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EXISTENCE, UNIQUENESS, AND STABILITY
OF OSCILLATIONS IN DIFFERENTIAL EQUATIONS

WITH ASYMMETRIC NONLINEARITIES

A. C. LAZER AND P. J. McKENNA

Abstract. We give conditions for the existence, uniqueness, and asymptotic
stability of periodic solutions of a second-order differential equation with piece-
wise linear restoring and 2fl-periodic forcing where the range of the derivative
of the restoring term possibly contains the square of an integer. With suit-
able restrictions on the restoring and forcing in the undamped case, we give a
necessary and sufficient condition.

1. Introduction

The main motivation for this paper comes from a numerical study carried
out in [5]. Consider the partial differential equation

(1.1) d2U/dt2 + kdlf/dt + cd4U/dx* + dU+ = h(t,x),

where U = U(x,t), 0 < x < L, r > 0 satisfies the boundary conditions

(1.2) (7(0,i) = U(L,t) = (d2U/dx2)(0,t) = (d2U/dx2)(L,t) = 0,

c>0,rc>0,i/>0are constants, and U+ denotes the positive part of U. If
k = d = 0, then (1.1) and (1.2) describe the transverse vibrations of a beam of
length L which is hinged at both ends and where h(x ,t) is the external force
acting on the beam.

In [5], the boundary value problem (1.1), (1.2) was suggested as a model for
an idealized suspension bridge. The term dU+ takes into account the fact that
when the cables suspending the bridge are stretched, there is a restoring force
which is assumed to be proportional to the amount of stretching (Hooke's law).
But when the beam moves in the opposite direction, then there is no restoring
force exerted on it. The term kdU/dt represents viscuous damping, assumed
to be small. The same model with k = 0 had been considered previously in
[10]-
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722 A. C. LAZER AND P. J. McKENNA

The purpose of [5] was to show how such a model could predict the existence
of large amplitude, stable oscillations in suspension bridges. Assume that the
external force is of the form

h(x,t) = (sin nx/L)(s + f(t)),

where s > 0 is a constant and f(t) is T-periodic in t, T > 0, with mean-
value zero. If we look for a standing-wave solution of (1.1), (1.2) having the
form

U(x,t) = (sin nx /'L)u(t)

(this corresponds to a no-nodal motion of the bridge) we note that, because of
the positive homogeneity of the nonlinear term, such a solution will exist if and
only if u(t) is a solution of the O.D.E.

(1.3) u"(t) + ku'(t) + c(n/L)4u(t) + du+(t) =s + f(t).

Assume k > 0 and that / is continuous and let w(t) be the unique T-
periodic solution of the linear differential equation

w" + kw' + [c(n/L)4 + d]w = f(t).

If s > 0 and the amplitude of /(/) is small enough to ensure that

"0(0 = s/[c(n/L)* + d] + w(t) ^ °

for all t, then u0(t) is an asymptotically stable T-periodic solution of (1.3).
The solution U(x,t) = (sinnx/L)u0(t) of (1.1), (1.2) represents small oscil-
lations about the equilibrium solution [c(n/L) + d]sinnx/L of (1.1), (1.2)
when the small oscillatory term f(t) = 0.

Using extensions of results of Loud in [13] (Loud considered restoring forces
of class C1 ) it was shown in [5] that if the form and period of / were suit-
ably restricted, if k > 0 was sufficiently small, and if the amplitude of f(t)
was sufficiently small, then there was also a large-amplitude, asymptotically
stable, T-periodic solution of ( 1.3) near a translate of a nonconstant T-periodic
solution of the autonomous O.D.E.

u  +ku +c(n/L) u + du   =s.

For convenience, let us write

a = c(n/L)4,       b = d + c(n/L)A.

The results of [5] show that if A> 0, p> 0, y is arbitrary,

2n/\fb < 2n/p < n/y/a + n/\fb

and the ratio A/s and k > 0 are sufficiently small, then

u" + ku + bu   - au~ = s + A sin(pt + y)
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OSCILLATIONS IN DIFFERENTIAL EQUATIONS 723

will have exactly two stable 27r//i-periodic solutions, one of which is close to
the constant s/b and the other close to a nonconstant 27r//¿-periodic solution
of

u" + bu+ -au   = s.
In [5] a numerical study of the differential equation

(1.4) u" + (.Ol)u + I7u+ - 13u~ = 10 + Asinpt
was made. With p = 4, it appeared that for sufficiently large A (A > .61)
there was a unique stable periodic solution.

In this paper we give some mathematical justification to the conclusion of
the above-mentioned numerical experiment. In Theorem 1 below we show that
if a and b are constants satisfying

(2m -I)2 _      (2m + I)2

where m > 1 is an integer, k > 0, y is arbitrary, and p(t) is a 27r-periodic
function of class C   such that

p2n r2%
\    p(t) cos mtdt = /    p(t) sin mtdt = 0,
Jo Jo

then if A > 0 is sufficiently large, there exists a unique 2n-periodic solution of

(1.5) u" + ku + bu+- au   = p(t) + A sin(mt + y).
Moreover, this solution is asymptotically stable.

