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Abstract. A complete canonical formulation of the BRST theory of systems
with redundant gauge symmetries is presented. These systems include p-form
gauge fields, the superparticle, and the superstring. We first define the
Koszul-Tate differential and explicitly show how the introduction of the
momenta conjugate to the ghosts of ghosts makes it acyclic. The global existence
of the BRST generator is then demonstrated, and the BRST charge is proved
to be unique up to canonical transformations in the extended phase space,
which includes the ghosts. Finally, the BRST cohomology in classical mechanics
is investigated and shown to be equal to the cohomology of the exterior
derivative along the gauge orbits, as in the irreducible case. This is done by
re-expressing the exterior algebra along the gauge orbits as a free differential
algebra containing generators of higher degree, which are identified with the
ghosts of ghosts. The quantum cohomology is not dealt with.

1. Introduction

The most transparent and useful formulation of a field theory appears to be one
in which locality is manifest. This also makes relativistic invariance manifest, since
locality ensures that signals do not propagate at infinite speed.

It appears in practice that, for systems of physical interest, manifest locality can
be maintained only at the price of formulating the theory in terms of more variables
than what would naively seem to be necessary. One then obtains what is called a
gauge theory.
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Since in a gauge theory there are redundant variables, one finds that in the
Hamiltonian formulation, there are relations among the canonical variables, called
constraint equations. This is a familiar occurrence in, for example, Yang—Mills
theory and Einstein’s theory of gravitation.

Moreover, it has been realized that the most natural way to describe a gauge
theory is to further enlarge the space on which the theory is defined by bringing
in new variables, called “ghosts,” that do not appear in the original action principle.
Actually, locality is again a key point here, since the ghosts make it possible to
maintain that property in the quantum theory.

The formulation of gauge theories in terms of ghosts constitutes the subject of
BRST theory.

The notion that “gauge invariance” is ultimately tied with “redundancy” is
taken even further in a more general level of gauge theory, called “reducible,”
which has played an increasingly important role. These are gauge theories in which
not only the variables are mutually dependent, but also the relations among them
are themselves mutually dependent. Again, the reason for this new type of
redundancy is that it leads to the most transparent form of the theory, namely,
that one which makes locality and relativistic invariance manifest. Systems of this
kind include p-form gauge fields, the superparticle, the Green Schwarz superstring,
and string field theories.

We discuss in this article the BRST formulation of reducible gauge theories.
Its main novel feature—as compared with the irreducible case—is the necessity
of enlarging now the ghost spectrum, by introducing ghosts of ghosts.

One thus faces yet another example of what appears to be a general principle:
theories take their simplest form when one enlarges sufficiently the number of
functions used to describe them.

The general method for handling arbitrary reducible theories, with closed or
“open” algebras, has been given by Batalin and Fradkin [1,2] and is reviewed in
[3]. This method is based on the canonical formalism and guarantees the existence
of an off-shell nilpotent BRST symmetry in a sufficiently small region of phase
space. It also shows that the BRST generator involves, in general, ghost powers
of order higher than three. Alternative approaches based on the Lagrangian have
also been developed [ 4]. However, the global structure of the equations determining
the BRST generator, and its uniqueness, have not been studied as thoroughly as in
the irreducible case. In particular, the cohomology has not been dealt with.

This article is devoted to settle those two issues. The first one is to show that
the BRST charge exists globally and is unique up to canonical transformations.
The second is to establish that the BRST cohomology in classical mechanics is
isomorphic with that of the exterior derivative along the gauge orbits on the
constraint surface.

The key tool which enables us to derive these results is the Koszul-Tate
differential operator 4[5, 6], which generalizes the operator 9, of refs. [3,7]. In the
irreducible case, J, is acyclic [5, 3, 7], but this is no longer so in the reducible case.
However, following a method of Tate’s [6], acyclicity can be recovered by adding
extra variables, which are, in the present context, the momenta conjugate to the
extra ghosts. The extra ghost momenta can thus be understood from a cohomo-
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logical point of view; they are the weapon that kills unwanted nontrivial cycles of
the operator J,.

The study of the cohomology also sheds some light on the geometrical meaning
of the ghosts of ghosts. Indeed, the analysis of the irreducible case [8] already
showed that the ghosts can be considered as 1-forms along the gauge orbits. In
the reducible case one must bring, in addition, new forms of higher rank. They
are necessary to express the exterior derivative along the gauge orbits in a form
that is free from conditions on the generators of the algebra. One arrives in this
way to a realization of the concept of differential free algebra or, as one also says,
“free differential algebra (FDA)”. The extra forms in the free exterior differential
algebra along the gauge orbits are the ghosts of ghosts.

The paper is organized as follows. In Sect. I, which is next, we briefly review
the canonical description of reducible theories. We then construct in Sect. 111 the
Koszul-Tate operator and explicitly establish that the extra ghosts make it acyclic.
This result is used in Sect. IV to prove both the global existence of the BRST
generator and its uniqueness up to canonical transformations.

Section V deals with the classical BRST cohomology and establishes its
equivalence with the cohomology of the exterior derivative along the gauge orbits.
Lastly, Sect. VI, is devoted to concluding remarks.

The present article may be thought of as an extension of the treatment given
for the irreducible case in ref. [8].

II. Canonical Description of Reducible Theories

1. Reducibility and Order of Reducibility. In the Hamiltonian formalism, the gauge
transformations are canonical transformations whose generators G, , which will
be assumed to be real and of definite Grassmann parity, are phase space functions
that are constrained to vanish [9],

G,,=0, a,=1,...,m,. (2.1
These constraints are first class in Dirac’s terminology,
[Gags Gro ] = Cope Geo - (2.2)
The gauge transformations read
OF =[F,6%G, ], (2.3)

and close on the constraint surface (2.1). Here, &% are arbitrary phase space
functions, whereas [ , ] stands for the graded Poisson bracket. By closure of the
gauge transformations on the surface (2.1), one means that the Hamiltonian vector
fields X, associated with the constraint-generators G, ,

XﬂoF = [Fa Gao]: (248.)
close with respect to the Lie bracket on the constraint surface (2.1),
[X aps X o] & Xy Calp (— Jieo ™ Fnllaa 20! (2.4b)

{(see Appendix for conventions on differential calculus on a supermanifold).
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Now in the reducible case, the gauge transformations (2.3) are not all
independent. In other words, the vector fields X, are not linearly independent on
the constraint surface; there exist functions Z%° % 0 such that

(——)Sa°+£ﬂ‘ZZ?Xa0%0, alzlwnaml’ (25)

where =&~ means “equality up to the constraints.” Here and in the sequel,
independence or dependence of vector fields will always be with respect to functions.

By appropriately extending Zi° off G, =0, one can replace (2.5) by the
equivalent equations’

799G, =0, a;=1,...,m;,. (2.6)

Thus, one sees that in the reducible case the constraint surface is not of
dimension n — mg, where n is the dimension of phase space. Rather, it is of dimension
n —my, where mg < m, is the number of independent constraints G,,. At the same
time, the dimension of the gauge orbits generated by the Hamiltonian vector fields
X,, associated with G, on G,, = 0is not of dimension m, but of dimension mg, < m,.

We will assume throughout this paper that the constraint functions G, can
be locally separated into “independent constraint functions” G, , Aq=1,...,mq,
and “dependent constraint functions” G,,, a0y =mg + 1,...,m,, which are expres-
sible in terms of G, by (2.6) as

— NAo
Gao — Nan GAoa

with coefficients N ° that are regular in the vicinity of G,, = 0. The matrix of the
gradients dG 4, of the independent functions should be of maximum rank on G, =0,
i.e., one should be able to take locally G ., as the first m; coordinates of a regular
(possibly noncanonical) coordinate system in phase space. For the physical
applications that have been met so far, this assumption always holds, or can be
made to hold by redefinition of the constraints.

Although we postulate that the constraints can be separated into two groups
as above, we by no means assume that this can be done globally with a single set
of independent constraints G, . It may instead be necessary to cover phase space
with more than one open set, with a different sct of independent constraints for
each open set. This is because there may be global obstructions to the existence
of a single set G 4,. These obstructions are related to the topology of the normal
bundle over the constraint surface.

