consider

g:S(T:l?ry""?,Y)

where v = bc---c € T. We have § = wv---v where v = s(b,c,...,c), i.e., u < v.
Now write = t(v1,...,vx) where v;(i) = b and 7;(j) = ¢ when i # j. Consider

Z=t(Ths Yhr--»>Vk) -

We have z = u*~1w where w = t(a, b, ...,b). Thus also wu*~!' € T and w < u. We

have shown, given u € D(T), that there exist v,w € D(T) with w < u < v. The
derivation of (a) = (b) is finished.

To prove that (b) = (c), we use the implication (i) = (iii). Assume that (b)
holds. Then every element a € D(T) is generic with respect to T. Thus every
element a € D(T) satisfies (iii). Now, given # € D(T)¥, we can choose a vector
z1y € T. Exchanging the first and third coordinates in this vector and applying
(iii) (with a = x2) we get a vector xopr1Z € T, and then after a permutation of
coordinates, we have a vector pgrizow € T. We apply (iii) to this vector with
a = x3, and obtain a vector xzrxixow € T. Clearly we can continue in this
fashion to eventually obtain zj_iszix2---xx_2 € T for some s € D(T). After a
permutation of coordinates, we get x1xo - xp_15 € T, as required. °

Definition 5.3. A minimal x-subalgebra of F¥ satisfying the equivalent conditions
(a)-(b)-(c) of Lemma 5.2 will be called k — 1-complete.

Lemma 5.4. Let F be a finite algebra and k > 3. If F satisfies WNU(k — 1),
WNU (k) or WNU(k +1), then every minimal x-subalgebra of F¥ is k — 1-complete.

Proof. Let T be any minimal x-subalgebra of F*. If F satisfies WNU(k) then
clearly, T has a diagonal vector a*, implying that T = {a*} and D(T) = {a}.
Clearly T is k — 1-complete in this case.

Assume that F satisfies WNU(k—1). Let m(xy,...,2x—1) be a k—1-WNU term
for F. Choose any a < b in D(T"). Consider the vector

z = m(ab® 1, bab® =2, bbab® 3, ... b*2ab).

This vector in T has the form ¢*~1b. So we have a < b < c¢. Now by Lemma 5.2
and Definition 5.3 it follows that T is k — 1-complete.



EXISTENCE THEOREMS FOR WEAKLY SYMMETRIC OPERATIONS 11

Now assume that F satisfies WNU(k +1). Let w(z1,...,z5+1) be a k+ 1-WNU
term for F. Choose u,v € D(T) such that v < v. Put p = w(u,u,v...,v),
qg=w(v,...,v,u,u), v = w(u,v,...,v). We find that pv’---v" € T by giving

uvk_l7 uvk_l, vuvk_z7 .. ,vk_lu

as arguments to w in T. Thus p < v'. To complete the proof of this theorem, it
will suffice, by Lemma 5.2, to show that p is generic with respect to T.
Analogously to the above, we have that ¢ < v’. Also, we have that

pqv’ Vv ET,

as can be demonstrated by giving w these arguments in T:

uvkil, uvkil, vvuvkig, vvvuvk%, ceey

vk72 k72’

UV, VUV vuv®2,

Now since pg--- € T and p, ¢ are both co-generic then, by Lemma 5.2 (equiv-
alence of (i)-(ii)-(iii)), p,q are also both generic. Thus T is k — l-complete by
Lemma 5.2. .

Lemma 5.5. Let F be a finite algebra and k > 3. Let T be a minimal *-subalgebra
of Fk. Suppose that there is cico--- ¢ € T where every c; is generic with respect
to T. Then T is k — 1-complete.

Proof. We claim that if y € D(T') then ycacs - - - cg—1u € T for some generic element
u. Indeed, let c’fflb € T. Then we can write y = s(c1,b) for some term s. Now there
is beacg -+ - cg—1c € T for some ¢ since co, ¢3, . .. are generic (using k — 2 applications
of the equivalence (i)« (iii) in Lemma 5.2). Here ¢ is generic by the equivalence
(i)~>(ii) in Lemma 5.2 (since b is co-generic). Now in T we have the equation

s(cica - cp,beg -+ cp—1c) = ycacs - - - cp—15(ck; €)

and s(cg,c) is generic, since ¢, c are generic (and the set of generic elements of
D(T) is obviously a subalgebra).

The claim obviously generalizes: if y € D(T) and dy ---dy € T where all d;
are generic, then yds - --di_qu € T for some generic u. Applying this claim to
cacic3---cp and to y = c1, we find that cicies---cx—1u € T for some generic
element u. Then applying the claim to cscicicq - cp_1u and with y = ¢1, we
get that cicicicq -+ - cp_qv € T for some generic v. Obviously, we can continue to

replace c4,c5, ... by ¢; and we eventually will obtain that clfflq € T for some
generic element q. Now ¢ is both generic and co-generic. Finally, it follows from
the equivalence (a)«<(c) in Lemma 5.2 that T is k — 1-complete. .