We emphasize that we have only been able to establish local asymptotic sta-
bility. Unless b - a is sufficiently small (so the O.D.E. is close to linear) we feel
that it is likely that there exist subharmonic and/or almost periodic solutions.
We also emphasize that the damping k does not have to be small.

In Theorem 2 below we consider the undamped differential equation

(1.6) u  +bu   -au   = Asin(mt + y),
where A > 0. Together with Lemma 2.3 below, Theorem 2 shows that if a
and b satisfy the restrictions given below, then (1.6) has a periodic solution if
and only if

l/y/a+l/Vb¿2/m.
In fact, if this condition does not hold, then (1.6) has no bounded solutions.
This, of course, is well known if a = b = m  .

In connection with Theorem 2, we mention the interesting work of Gallouët
and Kavian [3, 4]. They consider equations of the form

(1.7) Lu = g(u)+s6 + h,
where L is a selfadjoint operator with compact resolvent on a real Hubert
space, ^:R->R satisfies

(a   as ¿ —y -oo,

( b   as ç —y oo,
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724 A. C. LAZER AND P. J. McKENNA

c < a, b <d, where the interval [c, d] contains exactly one simple eigenvalue
of L, 6 is an eigenfunction corresponding to this eigenvalue, s is parameter,
and h is orthogonal to 6 . The condition that the eigenvalue contained in [c, d]
is essential in the arguments in [3, 4].

In our case m   is a double eigenvalue of the problem

-u   =Xu,    u(0) = u(2n),    u(0) = u(2n).

However, as in [3] and [4] we do make use of the Liapunov-Schmidt reduction
method.

We remark that by a simple change of the time scale, we can consider forcing
which has period different from 2n . This will result in different restrictions on
a and b .

In this section m > 1 will denote a fixed integer and yx and y2 fixed numbers
such that
.... (2m -I)2 (2m + I)2
(2.1) i-4—^ < 7t < y2 < ^—rJ-.
If g is a real valued function defined on some interval 7, then x(g) will denote
the characteristic function of the set

{t e I\g(t) > 0}.
We consider the differential equation

(2.2) u  + ku + bu   -au~ =cosmt

with a,b and k constants, where u+   (u~) denotes the positive (negative)
part of u . Our main tool in this section is the following

Lemma 2.1. If
(2.3) y, < a < b < y2

and u0(t) is a 2n-periodic solution of (2.2), then there exists no nonzero 4n-
periodic solution of

(2.4) L(y) = y" + ky + [bX(u¡) + ax(u~)]y = 0.

(By a solution of (2.4) we shall mean a C'-function y with y   absolutely
continuous such that (2.4) holds almost everywhere.)

Proof. Suppose, contrary to the assertion of the lemma, there exists a nonzero
4^-periodic solution y0(t) of (2.4). If

0 1 "
-Pit)   -k_A(t) =

where

(2.5) P(0 = [bx(K) + ax(u:)](t),
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OSCILLATIONS IN DIFFERENTIAL EQUATIONS 725

then the column matrix
y(t) = hod)

is a nontrivial 47T-periodic solution of the homogeneous linear system x"(t) =
A(t)x(t). It is known that the adjoint system ~x(t)T = -x(t)TA(t) has a non-
trivial 47t-periodic solution l(t)T = [v(t),w(t)]. (See for example [6, p. 146].)
It follows that v = p(t)w and w' = -v + kw , and therefore w is a nontrivial
4n-periodic solution of

L*(y)=y"-ky'+p(t)y = 0.

Since
bu+(t) - au~(t) = [bx(ul) + ax(ul)](t)uQ(t)

it follows from (2.2) that

L(u0) = u'q + ku0 + p(t)u0 = cos mt.

From this it follows that since both uQ and w are 47i-periodic and L*(w) = 0
we have that

/•4n r4n rAn
(2.6) /    w(t)cosmtdt=        w(t)L(u0)(t)dt =        u0(t)L*(w)(t)dt = 0.

Jo Jo Jo

Since any accumulation point of zeros of uQ must also be an accumulation
point of zeros of u'0 as well as an accumulation point of zeros of u'q , it follows
from (2.2) that the only possible accumulation points of zeros of u0 are the
values of t for which cos mi = 0. From (2.2) it follows that u0 has a third
derivative on the intervals on which u0(t) ^ 0 and differentiating (2.2) we
obtain

(2.7) u0 + ku0 + [bx(u0) + ax(u0 )]u0 = -ms'mmt.

Since the accumulation points of the zeros of u0 are isolated we see that w'0"
is Riemann-integrable and from (2.7) we have that

rAn rAn

-ml     w(t)sinmtdt = I    w(t)L(u'0)(t)dt
(2.8) h h
v        ' rAn

= /     u'(t)L*(w)(t)dt = 0.
Jo

To conclude the proof we use a variant of a technique which was used for vari-
ational type problems in [8] and for a nonvariational type problem in [14]. Rep-
resenting the 4^-periodic function w(t) by its uniformly convergent Fourier
series

(0 = c0 + ^2 cjcos ol + djsin t l 'w
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726 A. C. LAZER AND P. J. McKENNA

it follows from (2.6) and (2.8) that c2m = d2m = 0.  We can therefore write
w = wx +w2, where