Furthermore, even when the splitting G,, —(G,,.G,,) has global validity, it
spoils in practice manifest Lorentz invariance or locality in physical space. For
these reasons, it is appropriate to construct the BRST formalism with the full set
of constraints G,, without assuming that any definite splitting has been performed.

The coefficients Z%° in (2.5) and (2.6) are required to exhaust all existing relations
among the vector fields X, , i.e.,

Ka _ 700 __ a4 aob &)

A0G,, = 0= A% = AN Z0 4 v*2 Gy (— ), (2.7)
! For an arbitrary extension, the Taylor expansion of Z;°G,, around the constraint surface must start
at second order in order to reproduce (2.5); that is, one must have Z® G, = S5(q, p)G,, G, Then, by
redefining Z2°— Z2 — St G, , one arrives at (2.6)

ag
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where v can be assumed to be “antisymmetric” in the sense of [1-3],
Vaobo — (_)(5a0+ Dlep, + l)vboﬂo. (28)

It may turn out that the relations (2.6) are furthermore independent, namely,
AMZP ~0=2"=0. In that case, the number mj, of independent constraints is
equal to my, — m,. But it may very well be that the system Z%° is overcomplete, so
that there exist functions A** that do not vanish even weakly and have the property
A% Z% ~ 0. Then, the number of independent gauge generators is equal to my, — mj,
where 7} is the number of independent relations (2.6) and is greater than m, —
The consideration of an overcomplete set of Z;° may again be desirable on the
grounds of preserving manifest Lorentz invariance or locality in physical space,
or may be mandated by topological obstructions.

Taking a complete set Z4! of functions which (weakly) annihilate Z7°, one finds

Zz;Zﬁlf = ngbo Gbo(_)ba07 a, = 1’ ey My, (29)

AZP X Q= A = AR L5 + VG, (2.10)
where, without loss of generality, one can assume
aobh £ 1)(e 0+] boa.
Ca0b0 = ((— a0+ Mo+ 1) Cbodo | (2.11)

since only the “symmetric part” of Ci2% contributes to Z2: Z% G,
Even though complete, the set of coefficient functions Z§! may itself be over-
complete, and so on. This leads to a tower of reducibility equations

Z81Zm = (fuaChG, k=1L a=1,..,m,  (212)

ag?

where we have set Z, ! = G,,. The order of reducibility L is defined as the last
k for which Z3=1 0, S0 an 1rreduc1ble theory has L =0.

We will allow L to be arbitrarily large or even infinite (this happens in some
treatments of the superparticle [10]). At cach stage, the Zg !, k <L provide
a (over-)jcomplete set of “reducibility functions,” i.e.,

AR ZE 2 Q= JY = 0L NG, (2.13)
for finite order of reducibility L, this equation implies
AZE 2 0= A% =y 06, (2.14)

for the last coefficients Zg1.
The number of independent gauge generators is given by my —m; +m, —
my + - + (—)mj, where mj is the number of independent Zg . For theories

of finite order, this sum is equal to Z (—

Since the G, are of definite Grassmann parity, the Z’s may be assumed to have
the same property. We recursively define ¢, by

e(Zg ) =g, t ¢ (2.15a)

-1
with ¢, = &(G,,). Similatly, since the constraints are real, we may demand

(Zz:fl)* — (_)k+k(5uk+eak,l)+£uk8(1k,IZZ:*I' (2.15b)
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2. Ambiguity in the Reducibility Functions. Given the constraint surface, the
functions G,, are only determined up to

Gu— Goy= MPG, . (2.16a)

For given G,,,G,,, the matrix M2 in (2.16a) is defined by that equation up to
linear combinations kil Z%° + n$o*° G, (— ). In order for G,, and G, to be equivalent
one must be able to choose the linear combination so that

@ is invertible. (2.16b)

Given G,,, the reducibility functions of the first stage Zg° are, in turn, only
determined up to
Zio = 70 = M Zi + v Gy (), (2.17a)
with
a Cag T Digpg+ 1 a . .
yaobo = (—)ffao* Deno ™ Dyboao - AfB1 jnvertible. (2.17b)

Similarly, if the reducibility functions of order Zﬁz*‘, s&k—1 are given, the
Zg~ 1 are determined up to

k-1 __)Z_ak,l — MkaHk—l + v“k*lbOG (2 18)
ay, ay by 3 bo> ’

ax
with
M?P invertible.

Under the redefinitions (2.16)—(2.18), the functions ij:""’o transform in a
manner that can be straightforwardly computed. That computation will not be
given here, since it is rather messy and not particularly useful. Furthermore, even
for fixed Z~', the C’s carry some ambiguity, which will be analyzed later on.

3. Local Canonical Form. In a sufficiently small region of phase space, one can
take advantage of the freedom (2.16)—(2.18) to bring the constraints and the
functions Z‘;i”l to an extremely simple form. Indeed, we have assumed that the
constraints G, can be split into independent and dependent ones. The dependent
constraints G, can be expressed in terms of the independent ones G, as
G,, = N2G . . Redefining the dependent constraints as G,, = G,, — N°G ., one

20

gets Gao = () (identically). Hence, one can take
G, =(G,,. G, =0). (2.19)

ao

An independent set of reducibility functions of first order is then given by
¥ = (0,07, (2.20)

where A, ranges over the same values as o, does. The remaining (dependent)
reducibility functions of first order can be taken to vanish,

7% =0, (2.21)

Going on in the same fashion, one sees that, at each stage, the Z;z*‘ can
be split into independent (Z‘jlkkfl) and dependent (Z3*"') functions. The range
of the index A4, of the independent Zf{‘k*1 is equal to the range of the index o,



BRST Formulation of Reducible Gauge Theories 385

of the dependent functions Zi¥~2 of the previous stage, and one has
Zy = (0,0%1), (2.22a)
ZE1r=0. (2.22b)

III. The Koszul-Tate Operator &

1. Review of Results in the Irreducible Case. An important ingredient of the BRST
construction in the irreducible case is the Koszul differential operator 6 [5]. This
operator arises just because the constraints define a surface in phase space. Its
definition does not even rely on the first class property and is as follows. For each
constraint G, , one introduces a variable 2, of opposite Grassmann parity and
of ghost number —1,

&P y) =4y T+ 1 (3.1a)

antigh(2, )= + 1= — gh(2,,). (3.1b)

This variable will turn out to be the momentum conjugate to the ghost 5.

The operator ¢ acts as a derivation on polynomials in 2, , with coefficients
that are phase space functions, and decreases the antighost number and Grassmann
parity by one unit. Its defining properties are

62, =G,,. (3.2a)
d(canonical variables) = 0, (3.2b)
O(AB) = A0B + (—)*dAB. (3.2¢)

Furthermore, when the ghosts # are introduced below, we will set
on=0. (3.2d)

In (3.2¢c), we have taken § to act as a right derivation in order to conform to the
standard Hamiltonian conventions where the BRST generator 2 acts also from
the right in the Poisson bracket.

A crucial feature of the Koszul operator § is its nilpotency, 62 = 0. This follows
from the fact that ¢ changes the Grassmann parity. Indeed, one has, for any
polynomial of arbitrary order p,

5(Maubo'“coyco . ‘@boyao) — pMaObOH.CO‘@cU . 'gb G

0 ao?

(3.3a)
and thus
52(M"°b°"'c°?}60 Py P )=plp— 1)M"°l""“"“?]’c0 <Gy G (=)o =0. (3.3b)

The “components” M can be assumed to possess the same symmetry properties
as the product 2, ---2, . The rule (3.2c) automatically brings in the appropriate
phase (=)= in (3.3) so as to have 6 =0. Note that the components of M are
directly related to the operators ¢, and &, of ref. [3], which are thus unified with
the present notations in a single operator.

It has been shown in [5, 3] that ¢ is acyclic in the irreducible case except for

ghost number O (see also [7]) for the pure bosonic case). This means that if M =0,
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then M = N with antigh N = antigh M + 1, provided antighM = 1. If gh M =0,
then M is a phase space function and 6M =0. But M can be written as N only
if it vanishes on the constraint surface, the space (Ker 6/Im §)° is thus isomorphic
to the quotient space of the ring of phase space functions modulo the ideal of
phase space functions vanishing on G, = 0. Elements of (Ker §/Im §)° are functions
defined on the constraint surface.?

