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S u m m a r y .  - The aim of the present paper is to study a random equation of the general form 
x(t, w) = (Ux)(t, ~o), t e R+ and its special case a nonlinear random functional integral equa- 
tion given by 

gi(~) gin(t) 

0 0 

The existence and uniqueness of a random solution, a second-order stochastic process, of the 
equations is considered. 

l .  - I n t r o d u c t i o n .  

l~andom equations of various types have been considered recently by many 
scientists, for example [1], [10] and [11]. One of the most common types of random 
equations arising naturally in the study of physical, biological and chemical phe- 
nomena are the random or stochastic integral equations, [1-2], [5-9], [11-12]. 

In this paper, we shall first study-a random equation of the general form 

(1.1) x(t, ~o) = ( Ux)(t,  co). 

The particular cases of equation (1.1) are the Volterra and Fredholm random integral 
equations, the random functional integral equations and others. Also the random 
differential equations the random functional differential equations and in particular 
the random differential equations with a deviated argument of the neutral type 
can be reduced to the random equation of the form (1.1). 

The general method of proof of the existence theorems of the solution of equa- 
tion (1.1) will be to appeal to the comparison method. This method based on the 
convergence of successive approximations produced by a comparison operator A 
associated with the operator U. The abstract form of comparison method was 
introduced by WAZEWSKI [13] in the case of deterministic equation. 

(*) Entrata in Redazione il 10 gennaio 1978. 
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The purpose of this paper is to analyse the class of linear comparison operators A 
associated with the operator U and having the sufficient properties to ensure the 
existence, uniqueness and convergence of successive approximations for the special 
case of equation (1.1). Specifically, we shall study a nonlinear random functional 
integral equation given by  

(1.2) 

where 
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(i) t e R + ~ [ 0 ,  ~ c~), and coeQ, the supporting set of a complete probabil- 
ity measure space (f2, 5 ,  P);  

(ii) x(t,  co) is the unknown random function defined o n / G  with values in /~; 

(iii) F( t ,  u l ,  . . . ,  u~ ,  x l ,  ...~ x~, co) is map from R+×R~+~×Q into 9~; 

(iv) ]~(t, s, x ,  e)), j = 1, . . . ,  m ,  the stochastic kernels, are a map from R+ ×R+ × 
x R x . ( 2  into /~; 

(v) g~(t), hd t ) ,  j -~ 1, . . . ,  m ,  i ~- 1, . . . ,  p~ are .non-negative scalar functions defin- 
ed on R+. 

Further assumptions concerning the functions in equation (1.2) will be stated 
in section 2. 

The equation (1.2) is generalization of equations studied by TuRo [11] (if 
m = p = 1 and the interval of integration is compact) and M~TO~ and TSOKOS [8] 
(if t'(t ,  u~, ..., u~, x~, ..., x~, ~) = h(t, ~o) q- ul + . . .  ~ u~, /~(t, s, x, o~) = k ~ ( t -  s, co)q~(x) 
and g ; ( t ) =  t). 

The particular case of equation (1.2) (if t'~(t~ u~, . . . ,  u ~  x ~  . . . ,  x ~  ¢o) = h(t~ x~)q- u~ 
and grit) -~ t, hd t  ) = t) is equation considered by TSOKOS and PADGETT [11], MILTON 
and TSOKOS [6-7], ttA~DI~_A~ and TSOKOS [2], and also (if moreover/~ = h(t, e)) q- ul)  
LEE and PADGETT [5], 

Equation (1.2) is the stochastic analog of the deterministic equation studied 
recently by  KwAPISZ and Tu~o [3-4]. 

The random neutral-differential equation 

y'(t, ~ ) =  ~(t,  y(gl(t), ~),  ..., y(g~o(t), ~) ,  y'(~l(t), ~),  ... 

. . ,  

can be reduced to the particular case (if /~(t, s, x ,  w ) =  x)  of equation (1.2). 
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2.  - P r e l i m i n a r i e s .  

Let  L~(~9)= L~(~9~ $-, P)  denote the space of all functions z(o~) f rom ~9 into R 

such tha t  

Tha t  is, /~(~9) is the space all second-order real valued variables. For  convenience, 
we write 

D 

We require for the formulat ion of the random equation (1.2) the following as- 

sumptions:  

(i) F(t,  u~(t, co), ..., u,~(t, o~), x~(t, ~o), ..., x~(t, co), co) must  for each t ~  R+ belong 
to /~(~9) and F(t, u~, ..., u~, x~, ..., x~, (o) is an L~(f2)-continuous in tER+ for each 

u~ ,x~eR ,  j - - - -1 , . . . ,m ,  i - - - -1 , . . . , p ;  

(ii) ]j(t, s, x(s, e)), (o), j = 1, ..., m, are the continuous maps f rom A ---- {(t, s ) :  

0 < s < t <  oo} into L~(~9); 

(iii) the  non-negative scalar functions g~(t) and h~(t) are continuous on R+ 
and gj(t)<t, h~(t)<<.t, t eR+,  j = 1, ..., m, i : 1, ..., p. 