2m-1

wx (t) = c0 + ^2 cjcos 2l + djsin ?l '
7=1

W
oo

(t) =   ^2   CjCOs^t + djSin^t.
j=2m+X

Let
rAn

(/>*)„=/    f(t)g(t)dt
Jo

2and let |/|0 = (f,f)Q . From Parseval's identity we have

(2.9)

and

(2.10)

2m-1   .2

7 = 1

(2m- iy 2m- X

4%c\ + 2%Y^ (c] + d2)
7 = 1

(2m- 1),     .2
-4-Klo

\w
oo       .2

2\l = 2nj:J-T(c2 + d2)

> 2n

2m+l

(2m +1)2   ^     2      2      (2m+l)2,     2

_/=2m+l

Clearly

and for i = 1,2
(w'x,w2)0 = (w'2,wx)0 = 0

(w'i,wi)Q = ^(w2(4n)-w2(0)) = 0.

Therefore if we set z = w2- wx we have (z,w')0 = 0. Since integration by
parts gives -(z, w")0 = (z , w')0 we have

0 = -(z,L»)0
rAn rAn rAn

=        z'(t)w'(t) + k       z(t)w'(t)dt-       p(t)z(t)w(t)dt
Jo Jo Jo

= [\w'2(t)2-w'x(t)2)dt- fnp(t)(w2(t)2-wx(t)2)dt.
Jo Jo

Hence
pAn /*47ï

(2.11) /    (w'2(t)2-p(t)w2(t)2)dt=       (w[(t)2-p(t)wx(t)2)dt.
Jo Jo
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OSCILLATIONS IN DIFFERENTIAL EQUATIONS 727

As observed above, the accumulation points of zeros of u0(t) are isolated so
from (2.3) and (2.5) it follows that yx < p(t) < y2 almost everywhere on
[0,47i]. Therefore, from (2.1), (2.9), (2.10) and (2.11) we see that

0< (2m + iy
Klo^

rAn
/    (w'2(t)2-p(t)w2(t)2)dt
Jo

rAn

f.1 ...2    _,^_„ /„2% ,_ ¡(2m-iy(w\(ty-p(t)wx(ty)dt< -yx KIÔ<o.

Therefore, (2.1) implies that wx(t) = 0 and w2(t) = 0 so w(t) = 0 and we
have a contradiction. This contradiction proves the lemma.

Lemma 2.2. Let f(t,a) be continuous for t > 0 and 0 < a < at. Let a(s)
and b(s) be continuous functions of the parameter s for 0 < s < 1 such that
0 < a(s) < b(s). Suppose that for each a e [0,5] the zeros of f(t,a) are
isolated on 0 < t < oo. If u(t,S,,n ,s ,a) denotes the solution of

(2.12) u" + ku + b(s)u+ - a(s)u~ = f(t,a),    u(0) = Ç, u'(0) = n,

then the partial derivatives || , |^ , %■, Of- exist and are continuous. Moreover,
í/¡<0(() = «(í^0!f|0,i0,a0) and

X(t) = qç (t > Cq ' *lo y so y a0'     a>¡ V > *»o ' ''o ' so » ao>
Ou'
Q¡ (t y 4o > ̂ 0 ' S0 ' a0^       dr\ V ' '»O ' ^0 ' S0 ' ao) ->

then

where

X'(t) = A(t)X(t),       X(0) = 1    0
0    1

A(t) = 0
-Pit)

with p(t) given by (2.5).

Although this result seems clear formally, it does not follow from standard
theory since the nonlinear function <jf —► b(s)Ç+ - a(s)Ç~ is not of class C1 .
The proof is given in an appendix at the end of this section.

Lemma 2.3. Assume that the hypotheses of Lemma 2.2 hold and that f(t, a) is
2n-periodic in t. Moreover, assume that for all s e [0,1]

(2.13) yx < a(s) < b(s) < y2,

where y, and y2 are as in (2.1). If either

(2.14) k¿0
or
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728 A. C. LAZER AND P. J. McKENNA

for all s e [0,1], then there exists a number R > 0 such that if 0 < a < a,
0 < s < 1 and u(t,C,r¡ ,s,a) is 2n-periodic in t, then

(2.16) t2 + n2<R2.
Proof. First let us note that (2.1) and (2.3) imply that
,.,,, 4 2^1 1 2 *
(2.17)- < —- <    ^__ + —==. < —— <2m + 1     jr2- JaJT)     y/b(¿)     JTX     2m-V
Assuming that the assertion of the lemma is not true, then either (2.14) or (2.15)
holds and there exist sequences {Çn}°°, {>7„}'î>c, {s„)T and {a„}f suchthat

£« + % -^ °°   as n -+ oo,

0<5„< 1, 0 < an < a, and u(t ,Çn , r\n ,sn ,an) is 27t-periodic in t. By
considering suitable subsequences, we may assume that there exist numbers £0
and n0 with £0 + t]0 = 1 and numbers s0 e [0,1] and a0 € [0,5] such that

<? Vhm "       = £0, hm "       = »/0,
V ̂  + *» V *» + In

}ELsn = so>      ill* "« = "<>■
If

then, by (2.12)
v„(t) = u(t,Zn,rin,sn,an)/yJi2n + ril,

v" + kv'n + b(sn)v+n - a(sn)vn = f(t,«n)/\len + r}2n.

