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For a spectrally one-sided Lévy process, we extend various two-sided exit identities to the situation when
the process is only observed at arrival epochs of an independent Poisson process. In addition, we consider
exit problems of this type for processes reflected either from above or from below. The resulting Laplace
transforms of the main quantities of interest are in terms of scale functions and turn out to be simple
analogues of the classical formulas.
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1. Introduction

Consider a spectrally-negative Lévy process X, that is, a Lévy process with only negative jumps,
and which is not a.s. a non-increasing process. Let

ψ(θ) := logEeθX(1), θ ≥ 0,

be its Laplace exponent. Denote the law of X with X(0) = x ≥ 0 by Px and the corresponding
expectation by Ex . For a fixed a ≥ 0 define the first passage times

τ−
0 := inf

{
t ≥ 0: X(t) < 0

}
, τ+

a := inf
{
t ≥ 0: X(t) > a

}
.

Furthermore, let Ti be the arrival times of an independent Poisson process of rate λ > 0, and
define the following stopping times:

T −
0 := min

{
Ti : X(Ti) < 0

}
, T +

a := min
{
Ti : X(Ti) > a

}
.

The latter times can be seen as first passage times when X is observed at Poisson arrival times
(by convention inf∅ = min∅ = ∞).

These quantities have useful interpretations in various fields of applied probability. For in-
stance, if X serves as a model for the surplus process of an insurance portfolio over time,
then Px(τ

−
0 < ∞) is the probability of ruin of the portfolio with initial capital x. Likewise,

Px(T
−
0 < ∞) is the probability that ruin occurs and is detected, given that the process can only
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be monitored at discrete points in time modeled by an independent Poisson process. It is not hard
to show that T −

0 ↓ τ−
0 a.s. (and similarly T +

a ↓ τ+
a a.s.) as the observation rate λ tends to ∞,

which may be used to retrieve the classical exit identities. Quantities related to T −
0 have been

studied for a compound Poisson risk model in [2], and in [18] a simple formula for Px(T
−

0 < ∞)

was established for general spectrally-negative Lévy processes X. Ruin-related quantities under
surplus-dependent observation rates were studied in [6] and for recent results on observation
rates that change according to environmental conditions, we refer to [4]. Poissonian observation
is also relevant in queueing contexts, see, for example, [10].

In practice one may interpret continuous and Poissonian observation as endogenous and ex-
ogenous monitoring of the process of interest, respectively. For example, in an insurance context
τ−

0 may be understood as the time of ruin (observed by the insurance company), whereas T +
a may

be considered as the first time when shareholders receive dividends (they look at the company at
discrete, here random, times). Hence, the shareholders receive dividends if the event {T +

a < τ−
0 }

occurs. Another example comes from reliability theory [20], where one considers a degradation
process and assumes that τ−

0 is the time of failure and T −
a := min{Ti : X(Ti) < a} for some a > 0

is the time at which the process is observed in its critical state necessitating replacement. Hence,
the event {T −

a < τ−
0 } signifies preventive replacement before failure. Finally, some identities

involving both continuous and Poissonian observation lead to transforms of certain occupation
times, see Remark 3.2.

In this paper, we establish formulas for two-sided exit probabilities under Poissonian observa-
tion, as well as formulas for the joint transform of the exit time and the corresponding overshoot
on the event of interest. In addition, we consider reflected processes and provide the joint trans-
forms including the total amount of output (dividends) or input (required capital to remain sol-
vent) up to the exit time. Note that the formulas also hold for spectrally-positive Lévy processes
by simply exchanging the roles of the involved quantities. It turns out that the resulting formulas
have a rather slim form in terms of first and second scale functions, and along the way it also
proves useful to define a third scale function. The form of the expressions allows to interpret
them as natural analogues of the respective counterparts under continuous observation. Finally,
we note that discrete observation allows for a wide range of cases, and our list of exit identities is
not exhaustive. We only consider the basic cases, that is, the ones where the corresponding events
stay non-trivial if Poissonian observation is replaced by a continuous one, which, for example,
excludes {T −

a < τ−
0 } mentioned above.

The remainder of this paper is organized as follows. Section 2 recalls some relevant exit iden-
tities under continuous observation. Section 3 contains the main results, and the proofs are given
in Section 4. Finally, Section 5 gives an illustration of some identities for the case of Cramér–
Lundberg risk model with exponential claims.

Throughout this work, we use eu to denote an exponentially distributed r.v. with rate u > 0,
which is independent of everything else.

2. Standard exit theory

The most basic identity states that

P0
(
τ+
a < ∞) = e−�a, a ≥ 0, (1)
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where � ≥ 0 is the right-most non-negative solution of ψ(θ) = 0. Let us recall two fundamental
functions which enter various exit identities. The (first) scale function W(x) is a non-negative
function, with W(x) = 0 for x < 0, continuous on [0,∞), positive for positive x, and character-
ized by the transform ∫ ∞

0
e−θxW(x)dx = 1/ψ(θ), θ > �.