6. CHARACTERISTIC CONGRUENCE AND TWO-GENERATORS FOR A MINIMAL
STAR SUBALGEBRA

Definition 6.1. Let A be an algebra and k > 2, and let T be a non-empty totally
symmetric subalgebra of A*. For z € A*1 put pry(T) = {u € a : uz € T}.
Define pr to be the set of all pairs (u,v) € A? such that for some z € A*~1
{u,v} Cprz(T). Forz € A, and n > 1 we put pi(z) = {y € A: (z,y) € p’}} where
pt is the n-fold relation composition of pr with itself, so that

pr = pr, p> = {(u,v) € A% : (u,a), (a,v) € pr for some a € D(T)}, etc.
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Now, p% is a reflexive and symmetric subuniverse of D(T)?, and pi(z) is a
subuniverse of D(T') containing x, whenever x € D(T'). Considering the algebra
D(T) with universe D(T'), let O denote the congruence on D(T") generated by pr.
We call 0 the characteristic congruence of T'. Note that if A is finite, then there
is a positive integer n such that 67 = pp.

Lemma 6.2. Let A be a finite algebra, k > 2, and T be a minimal *-subalgebra
of A*. If |T| > 1 then for every & € D(T)*1, pro(T) # D(T).

Proof. Put W = {z € D(T)k~! : pr(T) = D(T)}. To work toward a contradiction,
suppose that W # (). Note that W is a symmetric subuniverse of D(T)*~1.

Choose n maximal, 1 < n < k — 1, such that there is ¢"z € W for some
T € Wkm=1 Since |T| > 1, then n < k — 1 (else ¢*~! € W, implying ¢* € T,
giving that {c*} is a x-subalgebra of A* contained in T, contradicting minimality
of T). Note that since c*~1 ¢ W, then k > 3. Now choose any b € D(T) that is
co-generic with respect to T. We have that bc"z € T. By Lemma 5.2, ¢ is generic
with respect to T, so with the right choice of b, we can assume that bc*~1 € T, as
well as bc"z € T and cc"z € T (since "z € W).

Now we claim that for any § € T" we have also s1S2---5,+1Z € T. The claim
obviously will imply that for any ¢ € W, we have also tits---t,Z € W. To prove
the claim, letting § € T, we choose a term A such that A(f1,..., fi) = § where f; is
the vector with b at the 7 place and ¢ everywhere else. (Here we use the minimality
of T.) Now in the equation

§:)\(f17...,fk>,

replace fnia2,..., fx by the vector ¢"*1z, which belongs to T', and for 1 < i < n+1,
replace f; by the vector obtained from ¢"*'Z by replacing c at place i by b. These

vectors also belong to 7. This yields a new equation
5182+ Spp1T = Ag1,...,9x) €T

The claim is proved.

Now recall from above that we have n < k — 1. Thus write T = dg for some
d € D(T). So we have c"dy € W, or equivalently, ¢"~dcyj € W. By the claim, we
get that ¢"~1ddyj € W (replacing cj by Z = djj). Then again, c¢"~2ddcyj € W; and
this yields in the same fashion, ¢ ~2dddj € W. Obviously, an inductive argument
now gives that d"*'y € W. But this contradicts our choice of n as maximal. The
contradiction finishes our proof that pr;(T) = D(T) is impossible. .

Recall that we defined an element a of an algebra B to be a two-generator of B
just in case for some b € B we have that {a,b} generates B.

Lemma 6.3. Let A be a finite algebra and k > 2, and let T be a minimal -
subalgebra of A¥. If |T| > 1 then for every x € D(T), if pr(x) = D(T) then x is
not a two-generator of D(T).

Proof. Suppose this fails. Then we can choose {a,b} C D(T) so that {a,b} gen-
erates D(T) and pr(a) = D(T). Thus (a,b) € pr. There is z € D(T)*~1 with
{a,b} C prz(T). Since pr;(T) is a subalgebra of D(T'), then pr;(T') = D(T). This
contradicts Lemma 6.2. .
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Lemma 6.4. Let A be a finite algebra and k > 2, and let T be a minimal -
subalgebra of A*. Suppose that {a,z,y} C D(T) and a is generic with respect to T
If a*=2xy € T then x is a two-generator of D(T) iff y is a two-generator of D(T).

Proof. Let a*~2xy € T and suppose that {z, 2} generates D(T'). We have to show
that y is a two-generator. Since a is generic, there is a*~2zw € T for some w. Write
S = Sg({y,w}). We show that S = D(T), demonstrating that y is a two-generator.
Choose a term t so that t(x, z) = a. Applying ¢ in T to a*~2zy, a* 22w, we obtain
that a*~'t(y,w) € T. Write ¢ = t(y,w). Thus (a,g) is a primitive pair for T.
Choose a term s so that s(x,z) = g. Then applying s in T to a*~2zy and a*~2zw,
we get that a*2gs(y,w) € T. Write u = s(y,w), so that u is a generic element,
since g is co-generic and a*~2gu € T (by an application of Lemma 5.2). Now we
have {u,g} C S, a*"'g € T, a*~2gu € T. Choose h so that u*~'h € T.