Since the nonlinearity in this differential equation is Lipschitzian, it follows
from standard theory (see, for example, [1]) that if v(t) is the function satis-
fying

v" + kv'+ b(s0)v+ -a(s0)v~ =0,    v(0) = Co,    v'(0) = n0,

then vn(t) —» v(t) and v'n(t) -* v'(t) uniformly on compact subintervals of
(—00,00). Therefore, v(t + 2n) = v(t). Since

° = C Tt [V'{t)2 + ^*(so)v+(02 + a(*o)«"(02] dt

= -k[    v'(t)2dt
Jo

and v(0)2 + v'(0)2 = 1, it follows that k = 0. Therefore, (2.15) holds.
On intervals on which v(t) is positive we have v"(t) + b(s0)v(t) = 0. There-

fore, the distance between two consecutive zeros of v(t) which border an in-
terval on which v(t) is positive is n/Jb(sQ). Similarly, on intervals on which

v(t) is negative we have v"(t) + a(s0)v(t) = 0, so the distance between two
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consecutive zeros of v(t) which border an interval on which v(t) is negative
is n/y/a(s0). Since

v'(t)2 + {-[b(s0)v+(t)2 + a(s0)v~(t)2] = constant

the least period of v(t) is equal to n/s/a(s0) + n/Jb(s0). But since 2n is also
a period of v(t), we must have, for some integer TV,

N (ji/yfa%) + n/^b^¡) = 2%.
From (2.17) we see that this implies that N = m which contradicts (2.15). This
proves the lemma.

Lemma 2.4. Assume that conditions (2.1) and (2.3) hold. If either (2.14) or

(2.18) k = 0,      -L + J^A
yja     yjb     m

hold, then (2.2) has a unique 2n-periodic solution u(t). If k > 0,

Í(«)-[»*(*Í + <"*(«")](<)■

a/irf Y(t) denotes the 2x2 matrix such that

Y'(t) = B(t)Y(t),        Y(0) = I,

then the eigenvalues of Y(2n) have moduli less than 1.
Proof. If k ¿ 0 let
(2.19)(i) a(s) = a,    b(s) = b + s(a - b)

for 5 €[0,1]. If k = 0 and l/y/a+ l/\fb>2/m let
(2.19)(ii) a(s) = a,       b(s) = b + s(a - b)

for 5 €[0,1]. If k = 0 and l/yß+l/y/b <2/m let

(2.19)(iii) fl(j) = fl + i(ô-fl),       b(s) = b

for 5 e[0,l].
Since (2.3) holds, it is clear that (2.13) holds and either (2.14) holds or (2.15)

holds for all s €[0,1].
To prove the lemma we use a continuation argument similar to one used in

[12]. Let u(t,£,n,s) denote the solution of the initial value problem

(2.20) u" + ku + b(s)u+ - a(s)u~ = cos mt,

u(0)=£,       u'(0) = n.
Let

F(£,n,s) = u(2n,Ç,ri,s)-Ç,       G(Ç,n,s) = u'(2n,Ç,t],s) - n.
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730 A. C. LAZER AND P. J. McKENNA

According to Lemma 2.2, F and G are continuous and have continuous partial
derivatives with respect to £, and n. By standard theory, u(t,Ç,n,s) isa 2n-
periodic solution of (2.20) if and only if

(2.21) F(Ç,ri,s) = G(Ç,ti,s) = 0.

Suppose that F(£0, r/0, sQ) = G(i0 ,r¡0,sQ) = 0 where s0 e [0,1]. Let u0(t) =
u(t,ÇQ,n0,s0). According to Lemma 2.2, we have

(2.22) (£0''/o>io) = x(27r)-/'
'dF/dtl   dF/dn
dG/dS,    dG/dn

where X(t) is as in the statement of Lemma 2.2.
We assert that

(2.23) det(X(27t) - 7) ^ 0.

Assuming the contrary, there exists a column vector c ^ 0 such that X(2n)c =
c. It follows that y(t) = X(t)c is 2n-periodic, not identically zero, and satisfies
y (t) = A(t)y(t). From this and the form of A(t) we see that

m = y(t)
y'it)

where y(t) is nontrivial 2^-periodic solution of (2.4). But yx < a(s0) < b(s0) <
y2 so according to Lemma 2.1, (2.4) has no nontrivial 4n-periodic solutions.
This contradiction proves (2.23).

It follows from (2.22), (2.23) and the inverse function theorem that there ex-
ists an open disk D in the £, //-plane centered at (£0, n0) such that (F(Ç ,r¡ ,s0),
G(i, n, s0)) ^¿(0,0) for (£, q) € D and (£, n) ¿ ({„, r¡Q). This shows that for
each 5 e [0,1] the set of points (Ç,n) for which (2.21) holds has no limit
point. Since according to Lemma 2.3, there exists a number 7? > 0 such that
s € [0,1 ], and (2.21 ) imply that £2 + n2 < R2, it follows that for each se [0,1],
(2.21) has only a finite number of solutions.