It enters the basic two-sided exit identity for a > 0 through

Px

(
τ+
a < τ−

0

) = W(x)/W(a), x ≤ a, (2)

see, for example, [17].
The so-called second scale function is defined by

Z(x, θ) := eθx

(
1 − ψ(θ)

∫ x

0
e−θyW(y)dy

)
, x ≥ 0 (3)

and Z(x, θ) := eθx for x < 0. Note that for θ = 0, Z(x, θ) reduces to Z(x) as defined in [17],
Chapter 2. It is convenient to define Z as a function of two arguments, which allows to provide
more general formulas. We refer to [15] for this definition and the following formulas in a more
general setting of Markov additive processes. Note that for θ > � we can rewrite Z(x, θ) in the
form

Z(x, θ) = ψ(θ)

∫ ∞

0
e−θyW(x + y)dy, x ≥ 0, θ > �. (4)

It is known that for x ≤ a one has

Ex

(
eθX(τ−

0 ); τ−
0 < τ+

a

) = Z(x, θ) − W(x)
Z(a, θ)

W(a)
. (5)

Moreover, for θ > � we have

lim
a→∞Z(a, θ)/W(a) = ψ(θ)/(θ − �) (6)

and so we also find that

Ex

(
eθX(τ−

0 ), τ−
0 < ∞) = Z(x, θ) − W(x)

ψ(θ)

θ − �
. (7)

Importantly, all the above results hold for an exponentially killed process X (cf. [14]): For a
killing rate q > 0, we write ψq(θ) = ψ(θ)−q , then �q > 0 is the positive solution to ψq(θ) = 0,
and Wq(x) is defined by

∫ ∞

0
e−θxWq(x)dx = 1/ψq(θ), θ > �q.
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With Zq(x, θ) defined through Wq(x) and ψq(θ), formula (5) in the case of killing reads

Ex

(
e−qτ−

0 +θX(τ−
0 ); τ−

0 < τ+
a

) = Ex

(
eθX(τ−

0 ); τ−
0 < τ+

a , τ−
0 < eq

)

= Zq(x, θ) − Wq(x)
Zq(a, θ)

Wq(a)
,

and hence the information on the time of the exit is easily added. The same adaptations hold for
the other exit identities above. For the sake of readability, we will often drop the index q in the
sequel, if it does not cause confusion. In this case, �λ,Wλ(x),Zλ(x, θ) should be interpreted as
�λ+q,Wλ+q(x),Zλ+q(x, θ), respectively, that is, they correspond to the process killed at rate q

and then additionally killed at rate λ.
Finally, we will need the following identities which can readily be obtained from the known

formulas for potential densities of X killed upon exiting a certain interval, see, for example, [11]
or [17], Chapter 8.4:

P
(
X(eλ) ∈ dx

) = λ
(
e−�λx/ψ ′(�λ) − Wλ(−x)

)
dx, (8)

P
(
X(eλ) ∈ dx, eλ < τ+

a

) = λ
(
e−�λaWλ(a − x) − Wλ(−x)

)
dx, (9)

Pa

(
X(eλ) ∈ dx, eλ < τ−

0

) = λ
(
e−�λxWλ(a) − Wλ(a − x)

)
dx, (10)

where a > 0 and the killing rate q ≥ 0 is implicit.

3. Results

One of the first general results concerning T −
0 was obtained in [18], where it was shown for

q = 0 and EX(1) > 0 that

Px

(
T −

0 = ∞) = ψ ′(0)
�λ

λ
Z(x,�λ), x ≥ 0, (11)

cf. (4). This leads to a strikingly simple identity for x = 0: P(T −
0 = ∞) = ψ ′(0)�λ/λ. A more

general result was recently obtained in [4] for an arbitrary killing rate q ≥ 0:

Px

(
τ+
a < T −

0

) = Z(x,�λ)

Z(a,�λ)
, x ∈ [0, a]. (12)

It is easy to see that both these results also hold for x < 0. Note the resemblance of (2) and (12),
and, moreover,

Z(x,�λ)

Z(a,�λ)
= Px

(
τ+
a < T −

0

) −→ Px

(
τ+
a < τ−

0

) = W(x)

W(a)
as λ → ∞, (13)

because in the limit λ → ∞ the Poisson observation results in continuous observation of the
process a.s. (although it is hard to see the convergence of the ratio directly).

We now present various exit identities for continuous and Poisson observations extending the
standard exit theory.
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Theorem 3.1. For a, θ ≥ 0, x ≤ a and implicit killing rate q ≥ 0, we have

Ex

(
eθX(T −

0 );T −
0 < ∞) = λ

λ − ψ(θ)

(
Z(x, θ) − Z(x,�λ)

ψ(θ)(�λ − �)

λ(θ − �)

)
, (14)

Ex

(
eθX(T −

0 );T −
0 < τ+

a

) = λ

λ − ψ(θ)

(
Z(x, θ) − Z(x,�λ)

Z(a, θ)

Z(a,�λ)

)
, (15)

Ex

(
e−θ(X(T +

a )−a);T +
a < ∞) = �λ − �

�λ + θ
e−�(a−x), (16)

Ex

(
e−θ(X(T +

a )−a);T +
a < τ−

0

) = λ

�λ + θ

W(x)

Z(a,�λ)
, (17)

Ex

(
eθX(τ−

0 ); τ−
0 < T +

a

) = Z(x, θ) − W(x)

θ − �λ

(
ψ(θ) − λ

Z(a, θ)

Z(a,�λ)

)
, (18)

where ratios for θ = � and θ = �λ should be interpreted in the limiting sense.