We claim that for any & € T there is s € S with z1xo---x,_1s € T. If this is
true, then there must be s € S with u*~'s € T. Then (u,s) is a primitive pair
with respect to T', and S contains {u, s}, implying that S = D(T'), which is what
we wished to prove. To prove the claim, let £ € T and write

f:O—(pla'-'apk)7

where the vector p; has a at all places but the ¢th, and g at the ith place. Define 7;
(1 <i < k) to agree with p; except at the kth place, where 7;(k) = u. The vectors
7; belong to T, since a*~2gu € T. Thus

{717727"'7Tk713pk} g T.

Now

o(T1, T2y oo, The1, Pk) = T,
where z'(i) = (i) for 1 <i < k, and Z'(k) = o(u,...,u,g) = s € S. This proves
the claim. .

Definition 6.5. An algebra A satisfies TST(k) iff every non-empty totally sym-
metric subalgebra of A¥ contains a *-subalgebra of A",

Theorem 6.6. Assume that T is a minimal x-subalgebra of A* where A is a finite
algebra and k > 3, and assume further that |T| > 1. Assume also that every proper
subalgebra of A satisfies TST(k — 1). Then Or, the characteristic congruence for T,
is distinct from D(T) x D(T).

Proof. In search of a contradiction, we assume that 87 = D(T') x D(T'). Thus there
is a positive integer n such that pi. = D(T') x D(T'). Choose ng to be the least such
positive integer.

We claim that ng = 1. To prove this, suppose that ng > 1. Choose a primitive
pair (a,b) for T. We can also choose some u € D(T) so that (a,u) € pi*~" and
(u,b) € pp. Our immediate aim is to prove that u must be a two-generator of
D(T).

By definition, we can choose some z € A~ so that uz, bz € T. Since bz € T,
then by Lemma 5.2, x; is generic for 1 < ¢ < k — 1. Rewriting, we have Zu € T.
Write G for the set of all elements of D(T) generic with respect to 7. Then G is a
subalgebra of D(T) and Z € G*~!. Define

S={geG" 1 gueTy.
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Since Zu € T, then S is a non-empty subalgebra of G¥~1. S is clearly totally
symmetric. Now if G = A then v € G, implying that u is a two-generator, as
we hope. If G # A, then this algebra satisfies TST(k — 1). We have then that S
contains a vector a*~2¢ for some {a,c} C G.

At this point, we have that a*“2cu € T and a, and ¢ are both generic with
respect to T, implying that ¢ is a two-generator of D(T'). Now Lemma 6.4 implies
that u is a two-generator.

Thus, indeed, v must be a two-generator of D(T'). Choose v so that {u,v} C
D(T) and {u,v} generates D(T). Recall that (u,a) € pi°~" and (u,b) € pr C
Pt Thus {a,b} C pi°~'(u), implying that the algebra pf°~'(u) is identical
with D(T). Consequently, (u,v) € pi*~'. But since our algebras are idempotent,
and {u,v} generates D(T), then the set of pairs

{(u’ u)7 ('U,'U), ('U,, v)? (v7u‘)}

generates D(T) x D(T). Thus it must be that pi°~' = D(T) x D(T). This
contradicts the minimality of ng. The contradiction establishes that, in fact, ppr =

D(T) x D(T).
Now we have (a,b) € pr, implying that pr(a) = D(T'). Since a is a two-generator
of D(T), this is a contradiction of Lemma 6.3. .

Theorem 6.7. Assume that T is a minimal x-subalgebra of A* where A is a finite
simple algebra and k > 3. Assume also that D(T) = A and that every proper
subalgebra of A satisfies TST(k —1). Then A is an Abelian algebra.

Proof. Under the assumptions in this theorem, Theorem 6.6 implies that 61 is
the identity relation on A. Thus pr is the identity relation on A as well. We
now consider three congruences on the algebra T. They are the kernels of the
projections of T onto A at the first coordinate, and at the second coordinate, and
the kernel of the projection of T into A*~2 over all remaining coordinates. Label
these congruences 01,02 and 0372. Thus for z,y € T we have

(T,9) €01 =1 =1

(Z,9) € 02 & 22 = y2
(T,9) €0y g = xi=y; forall3<i<k.

The remainder of this argument relies on the centralizer theory and theory of
the solvability congruence on the congruence lattice of a finite algebra, as detailed
in D. Hobby, R. McKenzie [6], Chapters 3 and 7.

Notice that p7 = 04 (the identity relation on A) is equivalent to o2 A 0} 5 = Op
and since T is totally symmetric, also equivalent to o1 A 0’1’2 = Op. Let us put
0 =01V oy, and a = 0 Ao} 5. The fact that o; is disjoint from o7 , (for i € {1,2})
implies that o; centralizes o7 5. This implies that o centralizes o7 5, and thus a
centralizes a. The congruence « on T is Abelian. Thus o7 and o1 V « are solvably
equivalent.