2. Nontrivial Cycles in the Reducible Case and How to Kill Them. When the
constraints are reducible, the cohomology of § at antighost number zero is the
same as in the irreducible case. But new features emerge at antighost number 1
with the appearance of nontrivial cycles. For instance, the combinations Z3°%,
are closed,

NZHPay) =23G,a =0, (3.5a)
but they cannot be exact
23 P, # 0N, (3.5b)

for this would imply Z{°#, =0, which, in turn, requires Z3° = 0; but this would
mean that Z{° is of the trivial form C2*G,, and could thus be taken to vanish
identically.

Now, the acyclicity of § at antighost number = 1 is crucial for the existence of
the BRST generator. This was already encountered in [3] for the irreducible case
and will also appear hereafter for reducible theories. Therefore, it is necessary to
find a way to recover the acyclicity of § in the reducible case.

The method by which this can be done was devised by Tate [6]. One adds
extra variables, one for each element of a basis of nontrivial cycles, and extends §
so that the previous nontrivial cycles become trivial. We will follow this method
here, with the slight modification that we will introduce more new variables than
independent cycles when the Z3° are overcomplete. To be specific, we introduce
as many new &, as there are Z39.

The way to kill the cycles Z3°2, is simply to set

8P, =ZP, . (3.6)

2 Tt is possible to define an operator ¢ acting on phase space functions and yielding the corresponding
elements of (Ker$/Imd)°. Element of (Kerd/Imd)° are then mapped by & on zero. One thus has

s O, ©
—E—FE —0

\j (34

( Ker(5>° B
—0,
Iméd
and it is easy to check that ¢6 =&2=0.
The replacement of é by ¢ in the last step of (3.4) yields an acyclic operator, even at order zero,
which was actually the operator §, considered in [3]. However, the introduction of this operator

requires new objects (functions on the constraint surface) belonging to a new complex. For that reason,
it is more economical to use the unmodified 8, as will be done in the sequel
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By construction, 6*2, =0. In order to preserve the grading properties of 8, one
also demands

o{2,)=¢, =elZPP,)+ 1, (3.7a)
antigh(#,)=2= —gh(Z,)), (3.7b)

where ¢, is given by (2.15a). One then extends é as a derivation and one easily
checks that the parity assignment (3.7a) ensures that 62 = 0 on any polynomial in
P oor P,

With the extension (3.6) of d to 2, , it is easy to see that all the homology has
been killed at antighost number + 1:if M =0, antigh M = + 1, then M = éN with
antigh N = + 2. This simply follows from the relation (2.7) expressing the complete-
ness of the first order reducibility functions ZJ°.

Turn now to the homology at antighost number + 2. Here again, one finds

nontrivial cycles. These are given by
Z8P, +5CiP, P, . (3.8)

The polynomial (3.8) is clearly annihilated by ¢ as a result of (2.9) but may not be
written as dN, for the coefficient of 2, in (3.8) should then vanish on the constraint
surface—which would again mean that the Zj. can be taken to be strongly zero
by an appropriate redefinition.

One thus introduces further new variables #,,, with the properties

0P oy = Zip Py +5C° Py Py (3.9a)
8(20,) = b0y +1=8(02,,) + 1, (3.9b)
antlgh ('a]az) =3=_ gh (‘@az)v (39C)

where ¢,, is given by (2.15a). The extension of § as a graded derivation is again
nilpotent. We will show in the next subsection that the introduction of £, is
enough to completely kill the homology at antighost number 2 (other than (3.8),
no nontrivial cycles exist). This results from (2.13).

The process continues along the same lines at higher antighost numbers. One
finds nontrivial cycles of the form

Zip,  +M

<A

(3.10)

ag>

where M, only involves 2, , u < k — 2. The explicit expression of M, is tedious,
except when Ci=2% =0 for all s, in which case M, =0. We will give a recursive
proof of the existence of M, below.

In order to kill these cycles, one introduces m,, variables 2, , such that

0P o =237 P,_ +M,, (3.11a)
antigh(#,,) =k + 1, (3.11b)
&P,) =602 )+ 1=¢, +k+1 (3.11¢)

with g, _defined by (2.15a). These definitions of the derivation J preserve nilpotency
because ¢ again changes the Grassmann parity. As we now show, they also make
o0 acyclic: there are no nontrivial cycles other than (3.10).
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3. Explicit Proofs. It has been shown in [6] that the process of adding extra
variables ultimately leads to an acyclic operator, provided one identifies correctly
all the nontrivial cycles. To implement the procedure here, we will proceed
recursively. First, we will assume that the action of § has been counstructed up to
the k'™ ghost momentum (“order k”), and we will demonstrate that it is acyclic in
the space of polynomials in the momenta 2, (i < k) with coefficients that are phase
space functions (Theorems 1 and 2 below). We will then show that § can be extended
to order k + 1 (Theorem 3), thus completing the proof of acyclicity. We will also
observe that the extension of d is unique up to a d-exact polynomial (Theorem 4).
The techniques used in the demonstration of theorems 1-4 are close to standard
methods in homological algebra.

3.a. 6 Taken as Given to Order k. Suppose that we have built the nilpotent operator
o up to order k,
0P, =G,y

: (3.12)

5'@11;{ = szil'@a - + Mak’
k k—1

where M,_only involves &, ,i < s — 2. The space of all polynomialsin #, , Z, ,...
up to #,,, upon which ¢ acts as a graded derivation, will be called the k™ level
complex and denoted by K,. The action of é on K, and K, is determined by (3.6)
and (3.9a), respectively.

We first show that any dé-closed polynomial in K, is d-exact in K, , for each
i < k. This property will be proved in two steps. First, we will demonstrate it in
an open set where one can split the constraints G,, and the reducibility functions
Z~ into independent and dependent ones. (Any split will do; one does not need
here the canonical form of Sect. 2.3.) Second, we will show that there is no global
subtlety in patching together the various open sets on which the property has been
proved.

So, start with an open set where one can make the split and consider the ghost
momenta Z 4, associated with the independent constraints G ,,. Because the subset
G 4, is irreducible, we know that § is acyclic on polynomials in 2, of order greater
than zero.

Next, introduce the remaining ghosts 2, associated with the dependent
constraints G,, and the ghosts &, associated with the independent Z% . One has

0P 4, =G4, (3.13a)
02, =G (3.13b)
0P, =20P 4+ 2% P (3.13¢)

x0?

ap?
and one wants to prove the following:

Lemma 1. One can get rid of the newly introduced ghosts (#,,,? 4,) in a é-closed
polynomial by adding an appropriate d-exact term. This implies, in particular, that
a d-closed polynomial in K, is d-exact in K.

Proof. The square matrix Z% has an inverse Z ', since the relations Z% G, +
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Z4°G 4, =0 enable one to express G, in terms of G,,. By replacing the 2, by
linear combinations (Z~'#),, of themselves, one can bring (3.13) to the simple form

0P 4, =0, (3.14a)
0P, =0, (3.14b)
0Py =00 P, (3.14c)

where 6% is the unit m) x m| matrix and where we have systematically dropped
terms which do not involve the ghosts 2, , 2, from the righthand sides of (3.14)
(this is the meaning of =). These terms play no role in the proof that 2, and P A
(and thus 2, ,2,,) can be eliminated from J-closed polynomials.

The ghosts 2, and P 4, are in equal number and of opposite parity. Consider
the operator s (similar to a contracting homotopy)

$P,, =04 P, (3.15a)
sP,4, =0, (3.15b)
s? 4, = s{original canonical variables) = 0. (3.15¢)

One extends s to polynomials by requiring that it acts as a right derivative of
degree + 1. A straightforward computation shows that, for an arbitrary polynomial
in2,,, #,, of order n, one has

(0 + 0s)P,=nP,+ P, _ 4, (3.16)

a0

where P,_, is a polynomial of order n — 1. Therefore, if P, is é-closed (6P, = 0)
and of order n > 0, then it is also J-exact modulo a polynomial of lower order,

1
Py=~0(sP) =P, il 6P,=0. (3.17)

It follows from (3.17) that P,_, itself must be d-closed, and by going in the
same fashion, one arrives at the conclusion that #, and 2, can indeed be
completely eliminated from J-closed polynomials in #,,,2,,,2,,. [

Similarly, one can successively introduce the remaining pairs (2,,,2,,),
(2,,,24,),- .., maintaining at each stage the acyclicity property, until one reaches
2 4.- We have thus proven the following.