Remark 3.1. When EX(1) > 0 and q = θ = 0, we have � = 0 and Z(x,0) = 1, so that (14)
reduces to (11). Secondly, note the resemblance between (5) and (15), and that the first is retrieved
from the second when λ → ∞ cf. (13). Next, (16) is an extension of identity (1) (which is retained
for θ = 0 and λ → ∞). This formula also implies that the overshoot X(T +

a )−a given {T +
a < ∞}

and q = 0 is exponentially distributed with rate �λ for all x ≤ a (indeed it is not hard to establish
the memoryless property of this overshoot). The identity (17) is a variation of (2) and (12), and
identity (18) is the counterpart of (17) for the process −X (reproducing (5) for λ → ∞ and (7)
for λ ↓ 0).

Remark 3.2. There is a close link between some of our results and transforms of certain occu-
pation times:

Ex

(
eθX(τ−

0 ); τ−
0 < T +

a

) = Ex

(
eθX(τ−

0 ); τ−
0 < ∞,N(A) = 0

)

= Ex

(
eθX(τ−

0 )−λ
∫ τ

−
0

0 1{X(t)>a} dt ; τ−
0 < ∞)

,

where A = {t ∈ [0, τ−
0 ): X(t) > a} and N is an independent Poisson random measure with

intensity λdt . A similar identity also holds for Px(τ
+
a < T −

0 ). Hence, (12) and (18) for θ = 0 can
alternatively be obtained from [19], Corollaries 1 and 2, and taking appropriate limits followed
by somewhat tedious simplifications.

The next result considers two-sided exit for exclusively Poissonian observation of the process.

Theorem 3.2. For a, θ ≥ 0, x ≤ a and implicit killing rate q ≥ 0, we have

Ex

(
eθX(T −

0 );T −
0 < T +

a

) = λ

λ − ψ(θ)

(
Z(x, θ) − Z(x,�λ)

Z̃(a,�λ, θ)

Z̃(a,�λ,�λ)

)
, (19)

Ex

(
e−θ(X(T +

a )−a);T +
a < T −

0

) = λ

�λ + θ

Z(x,�λ)

Z̃(a,�λ,�λ)
, (20)
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where we define a third scale function as

Z̃(x,α,β) := ψ(α)Z(x,β) − ψ(β)Z(x,α)

α − β
, α,β ≥ 0. (21)

Again there is a striking similarity between (15) and (19), as well as between (17) and (20).
Note that for α = β the definition (21) results in

Z̃(x,α,α) = ψ ′(α)Z(x,α) − ψ(α)Z′(x,α),

where the differentiation of Z is with respect to the second argument.
We now present results for reflected processes. Write E

0
x for the law of X reflected at 0

(from below) and E
a
x for the law of X reflected at a from above, and let R be the regu-

lator at the corresponding barrier. That is (X(t),R(t)) under E
0
x and under E

a
x is given by

(X(t) + (−X(t))+, (−X(t))+) and (X(t) − (X(t) − a)+, (X(t) − a)+) under Ex , respectively,
where

X(t) := inf
{
X(s): 0 ≤ s ≤ t

}
, X(t) := sup

{
X(s): 0 ≤ s ≤ t

}
.

Theorem 3.3. For a > 0, θ,ϑ ≥ 0, x ≤ a and implicit killing rate q ≥ 0, we have the following
identities for the reflected processes:

E
0
x

(
e−ϑR(T +

a )−θ(X(T +
a )−a);T +

a < ∞)
(22)

= λ(ϑ − �λ)Z(x,ϑ)

(�λ + θ)(ψ(ϑ)Z(a,�λ) − λZ(a,ϑ))
= λ

�λ + θ

Z(x,ϑ)

Z̃(a,ϑ,�λ)
,

E
a
x

(
e−ϑR(T −

0 )+θX(T −
0 );T −

0 < ∞)
(23)

= λ

λ − ψ(θ)

(
Z(x, θ) + Z(x,�λ)

W(a)ψ(θ) − (θ + ϑ)Z(a, θ)

Z′(a,�λ) + ϑZ(a,�λ)

)
,

where the derivative of Z is taken with respect to the first argument.

Note that T +
a and T −

0 can be infinite due to the implicit killing rate q . This result for λ = ∞
is to be compared with

E
0
x

(
e−ϑR(τ+

a ); τ+
a < ∞) = Z(x,ϑ)

Z(a,ϑ)
, (24)

E
a
x

(
e−ϑR(τ−

0 )+θX(τ−
0 ); τ−

0 < ∞)
(25)

= Z(x, θ) + W(x)
W(a)ψ(θ) − (θ + ϑ)Z(a, θ)

W ′+(a) + ϑW(a)
,

where W ′+ denotes the right derivative of W (see, e.g., [17], Theorem 8.10, for ϑ = 0 and [15]
for the general case). Furthermore, letting a → ∞ in (23) and using (6) we obtain (14), which
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provides a nice check (ϑ indeed cancels out). Similarly, (22) leads to (16) if we put a = 
 + x

and let x → ∞ (note that (16) depends only on the difference 
).
Finally, we note that yet another exit identity for a reflected process with Poissonian observa-

tions can be found in [5], Corollary 6.1. In particular, letting ρy := inf{t ≥ 0: R(t) > y} be the
first passage time of R, it holds that