Choose a primitive pair (a,b) for T. It is easy to see that ba*~! and aba*~? are
congruent modulo a. Thus a and b are congruent modulo the image of o1 V o under
the projection map D(T) — A through the first coordinate. Thus this image is a
non-identity congruence of A; it can only be A x A since it contains the pair (a, b),
and A is simple. But since o7 and o7 V a are solvably equivalent, this image is a
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solvable congruence of A. This means that A x A is a solvable congruence. Since
A is simple, we are forced to the conclusion that A is Abelian. .

7. PrROOF OF THEOREM 1.1

Of the three conditions whose equivalence Theorem 1.1 asserts, (3) trivially
implies (2), and we saw in Section 2 that (2) implies (1). The five Lemmas in
Section 4 together with Theorem 4.16 show that (2) and (3) are equivalent. To
complete a proof of the theorem, what remains is to show that in a locally finite
variety that omits type 1, every finite algebra (or just the free algebra on two
generators) satisfies TS(k) for some integer k£ > 1.

So let V be a locally finite variety that omits type 1 and assume that V has
a finite algebra A that does not satisfy TS(k) for any integer k& > 1. We shall
derive a contradiction. We assume that the cardinality of A is as small as possible.
This means that whenever B € V and |B| < |A| then B satisfies TS(k) for some
k > 1. We choose a finite sequence of algebras A1, As,..., A, so that A; € V and
|A;] < |A] for 1 <i<mn, and every algebra B € V with |B| < |A| is isomorphic to
some A;. With an application of Theorem 4.16, we choose an integer kg > 1 and a
term to(Z) of ko + 1 variables in the signature of V so that for all 1 <i < n, tg is a
special weak near-unanimity operation for A; and for allm > 1, A; &= TS(mko + 1).

Lemma 7.1. A is a simple non-Abelian algebra.

Proof. First we prove that A is simple. Clearly |A| > 1. Suppose that A has
a congruence # different from A x A and the identity relation. We shall derive a
contradiction by showing that A = TS(ko + 1).

Let 7" be any non-empty totally symmetric subalgebra of A¥*1. Where 7: A —
A/ is the canonical epimorphism, we have that 7%+1(T) is a non-empty totally
symmetric subalgebra Ty of (A/0)*+1. Here A/ = TS(ko + 1); thus Ty has a
diagonal vector. This means that there is a vector £ € T with the property that
for some #-equivalence class E, T € E¥*1. Now E is a subalgebra of A (since A is
idempotent) and T'N E**1 is a non-empty totally symmetric subalgebra of EFo+1,
Since § # A x A, then |E| < |A|. The algebra FE thus satisfies TS(ko + 1), implying
that T'N E¥+! contains a diagonal vector.

We have shown that every non-empty totally symmetric subalgebra of Akotl
contains a diagonal vector. This contradicts our assumption that A satisfies TS(k)
for no k > 1. The contradiction concludes our proof that A is simple.

Now suppose that A is Abelian. Then, as we saw in Section 2, since A € V and
V omits type 1, then A = WNU(k) for some k > 1 and as we have seen, it follows
that A |= TS(k) for some k > 1. This is another contradiction. .

Recall that the property TST(m) was defined in Definition 6.5. We put M =
max(|A\, ko + ].) . ko.

Lemma 7.2. Form > M and for 1 <i<mn, A; = TST(m).

Proof. Suppose that R is a non-empty totally symmetric subalgebra of A" where
m > |A;| - ko and m > k% + ko. We must prove that R contains the vector ¢™~1b
for some b, c € A;.

If m =1 (mod ko) then A; | TS(m) implying that A; = TST(m). There is
nothing to prove in this case. In the contrary case, we write m = £kg + 1 + r where
¢>0and 0 <r < kg. Choose any vector T € R. Since m > |A;| - ko > |A;||cdotr,
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some member of A; occurs r times in . After a permutation of coordinates in Z,
we get, say, a"u € R where a € A; and u € AkaH. Thus
S={geArotl. g5 R}

is a non-empty totally symmetric subalgebra of Afk“H. It follows that there is
b € A; with a"b*0t! ¢ R. Rewrite this as a"b’*°b € R and note that the assumed
inequality for m implies that ¢ > ko > r. Now the argument proving Claim 4.11 in
the proof of Lemma 4.9 shows that there is ¢ € A; with ¢"t%*0b € R, i.e, c™ b € R.

Definition 7.3. An algebra C satisfies IST(k) iff for all a,b € C there exists an

element ¢ € C so that the totally symmetric subalgebras of C* generated by a*~'b

and a*~1¢ contain the vector c*.

Lemma 7.4. Let C be a finite algebra. If C satisfies ST(k), then it satisfies
IST(KICM).

Proof. Since C satisfies ST(k), we can choose, for each pair (a,b) € C? a term t,,
of arity k so that

tap(b,a,...,a) =tep(a,b,a,...,a) = =tgp(a,...,a,b).
For each a € C' we define a unary operation f, on C' as
fa(b) = ta,b(bv Qy..vy a)'

Consider the term

s(xo, ..., Tp2_1) = La,fa(b) (tmb(a:o, ey Th—1)y ata,b(xk(kfl)a ce s Tp2_).
Since C is idempotent, s(b,a,...,a) =--- = s(a,...,a,b) = fo(fa(b)). By iterating
this argument, for each a,b € C we get a term s, of arity k" so that
Sap(b,a,...,a) =" =sqp(a,...,a,b) = fletm).