For each integer p > 0, let I denote the set of numbers 5 € [0,1 ] such
that there are exactly p points satisfying (2.21). If s0 € Xp and (£., ?/.), j =
1, ... ,p , denote solutions of F(Ç ,n ,s0) = G(Ç, n,s0) = 0 then, since the argu-
ment given above implies that the Jacobian of the map (Ç,rj) —► (F(Ç,n,s0),
G(Ç ,n ,s0)) is nonzero at (¡5 , n.), 1 < j < p , a version of the implicit function
theorem [2, 16] implies the existence of open disjoint disks D-, j = 1,... ,p,
and a number ô > 0 such that D. is centered at (£., nß and for \s - s0\ < ô ,
s e [0,1], there exists a unique point (<*.(s), fjj(s)) e Dj , varying continuously
with 5, such that

F(ij(s) ,fj,(s),s) = G(ij(s), flj(s),s) = 0

and (fyí0),fy(í0)) = itj,ilj). Since (F(í,rj,s0), G(í,^,J0)) ^ (0,0) for
(i,*) € {(^,m2 + V2 < R2,(Í,ri) <¿ Dj, j = l,...,p} = K and K  is
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compact, by choosing ô > 0 smaller, if necessary, it may be assumed that
(2.21) has no solution (Ç, n) e K for |s - 50| < ô .

It follows that if s € [0,1] and \s - s0\ < ô, then (2.21) has exactly p
solutions (C,r¡). Hence I   is open in [0,1].

Since I is disjoint from I for p ^ q and since the interval [0,1] is
connected, it follows that there exists an integer p > 0 such that £ is empty
for q + p and [0,l] = 2p.

To determine p we determine the number of solutions of (2.20) when 5=1.
In case k ^ 0, then, by (2.19)(i), when 5 = 1 (2.20) becomes

u  +ku + au = cos mt.

Clearly this has a unique 2^-periodic solution so when k ^ 0 we have p = 1.
In case k = 0 and l/sfä+ l/Vb > 2/m , we must have a < m and, according
to (2.19)(ii), when 5 = 1 (2.20) becomes

u  + au = cos mt.
2 2Since (2m - 1) /4 < yx < a < m , this has a unique 27t-periodic solution.

Finally, if l/y/a+ l/\fb < 2/m, we must have b > m    and, according to
(2.19)(iii), when 5 = 1 (2.20) becomes

u  + bu = cos mt.
1 1Since m < b < y2 < (2m + 1) /4, this has a unique 2n-periodic solution.

Therefore, both (2.14) and (2.18) imply that [0,1] = S, .
When 5 = 0, (2.20) becomes (2.2). 77z/5 proves that (2.2) has a unique

2n-periodic solution u(t).
Since [0,1] = E, it follows that for each fixed 5 e [0,1] there exists a unique

point (Ç(s), il (s)) such that

(2.24) (F(Í(s), ij(s), s), G(i(s), n(s), s)) = (0,0).

The implicit function theorem as used above implies that £(5) and i)(s) depend
continuously on 5 . Therefore, according to Lemma 2.2, if

■§f(í,cf(5),rH5),5)        ̂ (t,Í(s),i¡(s),s)-
.^-(t,Í(s),Íj(s),s)    <£(t,Ç(s),i)(s),s)_ '

then the elements of Z(t,s) are continuous in t and 5, and if

0 1 "
_-p(t,s)   -k

Z(t,s) =

C(t,s) =

where

then

(2.25)

p(-,s) = b(s)x(u (-,C(s),i¡(s),s)) + a(s)x(u  (-,¿l(s) ,i)(s),s)),

Z(t,s) = C(t,s)Z(t,s),       Z(0,s) = I.
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In the remainder of the proof we assume k > 0. Either

C(t,l) 0      1
-a   -k or   C(t,l) 0      1

-b   -k
In either case if a, and X2 are the eigenvalues of the constant matrix C(t, 1),
then both Xx and X2 have negative real parts. Since the eigenvalues of Z(2n, 1)
are e 2 * and e 2 n , the moduli of both eigenvalues of Z(2n, 1) are less than 1.
By elementary considerations (for example, by Rouché's theorem) for s e [0,1]
and |5-1| small, both eigenvalues of Z(2n,s) have moduli less than 1. If the
moduli of both eigenvalues of Z(2n,s) are not less than 1 for all 5 e [0,1]
then by Rouché's theorem and the continuity of the elements of Z(27t, s), there
exists a number s* with 0 < 5* < 1 such that for s* < s < 1, both eigenvalues
of Z(2n ,s) have moduli less than 1 and the eigenvalues of Z(2n ,s*) may be
denoted by ax and o2 such that |crx | = 1 and \o2\ < 1.

Since the trace of C(t,s) is identically equal to -k < 0, it follows from
Liouville's formula that

oxo2 = detZ(2n,s*) = e~ n   < 1.