P
a
x

(
ρy < T −

0

) = Z(x,�λ)

Z(a,�λ)
exp

(
−Z′(a,�λ)

Z(a,�λ)
y

)
, (26)

where q ≥ 0 is implicit and x ∈ [0, a]. If X is some surplus process, it is natural to interpret
R(t) as the dividend payments up to time t according to a horizontal dividend barrier strategy.
Identity (26) then allows to obtain the expected discounted dividends until ruin:

E
a
x

∫ ∞

0
e−qt1{t<T −

0 } dR(t) = E
a
x

∫ ∞

0
e−qρy 1{ρy<T −

0 } dy

=
∫ ∞

0
E

a
x

(
e−qρy ;ρy < T −

0

)
dy

(27)

= Zq(x,�λ+q)

Zq(a,�λ+q)

∫ ∞

0
exp

(
−Z′

q(a,�λ+q)

Zq(a,�λ+q)
y

)
dy

= Zq(x,�λ+q)

Z′
q(a,�λ+q)

,

where x ∈ [0, a]. In the case of continuous observations, that is, λ = ∞, this expression reduces
to Wq(x)/W ′

q+(a), see, for example, [21], Proposition 2. Also, in the absence of discounting
(q = 0), one obtains from (23) for θ = 0 that

E
a
a

(
e−ϑR(T −

0 )
) = Z′(a,�λ)/

(
Z′(a,�λ) + ϑZ(a,�λ)

)
,

that is, the distribution of total dividend payments until ruin (observed at Poissonian times) is
exponentially distributed with parameter Z′(a,�λ)/Z(a,�λ), if the initial surplus level is at the
barrier. The exponential parameter reduces to W ′+(a)/W(a) for λ → ∞, cf. [21], Section 5.

Remark 3.3. We emphasize again that each of the formulas in Theorems 3.1–3.3 can also be
written for q > 0 in an explicit form, see also (27). For instance, (15) can be read as

Ex

(
e−qT −

0 +θX(T −
0 );T −

0 < τ+
a

) = λ

λ − ψq(θ)

(
Zq(x, θ) − Zq(x,�λ+q)

Zq(a, θ)

Zq(a,�λ+q)

)
.

4. Proofs

Some of the proofs below will rely on the following intriguing identity first observed in [19],
Equation (6):

(p − q)

∫ a

0
Wp(a − x)Wq(x)dx = Wp(a) − Wq(a), (28)
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which as a consequence yields
∫ a

0
Wq(a − x)Wq(x)dx = ∂Wq(a)

∂q
.

The following result generalizes the second part of [19], Equation (6):

Lemma 4.1. For θ,α,p, q ≥ 0, it holds that

(p − q)

∫ a

0
Wp(a − x)Zq(x, θ)dx = Zp(a, θ) − Zq(a, θ).

Proof. First, we show that

(p − q)

∫ a

0
Wp(a − x)

∫ x

0
eθ(x−y)Wq(y)dy dx

(29)

= eθa

(∫ a

0
e−θxWp(x)dx −

∫ a

0
e−θxWq(x)dx

)

by taking transforms of both sides. The left-hand side gives, for sufficiently large s,
∫ ∞

0
e−sa

(
(p − q)

∫ a

0
Wp(a − x)

∫ x

0
eθ(x−y)Wq(y)dy dx

)
da = p − q

(s − θ)ψp(s)ψq(s)
,

and for the right-hand side we have
∫ ∞

0
e−sa

(
eθa

∫ a

0
e−θxWp(x)dx

)
da = 1

(s − θ)ψp(s)

and similarly for the second term. Then (29) follows by noting that

1

ψp(s)
− 1

ψq(s)
= p − q

ψp(s)ψq(s)
.

Finally, using (29) we get

(p − q)

∫ a

0
Wp(a − x)Zq(x, θ)dx

= (p − q)

∫ a

0
Wp(a − x)eθx dx − ψq(θ)eθa

(∫ a

0
e−θxWp(x)dx −

∫ a

0
e−θxWq(x)dx

)

= eθa
(
p − q − ψq(θ)

) ∫ a

0
e−θxWp(x)dx + eθaψq(θ)

∫ a

0
e−θxWq(x)dx

= Zp(a, θ) − Zq(a, θ)

finishing the proof. �
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4.1. Proof of Theorem 3.1

We split the proof into several parts.

Proof of Equation (15). Denoting f (x, θ, a) := Ex(eθX(T −
0 );T −

0 < τ+
a ) one can write, using

the strong Markov property,

f (x, θ, a) =
∫ 0

−∞
Px

(
X

(
τ−

0

) ∈ dz, τ−
0 < τ+

a

)(
Pz

(
τ+

0 < eλ

)
f (0; θ, a) +Ez

(
eθX(eλ), eλ < τ+

0

))
.

