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where q1, q2 are coordinates on Σ, t is time, u is the displacement vector, and ϑϑ is the microrotation vector at a point on Σ.

The position vector of a point on Σ is r = r(q1, q2).
We shall require the main and dual bases on Σ, denoted by rα and rβ , respectively. They are determined by the formulas

rα =
∂r

∂qα
, rα · rβ = δβ

α, n · rβ = 0, α, β = 1, 2,

where δβ
α is the Kronecker symbol and n is the unit normal to Σ.

The dynamical equations are

∇ ·T + q = ρü + ρΘ1 · ϑ̈, ∇ · M + T× + m = ρΘΘT
1 · ü + ρΘ2 · ϑ̈, (2)

where T and M are surface stress and couple stress tensors, respectively, ∇ ≡ rα ∂
∂qα is the surface nabla operator, an

overdot denotes differentiation with respect to time t, ρ is the shell surface density, ΘΘ1 and ΘΘ2 are the inertia tensors, and

q and m are distributed surface forces and couples, respectively. The tensor ΘΘ2 is symmetric with ΘΘT
2 = Θ2. Here T×

denotes the vectorial invariant of the second-order tensor T [14].

On some portion of the boundary the kinematic conditions

u
∣

∣

ω1

= u0(s, t), ϑϑ
∣

∣

ω3

= ϑϑ0(s, t), (3)

are specified. On the rest of the boundary the conditions are static:

ν ·T
∣

∣

ω2

= ϕϕ(s, t), ν · M
∣

∣

ω4

= ℓℓ(s, t). (4)

Here u0(s, t) and ϑ0(s, t) are given vector functions of the length parameter s and time t, defining the displacements and

microrotations of the shell edge, and νν is the external normal vector to the shell contour ω ≡ ∂Σ such that ν · n = 0. The

functions ϕ(s, t) and ℓℓ(s, t) determine the surface stresses and stress couples on the edge. We have ω = ω1∪ω2 = ω3∪ω4,

where ω2 = ω\ω1 and ω4 = ω\ω3.

The linear strain measures take the form

ǫǫ = ∇u + A× ϑϑ, κκκ = ∇ϑϑ, (5)

where ǫ and κκ are non-symmetric surface strain and bending strain tensors, respectively, and I and A = I−n⊗n = rα⊗rα

are the three- and two-dimensional unit tensors, respectively.

The constitutive equations for an elastic shell are represented through the strain energy density U = U(ǫǫ, κ):

T =
∂U

∂ǫǫ
, M =

∂U

∂κκ
. (6)

For an isotropic shell, U is a quadratic form with respect to the components of ǫ and κκ [11]:

2U = α1tr
2ǫ + α2tr ǫ̃2 + α3tr

(

ǫ̃ · ǫ̃T
)

+ α4n · ǫǫT · ǫ · n

+ β1tr
2κ + β2tr κ̃2 + β3tr

(

κ̃ · κ̃T
)

+ β4n · κT · κκ · n,

ǫ̃ǫ = ǫ · A, κ̃ = κ ·A, (7)

where αk and βk (k = 1, 2, 3, 4) are elastic moduli. Substituting (7) into (6), we get

T = α1Atr ǫ + α2ǫ̃
T + α3ǫ̃ǫ + α4(ǫ · n)n, M = β1Atrκκ + β2κ̃κ

T + β3κ̃ + β4(κκ · n)n. (8)

Suppose the energy density U is a positive definite function of its arguments; that is, there exists a positive constant C

such that

U(ǫǫ, κ) ≥ C(‖ǫǫ‖2 + ‖κκ‖2). (9)

To avoid constants and norms carrying units, we suppose that all quantities and equations have been cast in dimensionless

form. The norm of the second order tensor X is defined by ‖X‖ =
[

tr (X · XT )
]1/2

= (XmnXmn)
1/2

, where Xmn and

Xmn are co- and contravariant components of X in a basis, respectively.



Inequality (9) implies the following inequalities for the elastic moduli:

2α1 + α2 + α3 > 0, α2 + α3 > 0, α3 − α2 > 0, α4 > 0,
(10)

2β1 + β2 + β3 > 0, β2 + β3 > 0, β3 − β2 > 0, β4 > 0.