Theorem 1. In appropriate open sets U, any o-closed polynomial belonging to K,
is d-exact in K, | for each i < k. Furthermore, if there is no %, _variable, iec., if 7 4,
exhaust all the ghost momenta of the k™ generation, § is even acyclic in K.

The next step is to establish.
Theorem 2. Theorem 1 holds not only locally, but throughout phase space.

Proof. One relies on the crucial property that J is algebraic in phase space in the
sense that it does not take derivatives of phase space functions. It is, therefore,
very easy to patch together the open sets U,.

Consider a partition of unity { f,} associated with the U,’s. If oM =0, Me K, then
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one has, on each U, M =J6N,, N,eK;, . Define, on U,, N,= N, +ZN NJ)f..

Clearly, one has 6Ny = 0N [since o((N, — N)f,) =(6(N, — N)) f, = (M M)f, =0]
and furthermore, N;= N; on U,nU,, so that N, can be viewed as the restriction
to U of a single polynomial N =2X,f,N,eK,,, well defined throughout phase
space, with M =6N. [J

3.b. Passing from Order k to Order k + 1. To finish with the explicit proofs that &
can be extended so as to become acyclic, we need to show that one can pass to
the next complex K, of level k + 1. We thus establish Theorem 3.

Theorem 3. § can be extended to P, . . while preserving the nilpotency condition.

Ak +1

Proof. From the discussion of Sect. 3.2, we take

0P iy = Zag o\ Pa+ My, s (3.18)
where M,, ., should be of antighost number k +1 (as #,,) and should be such
that 6°2, ,  =0. By Taking &2,, . ,) =&(02,,, )+ 1, we will cnsure that 62 =

on any element of K, | ;.
Now, one has

(2% gzlak)z(_)fakﬂcak‘xbo(;bog +7Z% M

Y+ 1 . -1 Gg+1° " Kk
h :(—)6(CZ:+1 qu’ gak 1)+Sak+1’ (3193‘)
where
ey = (— )k+1czz+:hogib059’ak t 2 M, (3.19b)

In order to derive (3.19a), we used (2.12) and (3.12). The function S, n(3.19) is
independent of '@akq’ i.e., belongs to K, _,. Furthermore, it is annihilated by ¢ (as
can be seen from (3.19a). Hence, there exists a polynomial M, of antighost number
k+1in K, such that

Ak +1

oM, -5 (3.20)

Y1 1’

Since M, belongsto K, _,,itdoes notinvolve #,, anditis clearly the searched-for
last term in the definition (3.18) of 62, . [

1

We have thus established that a nilpotent J exists. Is this 6 unique?

Theorem 4. The polynomials M, appearing in 62,  are unique up to a o-exact
polynomial.

Proof. The difference between two solutions M, , M, _of (3.20) is a polynomial

in K, _; which is -closed, thus, by Theorem 2,ki+t1 is d-exact in K, e,
Mak+l o Mak+1 = 5N“k+1' U (321)

Note that the ansatz (3.18) for 02, assumes that Zj is given. Then
Theorem 4 establishes that M, is unique up to (3.21), where N, is such that
0N, . does not contain Z,, What would happen if 6N, _ is allowed to contain
2,,., namely, if

N, =D} 2 P, +“more” (3.22)

A+ G+ 1
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with no restriction on Dg% ?

Answer: The term containing £, in c3Nak+1 can be absorbed in an allowed
redefinition of Z3 -
Zk »Z% +DFeG, . (3.23)
k+1 k+1 k+1
One thus sees that once the 2, , s <k have been defined and the ZZ::H have
been given only on the constraint surface, the ambiguity in the definition of 62,
is just of the form § (something).

We have completed at this stage the proof of the acyclicity of § in the space
of polynomials in the ghost momenta #, . Indeed, we have constructed a sequence
of complexes...K,, Ky, ,... (which is finite if the order of reducibility is finite)
such that 0M =0, MeK;,—»M =N, NeK,, . Given an arbitrary polynomial in
the ghost momenta, one can decompose it as a sum of terms of definite antighost
number,

1

(k)

M=) M.
k>0
) (k) (k+1) k)
If 6M =0, then 6M =0 for each k, and thus M =8 N because M belongs to K.

(k+1)

This implies M =8N, N=Y) N , asstated, i, ¢ is acyclic for k> 0.

IV. Existence and Uniqueness of the BRST Generator

1. Ghost Spectrum. Up to this point, we have only needed the ghost momenta
2,.. We complete the ghost spectrum by introducing their canonically conjugate
variables #* and assign the standard reality condition [1, 3],

[P a1 = — O, (4.1)
e(™) =e(?,,) =&, + k+ 1 (mod 2), (4.22)
gh(n™)=k+ 1= —gh(2,), {(4.2b)
(PP =0, (P )= — (=)D, (4.20)

All other brackets involving the new variables other than (4.1) vanish.

That (4.1) and (4.2) yield the correct number of ghosts #* will be seen in a
different way when we analyze the BRST cohomology.

The antighost number of the #*’s is zero. Their pure ghost number is equal
to k + 1. We define the pure ghost number of the #’s to vanish, so that in all cases
the (total) ghost number is equal to the difference of the pure ghost number minus
the antighost number.

2. Conditions Which Implement the Nilpotency of the BRST Generator. With a
nilpotent, homology-free Koszul-Tate differential at hand, the construction of the
BRST generator goes much along the same lines as in the irreducible case.

The BRST function must fulfill the following requirements:

(i) ghQ=1, &Q)=1, Q*=20, (4.3a)
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(ii) 2=n"G,,+ “more,” (4.3b)
(iti) [£2, Q2] =0 (“nilpotency”). (4.3¢)

It turns out that in the reducible case, these conditions do not completely

determine €2, even up to a canonical transformation. One must add the condition
20

V) ————————=2Z%"1 4.3d

) 55— gy = (43d)

(3

which amounts to replacing (4.3b) by

(ily Q=n"G,, +n™Z412, +“more,” (4.3b')

a_
where “more” now refers to terms containing at least two #’s and one £ or two
#’s and one 7.

It is furthermore only if one imposes (4.3b’) that £2 reproduces the Koszul-Tate
operator through the Poisson bracket (see below) and yields the appropriate
cohomology.

In order to investigate the nilpotency condition (4.3¢), it is convenient to expand
0 according to the antighost number,
®)

=73 0, (4.4a)
pz0
(»)
antigh (2) =p. (4.4b)

Let us compute [£2, £2]. One finds, after elementary calculations,
(p)

[2Q]= Z B, (4.5a)
pz0
)
antigh (B) = p, (4.5b)
() P+ (»
B=-206 Q —D), (4.5¢)

where we have set

» 1 D (p—k) (k) p k=1 (p—kts+1) (k)
D:'z— Z [ Q s'Q]orig+ kgl SZ()[ 0] DQ](gh).\ 9

k=0

(4.6)

and where the operator ¢ is defined, when acting on a function A of antighost
number <p+ 1, as

{s.
Zp: A o8
s=0 ayas anasj

We will see below that d defined by (4.7) is indeed the Koszul-Tate operator.

n (4.6), [ , Jog refers to the original Poisson bracket not involving the
ghosts—which preserves the antighost number—while [ , ], denotes the
Poisson bracket with respect to the ghost pairs %, 2, . This latter bracket destroys

one 2, and hence ¢ in (4.7) diminishes the antighost number of A by one unit,
{s)
since 0'£2/0n* possesses antighost number s.

r (s)
oA == ) [A4,Q)un, = antigh(4)<p+ L (4.7)
s=0
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) ' ) W ]
The function D only involves the structure functions £ with i < p. So, the idea

is to solve for 2 step by step and to regard the equation [£2, Q] =0, which is
»
equivalent to the equations B =0,
(p+1) (p)

5 Q =D, (4.8)
e+ @
as determining £2 once the 2, i < p are known.

Suppose, then, that we have solved (4.8) up to order p,
SR () ® (-1
0Q2=D,...,.002= D, 4.9)
o)
so that £ is nilpotent up to order p—1 (i.e, B=0,i<p—1), and we want to

P+ 1)
investigate whether we can solve (4.8) for 2 .