Put ¢ = (llcl!(b). We know that the |C|!-th power of the function f, is idempotent;

that is ftllcl!(c) = C‘LC“( C‘LC“(b)) = (llcl!(b) = c. This implies that

Saclc,a,...,a) = =354.(a,...,a,¢) = f(‘lC“(c) =c,

|C|!).

so we have the required terms for IST(k °

Definition 7.5. An algebra C satisfies RST (k) iff for every minimal x-subalgebra
T CCk D(T)#C.

Lemma 7.6. For m > M, we have that A satisfies RST(m). For m > M and
m =1 (mod ko), we have that A satisfies ST (m).

Proof. Let m > M and let T be a minimal x-subalgebra of A™. Clearly we have
m > 3. By Lemma 7.2, every proper subalgebra of A satisfies TST(m — 1). Thus
it follows from Lemma 7.1 and Theorem 6.7 that D(T) # A. This argument shows
that A E RST(m).

Next, let m > M, m = flky + 1, and let T be a minimal x-subalgebra of A™.
Since A = RST(m), then T is actually a minimal *-subalgebra of B for some
proper subalgebra B < A. But B = A; for some 1 <4 <n and B = ST(m). Thus
T is a singleton, and contains a diagonal vector. This shows that A = ST(m). e
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Now let kq be the least multiple of kg that is not less than M and not less than
|Al, and let k be the multiple of ko such that k+1 = (k; +1)A". Let ¢ be a term of
k + 1 variables which is a special weak near-unanimity term for all A;, 1 <i < n.
The proof of Lemma 4.8, starting with ¢q, will produce such a term.

The next lemma summarizes what we know about A.

Lemma 7.7. Let A be the algebra from the previous lemma.
(1) A is a finite, simple, non-Abelian algebra that satisfies TS(m) for nom > 1.
(2) tis a k+1-ary term which is a special weak near-unanimity term for every

proper subalgebra of A.

(3) Each proper subalgebra of A satisfies TS(mk + 1) for allm > 1.
(4) Each proper subalgebra of A satisfies TST(m) for all m > k.
(5) A satisfies RST(m) for all m > k.
(6) A satisfies ST(mk + 1) for all m > 0.

7)

(7) A satisfies IST(k + 1).

Proof. These statements are easily justified with the help of the preceding lemmas
of this section. °

The next lemma contradicts statement (1) of the above lemma. Its proof will
conclude our proof by contradiction, of Theorem 1.1.

Lemma 7.8. Let A be the algebra and k be the integer from the previous lemma.
Then A satisfies TS(N) for some large integer N.

Proof. Let N be large and N =1 mod k, and let B < A" be an arbitrary totally
symmetric subalgebra. We argue that B contains a diagonal element.

CLAIM 7.9. Suppose that a'b’*T € B for some integers 1 <i < j and a,b,Z. Then
c¢tikg € B for some ¢ € A.

Use an analogous argument to that of the proof of the first two claims in our
proof of Lemma 4.9, using the fact that A satisfies IST(k + 1) as a replacement for
the existence of a special weak near-unanimity term for A.

Cram 7.10. Ifaf...akz € B and p > k|A|, then b**Z € B for some b € A.

Let i < p be a maximal integer so that b**c} ... c’;_ij € B for some elements
b,c1,...,cp—i € A. By the pigeon-hole principle 7 > k. If ¢ < p, then we can use
Claim 7.9 for b™*ck to get that d**+Fck ... c’;_if € B. This contradiction shows that
1 =p.

CrAIM 7.11. a'bN~""lc € B for some a,b,c € A and integer i < k.

Take an arbitrary tuple from B and write it in the form af . ..a’;chl e Cp

Choose such a tuple where kp + ¢ is maximal and 0 < ¢ < k. If ¢ =0, then r =0
by the maximality of kp + ¢. If r = 0, then the claim holds by Claim 7.10. (Here
we require only that N — 1 > k?|A|.) Therefore, we may assume that ¢ > 0 and
r > 0.

Clearly, r < k|A|, otherwise kp+ ¢ was not maximal by the pigeon-hole principle.
Thus by Claim 7.10 (assuming that N > (k*+k)|A|+k), we may assume that a; =
-+ = ap. Using Claim 7.9 for ¢; and a’fk we get a tuple of the form dPFbide, . . . cp.
If {d,ca,...,c.} generates A as a subalgebra, then kp+ ¢ was not maximal, because
the totally symmetric subalgebra of A™ generated by dcs ... c, contains a tuple of
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the form bch ...c._;. Now we use T'ST(N — q) for the coordinates where we have
elements from {d, co,...,c,}, which yields a tuple of the form bp%eN—971f.

CrLAIM 7.12. a™V~2bc € B for some a,b,c € A.