The set of Eqs. (2)–(4), (5), and (8) constitutes a linear boundary value problem in the unknown variables u and ϑ; the

equations describe the motion of a micropolar shell in the case of small deformations.

We consider the coordinates q1, q2 on Σ related to the lines of principal curvature. The basis vectors e1 and e2 related

to q1, q2 are orthogonal; they are eigenvectors of the curvature tensor

B ≡ −∇n = −
1

R1
e1 ⊗ e1 −

1

R2
e2 ⊗ e2.

Here R1, R2 are the radii of the principal curvatures.

In this basis, u and ϑϑ are represented as

u = u1e1 + u2e2 + wn, ϑϑ = ϑ1e1 + ϑ2e2 + ϑ3n.

The nabla operator takes the form

∇ =
1

A1
e1

∂

∂q1
+

1

A2
e2

∂

∂q2
,

where the Aα are the Lamé coefficients, A1 = (r1 · r1)
1/2 and A2 = (r2 · r2)

1/2. The strain tensors (5) are

ǫ = εαβeα ⊗ eβ + εαeα ⊗ n, κ = καβeα ⊗ eβ + καeα ⊗ n, (11)

where

ε11 =
1

A1

∂u1

∂q1
+

1

A1A2

∂A1

∂q2
u2 +

w

R1
, ε22 =

1

A2

∂u2

∂q2
+

1

A1A2

∂A2

∂q1
u1 +

w

R2
,

ε12 =
1

A1

∂u2

∂q1
−

1

A1A2

∂A1

∂q2
u1 − ϑ3, ε21 =

1

A2

∂u1

∂q2
−

1

A1A2

∂A2

∂q1
u2 + ϑ3,

ε1 =
1

A1

∂w

∂q1
+

u1

R1
+ ϑ2, ε2 =

1

A2

∂w

∂q2
+

u2

R2
− ϑ1,

κ11 =
1

A1

∂ϑ1

∂q1
+

1

A1A2

∂A1

∂q2
ϑ2 +

ϑ3

R1
, κ22 =

1

A2

∂ϑ2

∂q2
+

1

A1A2

∂A2

∂q1
ϑ1 +

ϑ3

R2
,

κ12 =
1

A1

∂ϑ2

∂q1
−

1

A1A2

∂A1

∂q2
ϑ1, κ21 =

1

A2

∂ϑ1

∂q2
−

1

A1A2

∂A2

∂q1
ϑ2,

κ1 =
1

A1

∂ϑ3

∂q1
+

ϑ1

R1
, κ2 =

1

A2

∂ϑ3

∂q2
+

ϑ2

R2
.

2 Weak setup of boundary-value problems of statics

The equilibrium equations for the shell and the boundary conditions take the form

∇ ·T + q = 0, ∇ · M + T× + m = 0, (12)

u
∣

∣

ω1

= u0(s), ϑϑ
∣

∣

ω3

= ϑϑ0(s), ν · T
∣

∣

ω2

= ϕϕ(s), ν · M
∣

∣

ω4

= ℓℓ(s).

The boundary value problem (12) can be formulated as a variational problem. Lagrange’s variational principle for an

elastic micropolar shell starts with the formulation of the total potential energy functional

J(u, ϑϑ) =

∫

Σ

U(ǫǫ, κ)dΣ − A(u, ϑ), (13)

where the potential of external loads A(u, ϑ) is

A(u, ϑϑ) =

∫

Σ

(q · u + m · ϑ) dΣ +

∫

ω2

ϕϕ · u ds +

∫

ω4

ℓ · ϑϑ ds.



The functional J(u, ϑ) is considered on the set of twice continuously differentiable fields of displacements and microrota-

tions that satisfy (3). The pair (u, ϑ) that satisfies (12) is a stationary point of J(u,ϑϑ). Lagrange’s stationary principle is

minimal: on the equilibrium solution, the functional (13) attains its minimum.