DEFINITION 2.1. - We call x(t, w) a random solution of the random equations 
(1.1) or {1.2) ff for each t eR+,  x(t, co) is an element of L,(~9) and satisfies the equa- 
tions (1.1) or (1.2) P-a.e.  

DEFINITION 2.2. -- We shall denote by  C(R+, L~(~2)) space of all continuous maps 
x(t, co) f rom R+ into L2(~) with the topology of uniform convergence on compacta.  

l~ote tha t  it can be shown [14] tha t  the space C(R+~ L2(#2)) is a locally convex 
space whose topology is defined by  countable family of semi-norms given b y  

[Ix(t, ~)i]~ = sup I]x(t, ~o)i]L,, 
0 ~ < ~ n  

: i~ 2~ ... 

DEFInitION 2.3. - A sequence {x1:(t, (o)} of elements of space C(R+, L~(~)) will 
be called a Cauchy sequence ff for every  e > 0 and ~ there exists an N such tha t  
for k > N  and l > N  we have 

Tixk(t, ~ , ) -  x,(t, ~)tI~, < ~ .  
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I t  is clear tha t  the space C(R+, L~(~)) is complet% tha t  is, every Cauchy sequence 
of its elements has a l imit in C(R+, L~(D)).. 

B y  Co(Re,/~+) we denote the  class of all Re-valued functions upper  semicon- 
t inuous on /~+. 

3. - Existence theorem for random eqamtion (1 .1 ) .  

We introduce 

ASS~3WPTION A. - Suppose tha t  

1) there  exists an operator  A: Co(Re, Re) -~ Co(Re, Re), which has the follow- 
ing properties:  

a) if u e C(R+,/~+) and v : Au, then  v e C(R+, Re), (C(R+, Re) denote the class 
of all non-negative continuous functions on Re), 

b) if u, v eC(R+, Re) and u<v,  then  Au<Av,  

c) if u~ e C(R+, t~+), u~+1< u~, n---- O, 1, ..., u~--> u, then  Au~---> Au; 

2) the operator  U: C(R+, L~(~))-> C(R+L~(~)) fulfils the condit ion 

(3.1) ll(~Tx)(t, o~)--(W)(t, ~,~)ITL~<A(IIx(t, o~)- ~(t, ~)]ILJ, 

for x(t, o~), ~(t, ~o) e ¢(R+, L~(~)). 

Assw~PTIO~ B(r). - Suppose tha t  

1) for a given function r e  C(R+, It+) there exists ~ solution uoe C(R+, Re) of 
the  inequali ty 

A u ~  r < u  ; 

2) the function u = 0 is the unique solution of the  inequal i ty  

u < A u  

in the class Co(Re, Re, uo) ~ (u: u e  C0(R+, Re), ltull*< ~}, ~here 

lluii* ~- inf{c: ~<CUo, cel~+}. 

We construct  a sequence as follows: 

(3.2) u , + i :  Au,~, n : O, i, . . . ,  

where uo is as in t roduced in Assumption B(r). 
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Similarly as in [3], b y  induction and Dini's theorem we can prove the  following 

I ~ E ~  3.1. - If  Assumption B(r) and the condition 1) of Assumption A are 
satisfied, then 

O<<.u.+~<~u., n ~ 0 , 1 , . . . ,  and u . ~ 0 ,  

where the sign ~ denotes uniform convergence in any compact  subset  of R+. 
Now, we define the sequence of successive approximations {x~(t, e~)} by  

(3.3) x~+~(t, c~) : (Ux.)(t, o~), n-= O, 1, ..., t eR+ ,  

where xo(t, w) is an arbitrarily fixed element of C(R+, I~(Y2)). 