From the previous claim we know that a’b™ ~*~'¢ € B for some elements a, b, ¢ €
A and integer i < k. Since A satisfies RST(k) we can apply this to ab*~! to
get deF~! such that d,e generate a proper subalgebra of A. We do this i-many
times, once to each a, and get that d’e** b —1=F¢ c B. As d, e generate a proper
subalgebra, we can apply T'ST(ki) and get that fg¥'~'bV—1=Fc ¢ B for some
elements f,g € A. Since N =1 (mod k), N —1—ki =0 (mod k). Moreover, by
chosing IV large enough, we can make N — 1 — ki arbitrary large. Therefore, we
can apply Claim 7.9 to the tuple ¢** 16V —1=% and get that fhN2c € B.

CrLAmM 7.13. abicN=i=1 € B for some a,b,c € A and integer i < |A| such that
{a,c} and {b,c} generate proper subalgebras of A.

From Claim 7.12 we have a tuple abc¥~2 € B. By RST(N — 1) we can assume
that {b, c} generates a proper subalgebra of A. We define a sequence aj,as, - - € A
of elements such that a;b'c¥~~! € B. Put a; = a. If a; is defined and {a;, c}
generates A, then there is a binary term ¢ such that ¢(a;,c) = b. In this case we
put a; 11 = t(c,a;). By the construction we have that a;, b 1cN ="t € B. If for
some i < |A] we arrive to an element a; so that {a;, ¢} does not generate A then we
are done. Otherwise, we have a repetition in a1, ..., a4}, aa|4+1, S0 We can continue
with the repeated sequence to get that ay_1b6™ 1 € B. From this by ST(N) we
get a constant tuple.

CLAIM 7.14. abf ... b’,ch_l_k_’“2 € B for some a,by,...,byy1,c € A.

From the previous claim we have a tuple ab’c¥ ~i~1 € B. It is easy to see that
we have k > |A| > i. Thus we can permute the coordinates to get

ckzbo e bch_kz_k_1 €B
where bg---b, = ab’c®*~". Now {b;,c} generates a proper subalgebra of A for
0 < i < k; hence ¢ satisfies the weak-NU equations on inputs from {b;, ¢} for each i.

Now the argument used to prove Claim 4.12 in the proof of Lemma 4.9 works in
this situation, using the term ¢; and it yields the desired result.

CramM 7.15. B contains a diagonal element.

Observe, that N — 1 —k — k? = 0 (mod k), so we can apply Claim 7.10 to the
tuple abf . .. bch’lfkfk2 € B and get that adV~! € B for some d € A. Now using
ST(N) we get a diagonal tuple in B. .

8. PROOF OF THEOREM 1.2

D. Hobby, R. McKenzie [6] [Theorem 9.10] gives the equivalence of statements
(1) and (2) in Theorem 1.2. We showed in Section 2 that (4) implies (1), and (3)
trivially implies (4). The proof of Theorem 1.2 will therefore be completed with
the proof of the next theorem, which shows that (1) implies (3).

Theorem 8.1. Let V be a locally finite variety that omits types 1 and 2. Let A be
any finite algebra in V with n = |A| > 1. For k > 2(n—1)!, A satisfies ST(k), and
for k> 2nl, A satisfies TS(k) and WNU(k).
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Proof. First, note that since V omits types 1 and 2, it has no Abelian algebra with
more than one element.

We prove this theorem by induction on n. If A € V and n = |A| = 2 then A is
simple and non-Abelian. Let k > 2 (= 2(n — 1)!). Now, proper subalgebras of A
have only one element and thus satisfy TS(k), and TST(k). Thus it is immediate
from Theorem 6.7 that every minimal x-subalgebra T of A* has D(T') # A, implying
that T is a singleton. This means that A satisfies ST (k). To conclude the proof for
n = 2, notice that since A = ST(k) for k > 3, then by Theorem 4.17, A = TS(k)
for k > 4 = 2n!, and then by Lemma 4.5, A = WNU(k) for k& > 4 as well.

Now suppose that n > 2 and the conclusions of this theorem are valid for all
finite algebras A € V with 2 < |A| < n. Let A € V with |A| = n, and let
k > 2(n — 1)!. By our induction assumption, every proper subalgebra and every
proper homomorphic image of A satisfies TS(k) and TS(k — 1), and thus also
satisfies TST(k — 1). Thus the same proof used in the proof of Lemma 7.1 gives
us the conclusion that A satisfies ST(k), unless A is simple. Suppose that A is
simple. Let T be any minimal x-subalgebra of A*. We have that all the hypotheses
of Theorem 6.7 except possibly the hypothesis that D(T) = A are true. The
conclusion of Theorem 6.7 is false (as A is non-Abelian). Thus we are forced to
the conclusion that D(T) # A. In this case, T is a minimal x-subalgebra of B*,
B = D(T), and B |= ST (k). Thus T is a singleton. So we conclude that A |= ST(k).
This holds for all &k > m = 2(n—1)!4+1. By Theorem 4.17, we have that A = TS(k)
for all k > (m — 1)|A| = 2n!. By Lemma 4.5, A = WNU(k) for the same values
of k. This completes our inductive proof of Theorem 8.1. °

The proof of Theorem 1.2 is now complete.