Recall that Pz(τ
+
0 < eλ) = e�λz, z ≤ 0 and also

Ez

(
eθX(eλ), eλ < τ+

0

) = Ez

(
eθX(eλ)

) − e�λz
E

(
eθX(eλ)

) = λ

λ − ψ(θ)

(
eθz − e�λz

)
(30)

for θ small enough such that ψ(θ) < λ. The result can then be analytically continued to any
θ ≥ 0. Thus, using (5) we arrive at

f (x, θ, a) =
(

Z(x,�λ) − Z(a,�λ)
W(x)

W(a)

)(
f (0, θ, a) − λ

λ − ψ(θ)

)
(31)

+
(

Z(x, θ) − Z(a, θ)
W(x)

W(a)

)
λ

λ − ψ(θ)
.

Note that due to Z(0, θ) = 1 we get for x = 0

Z(a,�λ)
W(0)

W(a)
f (0, θ, a) = λ

λ − ψ(θ)

(
Z(a,�λ)

W(0)

W(a)
− Z(a, θ)

W(0)

W(a)

)
.

This equation is trivial when W(0) = 0, that is, when X has sample paths of unbounded variation,
see, for example, [17], Equation (8.26), but otherwise we have

f (0, θ, a) = λ

λ − ψ(θ)

(
1 − Z(a, θ)

Z(a,�λ)

)
(32)

and the result follows combining (31) and (32).
It is only left to show that (32) holds also when X has sample paths of unbounded variation,

that is, when W(0) = 0. For x ∈ (0, a), we have

f (0, θ, a) = P
(
τ+
x < eλ

)
f (x, θ, a) + A(x) + B(x),

where A(x) := E
(
eθX(eλ); eλ < τ+

x ,X(eλ) < 0
)
, (33)

B(x) :=
∫ x

0
P
(
eλ < τ+

x ,X(eλ) ∈ dy
)
f (y, θ, a).

It is well known that for θ ≥ 0∫ x

0
e−θyW(y)dy/W(x) → 0 as x ↓ 0, (34)
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which can be seen by interpreting the ratio of scale functions. In a similar way one can show,
using (28), that Wλ(x)/W(x) → 1 as x ↓ 0. Using (9), observe that

P
(
eλ < τ+

x ,X(eλ) ≥ 0
) = λe−�λx

∫ x

0
Wλ(y)dy = o

(
W(x)

)

as x ↓ 0. Next, using (30) observe that B(x) = o(W(x)) and

A(x) := E
(
eθX(eλ); eλ < τ+

x

) −E
(
eθX(eλ); eλ < τ+

x ,X(eλ) ≥ 0
)

= λ

λ − ψ(θ)

(
1 − e(θ−�λ)x

) + o
(
W(x)

)
.

Plugging (33) into (31) and rearranging it we obtain

f (x, θ, a)

[
1 −

(
Z(x,�λ) − Z(a,�λ)

W(x)

W(a)

)
e−�λx

]

= − λ

λ − ψ(θ)
(35)

×
(

Z(x,�λ)e
(θ−�λ)x − Z(x, θ) + W(x)

W(a)

(
Z(a, θ) − Z(a,�λ)e

(θ−�λ)x
))

+ o
(
W(x)

)
.

Divide (35) by W(x) and take the limit as x ↓ 0, using the representation (3) and then also (34),
to obtain

f (0, θ, a)Z(a,�λ)
1

W(a)
= − λ

λ − ψ(θ)

1

W(a)

(
Z(a, θ) − Z(a,�λ)

)
,

which immediately yields (32). �

Proof of Equation (17). We only need to consider x ∈ [0, a]. Putting

f (x, θ) := Ex

(
e−θ(X(T +

a )−a);T +
a < τ−

0

)

we write

f (x, θ) = Px

(
τ+
a < τ−

0

)
f (a, θ) = W(x)

W(a)
f (a, θ). (36)

Using (10) and conditioning on the first Poisson observation time, we get

f (a, θ) =
∫ ∞

a

e−θ(x−a)λWλ(a)e−�λx dx +
∫ a

0
λ
(
Wλ(a)e−�λx − Wλ(a − x)

)
f (x, θ)dx.
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Using (36), we obtain

f (a, θ)

(
W(a) − λWλ(a)

∫ a

0
W(x)e−�λx dx + λ

∫ a

0
Wλ(x)W(a − x)dx

)

= λWλ(a)W(a)

�λ + θ
e−�λa.

With the help of (28), the expression in the brackets reduces to

Wλ(a)

(
1 − λ

∫ a

0
W(x)e−�λx dx

)
= Wλ(a)e−�λaZ(a,�λ),

which shows that f (a, θ) = λ
�λ+θ

W(a)
Z(a,�λ)

, completing the proof in view of (36). �

Proof of Equations (14) and (16). Identity (14) for θ > � follows immediately from (15)
and (6); by analytic continuation it is also true for any θ ≥ 0. Similarly, (16) follows from (17)
by plugging in x + u and a + u instead of x and u, respectively, letting u → ∞ and using (6)
together with

lim
u→∞W(x + u)/W(a + u) = Px

(
τ+
a < ∞) = e−�(a−x). �

Proof of Equation (18). Consider f (x) := Ex(eθX(τ−
0 ); τ−

0 < T +
a ), which can be written as

f (x) = Px

(
τ+
a < τ−

0

)
f (a) +Ex

(
eθX(τ−

0 ); τ−
0 < τ+

a

)
(37)