THEOtCE~ 3.1. -- If  Assumptions A and B(r) are satisfied for 

r(t) dA ][( Uxo)(t, o))-  xo(t, o~)]l~, 

then there exists a random solution ~(t, 09) E C(/~+, L~(f2)) of equation (1.1), and the 
following estimations 

(3.4) li~(t,o~)--x~(t, co)iIL<~u~(t), n =  0, 1, ..., t~R+,  

hold true. 
The solution ~(t, o)) of (1.1) is unique in the class 

C(n+, L~(9), Uo) ~ {x(t, co): x(t, ~) e C(R+, L~(9)), I[x(t, ~) -- Xo(t, co)I[~e Co(/?+, R+, Uo)} 

where Co(R+, It+, uo) is defined in Assumption B(r). 

PROOF. - The following estimation 

(3.5) llx~+~(t, ~o) -  x~(t, ~o)ilL~<u~(t), n, k = 0, 1, ..., t e R + ,  

is easily obtained by  induction. Hence and from u ~  0, n --~ c~ (see Lemma 3.1) 
it follows that  {x,,(t, (o)} is the Cauchy sequence (see Definition 2.3) in C(R+, L2([2)). 
Since C(R+, L~(~2)) is complete space, there exists an ~(t, co) eC(R÷, L~([2)) such 
that  x.(t, (o)-->~(t, ~). If  k--~ c~, then (3.5) yields estimation (3.4). B y  the esti- 
mat ion 

li~(t, 09) -  (U~)'(t, og)IIL,< Hie(t, co)- x~(t, co)llL - ~ H (Ux.~_~)(t, o ) ) -  (U~)(t, ~)l[z~, 
< u~(t) ~- Au._~ ------ 2u~(t), n ---- 0, 1, ..., t e /~+,  

it follows that  the random function Y~(t, o~) satisfies equation (1.1). 
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To prove uniqueness, suppose ~(t, co) and ~(t~ co) are two solutions belonging to 
C(R+, L~(t~), Uo). I t  is easy to prove tha t  II~(t, co) -- ~(t, ~o)ItL e Co(R+, R+ %) and 

tl~(t, co ) -  2(t, co)II~, < A(lI~(t, co ) -  N(t, co)IlL~) . 

Hence and from Assumption B(r) it  follows tha t  112(t, co) -  2(t, co)IlL = 0. Thus the  
proof of theorem is complete. 

4 .  - L e m m a  a n d  s o m e  r e m a r k s .  

I t  follows from the above general considerations tha t  the fundamental  idea in 
proving of the existence and uniqueness of a solution of random equation (1.1) or 
its special cases is associate the operator U to an operator A satisfying the ine- 
quali ty (3.1) and such tha t  the Assumption B(r) is fulfilled. 

Iqow we consider the comparison operator A defined by  

(4:.1) A u  = K u - ~  Lu  , 

where 

(Ku)(t) ~ ~ kj(t) f u(s) ds , 
~ = 1  

0 

9 

(Lu)(t) d~ ~ l~(t)u(h~(t)) , 
i = 1  

and /~j, I~, gj, h~e C(R+, R+), gj(t)<t, h~(t)<t, t e R + ,  j - ~  1, ..., m, i =  1, ..., p. 

I ~ E ~ K  4.1. -- By  using Banaeh fixed point theorem it is to prove tha t  Assump- 
tion B(r) for any  r e  C(R+,/~+) is fulfilled for A defined by  (4.1) provided 

(4.2) ~ k~(t)gj(t) ~- ~ l~(t) < 1 ,  t e R  + . 

I t  is the aim to give conditions weaker than  this one. 
Define L ~ ~ L £  ~-1, n -~ 1, 2, ..., L ° ~ I,  where I denotes the ident i ty operator 

in ¢(/~+, R+). 
F rom the definition of the operator L it follows tha t  

~o 

2 :  . . . . .  . . . . .  ' o ( t ) ) ,  
i~, , .  . . , i n  = l 
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where 

~i(t) ~ = l~(t) , 

P u t  

h i ( t  ) d f  h~( t )  ~ . . . . . .  i . ÷ .  df  ~ . . . . . .  ~. , h~÷,  (t) = h.  (h , .~ ( t ) ) ,  

l~7"~"~+'(t) dA l~÷.(t)l~: ..... ~"(h~.+.(t)), i ,  i~ = 1, . . . ,  p ,  n - =  O, 1, . . . .  

co 
~U =df Z -Lnu 

with the  point  weise convergence of the  series in R+. 