If 2 is nilpotent up to order p — 1, the operator ¢ defined by (4.7) must indeed
be the Koszul-Tate operator when acting on functions of antighost number
< p+ 1. This is because (4.7) yields

02, =0, 02, =Z}k1P,  +“extraterms,” k=p,

4.10
on* =0,  oq=2ép=0, (410

where the extra terms contain at least two 2’s of order < k — 1. Furthermore, one
easily finds that (4.7) is nilpotent when antigh(A4) <p+ 1 if 2 is nilpotent up to
order p— 1. Thus, for antighA <p+ 1, (4.7) coincides with the Koszul-Tate
operator modulo the irrelevant ambiguities in the definition of é discussed at the
end of Sect. 3 and analyzed in more detail in Sect. 4.3 below.

It follows from this analysis that the equations determining the structure
r+1)
functions £ of order p + 1 from those of order k < p read

p+t1) ()

6 Q =D, 4.11)
just as in the irreducible case.

3. The BRST Generator is Unique up to Canonical Transformations. Before proving
the existence of the BRST generator, we show its uniqueness modulo canonical
transformations in the extended phase space.

Start by considering two different, nilpotent BRST charges (2, €’ associated
with the same constraint hypersurface but with possibly different G, ,Z5°, Z5:,
ete....

By exactly the same argument as in the irreducible case, one can make the
coefficients of #* in £2 and £’ coincide by means of canonical transformation in
the extended phase space [2, 3, 8]). Assume therefore that £2 and £’ coincide up to
order p, but that start differing at order p + 1,

O W
=0, i<p, (4.12a)

(pt1) (pt+1)

Q # 2. (4.12b)



394 ). Fisch, M. Henneausx, J. Stasheff and C. Teitelboim

) ety (p+1)
The equations determining 2 and {2 read

p+t1) (@
o Q =D, (4.13a)
(p+1) (p)
s Q =D, (4.13b)

with the same right-hand sides and with the same 9§, since, as it follows from (4.7),
0|
§ acting on polynomials of antighost number < p + 1 is entirely determined by (2,
i £ p. This implies
(p+1)  (p+1) (r+2)

Q=0 4+, M, (4.14)

where we have added the index € to ¢ in the right-hand side of (4.14) to emphasize
(pt1)
that 6 ; and 6 - may differ at order p + 2,since 2 may contribute to the definition

of 6 at that order.

(p+2)
Next, consider the canonical transformation generated by M . It clearly
(p+1)
induces no change in 2 at antighost number < p, while the change in 2 is

given by

(p+1)  (pt1) (p+2)

Q> Q +6, M. (4.15)

This is the required result, since (4.15) coincides with (4.14). It enables us to conclude
that the BRST function is unique up to a canonical transformation. Note that, in
particular, the change Zi°—M}!'Zy is generated by n“'mi'%, when M5 =
(expm)yi. The extra ambiguity in Z% is generated by n*vibe, 2, and its
exponentiation is trivial, since the transformation Z2°— Z +vib0G, (—)= is

additively abelian. 1
4. Existence of the BRST Generator
Theorem 5. The BRST generator exists.

Proof. The question of proving the existence of the BRST function is completely
@+ 1)

equivalent to the question of proving the existence of the structure functions € ,
which should obey equation (4.11). This, in turn, amounts to establishing the identity

(p)
oD =0 4.16)
@)
for the structure functions 2 of order <p, since J is both nilpotent and acyclic
(0)

(except at order zero, where (4.16) should be replaced by e¢D =0; this case is

analyzed in more detail below).
To demonstrate (4.16), one can again proceed as in the irreducible case. The
condition (4.16) can be verified pointwise. So, we first check it in any open set in

which the constraints and the irreducibility functions take the canonical form given
»
in Sect. 2.3. If it holds in any such set, it will hold everywhere, and since D is
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o)
globally defined (the £2,i < p are globally defined), the acyclicity of  guarantees
(r+1) CER V()]
the existence of a global Q solution of 6 2 = D.

Now, in any open set where the canonical form of Sect. 2.3. is attained, it is
casy to see that a (local) BRST generator €' exists. It is just given by

L

L—-1
Q=QG)+ Y P, 0% g, (4.17)
k=0

where (i) 2(G 4, ) is the BRST charge for the irreducible constraints G, and only
contains the ghost pairs #*°, 2, , and (ii) the remaining piece in 2 clearly anti-
commutes with £2(G ,,) and is nilpotent by itself.

By a canonical transformation valid on the open set on which €2’ is defined,
one can then turn ' into 2", which is, of course, still nilpotent and which,
furthermore, can be chosen to coincide up to order p with the searched-for global £,

ORNG)
Q"=0Q iZp. 4.18)

This follows from the results of Sect. IV.3. and from the fact that £ is nilpotent

up to order p— 1, ie., the }3’5 that have been constructed so far obey (4.9).
One has, from (4.18),
(p) »)
D(Q") = D(Q),
since (B only involves (!3, i < p. Therefore, from the nilpotency of €27, which holds
in the given open set under consideration, one has

(p) (p)
SD(R")=56D(R)=0.

This demonstrates (4.16). [

It is worth noticing that while the existence of the Koszul-Tate differential
does not require the first class property, this feature is essential for the existence

of the BRST symmetry. Indeed, in order for Eq. (4.11) to possess a solution at
()
p =20, it is necessary that D vanishes on the constraint surface. This requirement,

in turn, is equivalent to the first class condition (2.2) among the constraints.

The first class property also plays a key role in the discussion of the BRST
cohomology and in the interpretation of the ghosts #* as exterior forms, as we
now pause to discuss.

V. Classical BRST Cohomology

1. Exterior Derivative Operator along the Gauge Orbits

La. Intrinsic Definition. Through each point of the constraint surface, there is a
gauge orbit generated by the gauge transformations. These gauge orbits define
what may be called “vertical directions.”

A vertical form field o on the constraint surface can be defined as a form field
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that only acts on vector fields defined over all the constraint surface and tangent
to the orbits (“vertical vectors”). Because the Lic bracket of two vertical vector
fields is again a vertical vector field, one can define the exterior derivative along
the gauge orbits of a vertical p-form as the vertical p + 1-form given by

p
_Zﬂxi
du(Xg,..., X,)=(— - [Z —Yitig(X,,. ..,X~,...,Xp)$xj

+ Y (_)mf+£x,~+*a(X0,...,)2,.,...,Xj,...,xp,[xi,xj])}

Ogi<y=p

(5.1)

(Cartan—Chevalley—FEilenberg coboundary formula for the vertical Lie algebra
cohomology. See appendix for the unexplained symbols; compare [11,12,13]).

One easily checks that d? = 0. Since only tangent vector fields appear in (5.1),
the exterior derivative operator d only involves (appropriately antisymmetrized)
derivatives along the gauge orbits. It does not measure how « changes as one goes
from one orbit to the next.

When one works in terms of a basis of tangent vectors and its dual, the
definition (5.1) reduces to the usual expression of the exterior derivative along the
orbits in terms of antisymmetrized derivatives of the components. However, (5.1)
as it stands has the advantage that it is manifestly basis-independent and can thus
be applied directly to vectors that are expanded in terms of an overcomplete set.

1.b. Overcomplete Representation. There is a useful representation of vertical forms
in terms of “components” along the vectors X, associated with the constraints.

Because these vectors completely span the tangent space to the orbits, a p-form is
completely determined by its action on X, ,..., X,

X gy X os X0, (5.2)

aop?

These “components” are, however, redundant and subject to algebraic relations
following from the overcompleteness of the X, ’s. One finds from (2.5)

0. X)) ZE0 (— Yoo ) = 0, (5.3)

ags

and similarly for the other arguments in a.