The first variation of J is

δJ(u, ϑ) =

∫

Σ

(

T · ·δǫǫT + M · ·δκκT
)

dΣ − δA(u, ϑ), (14)

where

δA(u, ϑ) =

∫

Σ

(q · δu + m · δϑϑ) dΣ +

∫

ω2

ϕϕ · δu ds +

∫

ω4

ℓℓ · δϑϑ ds, (15)

and the symbol “··” stands for the double dot product in the space of second order tensors, for example, X··Y = XmnY nm.

The equation δJ(u, ϑ) = 0 serves as the basis for introduction of a weak (or generalized, or energy) solution of the problem

(12). In spanned form, it is
∫

Σ

(

T(ǫ) · ·δǫǫT + M(κ) · ·δκκT
)

dΣ −

∫

Σ

(q · δu + m · δϑϑ) dΣ −

∫

ω2

ϕ · δu ds −

∫

ω4

ℓℓ · δϑ ds = 0. (16)

First we introduce the energy space. For simplicity, we suppose that Σ is sufficiently smooth and that the coordinate

lines are the lines of principal curvature. Hence R1, R2 are the principal radii of curvature of Σ at a point. Suppose R1, R2

are continuous functions on Σ. Also suppose and that Lamé’s coefficients A1, A2 of Σ are continuously differentiable on

Σ and do not degenerate at any point. Hence there is a constant m > 0 such that

A1 ≥ m, A2 ≥ m. (17)

In addition, suppose that in the coordinate plane q1, q2 the domain has a piecewise smooth boundary contour possessing

the cone property. This means that there exists a finite triangle such that each point of the contour can be touched by the

vertex of the triangle while the triangle lies wholly within the domain. The cone condition is necessary for the application of

Sobolev’s embedding theorem [1]. The existence–uniqueness theorems established below are valid for general coordinates

q1, q2 that can degenerate at certain points of Σ, provided that these singular points can be removed via a local change of

coordinates (as is possible for spherical coordinates on a sphere).

Let C1 be the set of vector functions U = (u, ϑ) = (u1, u2, w, ϑ1, ϑ2, ϑ3) having continuously differentiable compo-

nents on Σ̄ that satisfy the boundary conditions

u
∣

∣

ω1

= 0, ϑϑ
∣

∣

ω3

= 0. (18)

On C1 we introduce the energy inner product

(U, δU)e =

∫

Σ

(

T(ǫ) · ·δǫǫT + M(κ) · ·δκT
)

dΣ, (19)

where δU = (δu, δϑ) ∈ C1. It is clear that the form (·, ·)e satisfies the inner product axioms on C1.

Definition 2.1. The completion of the set C1 in the norm induced by the scalar product (19),

‖U‖e = (U, U)1/2
e ,

is called the energy space E .

Lemma 2.2. In the space E the energy norm is equivalent to the Sobolev norm

‖U‖
2
(W 1,2(Σ))6 ≡

3
∑

i=1

(

‖ui‖
2
W 1,2(Σ) + ‖ϑi‖

2
W 1,2(Σ)

)

, U = (u1, u2, u3, ϑ1, ϑ2, ϑ3).

P r o o f. By the smoothness properties of Σ, there is a constant c1 such that for any U ∈ E we have

‖U‖e ≤ c1 ‖U‖(W 1,2(Σ))6 .

The reverse inequality is established by applying Theorem 10.8 of [19]. The norm ‖U‖
2
e has the structure required by that

theorem:

‖U‖
2
e =

∫

Σ

[

P2(U) + P1(U)
]

A1A2 dq1 dq2,



where

P2 = U(ǫ∗, κκ∗)

and the components of ǫǫǫ∗,κκκ∗ are the principal parts of ǫǫǫ, κκ:

ε∗11 =
1

A1

∂u1

∂q1
, ε∗22 =

1

A2

∂u2

∂q2
, ε∗12 =

1

A1

∂u2

∂q1
, ε∗21 =

1

A2

∂u1

∂q2
,

ε∗1 =
1

A1

∂w

∂q1
, ε∗2 =

1

A2

∂w

∂q2
,

κ∗

11 =
1

A1

∂ϑ1

∂q1
, κ∗

22 =
1

A2

∂ϑ2

∂q2
, κ∗

12 =
1

A1

∂ϑ2

∂q1
, κ∗

21 =
1

A2

∂ϑ1

∂q2
,

κ∗

1 =
1

A1

∂ϑ3

∂q1
, κ∗

2 =
1

A2

∂ϑ3

∂q2
.