L E ~ i  4.1. - Assume tha t  

(i) kj ,  li, gj, hi, r ~ C(R+, R+) and g~(t), h~(t) e [0, t ] ,  

t e E + ,  j = l ,  .. . ,  m,  i - = l , . . . , p  (the case re, p =  2r ~ is possible); 

(ii) s -~ Sr  < c~ , ~ -= Sic < ~ , 

where k ( t ) ~  ~ kj(t)g~(t) (if m = @ c~ we assume tha t  this sum is finite); 
5=1 

(iii) s, ~ e C(R+, R+) and sup ~(t)/t < ~ .  

Then 

(a) there exists uo~ C(R+, R+) which is a unique solution of equation 

(4.3) u = S K u  -~ Sr  

in the class Llo¢(R+, R+) locally integrable functions on /~+; 

(b) the function uo is the unique solution of the equation 

u-=  K u ~ - ~ u ~  r 

in the class Llo¢(R+, R+, Uo) ~f {u: u e Llo~(/~+ , R+), Ilul]* < ~} ,  where the norm I]" l]* 
is defined in Assumption B(r);  

(c) the function u = 0 is the unique solution of the inequali ty 

in the class L~oo(R+, R+, Uo). 

P~OOF. - We prove (a). 
equat ion (4.3) then u e ( / t + ,  R+). 

u < K u  ~- Lq.t 

We note  tha t  ff u eLlo~(t~+, R+) and is the  solution of 
Thus we shall prove  tha t  equat ion (4.3) has a 
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unique solution in C(R+, R+). We shall obtain a solution first on an arbi trary closed, 
bounded interval [0, n]. Let  C([0, hi, R) be the space of all continuous functions 
on [0, hi, where we introduce a norm I! "t[o in the following way:  

llu[1. ~ sup ~-' lu(t)  l, 
t~EO,n] 

where ~ > ,~ ~ sup ~(t)/t. 
Now we prove tha t  operator SK is a contraction in C([0, n], R) i.e. I]SKII < 1. 
Indeed, from the inequality e ~ t - - l ~ e  t :[or ~z~[0~ 1]~ t e R + ,  we have 

t~[O,n] i = l  n=O i~ , . . . , i n= l  

oA~',;,...~.(t) ) 

f 1 ~(t) i 
se[0,n] 

0 

Hence it follows tha t  HSK[[ < 1. Now from Banach fixed point theorem it follows 
thu t  equation (4.3) has a unique solution uoeC([0, n], R+). Since n is ~rbitrary, uo 
is ~ unique solution of equation (4.3) on R+. 

The remuinder of the proof is similar to thut  of Lemma 6 [3] ~nd is omitted.  

I~E:~A~K 4 . 2 .  - I f  m -~  1 ,  p = 1 ,  k(t) ~ k~(t),  l(t) ~ l~(t), g(t) df g~(t), u n d  h(t) dA h~(t), 
t e R + ,  then ~,ssumption (ii) of Lemma 4.1 is of the form [12] 

s(t) -~ ~ 1,(t)r(h,(t)) < ~ ,  
~t=O 

~(t) = ~ l.(t)k(h.(t)) g(~.(t)) < ~ ,  t ~ R÷,  
~ = 0  

where 

ho(t) = t ,  ~ h.÷~(t)  = ~ h ( h . ( t ) )  , 

lo(t) ~f = 1-I l(hk(t)), = 1 , l~+l(t) d~ 
k=O 

n :  0, 1, ..., t e /~+,  

n ~  0, 1, ..., t e R + .  

lCE~A~K 4.3. - ~OW we give some effective conditions under  which a.ssumption (ii) 
of Lemm~ 4.1 is fulfilled. 

a) I f  we assume tha t  

(4 .4)  
[ t:~(t)-<<k~= eons t ,  l~( t )< l i=  eons t ,  g # ) < ~ t ,  

h~(t)<h~t, ~., h t ~ [ 0 , 1 ] ,  j = l , . . . , m ,  i = l , . . . , p ,  t ~ R + ,  
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and r(t)<~t, t e R+, for some ~e  R+, then assumption (ii) of Lemma 4.1 is satisfied 

provided i i~h~ < 1. 

b) If  k~(t)<~-, 4(t)<i~t, g¢(t)<~t, h~(t)<h#, r(t)<~t,  ~j, i~, ~ e R +  and ~ e  [0, 1], 
h~e[0, 1), t e R + ,  then ~ssumption (ii) of Lemma 4.1 is satisfied. 

c) Finally, if we suppose (4.4) and r(t)<~t% t e R+, for some ~, q e/~+, then (ii) 

of Lemma 4.1 is satisfied provided ~ l~h~<  1. 
i = l  

5.  - Ex i s t ence  t h e o r e m  o f  a r a n d o m  so lut ion  to  equat ion  ( 1 . 2 ) .  