Conversely, any set of functions « with the appropriate symmetry in

ap*rco
dg,...,Cos

_( )51,04—1(6[,0+10C

(5.4)

a“o"'bobb""o agbohg g
and obeying the algebraic conditions (5.3), can be viewed as the components

o(X,,,.... X, ) of a vertical p-form in the overcomplete set of tangent vectors X ,
By = (__)(Sa+ﬁao+“' + €0+ PMEg, + - +£C°+p)OC(XaQ, e Xc())a (55)

where ¢, is the Grassmann parity of «. We have included a phase in (5.5) for later
convenience. With this phase, the functions «,, ., can be viewed as the components
of the vertical form a2, as in formula (5.6) below, and this will match the standard
BRST notations when we relate the vertical forms to functions in the extended
phase space.
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Since the X, are not linearly independent, one cannot define their dual basis.
However, it is useful to introduce formal 1-forms w® which play a similar role
because, as we shall see right now, one can then give simple rules for the intrinsic
exterior derivative (5.1) expressed in terms of the components (5.5) obeying (5.3).

The w* are simply used to saturate the indices in «,,...., by writing
1 a b (o
1= 0P %0, g (5.6)
with the symmetry property
@0 = (— )T Wt b0yt oo () = g, + 1. (5.7

We will assume for simplicity that there are no relations among the »®, ie.,
we formally set 0*°(X,,) = oz°. This demand is largely motivated by the desire to
identify w® later with the ghosts 4, which are independent. As we shall see, the
independence of the o will lead to another reason for introducing ghosts of ghosts.

On account of the remarks made above, the representation (5.6) enables one
to view vertical forms as polynomials in w* whose coefficients are constraint surface
functions obeying the algebraic condition (5.3).

In terms of the representation (5.6), the exterior derivative operator along the
gauge orbits can be computed according to the following rules:

dw® = (= Yo" oo Clo, (5.8a)
for w“,
dF =0, Fo* (0, F=[F,G,]) (5.8b)
for a function F, and
d(AB)= AdB + (—)*(dA)B (5.8¢)

for arbitrary 4, B with B of definite parity &p.

It should be stressed that in order for o to be a vertical form, the coefficients
Oq-ao 10 (5.6) must obey the condition (5.3). This means that the w® themselves
are not vertical 1-forms, since we take them to be independent, and as a matter
of fact they do not appear to have a direct geometrical meaning. This is why
we have called them formal 1-forms. Equation (5.3) for a vertical form can be
rewritten as

=0. (5.9)

The functions «,,...,, have so far been defined only over the constrained surface.
They may be arbitrarily extended off that surface to yield phase space functions.
When that has been done, one writes (5.9} as a weak equality

~0 (5.10a)

ao ,.-bo co
Zth W7 ey poag

ao ,,bo Cco
Za1 W7 ey boag

and identifies two forms that coincide on G,, =0,
a~g If 2 —ax0. (5.10Db)

One defines d on the vertical forms defined throughout phase space by the
same rules (5.8). This makes sense because the functions C2, and Z3°, as well as

cobo
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the vector fields X, along which one takes derivatives, are also defined throughout
phase space.

The operator d defined in this manner on polynomials in w® with coefficients
that are phase space functions is easily checked to be weakly nilpotent when acting
on polynomials obeying the algebraic conditions (5.10a). These polynomials will
still be named “vertical forms.” The cohomological classes of the exterior derivative
operator along the orbits is given by the classes of weakly closed, vertical p-forms
modulo weakly exact, vertical p-forms.

The (weak) nilpotency of the vertical exterior derivative is guaranteed only for
vertical forms. It does not hold for arbitrary polynomials in w® and, for example,
one finds that d?w® is in general different from zero, even on the constrained
surface. This is because one allows in (5.8a) for an arbitrary set of C;3,, compatible
with (2.2); ie., one can freely add to C%, a term of the form Mik(—)4«G, +

4. Z5°. One may define (as shown in Subsect. V.2. below) an extended exterior
derivative that is nilpotent. This is done by introducing additional formal objects
w1, which are p-forms.

The cohomology of the extended derivative turns out to be identical with that
of the original, vertical d defined by (5.8). However, it is the cohomology of the
extended d that may be related straightforwardly with the cohomology of the
BRST generator (the additional p-forms correspond to the “ghosts of ghosts”).

2. Extended Exterior Derivative along Gauge Orbits

2.a. Motivation. The definition of the extended nilpotent exterior derivative
suggests itself after one analyzes how the original d fails to be nilpotent. Direct
calculations using (5.8) yield

BPo® = — (= YuoPwPepPUs , 75 (5.11a)

Here, the functions are the coefficients that appear in the identities

bocodo

(— )(%H (ao t o) Eao? 0040 Calpy + (=)0 C20, Citeo + cyclic & — (=) Ugleon, Z2°5

(5.11b)

which are direct consequences of the Jacobi identity [ X, [X,,, X ;1] =0 for the
Lie bracket.

In order to restore nilpotency at the level of ™, we bring in a new object w*
that will be, this time, a formal 2-form, through the equations

de® = 3(— Yoo 00O O, (= Yong® 229, (5.12a)
do® = o®ow°UZ, . + “more,” (5.12b)

where “more” stands for terms of the form w*w® to be determined later on. The
new term that has been added to dw“ does not modify the exterior derivative of
a true vertical form «, since this term is annihilated in that case by the components
Ogo--co OF 2 because of (5.9).

In order to preserve the grading properties of d, »*! should not only be a form
of degree 2, but it should also possess Grassmann parity &w®')=¢, , as follows
from e(d) =1, elw™) =¢(G,,)+1=¢,, + 1, and e(Z°) =¢,, + &,,.
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With (5.11), the terms with three w® disappear from d?w®, so one is left only
with terms of the form w*w’'. The idea then is to adjust “more” in (5.12b) so as
to cancel these terms as well. This turns out to be possible and can be seen either
directly or indirectly. The direct way of tackling the issue is through examination
of the new identities obtained by taking further antisymmetrized Lie derivatives
of both (5.11b) and the reducibility equation (—)+«Z° X, = 0. We shall not pursue
that route. Instead, we will rely immediately below on the existence of the BRST
generator, which has already been demonstrated.

Now, even after having established d?w® =0, one needs to show also that
d?w™ =0. To that end it becomes necessary in general to introduce yet another
object w*?, a formal 3-form, and to add to the right side of (5.12b) a term that
brings in Z%, namely, w**Z2:. Such a term does not spoil d*w™ ~ 0 because
Z3:Z%° ~ 0. The procedure goes on by introducing new forms w* for each Z““ 1
Agam the feasibility of the whole construction will be established indirectly through
the BRST generator.

It is noteworthy that the spirit underlying the extension of d is quite similar to
the construction of the Koszul-Tate operator é. Indeed, also here one incorporates
a desired property by introducing extra variables. In the case of §, one had
nilpotency to begin with and incorporated the acyclicity, or, what is the same, the
lack of cohomology. For d, one consistently incorporates the requirement that the
generators @® be treated as independent, while maintaining nilpotency. After this
is done, one finds that the cohomology is unchanged.

2.b. Definition. We define the extended exterior derivative operator d along the
gauge orbits by

dF =[F, Q]| _,, (5.13a)

2=0
and, in particular,

dow® = [n, Q]| . (5.13b)

/:O

The meaning of (5.13) is as follows. In (5.13a), F is a polynomial in w®, with
coefficients that are arbitrary phase space functions. By replacing w® with #*, F
becomes a polynomial in the ghost variables, so that [F,Q] is a well-defined
function in the extended phase space. Once £, is set equal to zero, [F, 2] reduces
to a polynomial in #* only. The further replacement n* — w® in [F, 2] yields a
polynomial in @, which defines dF. It is clear from this definition that dF ~ 0 if
F~0.

In order for the replacement of # by w in (5.13) to be reasonable, one needs
these objects to possess the same algebraic properties when the multiplication in
the Grassmann algebra of the ¢’s, the p’s, and the ghosts are identified with the
exterior product of forms.

With the conventions adopted here that involve a single grading for the exterior
product (see appendix), the question amounts to whether the Grassmann parities
of n*™ and w** coincide. Because £(¢2) =1 and because the Grassmann parity of
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o is recursively determined from &(®“°) by repeated use of (5.13b) so as to have
&(d) = 1, this will be the case if ¢(w?) = ¢(*°), i.¢., if the Grassmann parities coincide
at level zero. Mere comparison of formulas (5.7} and (4.2a) shows that this is indeed
the case, so that the identification of w* with #** does indeed make sense.