Each term of P1 contains no more than one derivative of ui or ϑi as a factor. The idea of Theorem 10.8 of [19] is to split

‖U‖
2
e into two parts. The first part

∫

Σ
P2(U)A1A2 dq1 dq2 contains the principal part of ‖U‖

2
e, which can be shown to be

equivalent to the squared norm of some Sobolev space. In this case, it is seen that ‖U‖
2
e is one of the equivalent norms of

the subspace of (W 1,2(Σ))6 consisting of elements satisfying (18). Each term of the second part
∫

Σ P1(U)A1A2 dq1 dq2

conforms to the principal part; at least one of its factors is a component of U without the differentiation. To apply Theorem

10.8 we should check two conditions. In our nomenclature, the first is as follows:

‖U‖2
e ≥ 0 and ‖U‖2

e = 0 implies U = 0 in Σ.

It is satisfied. Indeed, ‖U‖
2
e ≥ 0 and ‖U‖

2
e = 0 implies U = 0 in Σ. In our nomenclature, the second condition of the

theorem reads as follows. For any sequence {Un} ⊂ E weakly convergent to zero in (W 1,2(Σ))6 and such that ‖Un‖e → 0
as n → ∞, it follows that

‖Un‖(W 1,2(Σ))6 → 0.

We show this. As {Un} converges weakly to zero in (W 1,2(Σ))6, by Sobolev’s embedding theorem [1] each sequence of

the components of {Un} converges strongly to zero in L2(Σ). It is seen that the terms of the form

∫

Σ

k(q1, q2)
∂an

∂qi
bnA1A2 dq1dq2 and

∫

Σ

k(q1, q2) anbnA1A2 dq1dq2

with continuous coefficients k, where an, bn are the sequences of the components of {Un}, tend to zero as n → ∞. Thus

∫

Σ

P1(Un)A1A2 dq1dq2 → 0 as n → ∞.

From ‖Un‖e → 0 it follows that
∫

Σ
P2(Un)A1A2 dq1dq2 → 0 as n → ∞. By the form of P2 and its positive definiteness as

a quadratic form, all the sequences of the first derivatives of the components of {Un} converge to zero in L2(Σ). Therefore

‖Un‖W 1,2(Σ) → 0. This completes the proof.

Let us assume there exists a vector function U
∗ = (u∗, ϑ∗) ∈ (W 1,2(Σ))6 that takes the geometric boundary values of

the problem:

u∗
∣

∣

ω1

= u0(s), ϑ
∗
∣

∣

ω3

= ϑ
0(s).

If the geometric conditions are given on the whole boundary contour, which is smooth, then U
∗

exists if the components of

u0 and ϑ
0

belong to H−1/2(ω). For the mixed problem, we only can suppose the existence of U
∗

.

We will seek a solution of the problem under consideration in the form

Ũ = U + U
∗

.

Substituting this into (16), we obtain

(U, δU)e = −(U∗

, δU)e +

∫

Σ

(q · δu + m · δϑ) dΣ +

∫

ω2

ϕϕ · δu ds +

∫

ω4

ℓ · δϑ ds. (20)



Definition 2.3. A weak (energy) solution of the mixed problem (8), (11), (12) is Ũ = U + U
∗

such that U ∈ E satisfies

Eq. (20) for any δU ∈ E .

Definition 2.3 shows that we have reduced our problem to a problem with respect to U in the space E . Clearly the right-

hand side of (20) is a linear functional with respect to δU ∈ E . The Sobolev embedding theorem states that the embedding

operators from W 1,2(Σ) to Lp(Σ) and Lq(ω) are continuous for any p, q < ∞. By Lemma 2.2, all terms on the right-hand

side of (20) are continuous functions with respect to δU ∈ E . For example, consider one of the terms:

∣

∣

∣

∣

∫

Σ

(

q · δu
)

dΣ

∣

∣

∣

∣

≤

(
∫

Σ

‖q‖p/(p−1)
dΣ

)(p−1)/p( ∫

Σ

‖δu‖p
dΣ

)1/p

≤ c1 ‖δu‖(W 1,2(Σ))3

≤ c2 ‖δu‖e

with constants ck not dependent on δU ∈ E . At last (U∗

, δU)e is the result of formal substitution of U
∗

to the inner product

(·, ·)e. As U
∗ = (u∗, ϑ∗) ∈ (W 1,2(Σ))6 the components of T(ǫǫǫ(U∗)) and M(κκκ(U∗)) belong to L2(Σ) and (U∗

, δU)e is

a linear continuous functional in E . So by the Riesz representation theorem for a linear continuous functional in a Hilbert

space, there exists a uniquely defined element U
∗∗ ∈ E such that

−(U∗

, δU)e +

∫

Σ

(q · δu + m · δϑ) dΣ +

∫

ω2

ϕϕ · δu ds +

∫

ω4

ℓ · δϑ ds = (U∗∗

, δU)e.

Eq. (20) takes the form

(U, δU)e = −(U∗

, δU)e + (U∗∗

, δU)e. (21)

It follows that

U = −U
∗ + U

∗∗ ∈ E ,

which is uniquely defined. Thus we have proved the existence of a weak (energy) solution of the problem under consider-

ation. As U
∗

is not defined uniquely, we must also prove uniqueness of the weak solution. Suppose there exist two weak

solutions of the problem, Ũ1 and Ũ2. Their difference Ũ2 − Ũ1 ∈ E satisfies

(Ũ2 − Ũ1, δU)e = 0.

So Ũ2 = Ũ1. Thus we have proved

Theorem 2.4. The mixed boundary value problem (8), (11), and (12), describing shell equilibrium, has a unique weak

(energy) solution Ũ ∈ (W 1,2(Σ))6.

The method of the proof of the theorem uses the ideas developed by I.I. Vorovich for nonlinear problems of shallow

shells [19]. Some other methods of the proof of existence theorems in shell theory can be found in [8].

One reason we study existence of a weak solution is that the techniques used in the proof permit us to establish conver-

gence of the Finite Element Methods (FEM) for these problems. As the components of the unknown variables that appear in

the expression for J contain only first derivatives of u and ϑ, it makes sense to consider only “conforming” finite elements

that belong to the energy space. So we introduce the set of finite elements (uhk, vhk) that belong to E . The parameter h is

the largest diameter of the support of the finite elements (uhk, vhk). We seek a finite element approximation to the solution

(uh, ϑh) in the form

uh = u∗ +
∑

k

ckuhk, ϑh = ϑ
∗ +

∑

k

ckvhk. (22)

Let us write Uh = (uh, ϑh). Substituting this into (20), and taking δU first as (uh1, vh1), then as (uh2, vh2), and so on, we

obtain the system of linear algebraic equations in the constants ck which are known as the FEM equations. It is clear that

we can repeat the considerations of the last theorem, but in the finite dimensional space having basis (uhk, vhk); hence we

immediately find that the FEM algebraic system has an unique solution.

Now suppose the set of all finite elements (uhk, vhk) as h → 0 is a complete set in E . A standard procedure [9] permits

us to assert that the sequence Uh of FEM approximations for the problem under consideration converges strongly to the

weak solution of the problem in the norm of (W 1,2(Σ))6.



Now we wish to touch on the equilibrium problem for a free shell whose boundary has no fixed point. Eq. (16) continues

to hold in this situation. The set of admissible δU is (W 1,2(Σ))6. The zero of the norm ‖U‖e = 0 is the set of vector

functions known as rigid displacements of Σ; these have the form

u = u0 + ϑ0 × r, ϑ = ϑ0

with arbitrary constant vectors u0, ϑ0 and the position vector r. Taking δU from the class of rigid displacements in (16),

we get two vector equations

∫

Σ

q dΣ +

∫

ω

ϕds = 0,

∫

Σ

(q × r + m) dΣ +

∫

ω

ϕϕ × r ds +

∫

ω

ℓℓℓ ds = 0.