= W(x)

W(a)
f (a) + Z(x, θ) − W(x)

Z(a, θ)

W(a)

and also

f (a) =
∫ a

0
Pa

(
X(eλ) ∈ dx, eλ < τ−

0

)
f (x) +Ea

(
eθX(τ−

0 ); τ−
0 < eλ

)
,

where the last term is Zλ(a, θ) − Wλ(a)
ψ(θ)−λ
θ−�λ

according to (7). Hence, we can determine f (a)

by plugging in (37) and computing the integrals of W(x) and Z(x, θ) with respect to (10). In
particular, using (28) we find

∫ a

0
Pa

(
X(eλ) ∈ dx, eλ < τ−

0

)
W(x)

=
∫ a

0
λ
(
Wλ(a)e−�λx − Wλ(a − x)

)
W(x)dx

= λWλ(a)

∫ a

0
e−�λxW(x)dx − (

Wλ(a) − W(a)
)

= W(a) − Z(a,�λ)e
−�λaWλ(a).
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Next we compute

∫ a

0
e−�λxZ(x, θ)dx

= 1

θ − �λ

(
e(θ−�λ)a − 1

) − ψ(θ)

θ − �λ

(
e(θ−�λ)a

∫ a

0
e−θyW(y)dy −

∫ a

0
e−�λyW(y)dy

)

= 1

θ − �λ

(
e−�λaZ(a, θ) − 1 + ψ(θ)

∫ a

0
e−�λyW(y)dy

)
,

which together with Lemma 4.1 implies that

T :=
∫ a

0
Pa

(
X(eλ) ∈ dy, eλ < τ−

0

)
Z(y, θ)

= λWλ(a)

θ − �λ

(
e−�λaZ(a, θ) − 1 + ψ(θ)

∫ a

0
e−�λyW(y)dy

)
− Zλ(a, θ) + Z(a, θ).

This finally yields

f (a) =
(

1 − Z(a,�λ)e
−�λa Wλ(a)

W(a)

)
f (a) + T −

(
1 − Z(a,�λ)e

−�λa Wλ(a)

W(a)

)
Z(a, θ)

+ Zλ(a, θ) − Wλ(a)
ψ(θ) − λ

θ − �λ

,

which reduces to
(

Z(a,�λ)e
−�λa Wλ(a)

W(a)

)
f (a)

= Wλ(a)

θ − �λ

(
λe−�λaZ(a, θ) − ψ(θ)e−�λaZ(a,�λ)

) + Z(a,�λ)e
−�λa Wλ(a)

W(a)
Z(a, θ),

and hence

f (a) = Z(a, θ) − W(a)

θ − �λ

(
ψ(θ) − λ

Z(a, θ)

Z(a,�λ)

)
.

Now the result follows from (37). �

4.2. Proof of Theorem 3.2

Using (3) and changing the order of integration, we can show that

(α − β)

∫ a

0
e−αxZ(x,β)dx = 1 + (

e−αaZ(a,α) − 1
)
ψ(β)/ψ(α) − e−αaZ(a,β),
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and hence Z̃ has an alternative representation

Z̃(a,α,β) = eαa ψ(α) − ψ(β)

α − β
− ψ(α)

∫ a

0
eα(a−x)Z(x,β)dx.

Plugging in α = �λ and β = θ , we obtain

λ

∫ a

0
e−�λxZ(x, θ)dx = ψ(θ) − λ

θ − �λ

− e−�λaZ̃(a,�λ, θ). (38)

Proof of Equation (19). Defining f (x, θ) := Ex(eθX(T −
0 );T −

0 < T +
a ) for x ≤ a, we write

f (x, θ) = Ex

(
eθX(T −

0 );T −
0 < τ+

a

) + Px

(
τ+
a < T −

0

)
f (a, θ).

Plugging in the corresponding identities, we first get for x = 0 that

f (0, θ) = λ

λ − ψ(θ)

(
1 − Z(a, θ)

Z(a,�λ)

)
+ f (a, θ)

Z(a,�λ)
,

and some simplifications yield

f (x, θ) = λ

λ − ψ(θ)

(
Z(x, θ) − Z(x,�λ)

) + f (0, θ)Z(x,�λ). (39)

Using (8) and conditioning on the first observation epoch, we get

f (0, θ) = λ

ψ ′(�λ)

∫ a

0
e−�λxf (x, θ)dx +

∫ 0

−∞
eθx

P
(
X(eλ) ∈ dx

)
,

where the latter term evaluates to λ
λ−ψ(θ)

+ λ
ψ ′(�λ)(θ−�λ)

. Plugging in (39), we get

f (0, θ)

(
1 − λ

ψ ′(�λ)

∫ a

0
e−�λxZ(x,�λ)dx

)

= λ

ψ ′(�λ)

λ

λ − ψ(θ)

∫ a

0
e−�λx

(
Z(x, θ) − Z(x,�λ)

)
dx + λ

λ − ψ(θ)
+ λ

ψ ′(�λ)(θ − �λ)
.