The definition (5.13) of d yiclds an operator that manifestly obeys the Leibnitz
rule and clearly reproduces (5.8b) or (5.12a) when F is a O-form or is equal to .
Furthermore, because Q is nilpotent, one finds d? = 0,

d*A=[dA, Q)

4

~[[4,21,0]],_, =0,

=0 #=0
since the brackets [#, , Q] vanish on the constraint surface when the momenta
2,. are set equal to zero. This shows that (5.13) is the appropriate definition of
the extended exterior derivative operator along the gauge orbits.

Under the identification of the ghosts #* with the forms w®, the pure ghost
number becomes equal to the form degree. In that sense, the pure ghost number
is the grading associated with the exterior derivative operator.

The algebra generated by the w?, together with the exterior derivative d acting
on it, possesses the structure of a free differential algebra [14]. The independent
generators of this algebra are just the forms w®, ®,... of increasing degree. The
coefficient ring is the space of constraint surface functions, or, equivalently, the
space of phase space functions with the identification (5.10b).

3. Cohomology of the Extended Exterior Derivative. The extended exterior derivative
operator acts on polynomials in the ghosts #%, ..., #*. Because it is nilpotent, one
can define and study its cohomology. A natural question to ask is: what is the
relationship between its cohomology and that of the original vertical derivative
acting on polynomials in #° with coefficients obeying (5.9)? We show in this section
that they are the same.

First, we establish,

Theorem 6. The cohomological classes of the original exterior derivative along the
gauge orbits (acting on true vertical forms) define cohomological classes of the
extended derivative.

Proof. True vertical forms along the gauge orbits are polynomials in #*° obeying
the algebraic condition (5.9). For such polynomials, one has

d°ri%e = do. (5.14)

Hence, if d*8q ~ 0, then also da~ 0. Moreover, if « =~ d°"¢f, with  obeying the
algebraic condition (5.9), then also x ~df. []

Hence, we can define a map which sends any cohomological class of d°"' onto
the corresponding cohomological class of d. For the cohomologies of d°¢ and of
d to be equal, this map should possess an everywhere defined inverse.

To prove the invertibility, we introduce an algebraic operator A, which acts
again as a right differential, by

Ag=Ap=0, (5.15a)
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Apt=n e Ze (=)o (5.15b)
This operator is (weakly) nilpotent,
A%z 0, (5.15¢)

as a consequence of the reducibility equations.

The interest of the operator A is that it is one of the building blocks of the
extended exterior derivative along the gauge orbits. Indeed, because £ contains
the terms y*+'Z5 2, . the exterior derivative defined by (5.13) clearly reads

do. = Ao + do, (5.16a)
where du is obtained by taking the bracket of « with 2 —Y y“+1Z% 2 _.

Now, A is the only piece of d that replaces #* by a combination of the ghosts
of higher order #**", and this is why it is useful to isolate it. Indeed, by the definition
of Q, d will only transform #® into a combination of products n%n%...5%, where
j, j',... <i. No higher order ghost appears in dy*. Furthermore, dy“ contains n*
at most linearly when i = 1, since in that case the product of two #* possesses pure
ghost number strictly greater than the pure ghost number of #* plus one unit.

Therefore, one has

Lemma 2. Let n* (s = 1) be the ghosts of highest degree occurring in the p-form o
(because a is of finite degree p, there is such an s, and s < p — 1). Let k be the order
of the polynomial o in the highest degree ghosts n, i.e., each term in o contains at
most k powers of the n*’s. Then:

(i) do is a polynomial in y* (i £ s) of order at most k in n*, and
(i) Ao involves n+' at most linearly,

Ao=P, n% i +p. (5.16b)

Here the coefficients P, are polynomials in n* (i < s) of order at most k — 1 in n*
and B is a polynomial in n* (i £s) of order at most k+ 1 in 5,

ﬁ=(l7fl)+/3’ (5.16¢)

k+1)

with b of order k+ 1 in n*, and B’ of order <k.

Proof. Point (i) was already established in the comments immediately following
(5.16a). Point (ii) results from the definition of A, the first term in A« arises when
n“ is replaced by a linear combination of the #%+*'’s and the term of order k + 1
in f comes in when #*~ is replaced by a linear combination of the #*’s. [
(h+1)
In general, both P and S will be nonvanishing. However, one has the

following

s + 1

Lemma 3. If A is weakly equal to a polynomial in n® (i £ s) of order at most k in

(k+1)
n“ (k,s = 1), ie., if in (5.16b)—(5.16¢) both P, and B weakly vanish so that
Aorff, (5.17a)
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then, o can be written as
axAy+e, (5.17b)

where y and ¢ are both polynomials in 5" (i £ s) of order at most k — 1 in n*.

What this lemma says is that if A« does not involve #**1 and is still of order
k in n“, then one can remove one power of #* from « by the addition of a A-exact
term. By repeated use of (5.17b), one can then show that the cohomology of A is
determined by the polynomials in #“ that are A-closed, but we will need below
the stronger result (5.17b). In the theory of free differential algebras, A would
generate the contractible part of the algebra [14], since it replaces a generator of
degree p by a generator of degree p + 1.

Proof. To establish (5.17b) one proceeds as in the proof of the acyclicity of §. One
first checks (5.17b) in an open region where the constraints and the reducibility
functions can be split into dependent and independent sets, so that A can be written
in the canonical form Ax* = 52“11’4'“, Ay =0. One then extends the proof to
the whole of phase space.

The explicit local check of (5.17b) proceeds as follows. (a) One first observes
that if @ obeys (5.17a), then it cannot depend on #*. (b) A map o is defined by
onts = 5:{171“5‘1, on™ ' =0 and ¢ (other variables in «) = 0. For each component
of & of definite order k in #4= and I in 5%, this map obeys (Ao + o A)a = (k + D
It follows that o &~ Ay + ¢ with y = (k + [) " ‘oo, e = (k + )" !0 Aa. The polynomials
y and ¢ obey the required properties because o decreases the number of #* and
does not introduce any 5%+,

From (a) and (b) one infers that (5.17b) holds in appropriate open sets. To
complete the proof, one observes that there is no global subtlety in patching these
sets together because A is algebraic in phase space. [

The use of Lemma 3 above is to establish the following important theorem,

Theorem 7. If o is an extended p-form such that do only involves n*, then it can be
written as

ax o +dp,

where o' only involves y*. In other words, the dependence of o on the extra ghosts
n*,n",... can be removed by the addition of an exact form.

Proof. Onehasdo = Ax + do. If do only involves 4, then Aa obeys the assumptions
of Lemma 3; therefore, o ~ Ay + ¢ =dy — dy + &. The form & — dy involves one less
power of #%, and, since d* ~ 0, it must be such that d(s — dy) only involves #“. By
proceeding recursively in the same way, one completely eliminates n*, and then
n*-1,..., until one reaches a p-form o that only contains . [J

Theorem 7 is important because it tells us that it is sufficient to analyze the
cohomology of the extended exterior derivative d in the space of polynomials in
n. Indeed, the theorem indicates that any cohomological class possesses a
representative that does not involve n?t, 42, ... . Furthermore, if y is exact and does
not contain the extra ghosts, one has y ~ da’, where o is also independent of

a a
nt,n*,.o..
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The last step in showing that the cohomologies of the original and the extended
d coincide is given by

Theorem 8. If both o and du do not contain the ghosts of ghosts, then o is a true
vertical form along the gauge orbits, i.e., it obeys the algebraic condition (5.9).

Proof. One works out explicitly the term containing #*' in do and finds out that
it is just the left-hand side of (5.9). [J

Hence, one sees that in the extended formalism with the extra ghost forms, one
does not need to impose by hand the algebraic condition (5.9), and one can treat
the forms as “free.” The algebraic condition (5.9} is automatically enforced by the
formalism when one imposes the closedness condition.

We have thus arrived at

Theorem 9. The cohomologies of the original exterior derivative operator along the
gauge orbits and of the extended exterior derivative d coincide.