This shows that ox and o2 cannot be complex conjugates since this would
imply \o2\ = |a,| = 1, contradicting the previous equation. Therefore ax = 1
or a, = -1. If c, = 1 then there exists a column vector c ^ 0 such that
Z(27t,5*)c = c. As in an argument given before, if y(t) = Z(t,s*)c then

(2-26) m=[$%.
where y(t) is a nontrivial 27r-periodic solution of
(2.27) y"(t) + ky'(t)+p(t,s*)y(t) = 0.
But since (2.13) holds and û(t ,£(s*) ,r¡(s*) ,s*) is a 27t-periodic solution of
(2.20), it follows from Lemma 2.1 and the definition of p(t,s*) that (2.27)
can have no nontrivial 47r-periodic solution and therefore it cannot have a
nontrivial 27r-periodic solution.

We are therefore left only with the possibility that ox = -1 . This implies
the existence of a column vector c/0 such that Z(27i ,s*)c = -c. It follows
that if y(t) = Z(t ,s*)c, then (2.26) holds, where y(t) is a solution of (2.27)
such that

y(27r) = -y(0),       y'(2n) = -y'(0).
Since y(t + 2n) and -y(t) are both solutions of (2.27) it follows by these two
equations and the uniqueness theorem that

y(t + 2n) = -y(t).
Therefore y(t) is a nontrivial 47r-periodic solution of (2.27) which contradicts
Lemma 2.1. This contradiction shows that the eigenvalues of Z(2n,s) must
have moduli less than 1 for 0 < s < 1 . Since Z(27r, 0) = Y(t) this proves the
lemma.

We now prove our main result:
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Theorem 1. Assume that (2.1) and (2.3) hold. Let h(t) be a 2n-periodic func-
tion of class C   such that

r2n r2n
(2.28) /    h(t)cosmtdt = /    h(t)sinmtdt = 0.

Jo Jo
Let k > 0 and let y be an arbitrary constant. If A > 0 is sufficiently large

then there exists a unique 2n-periodic solution of

(2.29) u" + ku + bu   - au" = h(t) + A sin(mt + y).

Moreover, this solution is locally asymptotically stable.
Proof. Since u(t) is a 27t-periodic solution of equality (2.29) if and only if
u(t + n/2m - y/m) is a 27t-periodic solution of

(2.30) u" + ku + bu+ - au~ = h(t) + A cos mt,

where h(t) = h(t + n/2m - y/m), it is sufficient to consider this latter equation.
Since u(t) is a solution of (2.30) if and only if u(t)/A is a solution of

(2.31) u" + ku + bu+ - au~ = ah(t) + cosmt,

where a = l/A, to prove the theorem it is sufficient to prove that for \a\
sufficiently small, (2.31) has a unique 2%-periodic solution and that this solution
is locally asymptotically stable.

To this end let ü(t,£,r\,a) denote the solution of (2.31) such that

w(0,£,,7,a) = £,        u(0,C,ri,a) = n.

Since the zeros of cosmt are isolated and h(t) isa 2^-periodic function of class
C there exists a number a0 such that the zeros of f(t,a) = cosmt + ah(t)
are isolated if |a| < a0. Hence, according to Lemma (2.2) both ü(t,C,r¡,a)
and u'(t,Ç,n,a) have continuous partial derivatives with respect to £, and n
for \a\ < a0 .

By standard theory, u(t,Ç,n,a) is a 27t-periodic solution of (2.31) if and
only if

(2.32) ü(2n,$,ri,a)=£,       u (2n,Ç,n,a) = n.

By Lemma 2.3 there exists a number R > 0 such that (2.32) implies Ç + n <
R . By Lemma 2.4 there exists a unique point (£0, n0) such that

ù(2n,ç;0 ,n0,0)=Ç0,       Ú(2tc,C0 ,n0,0) = r¡0.

Moreover, by the same lemma the eigenvalues of the Jacobian matrix of the
mapping

{-►n(27ï,i.i/.O),        i/-»ñ(27i,í,r/,0)
have modulus less than 1. Therefore the mapping

Ç^u(2n,Ç,t],a)-Ç,        n-* ü(2n,C,r¡,a) - r¡
has nonzero Jacobian at (£,,n,a) = ({0,nQ,0).
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The same version of the implicit function theorem and the same type of
argument as used in Lemma 2.4 implies the existence of a number a, > 0
such that for |a| < a, there exists a unique pair of functions (Ç(a),i)(a))
which satisfy (2.32). Moreover, ({(a),i)(a)) depends continuously on a and
1(0) ={0 and r/(0) = >/0.

According to Lemmas 2.2 and 2.4 the eigenvalues of

-ff(27r,{0,r,0,0)     C(27r,{0,r,0,0)-
.^(2n,i0,r,0,0)   %(2nA0,%,0).

have moduli less than 1. By Rouché's theorem, there exists a number a2 > 0
such that if \a\ < a2, the moduli of the eigenvalues of

■$(2n,t(a),rj(a),a)     ^(27t,C(a),i¡(a),a)-
_%(2nA(a),r,(a),a)    %(2n ,f'(a), ij(a) ,a).

are less than 1. But this means that the unique fixed point (|(a), rj(a)) of

(£,>/) — (ü(2n ,Ç,r¡ ,a) ,iï(2n ,Ç ,n,a))

is attracting (see [7, p. 280]). Since this implies that the 27r-periodic solution
u(t,Ç(a), ij(a),a) is asymptotically stable, the theorem is proved.

We conclude by giving a converse to Lemma 2.4 in the undamped case k = 0.