Using (38) this reduces to

f (0, θ)e−�λaZ̃(a,�λ,�λ)/ψ
′(�λ)

= e−�λa λ

ψ ′(�λ)(λ − ψ(θ))

(
Z̃(a,�λ,�λ) − Z̃(a,�λ, θ)

)
,

which readily leads to

f (0, θ) = λ

λ − ψ(θ)

(
1 − Z̃(a,�λ, θ)

Z̃(a,�λ,�λ)

)

and then the result follows from (39). �
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Proof of Equation (20). We write for x ≤ a that

Ex

(
e−θ(X(T +

a )−a)
) = Ex

(
e−θ(X(T +

a )−a);T +
a < T −

0

)

+
∫ 0

−∞
Px

(
X

(
T −

0

) ∈ dy,T −
0 < T +

a

)
Ey

(
e−θ(X(T +

a )−a)
)
.

Using (16), we obtain

Ex

(
e−θ(X(T +

a )−a);T +
a < T −

0

) = �λ − �

�λ + θ
e−�a

(
e�x −Ex

(
e�X(T −

0 );T −
0 < T +

a

))
.

With (21), we see that Z̃(a,�λ,�) = λ
�λ−�

e�a and then it follows from (19) that

Ex

(
e�X(T −

0 );T −
0 < T +

a

) = e�x − Z(x,�λ)
λ

�λ − �
e�a/Z̃(a,�λ,�λ),

which completes the proof. �

4.3. Proof of Theorem 3.3

Proof of Equation (22). Let f (x) := E
0
x(e

−ϑR(T +
a )−θ(X(T +

a )−a);T +
a < ∞), then

f (x) = E
0
x

(
e−ϑR(τ+

a ); τ+
a < ∞)

f (a) = Z(x,ϑ)

Z(a,ϑ)
f (a)

according to (24), and also

f (a) = Ea

(
e−θ(X(T +

a )−a);T +
a < τ−

0

) +Ea

(
eϑX(τ−

0 ); τ−
0 < T +

a

)
f (0),

which is equal to Z(a,ϑ)f (0). Plugging in (17) and (18) we solve for f (0):

f (0) = λ(ϑ − �λ)

(�λ + θ)(ψ(ϑ)Z(a,�λ) − λZ(a,ϑ))

and the result follows. �

Proof of Equation (23). Let f (x) = E
a
x(e

−ϑR(T −
0 )+θX(T −

0 );T −
0 < ∞), then

f (x) = Ex

(
eθX(T −

0 );T −
0 < τ+

a

) + Px

(
τ+
a < T −

0

)
f (a), (40)

which using (15) and (12) yields

f (0) = λ

λ − ψ(θ)

(
1 − Z(a, θ)

Z(a,�λ)

)
+ f (a)

Z(a,�λ)
. (41)
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Also

f (a) =
∫ 0

−∞
(
E

a
a

(
e−ϑR(τ−

0 );X(
τ−

0

) ∈ dz, τ−
0 < ∞)(

e�λzf (0) +Ez

(
eθX(eλ); eλ < τ+

0

)))
.

Using (30), we arrive at

f (a) = E
a
a

(
e−ϑR(τ−

0 )+�λX(τ−
0 )

)
f (0)

(42)

+ λ

λ − ψ(θ)

(
E

a
a

(
e−ϑR(τ−

0 )+θX(τ−
0 )

) −E
a
a

(
e−ϑR(τ−

0 )+�λX(τ−
0 )

))
.

Substituting (25) and (41) into (42), we obtain after some simplifications

f (a)

(
(�λ + ϑ) − λ

W(a)

Z(a,�λ)

)

= λ

λ − ψ(θ)

(
W(a)

(
ψ(θ) − λ

Z(a, θ)

Z(a,�λ)

)
+ (�λ − θ)Z(a, θ)

)
,

which yields the result after plugging f (a) into (40) and yet another round of simplifica-
tions. �

The above proofs mostly rely on the strong Markov property and various identities from fluc-
tuation theory. We note that often there are several possibilities to approach a problem, but some
of them may require significantly more effort to obtain a simple formula resembling the classical
case. One could, for instance, consider using exit theory of random walks for a purely Pois-
sonian observation. This approach builds upon some general formulas, see, for example, [12],
Theorem 4, ignoring the crucial assumption of one-sided jumps. Consequently, one loses struc-
ture, making it hard to rewrite these formulas in terms of scale functions. Martingale techniques,
as used, for example, in [9] to obtain some classical exit identities, also do not seem to be imme-
diately appropriate for our setting. Moreover, one needs to guess the right martingale and for this
one typically needs to know already the resulting expression. Finally, independent exponential
inter-observation times may suggest using Wiener–Hopf factorization, exploited, for example,
in [16] to design simulation algorithms. Indeed, this factorization is one way to prove (8)–(10),
which are building blocks of our results.

5. Cramér–Lundberg risk model with exponential claims

As mentioned in Section 1, one application area for identities of the above type is the ruin analysis
for an insurance portfolio with surplus value X(t) = x + ct − S(t) at time t , where x ≥ 0 is the
initial capital and c > 0 is a constant premium intensity. The classical Cramér–Lundberg risk
model in this context assumes S(t) to be a compound Poisson process, where independent and
identically distributed claims arrive according to a homogeneous Poisson process with rate ν
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Figure 1. The function ψ(θ) and the inverses Rq and �q .