These are the classical mechanical equations of the self-equilibrium of the shell as a rigid body. They are necessary for

existence of a solution of the equilibrium problem for a free shell. It can be shown that under this additional condition on

the external forces, the equilibrium problem for the free shell has a weak solution U in (W 1,2(Σ))6. This solution is unique

up to rigid displacements, so it takes the form

U = (u + u0 + ϑ0 × r, ϑ + ϑ0)

with arbitrary vector constants u0 and ϑ0.

3 Eigenvalue problems

Consider the problem of finding the eigenfrequencies of a micropolar shell. Rayleigh’s variational principle takes the

following form.

On the set of functions u, ϑ with boundary conditions u
∣

∣

ω1

= 0, ϑ
∣

∣

ω3

= 0 that obey the constraint

K(u◦,ϑϑ◦) ≡

∫

Σ

ρ

(

1

2
u◦ · u◦ + u◦ · Θ1 · ϑ

◦ +
1

2
ϑ◦ · Θ2 · ϑ

◦

)

dΣ = 1,

the eigenmodes of the shell are stationary points of the strain energy functional

E(u◦, ϑϑ◦) =

∫

Σ

U(ǫ◦, κ◦) dΣ, (23)

where ǫ◦ = ∇u◦ + A ×ϑϑ◦ and κ◦ = ∇ϑ◦.

Rayleigh’s principle also includes the converse statement: on the set of functions u, ϑ satisfying the restrictions u
∣

∣

ω1

=

0 and ϑϑ
∣

∣

ω3

= 0, the stationary points of E are the eigenmodes. The solutions of the eigenoscillation problem arise in the

dynamic problem when one seeks a solution in the form u = u◦eiωt, ϑϑ = ϑϑ◦eiωt. Hence u◦ and ϑ◦ are the amplitudes of

the oscillations of the displacements and microrotations.

Rayleigh’s quotient is

R(u◦, ϑ◦) =
E(u◦,ϑϑ◦)

K(u◦, ϑ◦)
.

The smallest eigenfrequency of the shell is equal to the minimum value of the functional R.

Let us formalize these considerations in the space E . We will omit the superscript ◦ in what follows. The equation for

the eigenproblem in E takes the form

(U, δU)e = λ〈U, δU〉, (24)

where λ is the squared eigenfrequency of the problem, U �= 0, and

〈U, δU〉 =

∫

Σ

ρ
(

u · δu + u ·ΘΘ1 · δϑ + δu ·ΘΘ1 · ϑ + ϑ · Θ2 · δϑ
)

dΣ.



Applying the Riesz representation theorem for a linear continuous functional in a Hilbert space (cf., [15] (Sect. 2.15)),

we can write

〈U, δU〉 = (AU, δU)e

for some linear operator A in E . So we have obtained an operator eigenvalue problem:

U = λAU.

The operator A is continuous. By Sobolev’s embedding theorem [1], the embedding operator from W 1,2(Σ) to L2(Σ) is

compact and hence A is also compact. From the symmetry of 〈U, δU〉 with respect to the arguments, it follows that A is

selfadjoint. Finally, 〈U, U〉 ≥ 0 and 〈U, U〉 = 0 implies U = 0 almost everywhere in Σ, which means that A is positive

definite. Now applying Theorem 2.14.2 of [15], which states certain spectral properties of the equation U = λAU when A

is linear, compact, self-adjoint, and positive definite, we get the following.

1. The spectrum λk (k = 0, 1, 2, . . .) of the mixed problem is an infinite set of positive numbers. It is discrete and has no

finite accumulation points. The smallest eigenvalue λ0 is nonzero.

2. To each λk there corresponds no more than a finite set of linearly independent eigenvectors Ukr (r = 1, . . .mk).

3. It is possible to select a set of eigenvectors Ukr that is orthonormal and complete in E . This set is also orthogonal with

respect to the inner product 〈·, ·〉.