Proof. Any cohomological class of d contains a closed form involving only #
(Theorem 7), which is vertical (Theorem 8) and thus also closed for 4°"'8, Moreover,
if a vertical form y is exact for d, y ~ da, then « can be taken to depend only on
# (Theorem 7) and must then be vertical (Theorem 8), so that y is also exact for
d°e 1t follows that the map that takes the cohomological classes of d°¢ into those
of d is an isomorphism.  []

The conclusion of this section is that the extended operator 4 is an extension
of the original vertical exterior derivative along the gauge orbits, which does not
change its cohomology. The theorem that has been established is the analog of a
theorem of free differential algebra theory, which states that the most general free
differential algebra is the tensor product of a contractible and a minimal one [14].
If the constraints and the reducibility functions are split into independent and
dependent ones, the ghosts #*° associated with the independent constraints belong
to the minimal part carrying all the cohomology, whereas the extra ghosts belong
to the cohomologically trivial contractible subalgebra.

4. BRST Cohomology. We have at this point everything needed to relate the
classical BRST cohomology to the cohomology of the exterior derivative operator
along the gauge orbits.

Indeed, we have shown that 2 incorporates both the Koszul-Tate operator ¢
and the exterior derivative operator d in the sense that

[F(q,p), 2] = (6 + d)F + (more), (5.18a)
[n*, 2] = (6 + d)n* + (more), (5.18b)
[Z,,,82]=(0+d)Z, + (more). (5.18¢)

Here, we have extended d to act on 2, as
d?, =0. (5.18d)

The abbreviation “more” in (5.18a) and (5.18b) refers to terms of “higher rank,”
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coming from contributions that vanish if one sets 2, =0 (after the bracket is
computed) but that are nonzero otherwise. Similarly, “more” in (5.18c) refers to
terms that vanish if one sets #* = 0. These extra terms mix the ghosts with their
momenta in the BRST transformation. They are absent in the abelian group case
(vanishing C’s) with constant Z’s but are present in general.

Now the Koszul-Tate operator ¢ is acyclic, and the cohomology of d is the
cohomology of the exterior derivative along the gauge orbits. We have thus been
able, by introducing extra ghosts and ghost momenta, to reach a point where the
reducible case possesses exactly the same features as the irreducible one. Thus, by
repeating exactly the same steps as in the irreducible case, one can prove

Theorem 10.

0 p<0

Ker 2 \*
ImQ - - 5.19
< Im.Q >classical K@I‘d ( )
— ] p20
Imd

We refer the reader to [8] for a detailed proof, carried out on irreducible theories.

VI. Conclusion

The main conclusion of this paper is that the BRST analysis of reducible theories
goes through in much the same way as in the irreducible case, once it is realized
that the formalism can be expressed in terms of the Koszul - Tate differential, which
is acyclic thanks to the presence of the extra ghosts.

In particular, the BRST generator always exists and is unique modulo a
canonical transformation in the extended phase space. Furthermore, BRST
invariance appears again as synonymous of gauge invariance at zero ghost number,

since one has
Ker 0 \° _ Kerd "’ 6.1)
Im ‘Q classical Im d

and (Ker d/Im d)° just contains the gauge invariant functions.

This property, as well as the general cohomological analysis of the previous
section, holds even if the reducibility of the theory is infinite. This is because when
the ghost number is fixed, the tower of ghosts at antighost number zero is effectively
cut at a finite order (of course, where the ghost tower is cut depends on the actual
value of the ghost number under consideration).

Another interesting feature that arises from the analysis is the fact that the
ghosts and the ghost momenta serve different purposes to start with. While the
former can be viewed as forms along the gauge orbits and are thus related to the
gauge generator aspect of the constraints, the latter are linked with the other role
played by the constraints, namely, that of restricting the dynamics to the surface
G,, =0. These two different aspects join forces in the BRST formalism through
the extended phase space Poisson bracket structure, which is defined in such a
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way that the generators of the Kozsul-Tate complex (ghost momenta) become
canonically conjugate to the generators of the exterior algebra along the gauge
orbits (ghosts).

The proofs of the properties of the BRST formalism given here are largely
based on the invariance of the BRST theory under canonical transformations. It
would be of interest to compare the present analysis with other approaches that
are of a more algebraic topological nature [15,16]. Let us also note that the direct
but lengthy pedestrian checking of the identity (4.16) worked out in [3] for the
irreducible case can be extended to the irreducible case as well, provided one
develops 2 in powers of the ghosts # instead of the ghost momenta £. The details
of this alternative method will not be given here.

Appendix: Conventions

In the main text, we consider three different nilpotent differential operators: the
Koszul-Tate operator, the exterior derivative operator along the gauge orbits, and
the BRST generator.

The gradings associated with these operators are, respectively, the antighost
number, the pure ghost number, and the (total) ghost number. Hence, the
Koszul-Tate operator is a differential operator of degree —1 in the antighost
number, the exterior derivative d is a differential operator of degree + 1 in the
pure ghost number, whereas the BRST generator defines a differential operator of
degree +1 in the ghost number.

The only variables with nonvanishing antighost number are the momenta 2, .
The only variables with nonvanishing pure ghost number are the ghosts #*. The
{total) ghost number is the difference between the pure ghost number and the
antighost number. Therefore, one finds

antigh(#, )= —gh(Z,); pure gh(#,)=0, (A.1)
pure gh(n®)= gh(n*); antigh (n*) =0, (A2)

and the Koszul-Tate operator 1s of degree + 1 in the ghost number.

Concerning the exterior calculus on a supermanifold, we adopt the conventions
of Berezin and Leites [11] and those in differential graded algebras [14],
characterized by the fact that the exterior product is governed by a single grading,
called here the Grassmann parity. Hence, if A and B are, respectively, p-forms and
g-forms of Grassmann parity ¢, and ¢, one has

AB = (—)#4BA (A.3)

with no explicit reference to the form degree of A or B. The Grassmann parity of
the p-form A is equal to the sum of its degree as a form plus its “intrinsic grading.”
The only difference is that the differentials here are all derivatives from the right.

One has
e(AB)=¢, + &5, (A.4a)

odA)=c,+ 1, (A.4b)
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so that d possesses Grassmann parity + 1,
e(dy=1. (A.5)

It results that the Lie derivative operator aiso carries Grassmann parity + 1. Thus,
if the constraints G, are of Grassmann parity ¢,,, the associated vector fields X,

X, F=I[FG,] (A.6a)
possess Grassmann parity g, + 1,
e(Z,,) =€, + 1. (A.6b)

Berezin and Leites’s conventions are particularly convenient because the
algebraic manipulation of functions, forms, and vectors are the same as in an
ordinary Grassmann algebra.

Another convention adopted here is that our derivative operators (vector fields, d)
act from the right. Hence, one has, for instance,

d(AB) = AdB + (—Y*(dA)B. (A7)

This is done in order to comply with standard Hamiltonian conventions where,
as in (A.6a), canonical generators are usually written to the right in the Poisson
brackets.

With these conventions, the explicit expression for the exterior derivative do
of the p-form « is given by

—

ﬁ R p ~
)Xoy s X)) =(—)" [ZO(—)WW(XO,...,Xj,...,Xp)yx
=

J

+ Z (_)pij+6XJ+la(X05'"aXir-'9Xja~'-3Xpa[Xi9Xj]):I5

0i<ysp

(A.8)

where © denotes omission, fng is the right derivative of f along the vector
field X ;, and [X;, X;] stands for the (graded) Lie bracket of X; and X;. Also, the
phases p; and p;; in (A.8) are just the phases resulting from moving X; (and X))
past the other X, and are given by

r

b= 3 e, (A99)
k=j+1
Pij= Pi+ pj+ ey, Ly (A.95)

Here, ¢y, is the Grassmann parity &(X ) of the vector X ;.
Finally, we note that, given a basis o of 1-forms, one can expand any p-form as

1
azgw’“mw"wm..,@ (A.10a)
1 vl A A
=g 0™, (A.10b)

pl
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the functions ..., and d,,.. 4, are the “left-left” and “right-right” components
of « and differ by an elementary phase. They possess the appropriate symmetry
properties

aAl“'AiAH py = (_)S(wA.)S((DAi+ l)aAl"‘AzHAi'“Ap’ (Al 1)

etc....
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