(see, e.g., [7]). Assume now that claims are Exp(η) distributed. Then

ψq(θ) = cθ − ν
(
1 −E

(
e−θeη

)) − q = cθ − νθ

θ + η
− q.

If either q > 0 or c − ν/η 	= 0 (the usual safety loading condition is c − ν/η > 0), then the scale
function has the form

Wq(x) = uqe�qx − vqe−Rqx,

where uq, vq > 0 and Rq,�q ≥ 0 (not simultaneously 0). Moreover, −Rq and �q are the two
roots of ψq(θ) = 0, see Figure 1 (note that R0 is the classical Lundberg adjustment coefficient),
and

uq

θ − �q

− vq

θ + Rq

= 1

ψq(θ)

yielding uq = 1/ψ ′
q(�q) = �′

q, vq = −1/ψ ′
q(−Rq) = R′

q .
So we also obtain

Zq(x, θ) = eθx

(
1 − ψq(θ)

(
uq

�q − θ

(
e(�q−θ)x − 1

) − vq

−Rq − θ

(
e(−Rq−θ)x − 1

)))

= ψq(θ)

(
uqe�qx

θ − �q

− vqe−Rqx

θ + Rq

)

= ψq(θ)�′
q

θ − �q

(
e�qx − e−Rqx

) + e−Rqx.

Consider (14), which for the present model immediately simplifies to

Ex

(
e−qT −

0 +θX(T −
0 );T −

0 < ∞) = e−Rqx λ − ψq(θ)((�q − �λ+q)/(�q − θ))

λ − ψq(θ)

= e−Rqx

(
1 − ψq(θ)

ψλ+q(θ)

�λ+q − θ

�q − θ

)
.
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Since ψλ+q(θ)
θ+η

c
= (θ + Rλ+q)(θ − �λ+q), we get

Ex

(
e−qT −

0 +θX(T −
0 );T −

0 < ∞) = e−Rqx

(
1 − θ + Rq

θ + Rλ+q

)
= e−Rqx Rλ+q − Rq

Rλ+q + θ
,

which agrees with the result of [2], Example 4.2 (take an exponential penalty function w2(y) =
e−θy for the overshoot). Note also that Rλ+q → η as λ → ∞, because θ = −η is the asymptote of
ψq(θ). Hence, we also retain the classical formula for the Laplace transform of the (discounted)
ruin deficit under continuous observation

Ex

(
e−qτ−

0 +θX(τ−
0 ); τ−

0 < ∞) = e−Rqx η − Rq

η + θ
,

cf. [13], Equation (5.42), which can alternatively be obtained using a direct argument (exchange
the meaning of claims and interarrivals).

Next, identity (15) simplifies to

Ex

(
e−qT −

0 +θX(T −
0 );T −

0 < τ+
a

)

= −λ

ψλ+q(θ)

(e−Rqa+�qx − e�qa−Rqx)(ψq(θ)�′
q/(θ − �q) − λ�′

q/(�λ+q − �q))

(λ�′
q/(�λ+q − �q))(e�qa − e−Rqa) + e−Rqa

= Rλ+q − Rq

Rλ+q + θ

e�qa+Rq(a−x) − e�qx

e�qa+Rqa − 1 + (�λ+q − �q)/λ�′
q

.

It is not hard to see that (�λ+q − �q)/λ → 1/c as λ → ∞, and hence we have

Ex

(
e−qτ−

0 +θX(τ−
0 ); τ−

0 < τ+
a

) = η − Rq

η + θ

e�qa+Rq(a−x) − e�qx

e�qa+Rqa − 1 + ψ ′
q(�q)/c

= η − Rq

η + θ

e�qa+Rq(a−x) − e�qx

e�qa+Rqa + (Rq − η)/(�q + η)
,

where the last equality follows from the observation that ψq(θ)

θ−�q
= c

θ+Rq

θ+η
and hence ψ ′

q(�q) =
c

�q+Rq

�q+η
.

Finally, (27) provides a formula for the expected (continuously) discounted dividends until
ruin:

E
a
x

(∫ ∞

0
e−qt1{t<T −

0 } dR(t)

)
= (λ�′

q/(�λ+q − �q))(e�qx − e−Rqx) + e−Rqx

((λ�′
q/(�λ+q − �q))(�qe�qa + Rqe−Rqa) − Rqe−Rqa

= e�qx + e−Rqx((�λ+q − �q)/λ�′
q − 1)

�qe�qa − Rqe−Rqa((�λ+q − �q)/λ�′
q − 1)

(43)

= (Rλ+q + �q)e�qx − (Rλ+q − Rq)e−Rqx

(Rλ+q + �q)�qe�qa + Rq(Rλ+q − Rq)e−Rqa
,
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because �λ+q−�q

λ�′
q

= �q+Rq

�q+Rλ+q
. This expression is similar to [1], Equation (24), but not identical,

because there the dividends are paid at Poissonian times only (see also [8] for a spectrally positive
model setup). Identity (43) is, however, the analogue of [3], Equation (20), where it was derived
for a diffusion process X(t).
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