Theorem 2. If

(2.33) (m-l)2 <a<b<(m + l)2

and

(2.34) l/y/a+l/y/b = 2/m,

then for any A > 0 and y the differential equation

(2.35) u" + bu+ - au" = Asin(mt + y)

has no solution bounded on the interval 0 < t < oo.
Proof. If (2.35) had a solution bounded on [0,oo), then the second deriva-
tive and hence the first derivative would be bounded on [0, oo). Since the
differential equation is 27r-periodic in t and since the nonlinearity is
Lipschitzian and satisfies a linear growth condition, it would follow from a
rather deep result due to Massera [15] that (2.35) would have a 27r-periodic
solution. Therefore, to prove the theorem, it is sufficient to show that if (2.33)
and (2.34) hold then (2.35) has no 2n-periodic solution. Replacing u by u/A
and t by t + n/2m-y/m it is sufficient to show that if (2.33) and (2.34) hold,
then

(2.36) u" + bu+ - au~ = cosmt

has no 2%-periodic solution.
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To prove the last assertion we use some ideas due to the authors [11] and
Gallouët and Kavian [3, 4]. Let 77 be the Hubert space consisting of real-
valued 27T-periodic functions whose restrictions to the interval [-n, n] belong
to L2[-7i,n] and with the L2[-7i,7r] inner-product. Let

V = span{coswí, sin mi}

and let W = V    (in 77). Let P:H —► V denote orthogonal projection.
If L:D(L) —y 77 is defined by Lu = -u", then (2.36) is equivalent to the

two equations

(2.36)(i) Lw = (I - P)[b(v + w)+ - a(v + w)~]

and

(2.36)(ii) Lv = P(b(v + w)+ - a(v + w)~] - cosmt,

where w = (I - P)u and v = Pu. Since the spectrum of L restricted to W
consists of the numbers k where k = 0,1,2, ... ,k ^ m, it follows from
(2.33) and an obvious modification of Proposition 2.1 of [9] that given v e V
there exists a unique w(v) e W such that w(v) is a solution of (2.36)(i).

Suppose, contrary to our claim, there exists u0 such that u0 is a 27i-periodic
solution of (2.36). We have

(t)2 + bu¡(t)2 + au0(t)2]dt

= /   2u'0(t)[u'¿(t) + bu¡(t)-au:(t)]dt
J—n

/n rn2u'0(t) cos mtdt = 2m /    u0(t) sin mtdt.
-n J—n

Therefore if v0 = Pu0, then v0(t) = ccost for some constant c. We must
have c ^ 0 for otherwise v0 = 0 and, since w = 0 satisfies (2.36)(i) when
v = 0, we would have uQ = v0 + w(v0) = 0, contradicting the fact that uQ is a
solution of (2.36).

Since (2.34) holds, the proof of Lemma 2.3 shows that all solutions of

(2.37) u   + bu   -au~=0

are periodic with least period 27i/m and hence 27r-periodic. If ux is the
solution with u(0) = 1 and u'(0) = 0, then since both ux(t) and ux(-t)
are solutions of (2.37) which are equal and have the same derivative at / = 0,
ux(t) must be even. Therefore (Pux)(t) = c, cosí for some constant. We must
have cx ̂  0. Otherwise, setting wx = (I - P)ux we would have

Lwx = (I - P)[bw* - aw~].

But since w = 0 is a solution of (2.36)(i) when v = 0, and for each v e V
there is a unique w e W satisfying (2.36), we must have wx = 0. Thus
ux =vx+wx =0 which is a contradiction since ux(0) = 1 . Thus c, / 0.
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If sgnc1 = sgnc then we set u2(t) = f{Ux(t) and observe that u2 is a
solution of (2.37) with Pu2 = vQ . If sgnc1 ^ sgnc, then tZ,(r) = ux(t - n) is
a solution of (2.37) with (Pux)(t) = -(Pux)(t) = -c, cosí. In this case we set
u2(t) = -f{ux(t-n) and observe that u2 is a solution of (2.37) with Pu2 = vQ .

If if70 = (7 - P)uQ and w2 = (I - P)u2 , then both wQ and w2 are solutions
of (2.36)(i) when v = vQ . Since w(vQ) is the unique solution of (2.36)(i), this
implies that w0 = w2. Hence, u0 = u2, so uQ is a solution of both (2.36)
and (2.37), which is absurd. By earlier remarks, this contradiction proves the
theorem.

Appendix

Proof of Lemma 2.2. Let y,s and a be fixed and let {{„j-f5 be a sequence
of numbers such that £n —► £0 as n —y oo and Çn ^ £0 for all n > 1. Let
g(s ,Ç) = b(s)Ç+ - a(s)Ç~ . Since 0 < a(s) < b(s), g is Lipschitzian in £ with
Lipschitz constant b(s). Let

un(t) = u(t,Çn,n,s,a),        u0(t) = u(t,Ç0,n,s,a)

and let
Vn(t) = (un(t)-u0(t))/(tn-Ç0)

for n > 1.
Since u"n + kun + g(s,un) = f(t,a) for n > 0, we have

(2.38) \v'n\t)\<k\ip'n(t)\ + b(s)\ipn(t)\

for n > 1. Moreover, we have ^„(0) = 1, y/'n(0) = 0 for n > 1 so for r > 0

V„(0 = 1 + /  v'„(s)ds,        y/'n(t) = /  v"(s)ds.
Jo Jo

Therefore, if t > 0 and M = 1 + k + b(s), then from (2.38) we obtain

Wn(t)\ + \v'n(t)\ <1 + M f(Wn(s)\ + \w'„(s)\)ds.
Jo

From Gronwall's lemma, it follows that for r > 0 and n > 1 we have

(2.39) \<pn(t)\ + \v'n(t)\<expMt.