We introduce the following 

ASSC~_PTION C. - We assume, in relation to equation (1.2), tha t  there exist func- 
tions k*, [cj, l~ e C(1~+, R+), such tha t  

IIF(t, ul(t, o~), ..., u~(t, ~),  x # ,  ~o), ..., x~(t, o~), ~) 

- F ( t ,  ~ ( t ,  ~), ..., ~ ( t ,  ~o), ~l(t ,  o~), . . . ,  ~ ( t ,  ~), ~,)ttL~< 

< ~ t~*(t)Ilus(t , ( 9 ) -  7dj(t, (9)IIL-{- ~ t~(t)Ilx~(t , o~)-  Ec~(t, eo)llL~, 
5=1  i = 1  

[]/,(t, s, x(t, o)), co) -- ?,(t, s, ~(t, o~), co)IlL,< ~(t)]Ix(t , ~ ) -  5(t, o~)I]~,; 

for u~(t, 09), ~j(t, co), x~(t, ~o), ~(t ,  o~), x(t, ~o), 5(t, o~) e L~(Y2), t e R + ,  j = 1, ..., m, i-= 
= 1 ,  ..., p. 

F rom Theorem 3.1 and Lemma  4.1 follows 

TgEOgE~ 5.1. - Consider the  random integral equation (1.2) subject to the follow- 
ing conditions: 

(i) Assumption C is satisfied; 

(ii) assumptions (ii) and (iii) of Lemma 4.1 are satisfied with kj und r defined by 

(5.1) k~(t) = ~ ( t ) L ( t ) ,  r(t) = H(~x0)(t, ~ ) -  Xo(t, co)llL~, t e_~+, 

where the operator U is defined by the  r ight-hand side of equation (1.2). 

Then there exists a random solution ~(t~ o)) e C(1¢+, L2(~9)) of equat ion (1.2) such 
that 

tl~(t,~o)--x,(t,o~)IlL~<u~(t), n =  0, 1, ..., t e R + ,  
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where {u.(t)} is defined by (3.2) with A defined by  (4.1). The solution 5(t, o~) is 
unique in the class L~oc(R+ , L~(f2), uo) ~ {x(t, w): x(t, ~o)eL~oo(/~+, Z~(f2)), Ilx(t, to) -- 
-Xo(t, uo)}, where m=(O)) the class of an locally in- 
tegrable functions defined on R+ with range L(~)~ and L~oo(R+, R+, uo) is defined 
in Lemma 4.1. 

P~oor .  - The existence of the solution is implied by  Lemmas 4.1 and 3.1 (see 
the proof of Theorem 3.1). 

To prove the uniqueness we suppose t ha t  2(t, co) eLloo(tt+, JS~(~), uo) is a random 
solution of (1.2) different from ~(t, o~). Then we easily infer tha t  ~ ( t ) =  Ilk(t, w ) -  
--2(t,  oo)ll~e(R+,R+,uo ) and ~ < K ~ q - L ~ .  Hence and from (c) of Lemma 4.1 we 
conclude tha t  IlS(t, co)--2(t, a))II~= O. Thus the theorem is proved. 

Combining the Assumption C with one of conditions a), b) and e) of Remark  4.3 
we find another existence theorem for equation (1.2) in which the assumption (ii) 
from Theorem 5.1 is replaced by  a more effective one. For  example the following 
theorem, which follows from par t  c) of Remark  4.3 and Theorem 5.1, show also tha t  
condition (4.2) is more restrictive than  assumptions of Theorem 5.1. 

Tm~o~v~ 5.2. - I f  Assumption C and condition (4.4) with /~,. and r defined by  
(5.1) are satisfied and  if r(t)<~Y, tER+,  for some q, ~eR+~ then the assertion of 
Theorem 5.1 holds provided 

1 .  
i = 1  

I~E~AR.K 5.1. -- The following example of the random functional equation 

(5.3) x(t, ~o) = ~ l x  ~ ,  a) , t e R+, ~) ~ f2,  

shows tha t  condition (5.2) is essential. For  this equation condition (5.2) has the 

form ~ (1/2~) q < 1 and is hold provided q > 1. In  view of Theorem 5.2 there exists 

unique solution x(t, o~) = 0 of equation (5.3) in the class of functions satisfying the 
condition fix(t, oa)ll~,<const't~, t e l l+ ,  but  for q = 1 condition (5.2) is no t  fulfilled 
and for this case each function x(t, o~)= a(w)t is a solution of equation (5.3.). 
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