9. PROOF OF THEOREM 1.3

By a system of Jdnsson operations on A we mean a sequence di(x,y,z),. ..,
don—1(x,y, z) of operations (for some n > 1) satisfying the equations

x d;j(z,y,z) when 1 < j <2n—1,
r = dl(xazvz)7
doi(x,2,2) =~ doiy1(x,2,2) foralll1<i<n-—1,

~— ~—

doi—1(xz,2,2) =~ doi(z,x,2) foralll <i<mn-—1,

dop—1(z,2,2) =~ 2.
According to a classical result of B. Jénsson [8], a variety V is congruence distribu-
tive iff V has terms di(z,y, 2), . .., dan—1(2,y, 2) such that the above equations are

valid in V), for some n > 1. Such a sequence of terms is called a sequence of Jénsson
terms for V.

Definition 9.1. Suppose that A is an algebra and m > 2, and B is a subalgebra
of A™. For a,b,c € A we define a condition
Cp(a,b,c): for all 0 <4 < m — 1, the m-tuple b a(m=1=1) belongs to B.
Let f(x,y,z) be a term operation of A. We define three conditions on f (actually,
on (B,A,f)):
(C}) There exist a,b € A so that, where ¢ = f(a,a,b), the condition Cg(a,b, c)
holds.
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(C?) There exist a,b € A so that, where d = f(a,b,b), the condition Cg(a,b,d)
holds.

(Cy) There exist a,b € A so that, where ¢ = f(a,a,b) and d = f(a,b,b), the
conditions Cg(a, b, c) and Cg(a,b,d) hold.

Lemma 9.2. Let A = (A, f) be an algebra with one ternary operation such that
A E f(z,y,x) = x. Let m be an integer greater than 2. Let B be a totally
symmetric subalgebra of A™. The conditions (C’}), (C'J%) and (Cy) are equivalent.

Proof. We assume that Cp(a,b,c) holds, and either ¢ = f(a,a,b) or ¢ = f(a,b,b).
We proceed to construct a’,b’ € A and show that Cg(a’,V, f(a’,a’,b")) and
Cp(d, b, f(a’,b/,V)) hold. We begin by defining by = b and for 0 < i < m — 1,
bi+1 = f(bi7C, C).

Claim 1: For all 0 < i < j < m — 1 we have bic(j)a(m’jfl) € B. We prove this
claim by induction on i. For ¢ = 0, the claim is equivalent to condition Cpg(a,b, c)
which we are assuming. Now suppose that we have a certain i, 0 < i < m — 1,
and bjcWa(m=3i-D e Bforalli < j<m-—1. Leti+1<j <m—1. To see
that bi_s_lc(j)a(m’j*l) € B, we apply fB to some members of B below. In this
calculation, we write members of B (m-tuples) as column vectors. The operation
f is being applied across the rows of an m x 3 matrix.

bit1 b ¢ ¢ bit1 b ¢ ¢
c a a b c a b b
c c b c c c a c
c a c c a c
=f or =f
c a ¢ c a
a a a
a a a a a a a a

The first formula applies if ¢ = f(a,a,b); the second applies if ¢ = f(a,b,b). The
third row of the m x 3 matrix in the first formula is cbc if j > 2, and is aba if
j=1(=1i+1). The first and third columns of each matrix contain ¢ in positions
3 through j 4+ 2. In both cases, all three columns of the matrix denote elements of
B (due to the induction assumption). Hence b;y1c%)a(m~7~1) € B as required.

Claim 2: Where b’ = b,,—1, ¢ = f(c,¢,V'), d = f(c,b,b") we have for all 0 <
j<i<m-—1,that b;d@clm=i-D ¢ B, b;d'@clm—i-1) ¢ B,

This claim is proved by induction on j. The first claim justifies this claim for
7 = 0. Next, let j = 1 and let ¢ be fixed, 1 < ¢ < m — 1. Note that by Claim
1, ¥'ct™=1 ¢ b, and symmetrically, ¢b’c(™=2) € B. Then the formulas below show
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that b;c’c(™=2) € B and b;d' (™2 ¢ B.

bi bi, 1 C ¢ bl b, —1 C C
c c ¢ bV d c bV
c c b c c c c ¢
c c c ¢ and c c c c
c c c ¢ c c c c

Now suppose that 1 < j < m—1 and the claim is true for this j and all m—1 >4 > j.
Choose any m — 1 > i > j + 1. To demonstrate that b/t e(m=i=2) ¢ B and
b;d' Ut e(m=i=2) ¢ B we use these formulas:

bi bi,1 c cC bi bi,1 C C
c c ¢ b d c b v
c d b d d ¢ d
c d ¢ d’ d ¢ d
= f . and . — f .

/ d ¢ d d d

c c c

| ¢ | | ¢ ¢ ¢ | | ¢ | | ¢ c c |

In the first m x 3 matrix, the first and third column have j occurences of ¢'—likewise
in the second formula, the first and third column have j occurences of d’.