Let 7 > 0. From (2.38) and (2.39) it follows that the sequences {y„}?° and
{y/}^° are equicontinuous and uniformly bounded on [0,7], so by Ascoli's
lemma there exists a subsequence {y/n (t)}™ of {^„(t)}0^ and a C -function
z such that ipn.(t) -* z(/) and v'n.(t) -* z'(t) as nj -> oo uniformly with
respect to t € [0,7].

Since
w'0' + ku0 + b(s)u^ - o(s)Uq = f(t, a)

and, by Rolle's theorem, any accumulation point of zeros of uQ must be a zero
of both u'q and u0', it follows that any accumulation point of zeros of u0 must
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be a zero of f(-,a). Since, by assumption, the zeros of f(-,a) are isolated it
follows that u0(t) ^ 0 almost everywhere on [0,7].

We have yf". + k\p'n + hj(t) = 0, where

hj{t) = (gis,unj(t)) - g(s,u0(t)))/(^n]-Q.

By standard theory [1], un.(t) -* u0(t) as ; -» oo uniformly on [0,7]. If
/ € [0,7] and u0(t) > 0, then un(t) > 0 for sufficiently large j so A.(i) =
b(s)¥n{t) for sufficiently large j. If t € [0,7] and u0(t) < 0 then un.(t0) < 0
for sufficiently large j so h ft) = a(s)y/n (t). It follows that for almost all t

hj(t) - [b(s)X(u+0) + a(s)x(u~)]z(t) = p(t)z(t)

as j -* oo on [0,7]. Moreover, since |A-(/)| < b(s)\ipn (t)\ the sequence {A-(f)}
is bounded on [0,7].

Letting j —y oo in

V„.(0 - 1 + / w'n(s)ds,       y/'(t) = - f (ky/'(s) + hj(s))ds
' Jo     ' ' Jo        '

we obtain

z(t) = 1 + /  z'(s)ds,       z'(t) = - / (kz'(s)+p(s)z(s))ds
Jo Jo

so z'(i) is absolutely continuous and

z" + kz +p(t)z(t) = 0,    z(0) = l,    z'(0) = 0

almost everywhere on [0,7]. Since this determines z(t) uniquely, the original
sequences {y/n(t)}°^ and {^'„(t)}^ rnust themselves converge uniformly to z(t)
and z'(t) respectively and we have established the existence of du/dÇ and
du/dÇ.

In an entirely similar way one shows that

du/dn = w ,        du /drj = w',

where w" + kw' +p(t)w = 0, k;(0) = 0 and u/(0) = 1.
To establish continuity of du/dS,, du'/dÇ, du/dn and du/dn, it is suf-

ficient to show that if {<?n}^°, {'/„}f3 > {^ir an0, {"/jr are sequences such
that

as «-»oo, if un(t) = u(t,Çn,nn,sn,an) for « > 0, if

Pnit) = [bisn)xiK) + aisn)x(u:)](t)

for « > 0, and if

y'nit) + ky'n(t)+pn(t)yn(t) = 0,       n>0,

y„(0) = y0(0),    y;(0)=y;(0),       «>1,
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then for any t > 0,

ynit)^yQit),     y'n(t)-+y'o(t)

as n —y oo , uniformly on [0,7].
By standard theory, un(t) —y u0(t) as n —y oo uniformly on [0,7]. There-

fore, pn(t) —► pQ(t) as n —y oo in L*[0,7].
If for n > 1 we set vn(t) = yn(t) - yQ(t) then

v'n\t) + kv'n(t) + Pn(t)vn(t) = (p0(t) -pn(t))v0(t),

vn(0) = v'n(0) = 0,       n>l.

If b denotes the maximum of b(s) for 0 < s < 1, then \pn(t)\ < b for all
5 e [0,1]. Therefore, if en denotes the Lx[0,~i]-norm of (pn -p0) for n > 1,
cQ denotes the maximum of |i>0(OI on [0,7] and M = 1 + k + b, then, from
the above we have for 0 < t < 7 and n > 1

|w„(OI + \v'n(t)\ < enc0 + M f(\vn(s)\ + \v'n(s)\)ds.
Jo

Hence, by Gronwall's lemma

\vn(t)\ + \v'n(t)\<enc0expMt

for 0 < t < 7 and n > 1 . This shows that vn(t) = yn(t) - y0(t) ->• 0 and
v'„it) - y'n(t) - y0(t) —► 0 as n —► oo uniformly on [0,7] and the proof is
complete.

The first author would like to thank Raul Manasevich for pointing out some
errors in a preliminary version of this paper.
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