4 Weak solutions for dynamical problems

Using the results for the equilibrium problems, we can introduce weak solutions for dynamics problem. For simplicity we

take homogeneous boundary conditions

u
∣

∣

ω1

= 0, ϑϑ
∣

∣

ω3

= 0, ν · T
∣

∣

ω2

= 0, νν · M
∣

∣

ω4

= 0

and supply the dynamical equations (2) with the initial conditions

U(r, t)

∣

∣

∣

∣

t=0

= U0,
∂U

∂t

∣

∣

∣

∣

t=0

= V0. (25)

To obtain the equation needed for a weak formulation of the problem, we dot-multiply the first equation in (2) by u

and the second equation by ϑ. After adding the results, we integrate over Σ and then over the time interval [0, T ]. Taking

δU = 0 at time T and integrating by parts, we get

∫ T

0

(U, δU)e dt =

∫ T

0

〈

∂U

∂t
,
∂δU

∂t

〉

dt + 〈V0, δU〉

∣

∣

∣

∣

t=0

+

∫ T

0

∫

Σ

(q · δu + m · δϑϑ) dΣ dt. (26)

We seek a weak solution in the space defined by the inner product

(U, V)H[0,T ] =

∫ T

0

(U, V)e dt +

∫ T

0

〈

∂U

∂t
,
∂V

∂t

〉

dt.

The energy space H(0, T ) is defined as the completion of the set of vector functions U(r, t) that are smooth on Σ × [0, T ]
and that satisfy the boundary conditions

u
∣

∣

ω1

= 0, ϑϑ
∣

∣

ω3

= 0.

Its subspace H0(0, T ) is the completion of the subset of vector functions that vanish at t = T .

Now we can define the weak solution to the dynamical problem. We say that U ∈ H(0, T ) is a weak solution to the

dynamical problem if it satisfies (26) for any δU ∈ H0(0, T ) along with the initial condition

U

∣

∣

∣

∣

t→0

= V0 in (L2(Σ))6.

The proof of existence–uniqueness theorems for weak solutions to hyperbolic problems is quite traditional (cf. [17] or

Sect. 4.6 of [13]) so we present only the conditions under which a weak solution to the dynamical problem exists and is

unique:

U0 ∈ E , V0 ∈ (L2(Σ))6, q, m ∈ L2(Σ × [0, T ]).

This finalizes our study of the weak setup for typical boundary value problems of linear micropolar shell theory.



Conclusion

Within the framework of micropolar or 6-parametric linear shell theory, we prove the existence and uniqueness of weak

solutions to boundary value equilibrium problems. The key point in the proof is the introduction of the energy functional

space E and the proof that the norm of E is equivalent to the norm of the Sobolev space (W 1,2(Σ))6. This result allows us

to show existence and uniqueness of solutions to dynamical problems and to establish spectral properties similar to those

for bounded bodies in linear elasticity.

Is is well known that the weak formulation of boundary value problems permits us to introduce various versions of the

finite element method that is used in engineering calculations. Based on the proofs of existence theorems, the traditional

considerations for various versions of the FEM demonstrate strong convergence of the finite element approximations to the

weak solution in E .

The micropolar version of shell theory, being in precision equivalent to the classical Kirchhoff–Love theory, is preferable

for numerical calculations. That is, unlike the Kirchhoff–Love model which contains a fourth-order differential equation

for the transversal displacement w, all equations of micropolar theory are of second order. In FEM practice using the

Kirchhoff–Love theory, various finite element schemes for w are proposed; these schemes generally converge more slowly

than those for FEM approximations in the micropolar theory.

The Mindlin–Reissner theory possesses a similar advantage regarding the order of the equations as compared with

the Kirchhoff–Love theory. However, the linear version of the Mindlin–Reissner’s theory contains five independent scalar

variables of the components of u and ϑϑϑ as ϑϑϑ · n = 0. A relative advantage of the micropolar shell theory is that it uses

the complete 3D kinematics. This allows us to describe multi-folded shells, shells with junctions, etc., which is impossible

with Mindlin–Reissner’s theory.

Hence the investigation of boundary value problems in micropolar theory deserves special attention from engineers.

Numerous examples of FEM calculations with the micropolar theory of shells can be found [3–6].
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[3] J. Chróścielewski, J. Makowski, and W. Pietraszkiewicz, Statics and Dynamics of Multyfolded Shells. Nonlinear Theory and

Finite Element Method, in Polish (Wydawnictwo IPPT PAN, Warszawa, 2004).
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