To conclude our proof, we take a’ = ¢, b/ = b,,_1. Claim 2 with i = m — 1 gives
that both conditions Cp(da’,V, f(a’,a’,V')) and Cp(d, ¥, f(a’,b', b)) hold. .

To prove Theorem 1.3, we can assume that A is the free algebra over the Jonsson
equations for dy, ..., ds,_1, freely generated by x,y. The algebra A is idempotent.
Let m > 3. Put B = A,,, the totally symmetric algebra generated by yzz-- -z,
Tyr---x, ..., xrx---xy. The condition (Cgl) is true, since d;(z,y,y) = x and
yzx---x € B. Notice that for i odd, (C} ) is equivalent to (C’éiﬂ) since d;(z, x,y) =~
diy1(x,z,y) is an identity of A; and for i even, (CF ) is equivalent to (C’i+1 ). Thus
using Lemma 9.2, we deduce that (Cé%il) must be true. Hence there exists a,b € A
so that, in particular, bvv---v € B, where v = da,_1(a,a,b). But here v = b from
the last Jonsson equation. Thus B = A,,, contains a diagonal element bb- - - b. Since
the operations are idempotent, this gives an m-ary weak near-unanimity operation.
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10. LOCALLY FINITE CONGRUENCE MODULAR VARIETIES

A sequence dy(z,y, 2), ..., dan(z,y, 2), p(x,y, 2) of operations satisfying the equa-
tions
~ di(z,y,y)
dj(z,y,x) for 1 <j<2n
doi(z,x,y) for 1 <i<mn
doiv1(z,y,y) for 1 <i<n
p(z,y,y)
~ Yy

Q

Q

Q

U
(V]
Aﬁj\/—\
8
s
<
~— — ~— ~—
Q

is called a system of Gumm operations on A. H. P. Gumm [5] proved that a variety
V is congruence modular iff V has terms dy(z,vy, 2), ..., d2n(2,y, 2), p(x,y, 2) such
that the above equations are valid in V), for some n > 1. Such a sequence of terms
is called a sequence of Gumm terms for V.

Theorem 10.1. Let A be a finite algebra and k > 3, and let T be a minimal
*-subalgebra of AF. If A has Gumm terms then T is k — 1-complete.

Proof. Suppose that A has Gumm terms dy, ..., ds,, p. It follows from Lemma 9.2
that there are a,b € D(T') with beWaF—1=1) c T for all 0 < i < k — 1, where
¢ = dan(a,b,b) = p(a,b,b). Applying p to the vectors bac*=2) | abc*=2) | abcF—2),
we get that de*~Y € T where d = p(b,a,a). Thus d is a co-generic element with
respect to T. Then applying p to the vectors bal* 1), aaba®*3), aba®=2) we get
that dbea®3) € T where e = p(a,b,a). Since b is co-generic, then by Lemma 5.2,
d is both generic and co-generic. Thus by the same lemma, T is k — 1-complete. o

Theorem 10.2. Let V be a locally finite congruence modular variety. Let F be the
free algebra freely generated by x,y in V, and put f = |F|. If k is an integer such
that k > 3 and k =1 (mod f!), then V satisfies WNU(k).

Proof. We define Ay as the subalgebra of F¥ generated by the vectors yzF~1,

xyxk=2, ..., ¥~ 1y and we take T to be a minimal x-subalgebra of Aj;. we must
show that |[T'| = 1. The Gumm terms are dy, . .., day,, p. By Theorem 10.1, T is k—1-
complete. As in the proof of Theorem 10.1, we have a,b € W with ba(Vc¢F—i=1) e T
for all 0 <7 <k — 1, where ¢ = p(a, b, b).

By k— 1-completeness, for all 0 < i < k—1, there is z; € D(T) with z;b'a* "1 €
T. Clearly, there are 4 > 0 and j > O so that ¢ +j < f < k and z; = 244;.
Then applying a permutation to the coordinates in the vectors z;b'a*~*~! and
x;b"a* 1711 yields two vectors a9, b4 in T for a certain j, 0 < j < f = |F|.

Now if Z = b))% is any vector in T whose first j components are b, then p applied
to aWa, bz, b97T is the vector ¢)5. Thus, by symmetry, any j b’s in a vector
belonging to T" may be replaced by c¢’s, yielding a new vector in 7. Since b is a
generic element, and j divides k — 1, then there is ¢ € W with ¢gb®*~1 € T and
then, replacing j b’s at a time, we get also, gc(*~1 € T. Recall that we also have
be®* =Y in T. Finally, the vectors 71 = ¢b*— 1 7y = bgb*=2) ... 7, = bk—Vyg
generate T'. Choose a term ¢ so that

t(Fr, ..., 7o) = cF Vb,



Thus ¢(q,b,...,b) = c¢. Now replace 71 by gc

in
[ )

1

2
3

4
5
[6
[7
8
[9

[10
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(k—1 k—1)

) and each of 7o, ..., 71, by bel
the displayed equation. This yields the vector cc*~1) e T'. This ends our proof.
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